cpcap-adc.c (27396B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com> 4 * 5 * Rewritten for Linux IIO framework with some code based on 6 * earlier driver found in the Motorola Linux kernel: 7 * 8 * Copyright (C) 2009-2010 Motorola, Inc. 9 */ 10 11#include <linux/delay.h> 12#include <linux/device.h> 13#include <linux/err.h> 14#include <linux/init.h> 15#include <linux/interrupt.h> 16#include <linux/kernel.h> 17#include <linux/module.h> 18#include <linux/mod_devicetable.h> 19#include <linux/platform_device.h> 20#include <linux/property.h> 21#include <linux/regmap.h> 22 23#include <linux/iio/buffer.h> 24#include <linux/iio/driver.h> 25#include <linux/iio/iio.h> 26#include <linux/iio/kfifo_buf.h> 27#include <linux/mfd/motorola-cpcap.h> 28 29/* Register CPCAP_REG_ADCC1 bits */ 30#define CPCAP_BIT_ADEN_AUTO_CLR BIT(15) /* Currently unused */ 31#define CPCAP_BIT_CAL_MODE BIT(14) /* Set with BIT_RAND0 */ 32#define CPCAP_BIT_ADC_CLK_SEL1 BIT(13) /* Currently unused */ 33#define CPCAP_BIT_ADC_CLK_SEL0 BIT(12) /* Currently unused */ 34#define CPCAP_BIT_ATOX BIT(11) 35#define CPCAP_BIT_ATO3 BIT(10) 36#define CPCAP_BIT_ATO2 BIT(9) 37#define CPCAP_BIT_ATO1 BIT(8) 38#define CPCAP_BIT_ATO0 BIT(7) 39#define CPCAP_BIT_ADA2 BIT(6) 40#define CPCAP_BIT_ADA1 BIT(5) 41#define CPCAP_BIT_ADA0 BIT(4) 42#define CPCAP_BIT_AD_SEL1 BIT(3) /* Set for bank1 */ 43#define CPCAP_BIT_RAND1 BIT(2) /* Set for channel 16 & 17 */ 44#define CPCAP_BIT_RAND0 BIT(1) /* Set with CAL_MODE */ 45#define CPCAP_BIT_ADEN BIT(0) /* Currently unused */ 46 47#define CPCAP_REG_ADCC1_DEFAULTS (CPCAP_BIT_ADEN_AUTO_CLR | \ 48 CPCAP_BIT_ADC_CLK_SEL0 | \ 49 CPCAP_BIT_RAND1) 50 51/* Register CPCAP_REG_ADCC2 bits */ 52#define CPCAP_BIT_CAL_FACTOR_ENABLE BIT(15) /* Currently unused */ 53#define CPCAP_BIT_BATDETB_EN BIT(14) /* Currently unused */ 54#define CPCAP_BIT_ADTRIG_ONESHOT BIT(13) /* Set for !TIMING_IMM */ 55#define CPCAP_BIT_ASC BIT(12) /* Set for TIMING_IMM */ 56#define CPCAP_BIT_ATOX_PS_FACTOR BIT(11) 57#define CPCAP_BIT_ADC_PS_FACTOR1 BIT(10) 58#define CPCAP_BIT_ADC_PS_FACTOR0 BIT(9) 59#define CPCAP_BIT_AD4_SELECT BIT(8) /* Currently unused */ 60#define CPCAP_BIT_ADC_BUSY BIT(7) /* Currently unused */ 61#define CPCAP_BIT_THERMBIAS_EN BIT(6) /* Bias for AD0_BATTDETB */ 62#define CPCAP_BIT_ADTRIG_DIS BIT(5) /* Disable interrupt */ 63#define CPCAP_BIT_LIADC BIT(4) /* Currently unused */ 64#define CPCAP_BIT_TS_REFEN BIT(3) /* Currently unused */ 65#define CPCAP_BIT_TS_M2 BIT(2) /* Currently unused */ 66#define CPCAP_BIT_TS_M1 BIT(1) /* Currently unused */ 67#define CPCAP_BIT_TS_M0 BIT(0) /* Currently unused */ 68 69#define CPCAP_REG_ADCC2_DEFAULTS (CPCAP_BIT_AD4_SELECT | \ 70 CPCAP_BIT_ADTRIG_DIS | \ 71 CPCAP_BIT_LIADC | \ 72 CPCAP_BIT_TS_M2 | \ 73 CPCAP_BIT_TS_M1) 74 75#define CPCAP_MAX_TEMP_LVL 27 76#define CPCAP_FOUR_POINT_TWO_ADC 801 77#define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD 530 78#define ST_ADC_CAL_CHRGI_LOW_THRESHOLD 494 79#define ST_ADC_CAL_BATTI_HIGH_THRESHOLD 530 80#define ST_ADC_CAL_BATTI_LOW_THRESHOLD 494 81#define ST_ADC_CALIBRATE_DIFF_THRESHOLD 3 82 83#define CPCAP_ADC_MAX_RETRIES 5 /* Calibration */ 84 85/* 86 * struct cpcap_adc_ato - timing settings for cpcap adc 87 * 88 * Unfortunately no cpcap documentation available, please document when 89 * using these. 90 */ 91struct cpcap_adc_ato { 92 unsigned short ato_in; 93 unsigned short atox_in; 94 unsigned short adc_ps_factor_in; 95 unsigned short atox_ps_factor_in; 96 unsigned short ato_out; 97 unsigned short atox_out; 98 unsigned short adc_ps_factor_out; 99 unsigned short atox_ps_factor_out; 100}; 101 102/** 103 * struct cpcap_adc - cpcap adc device driver data 104 * @reg: cpcap regmap 105 * @dev: struct device 106 * @vendor: cpcap vendor 107 * @irq: interrupt 108 * @lock: mutex 109 * @ato: request timings 110 * @wq_data_avail: work queue 111 * @done: work done 112 */ 113struct cpcap_adc { 114 struct regmap *reg; 115 struct device *dev; 116 u16 vendor; 117 int irq; 118 struct mutex lock; /* ADC register access lock */ 119 const struct cpcap_adc_ato *ato; 120 wait_queue_head_t wq_data_avail; 121 bool done; 122}; 123 124/* 125 * enum cpcap_adc_channel - cpcap adc channels 126 */ 127enum cpcap_adc_channel { 128 /* Bank0 channels */ 129 CPCAP_ADC_AD0, /* Battery temperature */ 130 CPCAP_ADC_BATTP, /* Battery voltage */ 131 CPCAP_ADC_VBUS, /* USB VBUS voltage */ 132 CPCAP_ADC_AD3, /* Die temperature when charging */ 133 CPCAP_ADC_BPLUS_AD4, /* Another battery or system voltage */ 134 CPCAP_ADC_CHG_ISENSE, /* Calibrated charge current */ 135 CPCAP_ADC_BATTI, /* Calibrated system current */ 136 CPCAP_ADC_USB_ID, /* USB OTG ID, unused on droid 4? */ 137 138 /* Bank1 channels */ 139 CPCAP_ADC_AD8, /* Seems unused */ 140 CPCAP_ADC_AD9, /* Seems unused */ 141 CPCAP_ADC_LICELL, /* Maybe system voltage? Always 3V */ 142 CPCAP_ADC_HV_BATTP, /* Another battery detection? */ 143 CPCAP_ADC_TSX1_AD12, /* Seems unused, for touchscreen? */ 144 CPCAP_ADC_TSX2_AD13, /* Seems unused, for touchscreen? */ 145 CPCAP_ADC_TSY1_AD14, /* Seems unused, for touchscreen? */ 146 CPCAP_ADC_TSY2_AD15, /* Seems unused, for touchscreen? */ 147 148 /* Remuxed channels using bank0 entries */ 149 CPCAP_ADC_BATTP_PI16, /* Alternative mux mode for BATTP */ 150 CPCAP_ADC_BATTI_PI17, /* Alternative mux mode for BATTI */ 151 152 CPCAP_ADC_CHANNEL_NUM, 153}; 154 155/* 156 * enum cpcap_adc_timing - cpcap adc timing options 157 * 158 * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings. 159 * Please document when using. 160 */ 161enum cpcap_adc_timing { 162 CPCAP_ADC_TIMING_IMM, 163 CPCAP_ADC_TIMING_IN, 164 CPCAP_ADC_TIMING_OUT, 165}; 166 167/** 168 * struct cpcap_adc_phasing_tbl - cpcap phasing table 169 * @offset: offset in the phasing table 170 * @multiplier: multiplier in the phasing table 171 * @divider: divider in the phasing table 172 * @min: minimum value 173 * @max: maximum value 174 */ 175struct cpcap_adc_phasing_tbl { 176 short offset; 177 unsigned short multiplier; 178 unsigned short divider; 179 short min; 180 short max; 181}; 182 183/** 184 * struct cpcap_adc_conversion_tbl - cpcap conversion table 185 * @conv_type: conversion type 186 * @align_offset: align offset 187 * @conv_offset: conversion offset 188 * @cal_offset: calibration offset 189 * @multiplier: conversion multiplier 190 * @divider: conversion divider 191 */ 192struct cpcap_adc_conversion_tbl { 193 enum iio_chan_info_enum conv_type; 194 int align_offset; 195 int conv_offset; 196 int cal_offset; 197 int multiplier; 198 int divider; 199}; 200 201/** 202 * struct cpcap_adc_request - cpcap adc request 203 * @channel: request channel 204 * @phase_tbl: channel phasing table 205 * @conv_tbl: channel conversion table 206 * @bank_index: channel index within the bank 207 * @timing: timing settings 208 * @result: result 209 */ 210struct cpcap_adc_request { 211 int channel; 212 const struct cpcap_adc_phasing_tbl *phase_tbl; 213 const struct cpcap_adc_conversion_tbl *conv_tbl; 214 int bank_index; 215 enum cpcap_adc_timing timing; 216 int result; 217}; 218 219/* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */ 220static const struct cpcap_adc_phasing_tbl bank_phasing[] = { 221 /* Bank0 */ 222 [CPCAP_ADC_AD0] = {0, 0x80, 0x80, 0, 1023}, 223 [CPCAP_ADC_BATTP] = {0, 0x80, 0x80, 0, 1023}, 224 [CPCAP_ADC_VBUS] = {0, 0x80, 0x80, 0, 1023}, 225 [CPCAP_ADC_AD3] = {0, 0x80, 0x80, 0, 1023}, 226 [CPCAP_ADC_BPLUS_AD4] = {0, 0x80, 0x80, 0, 1023}, 227 [CPCAP_ADC_CHG_ISENSE] = {0, 0x80, 0x80, -512, 511}, 228 [CPCAP_ADC_BATTI] = {0, 0x80, 0x80, -512, 511}, 229 [CPCAP_ADC_USB_ID] = {0, 0x80, 0x80, 0, 1023}, 230 231 /* Bank1 */ 232 [CPCAP_ADC_AD8] = {0, 0x80, 0x80, 0, 1023}, 233 [CPCAP_ADC_AD9] = {0, 0x80, 0x80, 0, 1023}, 234 [CPCAP_ADC_LICELL] = {0, 0x80, 0x80, 0, 1023}, 235 [CPCAP_ADC_HV_BATTP] = {0, 0x80, 0x80, 0, 1023}, 236 [CPCAP_ADC_TSX1_AD12] = {0, 0x80, 0x80, 0, 1023}, 237 [CPCAP_ADC_TSX2_AD13] = {0, 0x80, 0x80, 0, 1023}, 238 [CPCAP_ADC_TSY1_AD14] = {0, 0x80, 0x80, 0, 1023}, 239 [CPCAP_ADC_TSY2_AD15] = {0, 0x80, 0x80, 0, 1023}, 240}; 241 242/* 243 * Conversion table for channels. Updated during init based on calibration. 244 * Here too channels 16 & 17 use BATTP and BATTI. 245 */ 246static struct cpcap_adc_conversion_tbl bank_conversion[] = { 247 /* Bank0 */ 248 [CPCAP_ADC_AD0] = { 249 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1, 250 }, 251 [CPCAP_ADC_BATTP] = { 252 IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023, 253 }, 254 [CPCAP_ADC_VBUS] = { 255 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 10000, 1023, 256 }, 257 [CPCAP_ADC_AD3] = { 258 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1, 259 }, 260 [CPCAP_ADC_BPLUS_AD4] = { 261 IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023, 262 }, 263 [CPCAP_ADC_CHG_ISENSE] = { 264 IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023, 265 }, 266 [CPCAP_ADC_BATTI] = { 267 IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023, 268 }, 269 [CPCAP_ADC_USB_ID] = { 270 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 271 }, 272 273 /* Bank1 */ 274 [CPCAP_ADC_AD8] = { 275 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 276 }, 277 [CPCAP_ADC_AD9] = { 278 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 279 }, 280 [CPCAP_ADC_LICELL] = { 281 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 3400, 1023, 282 }, 283 [CPCAP_ADC_HV_BATTP] = { 284 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 285 }, 286 [CPCAP_ADC_TSX1_AD12] = { 287 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 288 }, 289 [CPCAP_ADC_TSX2_AD13] = { 290 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 291 }, 292 [CPCAP_ADC_TSY1_AD14] = { 293 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 294 }, 295 [CPCAP_ADC_TSY2_AD15] = { 296 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 297 }, 298}; 299 300/* 301 * Temperature lookup table of register values to milliCelcius. 302 * REVISIT: Check the duplicate 0x3ff entry in a freezer 303 */ 304static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = { 305 { 0x03ff, -40000 }, 306 { 0x03ff, -35000 }, 307 { 0x03ef, -30000 }, 308 { 0x03b2, -25000 }, 309 { 0x036c, -20000 }, 310 { 0x0320, -15000 }, 311 { 0x02d0, -10000 }, 312 { 0x027f, -5000 }, 313 { 0x022f, 0 }, 314 { 0x01e4, 5000 }, 315 { 0x019f, 10000 }, 316 { 0x0161, 15000 }, 317 { 0x012b, 20000 }, 318 { 0x00fc, 25000 }, 319 { 0x00d4, 30000 }, 320 { 0x00b2, 35000 }, 321 { 0x0095, 40000 }, 322 { 0x007d, 45000 }, 323 { 0x0069, 50000 }, 324 { 0x0059, 55000 }, 325 { 0x004b, 60000 }, 326 { 0x003f, 65000 }, 327 { 0x0036, 70000 }, 328 { 0x002e, 75000 }, 329 { 0x0027, 80000 }, 330 { 0x0022, 85000 }, 331 { 0x001d, 90000 }, 332}; 333 334#define CPCAP_CHAN(_type, _index, _address, _datasheet_name) { \ 335 .type = (_type), \ 336 .address = (_address), \ 337 .indexed = 1, \ 338 .channel = (_index), \ 339 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 340 BIT(IIO_CHAN_INFO_PROCESSED), \ 341 .scan_index = (_index), \ 342 .scan_type = { \ 343 .sign = 'u', \ 344 .realbits = 10, \ 345 .storagebits = 16, \ 346 .endianness = IIO_CPU, \ 347 }, \ 348 .datasheet_name = (_datasheet_name), \ 349} 350 351/* 352 * The datasheet names are from Motorola mapphone Linux kernel except 353 * for the last two which might be uncalibrated charge voltage and 354 * current. 355 */ 356static const struct iio_chan_spec cpcap_adc_channels[] = { 357 /* Bank0 */ 358 CPCAP_CHAN(IIO_TEMP, 0, CPCAP_REG_ADCD0, "battdetb"), 359 CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1, "battp"), 360 CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2, "vbus"), 361 CPCAP_CHAN(IIO_TEMP, 3, CPCAP_REG_ADCD3, "ad3"), 362 CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4, "ad4"), 363 CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5, "chg_isense"), 364 CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6, "batti"), 365 CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7, "usb_id"), 366 367 /* Bank1 */ 368 CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0, "ad8"), 369 CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1, "ad9"), 370 CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"), 371 CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"), 372 CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"), 373 CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"), 374 CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"), 375 CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"), 376 377 /* There are two registers with multiplexed functionality */ 378 CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"), 379 CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"), 380}; 381 382static irqreturn_t cpcap_adc_irq_thread(int irq, void *data) 383{ 384 struct iio_dev *indio_dev = data; 385 struct cpcap_adc *ddata = iio_priv(indio_dev); 386 int error; 387 388 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 389 CPCAP_BIT_ADTRIG_DIS, 390 CPCAP_BIT_ADTRIG_DIS); 391 if (error) 392 return IRQ_NONE; 393 394 ddata->done = true; 395 wake_up_interruptible(&ddata->wq_data_avail); 396 397 return IRQ_HANDLED; 398} 399 400/* ADC calibration functions */ 401static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata, 402 enum cpcap_adc_channel chan) 403{ 404 unsigned int value = 0; 405 unsigned long timeout = jiffies + msecs_to_jiffies(3000); 406 int error; 407 408 if ((chan != CPCAP_ADC_CHG_ISENSE) && 409 (chan != CPCAP_ADC_BATTI)) 410 return; 411 412 value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0; 413 value |= ((chan << 4) & 414 (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0)); 415 416 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 417 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX | 418 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 | 419 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 | 420 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | 421 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 | 422 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0, 423 value); 424 if (error) 425 return; 426 427 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 428 CPCAP_BIT_ATOX_PS_FACTOR | 429 CPCAP_BIT_ADC_PS_FACTOR1 | 430 CPCAP_BIT_ADC_PS_FACTOR0, 431 0); 432 if (error) 433 return; 434 435 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 436 CPCAP_BIT_ADTRIG_DIS, 437 CPCAP_BIT_ADTRIG_DIS); 438 if (error) 439 return; 440 441 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 442 CPCAP_BIT_ASC, 443 CPCAP_BIT_ASC); 444 if (error) 445 return; 446 447 do { 448 schedule_timeout_uninterruptible(1); 449 error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value); 450 if (error) 451 return; 452 } while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout)); 453 454 if (value & CPCAP_BIT_ASC) 455 dev_err(ddata->dev, 456 "Timeout waiting for calibration to complete\n"); 457 458 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 459 CPCAP_BIT_CAL_MODE, 0); 460 if (error) 461 return; 462} 463 464static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata, 465 int channel, 466 u16 calibration_register, 467 int lower_threshold, 468 int upper_threshold) 469{ 470 unsigned int calibration_data[2]; 471 unsigned short cal_data_diff; 472 int i, error; 473 474 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) { 475 calibration_data[0] = 0; 476 calibration_data[1] = 0; 477 478 cpcap_adc_setup_calibrate(ddata, channel); 479 error = regmap_read(ddata->reg, calibration_register, 480 &calibration_data[0]); 481 if (error) 482 return error; 483 cpcap_adc_setup_calibrate(ddata, channel); 484 error = regmap_read(ddata->reg, calibration_register, 485 &calibration_data[1]); 486 if (error) 487 return error; 488 489 if (calibration_data[0] > calibration_data[1]) 490 cal_data_diff = 491 calibration_data[0] - calibration_data[1]; 492 else 493 cal_data_diff = 494 calibration_data[1] - calibration_data[0]; 495 496 if (((calibration_data[1] >= lower_threshold) && 497 (calibration_data[1] <= upper_threshold) && 498 (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) || 499 (ddata->vendor == CPCAP_VENDOR_TI)) { 500 bank_conversion[channel].cal_offset = 501 ((short)calibration_data[1] * -1) + 512; 502 dev_dbg(ddata->dev, "ch%i calibration complete: %i\n", 503 channel, bank_conversion[channel].cal_offset); 504 break; 505 } 506 usleep_range(5000, 10000); 507 } 508 509 return 0; 510} 511 512static int cpcap_adc_calibrate(struct cpcap_adc *ddata) 513{ 514 int error; 515 516 error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE, 517 CPCAP_REG_ADCAL1, 518 ST_ADC_CAL_CHRGI_LOW_THRESHOLD, 519 ST_ADC_CAL_CHRGI_HIGH_THRESHOLD); 520 if (error) 521 return error; 522 523 error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI, 524 CPCAP_REG_ADCAL2, 525 ST_ADC_CAL_BATTI_LOW_THRESHOLD, 526 ST_ADC_CAL_BATTI_HIGH_THRESHOLD); 527 if (error) 528 return error; 529 530 return 0; 531} 532 533/* ADC setup, read and scale functions */ 534static void cpcap_adc_setup_bank(struct cpcap_adc *ddata, 535 struct cpcap_adc_request *req) 536{ 537 const struct cpcap_adc_ato *ato = ddata->ato; 538 unsigned short value1 = 0; 539 unsigned short value2 = 0; 540 int error; 541 542 if (!ato) 543 return; 544 545 switch (req->channel) { 546 case CPCAP_ADC_AD0: 547 value2 |= CPCAP_BIT_THERMBIAS_EN; 548 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 549 CPCAP_BIT_THERMBIAS_EN, 550 value2); 551 if (error) 552 return; 553 usleep_range(800, 1000); 554 break; 555 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15: 556 value1 |= CPCAP_BIT_AD_SEL1; 557 break; 558 case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17: 559 value1 |= CPCAP_BIT_RAND1; 560 break; 561 default: 562 break; 563 } 564 565 switch (req->timing) { 566 case CPCAP_ADC_TIMING_IN: 567 value1 |= ato->ato_in; 568 value1 |= ato->atox_in; 569 value2 |= ato->adc_ps_factor_in; 570 value2 |= ato->atox_ps_factor_in; 571 break; 572 case CPCAP_ADC_TIMING_OUT: 573 value1 |= ato->ato_out; 574 value1 |= ato->atox_out; 575 value2 |= ato->adc_ps_factor_out; 576 value2 |= ato->atox_ps_factor_out; 577 break; 578 579 case CPCAP_ADC_TIMING_IMM: 580 default: 581 break; 582 } 583 584 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 585 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX | 586 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 | 587 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 | 588 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | 589 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 | 590 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0, 591 value1); 592 if (error) 593 return; 594 595 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 596 CPCAP_BIT_ATOX_PS_FACTOR | 597 CPCAP_BIT_ADC_PS_FACTOR1 | 598 CPCAP_BIT_ADC_PS_FACTOR0 | 599 CPCAP_BIT_THERMBIAS_EN, 600 value2); 601 if (error) 602 return; 603 604 if (req->timing == CPCAP_ADC_TIMING_IMM) { 605 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 606 CPCAP_BIT_ADTRIG_DIS, 607 CPCAP_BIT_ADTRIG_DIS); 608 if (error) 609 return; 610 611 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 612 CPCAP_BIT_ASC, 613 CPCAP_BIT_ASC); 614 if (error) 615 return; 616 } else { 617 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 618 CPCAP_BIT_ADTRIG_ONESHOT, 619 CPCAP_BIT_ADTRIG_ONESHOT); 620 if (error) 621 return; 622 623 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 624 CPCAP_BIT_ADTRIG_DIS, 0); 625 if (error) 626 return; 627 } 628} 629 630static int cpcap_adc_start_bank(struct cpcap_adc *ddata, 631 struct cpcap_adc_request *req) 632{ 633 int i, error; 634 635 req->timing = CPCAP_ADC_TIMING_IMM; 636 ddata->done = false; 637 638 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) { 639 cpcap_adc_setup_bank(ddata, req); 640 error = wait_event_interruptible_timeout(ddata->wq_data_avail, 641 ddata->done, 642 msecs_to_jiffies(50)); 643 if (error > 0) 644 return 0; 645 646 if (error == 0) { 647 error = -ETIMEDOUT; 648 continue; 649 } 650 651 if (error < 0) 652 return error; 653 } 654 655 return error; 656} 657 658static int cpcap_adc_stop_bank(struct cpcap_adc *ddata) 659{ 660 int error; 661 662 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 663 0xffff, 664 CPCAP_REG_ADCC1_DEFAULTS); 665 if (error) 666 return error; 667 668 return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 669 0xffff, 670 CPCAP_REG_ADCC2_DEFAULTS); 671} 672 673static void cpcap_adc_phase(struct cpcap_adc_request *req) 674{ 675 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl; 676 const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl; 677 int index = req->channel; 678 679 /* Remuxed channels 16 and 17 use BATTP and BATTI entries */ 680 switch (req->channel) { 681 case CPCAP_ADC_BATTP: 682 case CPCAP_ADC_BATTP_PI16: 683 index = req->bank_index; 684 req->result -= phase_tbl[index].offset; 685 req->result -= CPCAP_FOUR_POINT_TWO_ADC; 686 req->result *= phase_tbl[index].multiplier; 687 if (phase_tbl[index].divider == 0) 688 return; 689 req->result /= phase_tbl[index].divider; 690 req->result += CPCAP_FOUR_POINT_TWO_ADC; 691 break; 692 case CPCAP_ADC_BATTI_PI17: 693 index = req->bank_index; 694 fallthrough; 695 default: 696 req->result += conv_tbl[index].cal_offset; 697 req->result += conv_tbl[index].align_offset; 698 req->result *= phase_tbl[index].multiplier; 699 if (phase_tbl[index].divider == 0) 700 return; 701 req->result /= phase_tbl[index].divider; 702 req->result += phase_tbl[index].offset; 703 break; 704 } 705 706 if (req->result < phase_tbl[index].min) 707 req->result = phase_tbl[index].min; 708 else if (req->result > phase_tbl[index].max) 709 req->result = phase_tbl[index].max; 710} 711 712/* Looks up temperatures in a table and calculates averages if needed */ 713static int cpcap_adc_table_to_millicelcius(unsigned short value) 714{ 715 int i, result = 0, alpha; 716 717 if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0]) 718 return temp_map[CPCAP_MAX_TEMP_LVL - 1][1]; 719 720 if (value >= temp_map[0][0]) 721 return temp_map[0][1]; 722 723 for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) { 724 if ((value <= temp_map[i][0]) && 725 (value >= temp_map[i + 1][0])) { 726 if (value == temp_map[i][0]) { 727 result = temp_map[i][1]; 728 } else if (value == temp_map[i + 1][0]) { 729 result = temp_map[i + 1][1]; 730 } else { 731 alpha = ((value - temp_map[i][0]) * 1000) / 732 (temp_map[i + 1][0] - temp_map[i][0]); 733 734 result = temp_map[i][1] + 735 ((alpha * (temp_map[i + 1][1] - 736 temp_map[i][1])) / 1000); 737 } 738 break; 739 } 740 } 741 742 return result; 743} 744 745static void cpcap_adc_convert(struct cpcap_adc_request *req) 746{ 747 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl; 748 int index = req->channel; 749 750 /* Remuxed channels 16 and 17 use BATTP and BATTI entries */ 751 switch (req->channel) { 752 case CPCAP_ADC_BATTP_PI16: 753 index = CPCAP_ADC_BATTP; 754 break; 755 case CPCAP_ADC_BATTI_PI17: 756 index = CPCAP_ADC_BATTI; 757 break; 758 default: 759 break; 760 } 761 762 /* No conversion for raw channels */ 763 if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW) 764 return; 765 766 /* Temperatures use a lookup table instead of conversion table */ 767 if ((req->channel == CPCAP_ADC_AD0) || 768 (req->channel == CPCAP_ADC_AD3)) { 769 req->result = 770 cpcap_adc_table_to_millicelcius(req->result); 771 772 return; 773 } 774 775 /* All processed channels use a conversion table */ 776 req->result *= conv_tbl[index].multiplier; 777 if (conv_tbl[index].divider == 0) 778 return; 779 req->result /= conv_tbl[index].divider; 780 req->result += conv_tbl[index].conv_offset; 781} 782 783/* 784 * REVISIT: Check if timed sampling can use multiple channels at the 785 * same time. If not, replace channel_mask with just channel. 786 */ 787static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata, 788 struct cpcap_adc_request *req) 789{ 790 int calibration_data, error, addr; 791 792 if (ddata->vendor == CPCAP_VENDOR_TI) { 793 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1, 794 &calibration_data); 795 if (error) 796 return error; 797 bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset = 798 ((short)calibration_data * -1) + 512; 799 800 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2, 801 &calibration_data); 802 if (error) 803 return error; 804 bank_conversion[CPCAP_ADC_BATTI].cal_offset = 805 ((short)calibration_data * -1) + 512; 806 } 807 808 addr = CPCAP_REG_ADCD0 + req->bank_index * 4; 809 810 error = regmap_read(ddata->reg, addr, &req->result); 811 if (error) 812 return error; 813 814 req->result &= 0x3ff; 815 cpcap_adc_phase(req); 816 cpcap_adc_convert(req); 817 818 return 0; 819} 820 821static int cpcap_adc_init_request(struct cpcap_adc_request *req, 822 int channel) 823{ 824 req->channel = channel; 825 req->phase_tbl = bank_phasing; 826 req->conv_tbl = bank_conversion; 827 828 switch (channel) { 829 case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID: 830 req->bank_index = channel; 831 break; 832 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15: 833 req->bank_index = channel - 8; 834 break; 835 case CPCAP_ADC_BATTP_PI16: 836 req->bank_index = CPCAP_ADC_BATTP; 837 break; 838 case CPCAP_ADC_BATTI_PI17: 839 req->bank_index = CPCAP_ADC_BATTI; 840 break; 841 default: 842 return -EINVAL; 843 } 844 845 return 0; 846} 847 848static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata, 849 int addr, int *val) 850{ 851 int error; 852 853 error = regmap_read(ddata->reg, addr, val); 854 if (error) 855 return error; 856 857 *val -= 282; 858 *val *= 114; 859 *val += 25000; 860 861 return 0; 862} 863 864static int cpcap_adc_read(struct iio_dev *indio_dev, 865 struct iio_chan_spec const *chan, 866 int *val, int *val2, long mask) 867{ 868 struct cpcap_adc *ddata = iio_priv(indio_dev); 869 struct cpcap_adc_request req; 870 int error; 871 872 error = cpcap_adc_init_request(&req, chan->channel); 873 if (error) 874 return error; 875 876 switch (mask) { 877 case IIO_CHAN_INFO_RAW: 878 mutex_lock(&ddata->lock); 879 error = cpcap_adc_start_bank(ddata, &req); 880 if (error) 881 goto err_unlock; 882 error = regmap_read(ddata->reg, chan->address, val); 883 if (error) 884 goto err_unlock; 885 error = cpcap_adc_stop_bank(ddata); 886 if (error) 887 goto err_unlock; 888 mutex_unlock(&ddata->lock); 889 break; 890 case IIO_CHAN_INFO_PROCESSED: 891 mutex_lock(&ddata->lock); 892 error = cpcap_adc_start_bank(ddata, &req); 893 if (error) 894 goto err_unlock; 895 if ((ddata->vendor == CPCAP_VENDOR_ST) && 896 (chan->channel == CPCAP_ADC_AD3)) { 897 error = cpcap_adc_read_st_die_temp(ddata, 898 chan->address, 899 &req.result); 900 if (error) 901 goto err_unlock; 902 } else { 903 error = cpcap_adc_read_bank_scaled(ddata, &req); 904 if (error) 905 goto err_unlock; 906 } 907 error = cpcap_adc_stop_bank(ddata); 908 if (error) 909 goto err_unlock; 910 mutex_unlock(&ddata->lock); 911 *val = req.result; 912 break; 913 default: 914 return -EINVAL; 915 } 916 917 return IIO_VAL_INT; 918 919err_unlock: 920 mutex_unlock(&ddata->lock); 921 dev_err(ddata->dev, "error reading ADC: %i\n", error); 922 923 return error; 924} 925 926static const struct iio_info cpcap_adc_info = { 927 .read_raw = &cpcap_adc_read, 928}; 929 930/* 931 * Configuration for Motorola mapphone series such as droid 4. 932 * Copied from the Motorola mapphone kernel tree. 933 */ 934static const struct cpcap_adc_ato mapphone_adc = { 935 .ato_in = 0x0480, 936 .atox_in = 0, 937 .adc_ps_factor_in = 0x0200, 938 .atox_ps_factor_in = 0, 939 .ato_out = 0, 940 .atox_out = 0, 941 .adc_ps_factor_out = 0, 942 .atox_ps_factor_out = 0, 943}; 944 945static const struct of_device_id cpcap_adc_id_table[] = { 946 { 947 .compatible = "motorola,cpcap-adc", 948 }, 949 { 950 .compatible = "motorola,mapphone-cpcap-adc", 951 .data = &mapphone_adc, 952 }, 953 { /* sentinel */ }, 954}; 955MODULE_DEVICE_TABLE(of, cpcap_adc_id_table); 956 957static int cpcap_adc_probe(struct platform_device *pdev) 958{ 959 struct cpcap_adc *ddata; 960 struct iio_dev *indio_dev; 961 int error; 962 963 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata)); 964 if (!indio_dev) { 965 dev_err(&pdev->dev, "failed to allocate iio device\n"); 966 967 return -ENOMEM; 968 } 969 ddata = iio_priv(indio_dev); 970 ddata->ato = device_get_match_data(&pdev->dev); 971 if (!ddata->ato) 972 return -ENODEV; 973 ddata->dev = &pdev->dev; 974 975 mutex_init(&ddata->lock); 976 init_waitqueue_head(&ddata->wq_data_avail); 977 978 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; 979 indio_dev->channels = cpcap_adc_channels; 980 indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels); 981 indio_dev->name = dev_name(&pdev->dev); 982 indio_dev->info = &cpcap_adc_info; 983 984 ddata->reg = dev_get_regmap(pdev->dev.parent, NULL); 985 if (!ddata->reg) 986 return -ENODEV; 987 988 error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor); 989 if (error) 990 return error; 991 992 platform_set_drvdata(pdev, indio_dev); 993 994 ddata->irq = platform_get_irq_byname(pdev, "adcdone"); 995 if (ddata->irq < 0) 996 return -ENODEV; 997 998 error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL, 999 cpcap_adc_irq_thread, 1000 IRQF_TRIGGER_NONE | IRQF_ONESHOT, 1001 "cpcap-adc", indio_dev); 1002 if (error) { 1003 dev_err(&pdev->dev, "could not get irq: %i\n", 1004 error); 1005 1006 return error; 1007 } 1008 1009 error = cpcap_adc_calibrate(ddata); 1010 if (error) 1011 return error; 1012 1013 dev_info(&pdev->dev, "CPCAP ADC device probed\n"); 1014 1015 return devm_iio_device_register(&pdev->dev, indio_dev); 1016} 1017 1018static struct platform_driver cpcap_adc_driver = { 1019 .driver = { 1020 .name = "cpcap_adc", 1021 .of_match_table = cpcap_adc_id_table, 1022 }, 1023 .probe = cpcap_adc_probe, 1024}; 1025 1026module_platform_driver(cpcap_adc_driver); 1027 1028MODULE_ALIAS("platform:cpcap_adc"); 1029MODULE_DESCRIPTION("CPCAP ADC driver"); 1030MODULE_AUTHOR("Tony Lindgren <tony@atomide.com"); 1031MODULE_LICENSE("GPL v2");