cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ab8500-gpadc.c (37296B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) ST-Ericsson SA 2010
      4 *
      5 * Author: Arun R Murthy <arun.murthy@stericsson.com>
      6 * Author: Daniel Willerud <daniel.willerud@stericsson.com>
      7 * Author: Johan Palsson <johan.palsson@stericsson.com>
      8 * Author: M'boumba Cedric Madianga
      9 * Author: Linus Walleij <linus.walleij@linaro.org>
     10 *
     11 * AB8500 General Purpose ADC driver. The AB8500 uses reference voltages:
     12 * VinVADC, and VADC relative to GND to do its job. It monitors main and backup
     13 * battery voltages, AC (mains) voltage, USB cable voltage, as well as voltages
     14 * representing the temperature of the chip die and battery, accessory
     15 * detection by resistance measurements using relative voltages and GSM burst
     16 * information.
     17 *
     18 * Some of the voltages are measured on external pins on the IC, such as
     19 * battery temperature or "ADC aux" 1 and 2. Other voltages are internal rails
     20 * from other parts of the ASIC such as main charger voltage, main and battery
     21 * backup voltage or USB VBUS voltage. For this reason drivers for other
     22 * parts of the system are required to obtain handles to the ADC to do work
     23 * for them and the IIO driver provides arbitration among these consumers.
     24 */
     25#include <linux/init.h>
     26#include <linux/bits.h>
     27#include <linux/iio/iio.h>
     28#include <linux/iio/sysfs.h>
     29#include <linux/device.h>
     30#include <linux/interrupt.h>
     31#include <linux/spinlock.h>
     32#include <linux/delay.h>
     33#include <linux/pm_runtime.h>
     34#include <linux/platform_device.h>
     35#include <linux/completion.h>
     36#include <linux/regulator/consumer.h>
     37#include <linux/random.h>
     38#include <linux/err.h>
     39#include <linux/slab.h>
     40#include <linux/mfd/abx500.h>
     41#include <linux/mfd/abx500/ab8500.h>
     42
     43/* GPADC register offsets and bit definitions */
     44
     45#define AB8500_GPADC_CTRL1_REG		0x00
     46/* GPADC control register 1 bits */
     47#define AB8500_GPADC_CTRL1_DISABLE		0x00
     48#define AB8500_GPADC_CTRL1_ENABLE		BIT(0)
     49#define AB8500_GPADC_CTRL1_TRIG_ENA		BIT(1)
     50#define AB8500_GPADC_CTRL1_START_SW_CONV	BIT(2)
     51#define AB8500_GPADC_CTRL1_BTEMP_PULL_UP	BIT(3)
     52/* 0 = use rising edge, 1 = use falling edge */
     53#define AB8500_GPADC_CTRL1_TRIG_EDGE		BIT(4)
     54/* 0 = use VTVOUT, 1 = use VRTC as pull-up supply for battery temp NTC */
     55#define AB8500_GPADC_CTRL1_PUPSUPSEL		BIT(5)
     56#define AB8500_GPADC_CTRL1_BUF_ENA		BIT(6)
     57#define AB8500_GPADC_CTRL1_ICHAR_ENA		BIT(7)
     58
     59#define AB8500_GPADC_CTRL2_REG		0x01
     60#define AB8500_GPADC_CTRL3_REG		0x02
     61/*
     62 * GPADC control register 2 and 3 bits
     63 * the bit layout is the same for SW and HW conversion set-up
     64 */
     65#define AB8500_GPADC_CTRL2_AVG_1		0x00
     66#define AB8500_GPADC_CTRL2_AVG_4		BIT(5)
     67#define AB8500_GPADC_CTRL2_AVG_8		BIT(6)
     68#define AB8500_GPADC_CTRL2_AVG_16		(BIT(5) | BIT(6))
     69
     70enum ab8500_gpadc_channel {
     71	AB8500_GPADC_CHAN_UNUSED = 0x00,
     72	AB8500_GPADC_CHAN_BAT_CTRL = 0x01,
     73	AB8500_GPADC_CHAN_BAT_TEMP = 0x02,
     74	/* This is not used on AB8505 */
     75	AB8500_GPADC_CHAN_MAIN_CHARGER = 0x03,
     76	AB8500_GPADC_CHAN_ACC_DET_1 = 0x04,
     77	AB8500_GPADC_CHAN_ACC_DET_2 = 0x05,
     78	AB8500_GPADC_CHAN_ADC_AUX_1 = 0x06,
     79	AB8500_GPADC_CHAN_ADC_AUX_2 = 0x07,
     80	AB8500_GPADC_CHAN_VBAT_A = 0x08,
     81	AB8500_GPADC_CHAN_VBUS = 0x09,
     82	AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT = 0x0a,
     83	AB8500_GPADC_CHAN_USB_CHARGER_CURRENT = 0x0b,
     84	AB8500_GPADC_CHAN_BACKUP_BAT = 0x0c,
     85	/* Only on AB8505 */
     86	AB8505_GPADC_CHAN_DIE_TEMP = 0x0d,
     87	AB8500_GPADC_CHAN_ID = 0x0e,
     88	AB8500_GPADC_CHAN_INTERNAL_TEST_1 = 0x0f,
     89	AB8500_GPADC_CHAN_INTERNAL_TEST_2 = 0x10,
     90	AB8500_GPADC_CHAN_INTERNAL_TEST_3 = 0x11,
     91	/* FIXME: Applicable to all ASIC variants? */
     92	AB8500_GPADC_CHAN_XTAL_TEMP = 0x12,
     93	AB8500_GPADC_CHAN_VBAT_TRUE_MEAS = 0x13,
     94	/* FIXME: Doesn't seem to work with pure AB8500 */
     95	AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT = 0x1c,
     96	AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT = 0x1d,
     97	AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT = 0x1e,
     98	AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT = 0x1f,
     99	/*
    100	 * Virtual channel used only for ibat conversion to ampere.
    101	 * Battery current conversion (ibat) cannot be requested as a
    102	 * single conversion but it is always requested in combination
    103	 * with other input requests.
    104	 */
    105	AB8500_GPADC_CHAN_IBAT_VIRTUAL = 0xFF,
    106};
    107
    108#define AB8500_GPADC_AUTO_TIMER_REG	0x03
    109
    110#define AB8500_GPADC_STAT_REG		0x04
    111#define AB8500_GPADC_STAT_BUSY		BIT(0)
    112
    113#define AB8500_GPADC_MANDATAL_REG	0x05
    114#define AB8500_GPADC_MANDATAH_REG	0x06
    115#define AB8500_GPADC_AUTODATAL_REG	0x07
    116#define AB8500_GPADC_AUTODATAH_REG	0x08
    117#define AB8500_GPADC_MUX_CTRL_REG	0x09
    118#define AB8540_GPADC_MANDATA2L_REG	0x09
    119#define AB8540_GPADC_MANDATA2H_REG	0x0A
    120#define AB8540_GPADC_APEAAX_REG		0x10
    121#define AB8540_GPADC_APEAAT_REG		0x11
    122#define AB8540_GPADC_APEAAM_REG		0x12
    123#define AB8540_GPADC_APEAAH_REG		0x13
    124#define AB8540_GPADC_APEAAL_REG		0x14
    125
    126/*
    127 * OTP register offsets
    128 * Bank : 0x15
    129 */
    130#define AB8500_GPADC_CAL_1	0x0F
    131#define AB8500_GPADC_CAL_2	0x10
    132#define AB8500_GPADC_CAL_3	0x11
    133#define AB8500_GPADC_CAL_4	0x12
    134#define AB8500_GPADC_CAL_5	0x13
    135#define AB8500_GPADC_CAL_6	0x14
    136#define AB8500_GPADC_CAL_7	0x15
    137/* New calibration for 8540 */
    138#define AB8540_GPADC_OTP4_REG_7	0x38
    139#define AB8540_GPADC_OTP4_REG_6	0x39
    140#define AB8540_GPADC_OTP4_REG_5	0x3A
    141
    142#define AB8540_GPADC_DIS_ZERO	0x00
    143#define AB8540_GPADC_EN_VBIAS_XTAL_TEMP	0x02
    144
    145/* GPADC constants from AB8500 spec, UM0836 */
    146#define AB8500_ADC_RESOLUTION		1024
    147#define AB8500_ADC_CH_BTEMP_MIN		0
    148#define AB8500_ADC_CH_BTEMP_MAX		1350
    149#define AB8500_ADC_CH_DIETEMP_MIN	0
    150#define AB8500_ADC_CH_DIETEMP_MAX	1350
    151#define AB8500_ADC_CH_CHG_V_MIN		0
    152#define AB8500_ADC_CH_CHG_V_MAX		20030
    153#define AB8500_ADC_CH_ACCDET2_MIN	0
    154#define AB8500_ADC_CH_ACCDET2_MAX	2500
    155#define AB8500_ADC_CH_VBAT_MIN		2300
    156#define AB8500_ADC_CH_VBAT_MAX		4800
    157#define AB8500_ADC_CH_CHG_I_MIN		0
    158#define AB8500_ADC_CH_CHG_I_MAX		1500
    159#define AB8500_ADC_CH_BKBAT_MIN		0
    160#define AB8500_ADC_CH_BKBAT_MAX		3200
    161
    162/* GPADC constants from AB8540 spec */
    163#define AB8500_ADC_CH_IBAT_MIN		(-6000) /* mA range measured by ADC for ibat */
    164#define AB8500_ADC_CH_IBAT_MAX		6000
    165#define AB8500_ADC_CH_IBAT_MIN_V	(-60)	/* mV range measured by ADC for ibat */
    166#define AB8500_ADC_CH_IBAT_MAX_V	60
    167#define AB8500_GPADC_IBAT_VDROP_L	(-56)  /* mV */
    168#define AB8500_GPADC_IBAT_VDROP_H	56
    169
    170/* This is used to not lose precision when dividing to get gain and offset */
    171#define AB8500_GPADC_CALIB_SCALE	1000
    172/*
    173 * Number of bits shift used to not lose precision
    174 * when dividing to get ibat gain.
    175 */
    176#define AB8500_GPADC_CALIB_SHIFT_IBAT	20
    177
    178/* Time in ms before disabling regulator */
    179#define AB8500_GPADC_AUTOSUSPEND_DELAY	1
    180
    181#define AB8500_GPADC_CONVERSION_TIME	500 /* ms */
    182
    183enum ab8500_cal_channels {
    184	AB8500_CAL_VMAIN = 0,
    185	AB8500_CAL_BTEMP,
    186	AB8500_CAL_VBAT,
    187	AB8500_CAL_IBAT,
    188	AB8500_CAL_NR,
    189};
    190
    191/**
    192 * struct ab8500_adc_cal_data - Table for storing gain and offset for the
    193 * calibrated ADC channels
    194 * @gain: Gain of the ADC channel
    195 * @offset: Offset of the ADC channel
    196 * @otp_calib_hi: Calibration from OTP
    197 * @otp_calib_lo: Calibration from OTP
    198 */
    199struct ab8500_adc_cal_data {
    200	s64 gain;
    201	s64 offset;
    202	u16 otp_calib_hi;
    203	u16 otp_calib_lo;
    204};
    205
    206/**
    207 * struct ab8500_gpadc_chan_info - per-channel GPADC info
    208 * @name: name of the channel
    209 * @id: the internal AB8500 ID number for the channel
    210 * @hardware_control: indicate that we want to use hardware ADC control
    211 * on this channel, the default is software ADC control. Hardware control
    212 * is normally only used to test the battery voltage during GSM bursts
    213 * and needs a hardware trigger on the GPADCTrig pin of the ASIC.
    214 * @falling_edge: indicate that we want to trigger on falling edge
    215 * rather than rising edge, rising edge is the default
    216 * @avg_sample: how many samples to average: must be 1, 4, 8 or 16.
    217 * @trig_timer: how long to wait for the trigger, in 32kHz periods:
    218 * 0 .. 255 periods
    219 */
    220struct ab8500_gpadc_chan_info {
    221	const char *name;
    222	u8 id;
    223	bool hardware_control;
    224	bool falling_edge;
    225	u8 avg_sample;
    226	u8 trig_timer;
    227};
    228
    229/**
    230 * struct ab8500_gpadc - AB8500 GPADC device information
    231 * @dev: pointer to the containing device
    232 * @ab8500: pointer to the parent AB8500 device
    233 * @chans: internal per-channel information container
    234 * @nchans: number of channels
    235 * @complete: pointer to the completion that indicates
    236 * the completion of an gpadc conversion cycle
    237 * @vddadc: pointer to the regulator supplying VDDADC
    238 * @irq_sw: interrupt number that is used by gpadc for software ADC conversion
    239 * @irq_hw: interrupt number that is used by gpadc for hardware ADC conversion
    240 * @cal_data: array of ADC calibration data structs
    241 */
    242struct ab8500_gpadc {
    243	struct device *dev;
    244	struct ab8500 *ab8500;
    245	struct ab8500_gpadc_chan_info *chans;
    246	unsigned int nchans;
    247	struct completion complete;
    248	struct regulator *vddadc;
    249	int irq_sw;
    250	int irq_hw;
    251	struct ab8500_adc_cal_data cal_data[AB8500_CAL_NR];
    252};
    253
    254static struct ab8500_gpadc_chan_info *
    255ab8500_gpadc_get_channel(struct ab8500_gpadc *gpadc, u8 chan)
    256{
    257	struct ab8500_gpadc_chan_info *ch;
    258	int i;
    259
    260	for (i = 0; i < gpadc->nchans; i++) {
    261		ch = &gpadc->chans[i];
    262		if (ch->id == chan)
    263			break;
    264	}
    265	if (i == gpadc->nchans)
    266		return NULL;
    267
    268	return ch;
    269}
    270
    271/**
    272 * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
    273 * @gpadc: GPADC instance
    274 * @ch: the sampled channel this raw value is coming from
    275 * @ad_value: the raw value
    276 */
    277static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc,
    278				      enum ab8500_gpadc_channel ch,
    279				      int ad_value)
    280{
    281	int res;
    282
    283	switch (ch) {
    284	case AB8500_GPADC_CHAN_MAIN_CHARGER:
    285		/* No calibration data available: just interpolate */
    286		if (!gpadc->cal_data[AB8500_CAL_VMAIN].gain) {
    287			res = AB8500_ADC_CH_CHG_V_MIN + (AB8500_ADC_CH_CHG_V_MAX -
    288				AB8500_ADC_CH_CHG_V_MIN) * ad_value /
    289				AB8500_ADC_RESOLUTION;
    290			break;
    291		}
    292		/* Here we can use calibration */
    293		res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VMAIN].gain +
    294			gpadc->cal_data[AB8500_CAL_VMAIN].offset) / AB8500_GPADC_CALIB_SCALE;
    295		break;
    296
    297	case AB8500_GPADC_CHAN_BAT_CTRL:
    298	case AB8500_GPADC_CHAN_BAT_TEMP:
    299	case AB8500_GPADC_CHAN_ACC_DET_1:
    300	case AB8500_GPADC_CHAN_ADC_AUX_1:
    301	case AB8500_GPADC_CHAN_ADC_AUX_2:
    302	case AB8500_GPADC_CHAN_XTAL_TEMP:
    303		/* No calibration data available: just interpolate */
    304		if (!gpadc->cal_data[AB8500_CAL_BTEMP].gain) {
    305			res = AB8500_ADC_CH_BTEMP_MIN + (AB8500_ADC_CH_BTEMP_MAX -
    306				AB8500_ADC_CH_BTEMP_MIN) * ad_value /
    307				AB8500_ADC_RESOLUTION;
    308			break;
    309		}
    310		/* Here we can use calibration */
    311		res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_BTEMP].gain +
    312			gpadc->cal_data[AB8500_CAL_BTEMP].offset) / AB8500_GPADC_CALIB_SCALE;
    313		break;
    314
    315	case AB8500_GPADC_CHAN_VBAT_A:
    316	case AB8500_GPADC_CHAN_VBAT_TRUE_MEAS:
    317		/* No calibration data available: just interpolate */
    318		if (!gpadc->cal_data[AB8500_CAL_VBAT].gain) {
    319			res = AB8500_ADC_CH_VBAT_MIN + (AB8500_ADC_CH_VBAT_MAX -
    320				AB8500_ADC_CH_VBAT_MIN) * ad_value /
    321				AB8500_ADC_RESOLUTION;
    322			break;
    323		}
    324		/* Here we can use calibration */
    325		res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VBAT].gain +
    326			gpadc->cal_data[AB8500_CAL_VBAT].offset) / AB8500_GPADC_CALIB_SCALE;
    327		break;
    328
    329	case AB8505_GPADC_CHAN_DIE_TEMP:
    330		res = AB8500_ADC_CH_DIETEMP_MIN +
    331			(AB8500_ADC_CH_DIETEMP_MAX - AB8500_ADC_CH_DIETEMP_MIN) * ad_value /
    332			AB8500_ADC_RESOLUTION;
    333		break;
    334
    335	case AB8500_GPADC_CHAN_ACC_DET_2:
    336		res = AB8500_ADC_CH_ACCDET2_MIN +
    337			(AB8500_ADC_CH_ACCDET2_MAX - AB8500_ADC_CH_ACCDET2_MIN) * ad_value /
    338			AB8500_ADC_RESOLUTION;
    339		break;
    340
    341	case AB8500_GPADC_CHAN_VBUS:
    342		res = AB8500_ADC_CH_CHG_V_MIN +
    343			(AB8500_ADC_CH_CHG_V_MAX - AB8500_ADC_CH_CHG_V_MIN) * ad_value /
    344			AB8500_ADC_RESOLUTION;
    345		break;
    346
    347	case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT:
    348	case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT:
    349		res = AB8500_ADC_CH_CHG_I_MIN +
    350			(AB8500_ADC_CH_CHG_I_MAX - AB8500_ADC_CH_CHG_I_MIN) * ad_value /
    351			AB8500_ADC_RESOLUTION;
    352		break;
    353
    354	case AB8500_GPADC_CHAN_BACKUP_BAT:
    355		res = AB8500_ADC_CH_BKBAT_MIN +
    356			(AB8500_ADC_CH_BKBAT_MAX - AB8500_ADC_CH_BKBAT_MIN) * ad_value /
    357			AB8500_ADC_RESOLUTION;
    358		break;
    359
    360	case AB8500_GPADC_CHAN_IBAT_VIRTUAL:
    361		/* No calibration data available: just interpolate */
    362		if (!gpadc->cal_data[AB8500_CAL_IBAT].gain) {
    363			res = AB8500_ADC_CH_IBAT_MIN + (AB8500_ADC_CH_IBAT_MAX -
    364				AB8500_ADC_CH_IBAT_MIN) * ad_value /
    365				AB8500_ADC_RESOLUTION;
    366			break;
    367		}
    368		/* Here we can use calibration */
    369		res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_IBAT].gain +
    370				gpadc->cal_data[AB8500_CAL_IBAT].offset)
    371				>> AB8500_GPADC_CALIB_SHIFT_IBAT;
    372		break;
    373
    374	default:
    375		dev_err(gpadc->dev,
    376			"unknown channel ID: %d, not possible to convert\n",
    377			ch);
    378		res = -EINVAL;
    379		break;
    380
    381	}
    382
    383	return res;
    384}
    385
    386static int ab8500_gpadc_read(struct ab8500_gpadc *gpadc,
    387			     const struct ab8500_gpadc_chan_info *ch,
    388			     int *ibat)
    389{
    390	int ret;
    391	int looplimit = 0;
    392	unsigned long completion_timeout;
    393	u8 val;
    394	u8 low_data, high_data, low_data2, high_data2;
    395	u8 ctrl1;
    396	u8 ctrl23;
    397	unsigned int delay_min = 0;
    398	unsigned int delay_max = 0;
    399	u8 data_low_addr, data_high_addr;
    400
    401	if (!gpadc)
    402		return -ENODEV;
    403
    404	/* check if conversion is supported */
    405	if ((gpadc->irq_sw <= 0) && !ch->hardware_control)
    406		return -ENOTSUPP;
    407	if ((gpadc->irq_hw <= 0) && ch->hardware_control)
    408		return -ENOTSUPP;
    409
    410	/* Enable vddadc by grabbing PM runtime */
    411	pm_runtime_get_sync(gpadc->dev);
    412
    413	/* Check if ADC is not busy, lock and proceed */
    414	do {
    415		ret = abx500_get_register_interruptible(gpadc->dev,
    416			AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
    417		if (ret < 0)
    418			goto out;
    419		if (!(val & AB8500_GPADC_STAT_BUSY))
    420			break;
    421		msleep(20);
    422	} while (++looplimit < 10);
    423	if (looplimit >= 10 && (val & AB8500_GPADC_STAT_BUSY)) {
    424		dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
    425		ret = -EINVAL;
    426		goto out;
    427	}
    428
    429	/* Enable GPADC */
    430	ctrl1 = AB8500_GPADC_CTRL1_ENABLE;
    431
    432	/* Select the channel source and set average samples */
    433	switch (ch->avg_sample) {
    434	case 1:
    435		ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_1;
    436		break;
    437	case 4:
    438		ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_4;
    439		break;
    440	case 8:
    441		ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_8;
    442		break;
    443	default:
    444		ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_16;
    445		break;
    446	}
    447
    448	if (ch->hardware_control) {
    449		ret = abx500_set_register_interruptible(gpadc->dev,
    450				AB8500_GPADC, AB8500_GPADC_CTRL3_REG, ctrl23);
    451		ctrl1 |= AB8500_GPADC_CTRL1_TRIG_ENA;
    452		if (ch->falling_edge)
    453			ctrl1 |= AB8500_GPADC_CTRL1_TRIG_EDGE;
    454	} else {
    455		ret = abx500_set_register_interruptible(gpadc->dev,
    456				AB8500_GPADC, AB8500_GPADC_CTRL2_REG, ctrl23);
    457	}
    458	if (ret < 0) {
    459		dev_err(gpadc->dev,
    460			"gpadc_conversion: set avg samples failed\n");
    461		goto out;
    462	}
    463
    464	/*
    465	 * Enable ADC, buffering, select rising edge and enable ADC path
    466	 * charging current sense if it needed, ABB 3.0 needs some special
    467	 * treatment too.
    468	 */
    469	switch (ch->id) {
    470	case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT:
    471	case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT:
    472		ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA |
    473			AB8500_GPADC_CTRL1_ICHAR_ENA;
    474		break;
    475	case AB8500_GPADC_CHAN_BAT_TEMP:
    476		if (!is_ab8500_2p0_or_earlier(gpadc->ab8500)) {
    477			ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA |
    478				AB8500_GPADC_CTRL1_BTEMP_PULL_UP;
    479			/*
    480			 * Delay might be needed for ABB8500 cut 3.0, if not,
    481			 * remove when hardware will be available
    482			 */
    483			delay_min = 1000; /* Delay in micro seconds */
    484			delay_max = 10000; /* large range optimises sleepmode */
    485			break;
    486		}
    487		fallthrough;
    488	default:
    489		ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA;
    490		break;
    491	}
    492
    493	/* Write configuration to control register 1 */
    494	ret = abx500_set_register_interruptible(gpadc->dev,
    495		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ctrl1);
    496	if (ret < 0) {
    497		dev_err(gpadc->dev,
    498			"gpadc_conversion: set Control register failed\n");
    499		goto out;
    500	}
    501
    502	if (delay_min != 0)
    503		usleep_range(delay_min, delay_max);
    504
    505	if (ch->hardware_control) {
    506		/* Set trigger delay timer */
    507		ret = abx500_set_register_interruptible(gpadc->dev,
    508			AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG,
    509			ch->trig_timer);
    510		if (ret < 0) {
    511			dev_err(gpadc->dev,
    512				"gpadc_conversion: trig timer failed\n");
    513			goto out;
    514		}
    515		completion_timeout = 2 * HZ;
    516		data_low_addr = AB8500_GPADC_AUTODATAL_REG;
    517		data_high_addr = AB8500_GPADC_AUTODATAH_REG;
    518	} else {
    519		/* Start SW conversion */
    520		ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
    521			AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
    522			AB8500_GPADC_CTRL1_START_SW_CONV,
    523			AB8500_GPADC_CTRL1_START_SW_CONV);
    524		if (ret < 0) {
    525			dev_err(gpadc->dev,
    526				"gpadc_conversion: start s/w conv failed\n");
    527			goto out;
    528		}
    529		completion_timeout = msecs_to_jiffies(AB8500_GPADC_CONVERSION_TIME);
    530		data_low_addr = AB8500_GPADC_MANDATAL_REG;
    531		data_high_addr = AB8500_GPADC_MANDATAH_REG;
    532	}
    533
    534	/* Wait for completion of conversion */
    535	if (!wait_for_completion_timeout(&gpadc->complete,
    536			completion_timeout)) {
    537		dev_err(gpadc->dev,
    538			"timeout didn't receive GPADC conv interrupt\n");
    539		ret = -EINVAL;
    540		goto out;
    541	}
    542
    543	/* Read the converted RAW data */
    544	ret = abx500_get_register_interruptible(gpadc->dev,
    545			AB8500_GPADC, data_low_addr, &low_data);
    546	if (ret < 0) {
    547		dev_err(gpadc->dev,
    548			"gpadc_conversion: read low data failed\n");
    549		goto out;
    550	}
    551
    552	ret = abx500_get_register_interruptible(gpadc->dev,
    553		AB8500_GPADC, data_high_addr, &high_data);
    554	if (ret < 0) {
    555		dev_err(gpadc->dev,
    556			"gpadc_conversion: read high data failed\n");
    557		goto out;
    558	}
    559
    560	/* Check if double conversion is required */
    561	if ((ch->id == AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT) ||
    562	    (ch->id == AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT) ||
    563	    (ch->id == AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT) ||
    564	    (ch->id == AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT)) {
    565
    566		if (ch->hardware_control) {
    567			/* not supported */
    568			ret = -ENOTSUPP;
    569			dev_err(gpadc->dev,
    570				"gpadc_conversion: only SW double conversion supported\n");
    571			goto out;
    572		} else {
    573			/* Read the converted RAW data 2 */
    574			ret = abx500_get_register_interruptible(gpadc->dev,
    575				AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
    576				&low_data2);
    577			if (ret < 0) {
    578				dev_err(gpadc->dev,
    579					"gpadc_conversion: read sw low data 2 failed\n");
    580				goto out;
    581			}
    582
    583			ret = abx500_get_register_interruptible(gpadc->dev,
    584				AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
    585				&high_data2);
    586			if (ret < 0) {
    587				dev_err(gpadc->dev,
    588					"gpadc_conversion: read sw high data 2 failed\n");
    589				goto out;
    590			}
    591			if (ibat != NULL) {
    592				*ibat = (high_data2 << 8) | low_data2;
    593			} else {
    594				dev_warn(gpadc->dev,
    595					"gpadc_conversion: ibat not stored\n");
    596			}
    597
    598		}
    599	}
    600
    601	/* Disable GPADC */
    602	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
    603		AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE);
    604	if (ret < 0) {
    605		dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
    606		goto out;
    607	}
    608
    609	/* This eventually drops the regulator */
    610	pm_runtime_mark_last_busy(gpadc->dev);
    611	pm_runtime_put_autosuspend(gpadc->dev);
    612
    613	return (high_data << 8) | low_data;
    614
    615out:
    616	/*
    617	 * It has shown to be needed to turn off the GPADC if an error occurs,
    618	 * otherwise we might have problem when waiting for the busy bit in the
    619	 * GPADC status register to go low. In V1.1 there wait_for_completion
    620	 * seems to timeout when waiting for an interrupt.. Not seen in V2.0
    621	 */
    622	(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
    623		AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE);
    624	pm_runtime_put(gpadc->dev);
    625	dev_err(gpadc->dev,
    626		"gpadc_conversion: Failed to AD convert channel %d\n", ch->id);
    627
    628	return ret;
    629}
    630
    631/**
    632 * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion
    633 * @irq: irq number
    634 * @data: pointer to the data passed during request irq
    635 *
    636 * This is a interrupt service routine for gpadc conversion completion.
    637 * Notifies the gpadc completion is completed and the converted raw value
    638 * can be read from the registers.
    639 * Returns IRQ status(IRQ_HANDLED)
    640 */
    641static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *data)
    642{
    643	struct ab8500_gpadc *gpadc = data;
    644
    645	complete(&gpadc->complete);
    646
    647	return IRQ_HANDLED;
    648}
    649
    650static int otp_cal_regs[] = {
    651	AB8500_GPADC_CAL_1,
    652	AB8500_GPADC_CAL_2,
    653	AB8500_GPADC_CAL_3,
    654	AB8500_GPADC_CAL_4,
    655	AB8500_GPADC_CAL_5,
    656	AB8500_GPADC_CAL_6,
    657	AB8500_GPADC_CAL_7,
    658};
    659
    660static int otp4_cal_regs[] = {
    661	AB8540_GPADC_OTP4_REG_7,
    662	AB8540_GPADC_OTP4_REG_6,
    663	AB8540_GPADC_OTP4_REG_5,
    664};
    665
    666static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
    667{
    668	int i;
    669	int ret[ARRAY_SIZE(otp_cal_regs)];
    670	u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
    671	int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
    672	u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
    673	int vmain_high, vmain_low;
    674	int btemp_high, btemp_low;
    675	int vbat_high, vbat_low;
    676	int ibat_high, ibat_low;
    677	s64 V_gain, V_offset, V2A_gain, V2A_offset;
    678
    679	/* First we read all OTP registers and store the error code */
    680	for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
    681		ret[i] = abx500_get_register_interruptible(gpadc->dev,
    682			AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]);
    683		if (ret[i] < 0) {
    684			/* Continue anyway: maybe the other registers are OK */
    685			dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
    686				__func__, otp_cal_regs[i]);
    687		} else {
    688			/* Put this in the entropy pool as device-unique */
    689			add_device_randomness(&ret[i], sizeof(ret[i]));
    690		}
    691	}
    692
    693	/*
    694	 * The ADC calibration data is stored in OTP registers.
    695	 * The layout of the calibration data is outlined below and a more
    696	 * detailed description can be found in UM0836
    697	 *
    698	 * vm_h/l = vmain_high/low
    699	 * bt_h/l = btemp_high/low
    700	 * vb_h/l = vbat_high/low
    701	 *
    702	 * Data bits 8500/9540:
    703	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
    704	 * |.......|.......|.......|.......|.......|.......|.......|.......
    705	 * |						   | vm_h9 | vm_h8
    706	 * |.......|.......|.......|.......|.......|.......|.......|.......
    707	 * |		   | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
    708	 * |.......|.......|.......|.......|.......|.......|.......|.......
    709	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
    710	 * |.......|.......|.......|.......|.......|.......|.......|.......
    711	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
    712	 * |.......|.......|.......|.......|.......|.......|.......|.......
    713	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
    714	 * |.......|.......|.......|.......|.......|.......|.......|.......
    715	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
    716	 * |.......|.......|.......|.......|.......|.......|.......|.......
    717	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
    718	 * |.......|.......|.......|.......|.......|.......|.......|.......
    719	 *
    720	 * Data bits 8540:
    721	 * OTP2
    722	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
    723	 * |.......|.......|.......|.......|.......|.......|.......|.......
    724	 * |
    725	 * |.......|.......|.......|.......|.......|.......|.......|.......
    726	 * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
    727	 * |.......|.......|.......|.......|.......|.......|.......|.......
    728	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
    729	 * |.......|.......|.......|.......|.......|.......|.......|.......
    730	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
    731	 * |.......|.......|.......|.......|.......|.......|.......|.......
    732	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
    733	 * |.......|.......|.......|.......|.......|.......|.......|.......
    734	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
    735	 * |.......|.......|.......|.......|.......|.......|.......|.......
    736	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
    737	 * |.......|.......|.......|.......|.......|.......|.......|.......
    738	 *
    739	 * Data bits 8540:
    740	 * OTP4
    741	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
    742	 * |.......|.......|.......|.......|.......|.......|.......|.......
    743	 * |					   | ib_h9 | ib_h8 | ib_h7
    744	 * |.......|.......|.......|.......|.......|.......|.......|.......
    745	 * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
    746	 * |.......|.......|.......|.......|.......|.......|.......|.......
    747	 * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
    748	 *
    749	 *
    750	 * Ideal output ADC codes corresponding to injected input voltages
    751	 * during manufacturing is:
    752	 *
    753	 * vmain_high: Vin = 19500mV / ADC ideal code = 997
    754	 * vmain_low:  Vin = 315mV   / ADC ideal code = 16
    755	 * btemp_high: Vin = 1300mV  / ADC ideal code = 985
    756	 * btemp_low:  Vin = 21mV    / ADC ideal code = 16
    757	 * vbat_high:  Vin = 4700mV  / ADC ideal code = 982
    758	 * vbat_low:   Vin = 2380mV  / ADC ideal code = 33
    759	 */
    760
    761	if (is_ab8540(gpadc->ab8500)) {
    762		/* Calculate gain and offset for VMAIN if all reads succeeded*/
    763		if (!(ret[1] < 0 || ret[2] < 0)) {
    764			vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
    765				((gpadc_cal[2] & 0xC0) >> 6));
    766			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
    767
    768			gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi =
    769				(u16)vmain_high;
    770			gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo =
    771				(u16)vmain_low;
    772
    773			gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE *
    774				(19500 - 315) / (vmain_high - vmain_low);
    775			gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE *
    776				19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) /
    777				(vmain_high - vmain_low)) * vmain_high;
    778		} else {
    779			gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0;
    780		}
    781
    782		/* Read IBAT calibration Data */
    783		for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
    784			ret_otp4[i] = abx500_get_register_interruptible(
    785					gpadc->dev, AB8500_OTP_EMUL,
    786					otp4_cal_regs[i],  &gpadc_otp4[i]);
    787			if (ret_otp4[i] < 0)
    788				dev_err(gpadc->dev,
    789					"%s: read otp4 reg 0x%02x failed\n",
    790					__func__, otp4_cal_regs[i]);
    791		}
    792
    793		/* Calculate gain and offset for IBAT if all reads succeeded */
    794		if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
    795			ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
    796				((gpadc_otp4[1] & 0xFE) >> 1));
    797			ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
    798				((gpadc_otp4[2] & 0xF8) >> 3));
    799
    800			gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_hi =
    801				(u16)ibat_high;
    802			gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_lo =
    803				(u16)ibat_low;
    804
    805			V_gain = ((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L)
    806				<< AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
    807
    808			V_offset = (AB8500_GPADC_IBAT_VDROP_H << AB8500_GPADC_CALIB_SHIFT_IBAT) -
    809				(((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L) <<
    810				AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
    811				* ibat_high;
    812			/*
    813			 * Result obtained is in mV (at a scale factor),
    814			 * we need to calculate gain and offset to get mA
    815			 */
    816			V2A_gain = (AB8500_ADC_CH_IBAT_MAX - AB8500_ADC_CH_IBAT_MIN)/
    817				(AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V);
    818			V2A_offset = ((AB8500_ADC_CH_IBAT_MAX_V * AB8500_ADC_CH_IBAT_MIN -
    819				AB8500_ADC_CH_IBAT_MAX * AB8500_ADC_CH_IBAT_MIN_V)
    820				<< AB8500_GPADC_CALIB_SHIFT_IBAT)
    821				/ (AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V);
    822
    823			gpadc->cal_data[AB8500_CAL_IBAT].gain =
    824				V_gain * V2A_gain;
    825			gpadc->cal_data[AB8500_CAL_IBAT].offset =
    826				V_offset * V2A_gain + V2A_offset;
    827		} else {
    828			gpadc->cal_data[AB8500_CAL_IBAT].gain = 0;
    829		}
    830	} else {
    831		/* Calculate gain and offset for VMAIN if all reads succeeded */
    832		if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
    833			vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
    834				((gpadc_cal[1] & 0x3F) << 2) |
    835				((gpadc_cal[2] & 0xC0) >> 6));
    836			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
    837
    838			gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi =
    839				(u16)vmain_high;
    840			gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo =
    841				(u16)vmain_low;
    842
    843			gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE *
    844				(19500 - 315) / (vmain_high - vmain_low);
    845
    846			gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE *
    847				19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) /
    848				(vmain_high - vmain_low)) * vmain_high;
    849		} else {
    850			gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0;
    851		}
    852	}
    853
    854	/* Calculate gain and offset for BTEMP if all reads succeeded */
    855	if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
    856		btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
    857			(gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
    858		btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
    859
    860		gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_hi = (u16)btemp_high;
    861		gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_lo = (u16)btemp_low;
    862
    863		gpadc->cal_data[AB8500_CAL_BTEMP].gain =
    864			AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
    865		gpadc->cal_data[AB8500_CAL_BTEMP].offset = AB8500_GPADC_CALIB_SCALE * 1300 -
    866			(AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
    867			* btemp_high;
    868	} else {
    869		gpadc->cal_data[AB8500_CAL_BTEMP].gain = 0;
    870	}
    871
    872	/* Calculate gain and offset for VBAT if all reads succeeded */
    873	if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
    874		vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
    875		vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
    876
    877		gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_hi = (u16)vbat_high;
    878		gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_lo = (u16)vbat_low;
    879
    880		gpadc->cal_data[AB8500_CAL_VBAT].gain = AB8500_GPADC_CALIB_SCALE *
    881			(4700 - 2380) /	(vbat_high - vbat_low);
    882		gpadc->cal_data[AB8500_CAL_VBAT].offset = AB8500_GPADC_CALIB_SCALE * 4700 -
    883			(AB8500_GPADC_CALIB_SCALE * (4700 - 2380) /
    884			(vbat_high - vbat_low)) * vbat_high;
    885	} else {
    886		gpadc->cal_data[AB8500_CAL_VBAT].gain = 0;
    887	}
    888}
    889
    890static int ab8500_gpadc_read_raw(struct iio_dev *indio_dev,
    891				 struct iio_chan_spec const *chan,
    892				 int *val, int *val2, long mask)
    893{
    894	struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
    895	const struct ab8500_gpadc_chan_info *ch;
    896	int raw_val;
    897	int processed;
    898
    899	ch = ab8500_gpadc_get_channel(gpadc, chan->address);
    900	if (!ch) {
    901		dev_err(gpadc->dev, "no such channel %lu\n",
    902			chan->address);
    903		return -EINVAL;
    904	}
    905
    906	raw_val = ab8500_gpadc_read(gpadc, ch, NULL);
    907	if (raw_val < 0)
    908		return raw_val;
    909
    910	if (mask == IIO_CHAN_INFO_RAW) {
    911		*val = raw_val;
    912		return IIO_VAL_INT;
    913	}
    914
    915	if (mask == IIO_CHAN_INFO_PROCESSED) {
    916		processed = ab8500_gpadc_ad_to_voltage(gpadc, ch->id, raw_val);
    917		if (processed < 0)
    918			return processed;
    919
    920		/* Return millivolt or milliamps or millicentigrades */
    921		*val = processed;
    922		return IIO_VAL_INT;
    923	}
    924
    925	return -EINVAL;
    926}
    927
    928static int ab8500_gpadc_of_xlate(struct iio_dev *indio_dev,
    929				 const struct of_phandle_args *iiospec)
    930{
    931	int i;
    932
    933	for (i = 0; i < indio_dev->num_channels; i++)
    934		if (indio_dev->channels[i].channel == iiospec->args[0])
    935			return i;
    936
    937	return -EINVAL;
    938}
    939
    940static const struct iio_info ab8500_gpadc_info = {
    941	.of_xlate = ab8500_gpadc_of_xlate,
    942	.read_raw = ab8500_gpadc_read_raw,
    943};
    944
    945static int ab8500_gpadc_runtime_suspend(struct device *dev)
    946{
    947	struct iio_dev *indio_dev = dev_get_drvdata(dev);
    948	struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
    949
    950	regulator_disable(gpadc->vddadc);
    951
    952	return 0;
    953}
    954
    955static int ab8500_gpadc_runtime_resume(struct device *dev)
    956{
    957	struct iio_dev *indio_dev = dev_get_drvdata(dev);
    958	struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
    959	int ret;
    960
    961	ret = regulator_enable(gpadc->vddadc);
    962	if (ret)
    963		dev_err(dev, "Failed to enable vddadc: %d\n", ret);
    964
    965	return ret;
    966}
    967
    968/**
    969 * ab8500_gpadc_parse_channel() - process devicetree channel configuration
    970 * @dev: pointer to containing device
    971 * @np: device tree node for the channel to configure
    972 * @ch: channel info to fill in
    973 * @iio_chan: IIO channel specification to fill in
    974 *
    975 * The devicetree will set up the channel for use with the specific device,
    976 * and define usage for things like AUX GPADC inputs more precisely.
    977 */
    978static int ab8500_gpadc_parse_channel(struct device *dev,
    979				      struct device_node *np,
    980				      struct ab8500_gpadc_chan_info *ch,
    981				      struct iio_chan_spec *iio_chan)
    982{
    983	const char *name = np->name;
    984	u32 chan;
    985	int ret;
    986
    987	ret = of_property_read_u32(np, "reg", &chan);
    988	if (ret) {
    989		dev_err(dev, "invalid channel number %s\n", name);
    990		return ret;
    991	}
    992	if (chan > AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT) {
    993		dev_err(dev, "%s channel number out of range %d\n", name, chan);
    994		return -EINVAL;
    995	}
    996
    997	iio_chan->channel = chan;
    998	iio_chan->datasheet_name = name;
    999	iio_chan->indexed = 1;
   1000	iio_chan->address = chan;
   1001	iio_chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
   1002		BIT(IIO_CHAN_INFO_PROCESSED);
   1003	/* Most are voltages (also temperatures), some are currents */
   1004	if ((chan == AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT) ||
   1005	    (chan == AB8500_GPADC_CHAN_USB_CHARGER_CURRENT))
   1006		iio_chan->type = IIO_CURRENT;
   1007	else
   1008		iio_chan->type = IIO_VOLTAGE;
   1009
   1010	ch->id = chan;
   1011
   1012	/* Sensible defaults */
   1013	ch->avg_sample = 16;
   1014	ch->hardware_control = false;
   1015	ch->falling_edge = false;
   1016	ch->trig_timer = 0;
   1017
   1018	return 0;
   1019}
   1020
   1021/**
   1022 * ab8500_gpadc_parse_channels() - Parse the GPADC channels from DT
   1023 * @gpadc: the GPADC to configure the channels for
   1024 * @np: device tree node containing the channel configurations
   1025 * @chans: the IIO channels we parsed
   1026 * @nchans: the number of IIO channels we parsed
   1027 */
   1028static int ab8500_gpadc_parse_channels(struct ab8500_gpadc *gpadc,
   1029				       struct device_node *np,
   1030				       struct iio_chan_spec **chans_parsed,
   1031				       unsigned int *nchans_parsed)
   1032{
   1033	struct device_node *child;
   1034	struct ab8500_gpadc_chan_info *ch;
   1035	struct iio_chan_spec *iio_chans;
   1036	unsigned int nchans;
   1037	int i;
   1038
   1039	nchans = of_get_available_child_count(np);
   1040	if (!nchans) {
   1041		dev_err(gpadc->dev, "no channel children\n");
   1042		return -ENODEV;
   1043	}
   1044	dev_info(gpadc->dev, "found %d ADC channels\n", nchans);
   1045
   1046	iio_chans = devm_kcalloc(gpadc->dev, nchans,
   1047				 sizeof(*iio_chans), GFP_KERNEL);
   1048	if (!iio_chans)
   1049		return -ENOMEM;
   1050
   1051	gpadc->chans = devm_kcalloc(gpadc->dev, nchans,
   1052				    sizeof(*gpadc->chans), GFP_KERNEL);
   1053	if (!gpadc->chans)
   1054		return -ENOMEM;
   1055
   1056	i = 0;
   1057	for_each_available_child_of_node(np, child) {
   1058		struct iio_chan_spec *iio_chan;
   1059		int ret;
   1060
   1061		ch = &gpadc->chans[i];
   1062		iio_chan = &iio_chans[i];
   1063
   1064		ret = ab8500_gpadc_parse_channel(gpadc->dev, child, ch,
   1065						 iio_chan);
   1066		if (ret) {
   1067			of_node_put(child);
   1068			return ret;
   1069		}
   1070		i++;
   1071	}
   1072	gpadc->nchans = nchans;
   1073	*chans_parsed = iio_chans;
   1074	*nchans_parsed = nchans;
   1075
   1076	return 0;
   1077}
   1078
   1079static int ab8500_gpadc_probe(struct platform_device *pdev)
   1080{
   1081	struct ab8500_gpadc *gpadc;
   1082	struct iio_dev *indio_dev;
   1083	struct device *dev = &pdev->dev;
   1084	struct device_node *np = pdev->dev.of_node;
   1085	struct iio_chan_spec *iio_chans;
   1086	unsigned int n_iio_chans;
   1087	int ret;
   1088
   1089	indio_dev = devm_iio_device_alloc(dev, sizeof(*gpadc));
   1090	if (!indio_dev)
   1091		return -ENOMEM;
   1092
   1093	platform_set_drvdata(pdev, indio_dev);
   1094	gpadc = iio_priv(indio_dev);
   1095
   1096	gpadc->dev = dev;
   1097	gpadc->ab8500 = dev_get_drvdata(dev->parent);
   1098
   1099	ret = ab8500_gpadc_parse_channels(gpadc, np, &iio_chans, &n_iio_chans);
   1100	if (ret)
   1101		return ret;
   1102
   1103	gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END");
   1104	if (gpadc->irq_sw < 0)
   1105		return dev_err_probe(dev, gpadc->irq_sw,
   1106				     "failed to get platform sw_conv_end irq\n");
   1107
   1108	if (is_ab8500(gpadc->ab8500)) {
   1109		gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END");
   1110		if (gpadc->irq_hw < 0)
   1111			return dev_err_probe(dev, gpadc->irq_hw,
   1112					     "failed to get platform hw_conv_end irq\n");
   1113	} else {
   1114		gpadc->irq_hw = 0;
   1115	}
   1116
   1117	/* Initialize completion used to notify completion of conversion */
   1118	init_completion(&gpadc->complete);
   1119
   1120	/* Request interrupts */
   1121	ret = devm_request_threaded_irq(dev, gpadc->irq_sw, NULL,
   1122		ab8500_bm_gpadcconvend_handler,	IRQF_NO_SUSPEND | IRQF_ONESHOT,
   1123		"ab8500-gpadc-sw", gpadc);
   1124	if (ret < 0) {
   1125		dev_err(dev,
   1126			"failed to request sw conversion irq %d\n",
   1127			gpadc->irq_sw);
   1128		return ret;
   1129	}
   1130
   1131	if (gpadc->irq_hw) {
   1132		ret = devm_request_threaded_irq(dev, gpadc->irq_hw, NULL,
   1133			ab8500_bm_gpadcconvend_handler,	IRQF_NO_SUSPEND | IRQF_ONESHOT,
   1134			"ab8500-gpadc-hw", gpadc);
   1135		if (ret < 0) {
   1136			dev_err(dev,
   1137				"Failed to request hw conversion irq: %d\n",
   1138				gpadc->irq_hw);
   1139			return ret;
   1140		}
   1141	}
   1142
   1143	/* The VTVout LDO used to power the AB8500 GPADC */
   1144	gpadc->vddadc = devm_regulator_get(dev, "vddadc");
   1145	if (IS_ERR(gpadc->vddadc))
   1146		return dev_err_probe(dev, PTR_ERR(gpadc->vddadc),
   1147				     "failed to get vddadc\n");
   1148
   1149	ret = regulator_enable(gpadc->vddadc);
   1150	if (ret) {
   1151		dev_err(dev, "failed to enable vddadc: %d\n", ret);
   1152		return ret;
   1153	}
   1154
   1155	/* Enable runtime PM */
   1156	pm_runtime_get_noresume(dev);
   1157	pm_runtime_set_active(dev);
   1158	pm_runtime_enable(dev);
   1159	pm_runtime_set_autosuspend_delay(dev, AB8500_GPADC_AUTOSUSPEND_DELAY);
   1160	pm_runtime_use_autosuspend(dev);
   1161
   1162	ab8500_gpadc_read_calibration_data(gpadc);
   1163
   1164	pm_runtime_put(dev);
   1165
   1166	indio_dev->name = "ab8500-gpadc";
   1167	indio_dev->modes = INDIO_DIRECT_MODE;
   1168	indio_dev->info = &ab8500_gpadc_info;
   1169	indio_dev->channels = iio_chans;
   1170	indio_dev->num_channels = n_iio_chans;
   1171
   1172	ret = devm_iio_device_register(dev, indio_dev);
   1173	if (ret)
   1174		goto out_dis_pm;
   1175
   1176	return 0;
   1177
   1178out_dis_pm:
   1179	pm_runtime_get_sync(dev);
   1180	pm_runtime_put_noidle(dev);
   1181	pm_runtime_disable(dev);
   1182	regulator_disable(gpadc->vddadc);
   1183
   1184	return ret;
   1185}
   1186
   1187static int ab8500_gpadc_remove(struct platform_device *pdev)
   1188{
   1189	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
   1190	struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
   1191
   1192	pm_runtime_get_sync(gpadc->dev);
   1193	pm_runtime_put_noidle(gpadc->dev);
   1194	pm_runtime_disable(gpadc->dev);
   1195	regulator_disable(gpadc->vddadc);
   1196
   1197	return 0;
   1198}
   1199
   1200static DEFINE_RUNTIME_DEV_PM_OPS(ab8500_gpadc_pm_ops,
   1201				 ab8500_gpadc_runtime_suspend,
   1202				 ab8500_gpadc_runtime_resume, NULL);
   1203
   1204static struct platform_driver ab8500_gpadc_driver = {
   1205	.probe = ab8500_gpadc_probe,
   1206	.remove = ab8500_gpadc_remove,
   1207	.driver = {
   1208		.name = "ab8500-gpadc",
   1209		.pm = pm_ptr(&ab8500_gpadc_pm_ops),
   1210	},
   1211};
   1212builtin_platform_driver(ab8500_gpadc_driver);