ad7887.c (8539B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * AD7887 SPI ADC driver 4 * 5 * Copyright 2010-2011 Analog Devices Inc. 6 */ 7 8#include <linux/device.h> 9#include <linux/kernel.h> 10#include <linux/slab.h> 11#include <linux/sysfs.h> 12#include <linux/spi/spi.h> 13#include <linux/regulator/consumer.h> 14#include <linux/err.h> 15#include <linux/module.h> 16#include <linux/interrupt.h> 17#include <linux/bitops.h> 18 19#include <linux/iio/iio.h> 20#include <linux/iio/sysfs.h> 21#include <linux/iio/buffer.h> 22 23#include <linux/iio/trigger_consumer.h> 24#include <linux/iio/triggered_buffer.h> 25 26#include <linux/platform_data/ad7887.h> 27 28#define AD7887_REF_DIS BIT(5) /* on-chip reference disable */ 29#define AD7887_DUAL BIT(4) /* dual-channel mode */ 30#define AD7887_CH_AIN1 BIT(3) /* convert on channel 1, DUAL=1 */ 31#define AD7887_CH_AIN0 0 /* convert on channel 0, DUAL=0,1 */ 32#define AD7887_PM_MODE1 0 /* CS based shutdown */ 33#define AD7887_PM_MODE2 1 /* full on */ 34#define AD7887_PM_MODE3 2 /* auto shutdown after conversion */ 35#define AD7887_PM_MODE4 3 /* standby mode */ 36 37enum ad7887_channels { 38 AD7887_CH0, 39 AD7887_CH0_CH1, 40 AD7887_CH1, 41}; 42 43/** 44 * struct ad7887_chip_info - chip specifc information 45 * @int_vref_mv: the internal reference voltage 46 * @channels: channels specification 47 * @num_channels: number of channels 48 * @dual_channels: channels specification in dual mode 49 * @num_dual_channels: number of channels in dual mode 50 */ 51struct ad7887_chip_info { 52 u16 int_vref_mv; 53 const struct iio_chan_spec *channels; 54 unsigned int num_channels; 55 const struct iio_chan_spec *dual_channels; 56 unsigned int num_dual_channels; 57}; 58 59struct ad7887_state { 60 struct spi_device *spi; 61 const struct ad7887_chip_info *chip_info; 62 struct regulator *reg; 63 struct spi_transfer xfer[4]; 64 struct spi_message msg[3]; 65 struct spi_message *ring_msg; 66 unsigned char tx_cmd_buf[4]; 67 68 /* 69 * DMA (thus cache coherency maintenance) requires the 70 * transfer buffers to live in their own cache lines. 71 * Buffer needs to be large enough to hold two 16 bit samples and a 72 * 64 bit aligned 64 bit timestamp. 73 */ 74 unsigned char data[ALIGN(4, sizeof(s64)) + sizeof(s64)] 75 ____cacheline_aligned; 76}; 77 78enum ad7887_supported_device_ids { 79 ID_AD7887 80}; 81 82static int ad7887_ring_preenable(struct iio_dev *indio_dev) 83{ 84 struct ad7887_state *st = iio_priv(indio_dev); 85 86 /* We know this is a single long so can 'cheat' */ 87 switch (*indio_dev->active_scan_mask) { 88 case (1 << 0): 89 st->ring_msg = &st->msg[AD7887_CH0]; 90 break; 91 case (1 << 1): 92 st->ring_msg = &st->msg[AD7887_CH1]; 93 /* Dummy read: push CH1 setting down to hardware */ 94 spi_sync(st->spi, st->ring_msg); 95 break; 96 case ((1 << 1) | (1 << 0)): 97 st->ring_msg = &st->msg[AD7887_CH0_CH1]; 98 break; 99 } 100 101 return 0; 102} 103 104static int ad7887_ring_postdisable(struct iio_dev *indio_dev) 105{ 106 struct ad7887_state *st = iio_priv(indio_dev); 107 108 /* dummy read: restore default CH0 settin */ 109 return spi_sync(st->spi, &st->msg[AD7887_CH0]); 110} 111 112static irqreturn_t ad7887_trigger_handler(int irq, void *p) 113{ 114 struct iio_poll_func *pf = p; 115 struct iio_dev *indio_dev = pf->indio_dev; 116 struct ad7887_state *st = iio_priv(indio_dev); 117 int b_sent; 118 119 b_sent = spi_sync(st->spi, st->ring_msg); 120 if (b_sent) 121 goto done; 122 123 iio_push_to_buffers_with_timestamp(indio_dev, st->data, 124 iio_get_time_ns(indio_dev)); 125done: 126 iio_trigger_notify_done(indio_dev->trig); 127 128 return IRQ_HANDLED; 129} 130 131static const struct iio_buffer_setup_ops ad7887_ring_setup_ops = { 132 .preenable = &ad7887_ring_preenable, 133 .postdisable = &ad7887_ring_postdisable, 134}; 135 136static int ad7887_scan_direct(struct ad7887_state *st, unsigned ch) 137{ 138 int ret = spi_sync(st->spi, &st->msg[ch]); 139 if (ret) 140 return ret; 141 142 return (st->data[(ch * 2)] << 8) | st->data[(ch * 2) + 1]; 143} 144 145static int ad7887_read_raw(struct iio_dev *indio_dev, 146 struct iio_chan_spec const *chan, 147 int *val, 148 int *val2, 149 long m) 150{ 151 int ret; 152 struct ad7887_state *st = iio_priv(indio_dev); 153 154 switch (m) { 155 case IIO_CHAN_INFO_RAW: 156 ret = iio_device_claim_direct_mode(indio_dev); 157 if (ret) 158 return ret; 159 ret = ad7887_scan_direct(st, chan->address); 160 iio_device_release_direct_mode(indio_dev); 161 162 if (ret < 0) 163 return ret; 164 *val = ret >> chan->scan_type.shift; 165 *val &= GENMASK(chan->scan_type.realbits - 1, 0); 166 return IIO_VAL_INT; 167 case IIO_CHAN_INFO_SCALE: 168 if (st->reg) { 169 *val = regulator_get_voltage(st->reg); 170 if (*val < 0) 171 return *val; 172 *val /= 1000; 173 } else { 174 *val = st->chip_info->int_vref_mv; 175 } 176 177 *val2 = chan->scan_type.realbits; 178 179 return IIO_VAL_FRACTIONAL_LOG2; 180 } 181 return -EINVAL; 182} 183 184#define AD7887_CHANNEL(x) { \ 185 .type = IIO_VOLTAGE, \ 186 .indexed = 1, \ 187 .channel = (x), \ 188 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 189 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 190 .address = (x), \ 191 .scan_index = (x), \ 192 .scan_type = { \ 193 .sign = 'u', \ 194 .realbits = 12, \ 195 .storagebits = 16, \ 196 .shift = 0, \ 197 .endianness = IIO_BE, \ 198 }, \ 199} 200 201static const struct iio_chan_spec ad7887_channels[] = { 202 AD7887_CHANNEL(0), 203 IIO_CHAN_SOFT_TIMESTAMP(1), 204}; 205 206static const struct iio_chan_spec ad7887_dual_channels[] = { 207 AD7887_CHANNEL(0), 208 AD7887_CHANNEL(1), 209 IIO_CHAN_SOFT_TIMESTAMP(2), 210}; 211 212static const struct ad7887_chip_info ad7887_chip_info_tbl[] = { 213 /* 214 * More devices added in future 215 */ 216 [ID_AD7887] = { 217 .channels = ad7887_channels, 218 .num_channels = ARRAY_SIZE(ad7887_channels), 219 .dual_channels = ad7887_dual_channels, 220 .num_dual_channels = ARRAY_SIZE(ad7887_dual_channels), 221 .int_vref_mv = 2500, 222 }, 223}; 224 225static const struct iio_info ad7887_info = { 226 .read_raw = &ad7887_read_raw, 227}; 228 229static void ad7887_reg_disable(void *data) 230{ 231 struct regulator *reg = data; 232 233 regulator_disable(reg); 234} 235 236static int ad7887_probe(struct spi_device *spi) 237{ 238 struct ad7887_platform_data *pdata = spi->dev.platform_data; 239 struct ad7887_state *st; 240 struct iio_dev *indio_dev; 241 uint8_t mode; 242 int ret; 243 244 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); 245 if (indio_dev == NULL) 246 return -ENOMEM; 247 248 st = iio_priv(indio_dev); 249 250 st->reg = devm_regulator_get_optional(&spi->dev, "vref"); 251 if (IS_ERR(st->reg)) { 252 if (PTR_ERR(st->reg) != -ENODEV) 253 return PTR_ERR(st->reg); 254 255 st->reg = NULL; 256 } 257 258 if (st->reg) { 259 ret = regulator_enable(st->reg); 260 if (ret) 261 return ret; 262 263 ret = devm_add_action_or_reset(&spi->dev, ad7887_reg_disable, st->reg); 264 if (ret) 265 return ret; 266 } 267 268 st->chip_info = 269 &ad7887_chip_info_tbl[spi_get_device_id(spi)->driver_data]; 270 271 st->spi = spi; 272 273 indio_dev->name = spi_get_device_id(spi)->name; 274 indio_dev->info = &ad7887_info; 275 indio_dev->modes = INDIO_DIRECT_MODE; 276 277 /* Setup default message */ 278 279 mode = AD7887_PM_MODE4; 280 if (!st->reg) 281 mode |= AD7887_REF_DIS; 282 if (pdata && pdata->en_dual) 283 mode |= AD7887_DUAL; 284 285 st->tx_cmd_buf[0] = AD7887_CH_AIN0 | mode; 286 287 st->xfer[0].rx_buf = &st->data[0]; 288 st->xfer[0].tx_buf = &st->tx_cmd_buf[0]; 289 st->xfer[0].len = 2; 290 291 spi_message_init(&st->msg[AD7887_CH0]); 292 spi_message_add_tail(&st->xfer[0], &st->msg[AD7887_CH0]); 293 294 if (pdata && pdata->en_dual) { 295 st->tx_cmd_buf[2] = AD7887_CH_AIN1 | mode; 296 297 st->xfer[1].rx_buf = &st->data[0]; 298 st->xfer[1].tx_buf = &st->tx_cmd_buf[2]; 299 st->xfer[1].len = 2; 300 301 st->xfer[2].rx_buf = &st->data[2]; 302 st->xfer[2].tx_buf = &st->tx_cmd_buf[0]; 303 st->xfer[2].len = 2; 304 305 spi_message_init(&st->msg[AD7887_CH0_CH1]); 306 spi_message_add_tail(&st->xfer[1], &st->msg[AD7887_CH0_CH1]); 307 spi_message_add_tail(&st->xfer[2], &st->msg[AD7887_CH0_CH1]); 308 309 st->xfer[3].rx_buf = &st->data[2]; 310 st->xfer[3].tx_buf = &st->tx_cmd_buf[2]; 311 st->xfer[3].len = 2; 312 313 spi_message_init(&st->msg[AD7887_CH1]); 314 spi_message_add_tail(&st->xfer[3], &st->msg[AD7887_CH1]); 315 316 indio_dev->channels = st->chip_info->dual_channels; 317 indio_dev->num_channels = st->chip_info->num_dual_channels; 318 } else { 319 indio_dev->channels = st->chip_info->channels; 320 indio_dev->num_channels = st->chip_info->num_channels; 321 } 322 323 ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, 324 &iio_pollfunc_store_time, 325 &ad7887_trigger_handler, &ad7887_ring_setup_ops); 326 if (ret) 327 return ret; 328 329 return devm_iio_device_register(&spi->dev, indio_dev); 330} 331 332static const struct spi_device_id ad7887_id[] = { 333 {"ad7887", ID_AD7887}, 334 {} 335}; 336MODULE_DEVICE_TABLE(spi, ad7887_id); 337 338static struct spi_driver ad7887_driver = { 339 .driver = { 340 .name = "ad7887", 341 }, 342 .probe = ad7887_probe, 343 .id_table = ad7887_id, 344}; 345module_spi_driver(ad7887_driver); 346 347MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>"); 348MODULE_DESCRIPTION("Analog Devices AD7887 ADC"); 349MODULE_LICENSE("GPL v2");