cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mxs-lradc-adc.c (23191B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Freescale MXS LRADC ADC driver
      4 *
      5 * Copyright (c) 2012 DENX Software Engineering, GmbH.
      6 * Copyright (c) 2017 Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
      7 *
      8 * Authors:
      9 *  Marek Vasut <marex@denx.de>
     10 *  Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
     11 */
     12
     13#include <linux/completion.h>
     14#include <linux/device.h>
     15#include <linux/err.h>
     16#include <linux/interrupt.h>
     17#include <linux/mfd/core.h>
     18#include <linux/mfd/mxs-lradc.h>
     19#include <linux/module.h>
     20#include <linux/of_irq.h>
     21#include <linux/platform_device.h>
     22#include <linux/sysfs.h>
     23
     24#include <linux/iio/buffer.h>
     25#include <linux/iio/iio.h>
     26#include <linux/iio/trigger.h>
     27#include <linux/iio/trigger_consumer.h>
     28#include <linux/iio/triggered_buffer.h>
     29#include <linux/iio/sysfs.h>
     30
     31/*
     32 * Make this runtime configurable if necessary. Currently, if the buffered mode
     33 * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
     34 * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
     35 * seconds. The result is that the samples arrive every 500mS.
     36 */
     37#define LRADC_DELAY_TIMER_PER	200
     38#define LRADC_DELAY_TIMER_LOOP	5
     39
     40#define VREF_MV_BASE 1850
     41
     42static const char *mx23_lradc_adc_irq_names[] = {
     43	"mxs-lradc-channel0",
     44	"mxs-lradc-channel1",
     45	"mxs-lradc-channel2",
     46	"mxs-lradc-channel3",
     47	"mxs-lradc-channel4",
     48	"mxs-lradc-channel5",
     49};
     50
     51static const char *mx28_lradc_adc_irq_names[] = {
     52	"mxs-lradc-thresh0",
     53	"mxs-lradc-thresh1",
     54	"mxs-lradc-channel0",
     55	"mxs-lradc-channel1",
     56	"mxs-lradc-channel2",
     57	"mxs-lradc-channel3",
     58	"mxs-lradc-channel4",
     59	"mxs-lradc-channel5",
     60	"mxs-lradc-button0",
     61	"mxs-lradc-button1",
     62};
     63
     64static const u32 mxs_lradc_adc_vref_mv[][LRADC_MAX_TOTAL_CHANS] = {
     65	[IMX23_LRADC] = {
     66		VREF_MV_BASE,		/* CH0 */
     67		VREF_MV_BASE,		/* CH1 */
     68		VREF_MV_BASE,		/* CH2 */
     69		VREF_MV_BASE,		/* CH3 */
     70		VREF_MV_BASE,		/* CH4 */
     71		VREF_MV_BASE,		/* CH5 */
     72		VREF_MV_BASE * 2,	/* CH6 VDDIO */
     73		VREF_MV_BASE * 4,	/* CH7 VBATT */
     74		VREF_MV_BASE,		/* CH8 Temp sense 0 */
     75		VREF_MV_BASE,		/* CH9 Temp sense 1 */
     76		VREF_MV_BASE,		/* CH10 */
     77		VREF_MV_BASE,		/* CH11 */
     78		VREF_MV_BASE,		/* CH12 USB_DP */
     79		VREF_MV_BASE,		/* CH13 USB_DN */
     80		VREF_MV_BASE,		/* CH14 VBG */
     81		VREF_MV_BASE * 4,	/* CH15 VDD5V */
     82	},
     83	[IMX28_LRADC] = {
     84		VREF_MV_BASE,		/* CH0 */
     85		VREF_MV_BASE,		/* CH1 */
     86		VREF_MV_BASE,		/* CH2 */
     87		VREF_MV_BASE,		/* CH3 */
     88		VREF_MV_BASE,		/* CH4 */
     89		VREF_MV_BASE,		/* CH5 */
     90		VREF_MV_BASE,		/* CH6 */
     91		VREF_MV_BASE * 4,	/* CH7 VBATT */
     92		VREF_MV_BASE,		/* CH8 Temp sense 0 */
     93		VREF_MV_BASE,		/* CH9 Temp sense 1 */
     94		VREF_MV_BASE * 2,	/* CH10 VDDIO */
     95		VREF_MV_BASE,		/* CH11 VTH */
     96		VREF_MV_BASE * 2,	/* CH12 VDDA */
     97		VREF_MV_BASE,		/* CH13 VDDD */
     98		VREF_MV_BASE,		/* CH14 VBG */
     99		VREF_MV_BASE * 4,	/* CH15 VDD5V */
    100	},
    101};
    102
    103enum mxs_lradc_divbytwo {
    104	MXS_LRADC_DIV_DISABLED = 0,
    105	MXS_LRADC_DIV_ENABLED,
    106};
    107
    108struct mxs_lradc_scale {
    109	unsigned int		integer;
    110	unsigned int		nano;
    111};
    112
    113struct mxs_lradc_adc {
    114	struct mxs_lradc	*lradc;
    115	struct device		*dev;
    116
    117	void __iomem		*base;
    118	/* Maximum of 8 channels + 8 byte ts */
    119	u32			buffer[10] __aligned(8);
    120	struct iio_trigger	*trig;
    121	struct completion	completion;
    122	spinlock_t		lock;
    123
    124	const u32		*vref_mv;
    125	struct mxs_lradc_scale	scale_avail[LRADC_MAX_TOTAL_CHANS][2];
    126	unsigned long		is_divided;
    127};
    128
    129
    130/* Raw I/O operations */
    131static int mxs_lradc_adc_read_single(struct iio_dev *iio_dev, int chan,
    132				     int *val)
    133{
    134	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
    135	struct mxs_lradc *lradc = adc->lradc;
    136	int ret;
    137
    138	/*
    139	 * See if there is no buffered operation in progress. If there is simply
    140	 * bail out. This can be improved to support both buffered and raw IO at
    141	 * the same time, yet the code becomes horribly complicated. Therefore I
    142	 * applied KISS principle here.
    143	 */
    144	ret = iio_device_claim_direct_mode(iio_dev);
    145	if (ret)
    146		return ret;
    147
    148	reinit_completion(&adc->completion);
    149
    150	/*
    151	 * No buffered operation in progress, map the channel and trigger it.
    152	 * Virtual channel 0 is always used here as the others are always not
    153	 * used if doing raw sampling.
    154	 */
    155	if (lradc->soc == IMX28_LRADC)
    156		writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
    157		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
    158	writel(0x1, adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
    159
    160	/* Enable / disable the divider per requirement */
    161	if (test_bit(chan, &adc->is_divided))
    162		writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
    163		       adc->base + LRADC_CTRL2 + STMP_OFFSET_REG_SET);
    164	else
    165		writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
    166		       adc->base + LRADC_CTRL2 + STMP_OFFSET_REG_CLR);
    167
    168	/* Clean the slot's previous content, then set new one. */
    169	writel(LRADC_CTRL4_LRADCSELECT_MASK(0),
    170	       adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_CLR);
    171	writel(chan, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_SET);
    172
    173	writel(0, adc->base + LRADC_CH(0));
    174
    175	/* Enable the IRQ and start sampling the channel. */
    176	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
    177	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
    178	writel(BIT(0), adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_SET);
    179
    180	/* Wait for completion on the channel, 1 second max. */
    181	ret = wait_for_completion_killable_timeout(&adc->completion, HZ);
    182	if (!ret)
    183		ret = -ETIMEDOUT;
    184	if (ret < 0)
    185		goto err;
    186
    187	/* Read the data. */
    188	*val = readl(adc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
    189	ret = IIO_VAL_INT;
    190
    191err:
    192	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
    193	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
    194
    195	iio_device_release_direct_mode(iio_dev);
    196
    197	return ret;
    198}
    199
    200static int mxs_lradc_adc_read_temp(struct iio_dev *iio_dev, int *val)
    201{
    202	int ret, min, max;
    203
    204	ret = mxs_lradc_adc_read_single(iio_dev, 8, &min);
    205	if (ret != IIO_VAL_INT)
    206		return ret;
    207
    208	ret = mxs_lradc_adc_read_single(iio_dev, 9, &max);
    209	if (ret != IIO_VAL_INT)
    210		return ret;
    211
    212	*val = max - min;
    213
    214	return IIO_VAL_INT;
    215}
    216
    217static int mxs_lradc_adc_read_raw(struct iio_dev *iio_dev,
    218			      const struct iio_chan_spec *chan,
    219			      int *val, int *val2, long m)
    220{
    221	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
    222
    223	switch (m) {
    224	case IIO_CHAN_INFO_RAW:
    225		if (chan->type == IIO_TEMP)
    226			return mxs_lradc_adc_read_temp(iio_dev, val);
    227
    228		return mxs_lradc_adc_read_single(iio_dev, chan->channel, val);
    229
    230	case IIO_CHAN_INFO_SCALE:
    231		if (chan->type == IIO_TEMP) {
    232			/*
    233			 * From the datasheet, we have to multiply by 1.012 and
    234			 * divide by 4
    235			 */
    236			*val = 0;
    237			*val2 = 253000;
    238			return IIO_VAL_INT_PLUS_MICRO;
    239		}
    240
    241		*val = adc->vref_mv[chan->channel];
    242		*val2 = chan->scan_type.realbits -
    243			test_bit(chan->channel, &adc->is_divided);
    244		return IIO_VAL_FRACTIONAL_LOG2;
    245
    246	case IIO_CHAN_INFO_OFFSET:
    247		if (chan->type == IIO_TEMP) {
    248			/*
    249			 * The calculated value from the ADC is in Kelvin, we
    250			 * want Celsius for hwmon so the offset is -273.15
    251			 * The offset is applied before scaling so it is
    252			 * actually -213.15 * 4 / 1.012 = -1079.644268
    253			 */
    254			*val = -1079;
    255			*val2 = 644268;
    256
    257			return IIO_VAL_INT_PLUS_MICRO;
    258		}
    259
    260		return -EINVAL;
    261
    262	default:
    263		break;
    264	}
    265
    266	return -EINVAL;
    267}
    268
    269static int mxs_lradc_adc_write_raw(struct iio_dev *iio_dev,
    270				   const struct iio_chan_spec *chan,
    271				   int val, int val2, long m)
    272{
    273	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
    274	struct mxs_lradc_scale *scale_avail =
    275			adc->scale_avail[chan->channel];
    276	int ret;
    277
    278	ret = iio_device_claim_direct_mode(iio_dev);
    279	if (ret)
    280		return ret;
    281
    282	switch (m) {
    283	case IIO_CHAN_INFO_SCALE:
    284		ret = -EINVAL;
    285		if (val == scale_avail[MXS_LRADC_DIV_DISABLED].integer &&
    286		    val2 == scale_avail[MXS_LRADC_DIV_DISABLED].nano) {
    287			/* divider by two disabled */
    288			clear_bit(chan->channel, &adc->is_divided);
    289			ret = 0;
    290		} else if (val == scale_avail[MXS_LRADC_DIV_ENABLED].integer &&
    291			   val2 == scale_avail[MXS_LRADC_DIV_ENABLED].nano) {
    292			/* divider by two enabled */
    293			set_bit(chan->channel, &adc->is_divided);
    294			ret = 0;
    295		}
    296
    297		break;
    298	default:
    299		ret = -EINVAL;
    300		break;
    301	}
    302
    303	iio_device_release_direct_mode(iio_dev);
    304
    305	return ret;
    306}
    307
    308static int mxs_lradc_adc_write_raw_get_fmt(struct iio_dev *iio_dev,
    309					   const struct iio_chan_spec *chan,
    310					   long m)
    311{
    312	return IIO_VAL_INT_PLUS_NANO;
    313}
    314
    315static ssize_t mxs_lradc_adc_show_scale_avail(struct device *dev,
    316						 struct device_attribute *attr,
    317						 char *buf)
    318{
    319	struct iio_dev *iio = dev_to_iio_dev(dev);
    320	struct mxs_lradc_adc *adc = iio_priv(iio);
    321	struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
    322	int i, ch, len = 0;
    323
    324	ch = iio_attr->address;
    325	for (i = 0; i < ARRAY_SIZE(adc->scale_avail[ch]); i++)
    326		len += sprintf(buf + len, "%u.%09u ",
    327			       adc->scale_avail[ch][i].integer,
    328			       adc->scale_avail[ch][i].nano);
    329
    330	len += sprintf(buf + len, "\n");
    331
    332	return len;
    333}
    334
    335#define SHOW_SCALE_AVAILABLE_ATTR(ch)\
    336	IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, 0444,\
    337			mxs_lradc_adc_show_scale_avail, NULL, ch)
    338
    339static SHOW_SCALE_AVAILABLE_ATTR(0);
    340static SHOW_SCALE_AVAILABLE_ATTR(1);
    341static SHOW_SCALE_AVAILABLE_ATTR(2);
    342static SHOW_SCALE_AVAILABLE_ATTR(3);
    343static SHOW_SCALE_AVAILABLE_ATTR(4);
    344static SHOW_SCALE_AVAILABLE_ATTR(5);
    345static SHOW_SCALE_AVAILABLE_ATTR(6);
    346static SHOW_SCALE_AVAILABLE_ATTR(7);
    347static SHOW_SCALE_AVAILABLE_ATTR(10);
    348static SHOW_SCALE_AVAILABLE_ATTR(11);
    349static SHOW_SCALE_AVAILABLE_ATTR(12);
    350static SHOW_SCALE_AVAILABLE_ATTR(13);
    351static SHOW_SCALE_AVAILABLE_ATTR(14);
    352static SHOW_SCALE_AVAILABLE_ATTR(15);
    353
    354static struct attribute *mxs_lradc_adc_attributes[] = {
    355	&iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
    356	&iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
    357	&iio_dev_attr_in_voltage2_scale_available.dev_attr.attr,
    358	&iio_dev_attr_in_voltage3_scale_available.dev_attr.attr,
    359	&iio_dev_attr_in_voltage4_scale_available.dev_attr.attr,
    360	&iio_dev_attr_in_voltage5_scale_available.dev_attr.attr,
    361	&iio_dev_attr_in_voltage6_scale_available.dev_attr.attr,
    362	&iio_dev_attr_in_voltage7_scale_available.dev_attr.attr,
    363	&iio_dev_attr_in_voltage10_scale_available.dev_attr.attr,
    364	&iio_dev_attr_in_voltage11_scale_available.dev_attr.attr,
    365	&iio_dev_attr_in_voltage12_scale_available.dev_attr.attr,
    366	&iio_dev_attr_in_voltage13_scale_available.dev_attr.attr,
    367	&iio_dev_attr_in_voltage14_scale_available.dev_attr.attr,
    368	&iio_dev_attr_in_voltage15_scale_available.dev_attr.attr,
    369	NULL
    370};
    371
    372static const struct attribute_group mxs_lradc_adc_attribute_group = {
    373	.attrs = mxs_lradc_adc_attributes,
    374};
    375
    376static const struct iio_info mxs_lradc_adc_iio_info = {
    377	.read_raw		= mxs_lradc_adc_read_raw,
    378	.write_raw		= mxs_lradc_adc_write_raw,
    379	.write_raw_get_fmt	= mxs_lradc_adc_write_raw_get_fmt,
    380	.attrs			= &mxs_lradc_adc_attribute_group,
    381};
    382
    383/* IRQ Handling */
    384static irqreturn_t mxs_lradc_adc_handle_irq(int irq, void *data)
    385{
    386	struct iio_dev *iio = data;
    387	struct mxs_lradc_adc *adc = iio_priv(iio);
    388	struct mxs_lradc *lradc = adc->lradc;
    389	unsigned long reg = readl(adc->base + LRADC_CTRL1);
    390	unsigned long flags;
    391
    392	if (!(reg & mxs_lradc_irq_mask(lradc)))
    393		return IRQ_NONE;
    394
    395	if (iio_buffer_enabled(iio)) {
    396		if (reg & lradc->buffer_vchans) {
    397			spin_lock_irqsave(&adc->lock, flags);
    398			iio_trigger_poll(iio->trig);
    399			spin_unlock_irqrestore(&adc->lock, flags);
    400		}
    401	} else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) {
    402		complete(&adc->completion);
    403	}
    404
    405	writel(reg & mxs_lradc_irq_mask(lradc),
    406	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
    407
    408	return IRQ_HANDLED;
    409}
    410
    411
    412/* Trigger handling */
    413static irqreturn_t mxs_lradc_adc_trigger_handler(int irq, void *p)
    414{
    415	struct iio_poll_func *pf = p;
    416	struct iio_dev *iio = pf->indio_dev;
    417	struct mxs_lradc_adc *adc = iio_priv(iio);
    418	const u32 chan_value = LRADC_CH_ACCUMULATE |
    419		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
    420	unsigned int i, j = 0;
    421
    422	for_each_set_bit(i, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
    423		adc->buffer[j] = readl(adc->base + LRADC_CH(j));
    424		writel(chan_value, adc->base + LRADC_CH(j));
    425		adc->buffer[j] &= LRADC_CH_VALUE_MASK;
    426		adc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
    427		j++;
    428	}
    429
    430	iio_push_to_buffers_with_timestamp(iio, adc->buffer, pf->timestamp);
    431
    432	iio_trigger_notify_done(iio->trig);
    433
    434	return IRQ_HANDLED;
    435}
    436
    437static int mxs_lradc_adc_configure_trigger(struct iio_trigger *trig, bool state)
    438{
    439	struct iio_dev *iio = iio_trigger_get_drvdata(trig);
    440	struct mxs_lradc_adc *adc = iio_priv(iio);
    441	const u32 st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;
    442
    443	writel(LRADC_DELAY_KICK, adc->base + (LRADC_DELAY(0) + st));
    444
    445	return 0;
    446}
    447
    448static const struct iio_trigger_ops mxs_lradc_adc_trigger_ops = {
    449	.set_trigger_state = &mxs_lradc_adc_configure_trigger,
    450};
    451
    452static int mxs_lradc_adc_trigger_init(struct iio_dev *iio)
    453{
    454	int ret;
    455	struct iio_trigger *trig;
    456	struct mxs_lradc_adc *adc = iio_priv(iio);
    457
    458	trig = devm_iio_trigger_alloc(&iio->dev, "%s-dev%i", iio->name,
    459				      iio_device_id(iio));
    460	if (!trig)
    461		return -ENOMEM;
    462
    463	trig->dev.parent = adc->dev;
    464	iio_trigger_set_drvdata(trig, iio);
    465	trig->ops = &mxs_lradc_adc_trigger_ops;
    466
    467	ret = iio_trigger_register(trig);
    468	if (ret)
    469		return ret;
    470
    471	adc->trig = trig;
    472
    473	return 0;
    474}
    475
    476static void mxs_lradc_adc_trigger_remove(struct iio_dev *iio)
    477{
    478	struct mxs_lradc_adc *adc = iio_priv(iio);
    479
    480	iio_trigger_unregister(adc->trig);
    481}
    482
    483static int mxs_lradc_adc_buffer_preenable(struct iio_dev *iio)
    484{
    485	struct mxs_lradc_adc *adc = iio_priv(iio);
    486	struct mxs_lradc *lradc = adc->lradc;
    487	int chan, ofs = 0;
    488	unsigned long enable = 0;
    489	u32 ctrl4_set = 0;
    490	u32 ctrl4_clr = 0;
    491	u32 ctrl1_irq = 0;
    492	const u32 chan_value = LRADC_CH_ACCUMULATE |
    493		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
    494
    495	if (lradc->soc == IMX28_LRADC)
    496		writel(lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
    497		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
    498	writel(lradc->buffer_vchans,
    499	       adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
    500
    501	for_each_set_bit(chan, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
    502		ctrl4_set |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
    503		ctrl4_clr |= LRADC_CTRL4_LRADCSELECT_MASK(ofs);
    504		ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
    505		writel(chan_value, adc->base + LRADC_CH(ofs));
    506		bitmap_set(&enable, ofs, 1);
    507		ofs++;
    508	}
    509
    510	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
    511	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);
    512	writel(ctrl4_clr, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_CLR);
    513	writel(ctrl4_set, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_SET);
    514	writel(ctrl1_irq, adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
    515	writel(enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
    516	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_SET);
    517
    518	return 0;
    519}
    520
    521static int mxs_lradc_adc_buffer_postdisable(struct iio_dev *iio)
    522{
    523	struct mxs_lradc_adc *adc = iio_priv(iio);
    524	struct mxs_lradc *lradc = adc->lradc;
    525
    526	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
    527	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);
    528
    529	writel(lradc->buffer_vchans,
    530	       adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
    531	if (lradc->soc == IMX28_LRADC)
    532		writel(lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
    533		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
    534
    535	return 0;
    536}
    537
    538static bool mxs_lradc_adc_validate_scan_mask(struct iio_dev *iio,
    539					     const unsigned long *mask)
    540{
    541	struct mxs_lradc_adc *adc = iio_priv(iio);
    542	struct mxs_lradc *lradc = adc->lradc;
    543	const int map_chans = bitmap_weight(mask, LRADC_MAX_TOTAL_CHANS);
    544	int rsvd_chans = 0;
    545	unsigned long rsvd_mask = 0;
    546
    547	if (lradc->use_touchbutton)
    548		rsvd_mask |= CHAN_MASK_TOUCHBUTTON;
    549	if (lradc->touchscreen_wire == MXS_LRADC_TOUCHSCREEN_4WIRE)
    550		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_4WIRE;
    551	if (lradc->touchscreen_wire == MXS_LRADC_TOUCHSCREEN_5WIRE)
    552		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_5WIRE;
    553
    554	if (lradc->use_touchbutton)
    555		rsvd_chans++;
    556	if (lradc->touchscreen_wire)
    557		rsvd_chans += 2;
    558
    559	/* Test for attempts to map channels with special mode of operation. */
    560	if (bitmap_intersects(mask, &rsvd_mask, LRADC_MAX_TOTAL_CHANS))
    561		return false;
    562
    563	/* Test for attempts to map more channels then available slots. */
    564	if (map_chans + rsvd_chans > LRADC_MAX_MAPPED_CHANS)
    565		return false;
    566
    567	return true;
    568}
    569
    570static const struct iio_buffer_setup_ops mxs_lradc_adc_buffer_ops = {
    571	.preenable = &mxs_lradc_adc_buffer_preenable,
    572	.postdisable = &mxs_lradc_adc_buffer_postdisable,
    573	.validate_scan_mask = &mxs_lradc_adc_validate_scan_mask,
    574};
    575
    576/* Driver initialization */
    577#define MXS_ADC_CHAN(idx, chan_type, name) {			\
    578	.type = (chan_type),					\
    579	.indexed = 1,						\
    580	.scan_index = (idx),					\
    581	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
    582			      BIT(IIO_CHAN_INFO_SCALE),		\
    583	.channel = (idx),					\
    584	.address = (idx),					\
    585	.scan_type = {						\
    586		.sign = 'u',					\
    587		.realbits = LRADC_RESOLUTION,			\
    588		.storagebits = 32,				\
    589	},							\
    590	.datasheet_name = (name),				\
    591}
    592
    593static const struct iio_chan_spec mx23_lradc_chan_spec[] = {
    594	MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
    595	MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
    596	MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
    597	MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
    598	MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
    599	MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
    600	MXS_ADC_CHAN(6, IIO_VOLTAGE, "VDDIO"),
    601	MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
    602	/* Combined Temperature sensors */
    603	{
    604		.type = IIO_TEMP,
    605		.indexed = 1,
    606		.scan_index = 8,
    607		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
    608				      BIT(IIO_CHAN_INFO_OFFSET) |
    609				      BIT(IIO_CHAN_INFO_SCALE),
    610		.channel = 8,
    611		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
    612		.datasheet_name = "TEMP_DIE",
    613	},
    614	/* Hidden channel to keep indexes */
    615	{
    616		.type = IIO_TEMP,
    617		.indexed = 1,
    618		.scan_index = -1,
    619		.channel = 9,
    620	},
    621	MXS_ADC_CHAN(10, IIO_VOLTAGE, NULL),
    622	MXS_ADC_CHAN(11, IIO_VOLTAGE, NULL),
    623	MXS_ADC_CHAN(12, IIO_VOLTAGE, "USB_DP"),
    624	MXS_ADC_CHAN(13, IIO_VOLTAGE, "USB_DN"),
    625	MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
    626	MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
    627};
    628
    629static const struct iio_chan_spec mx28_lradc_chan_spec[] = {
    630	MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
    631	MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
    632	MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
    633	MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
    634	MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
    635	MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
    636	MXS_ADC_CHAN(6, IIO_VOLTAGE, "LRADC6"),
    637	MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
    638	/* Combined Temperature sensors */
    639	{
    640		.type = IIO_TEMP,
    641		.indexed = 1,
    642		.scan_index = 8,
    643		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
    644				      BIT(IIO_CHAN_INFO_OFFSET) |
    645				      BIT(IIO_CHAN_INFO_SCALE),
    646		.channel = 8,
    647		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
    648		.datasheet_name = "TEMP_DIE",
    649	},
    650	/* Hidden channel to keep indexes */
    651	{
    652		.type = IIO_TEMP,
    653		.indexed = 1,
    654		.scan_index = -1,
    655		.channel = 9,
    656	},
    657	MXS_ADC_CHAN(10, IIO_VOLTAGE, "VDDIO"),
    658	MXS_ADC_CHAN(11, IIO_VOLTAGE, "VTH"),
    659	MXS_ADC_CHAN(12, IIO_VOLTAGE, "VDDA"),
    660	MXS_ADC_CHAN(13, IIO_VOLTAGE, "VDDD"),
    661	MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
    662	MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
    663};
    664
    665static void mxs_lradc_adc_hw_init(struct mxs_lradc_adc *adc)
    666{
    667	/* The ADC always uses DELAY CHANNEL 0. */
    668	const u32 adc_cfg =
    669		(1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + 0)) |
    670		(LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);
    671
    672	/* Configure DELAY CHANNEL 0 for generic ADC sampling. */
    673	writel(adc_cfg, adc->base + LRADC_DELAY(0));
    674
    675	/*
    676	 * Start internal temperature sensing by clearing bit
    677	 * HW_LRADC_CTRL2_TEMPSENSE_PWD. This bit can be left cleared
    678	 * after power up.
    679	 */
    680	writel(0, adc->base + LRADC_CTRL2);
    681}
    682
    683static void mxs_lradc_adc_hw_stop(struct mxs_lradc_adc *adc)
    684{
    685	writel(0, adc->base + LRADC_DELAY(0));
    686}
    687
    688static int mxs_lradc_adc_probe(struct platform_device *pdev)
    689{
    690	struct device *dev = &pdev->dev;
    691	struct mxs_lradc *lradc = dev_get_drvdata(dev->parent);
    692	struct mxs_lradc_adc *adc;
    693	struct iio_dev *iio;
    694	struct resource *iores;
    695	int ret, irq, virq, i, s, n;
    696	u64 scale_uv;
    697	const char **irq_name;
    698
    699	/* Allocate the IIO device. */
    700	iio = devm_iio_device_alloc(dev, sizeof(*adc));
    701	if (!iio) {
    702		dev_err(dev, "Failed to allocate IIO device\n");
    703		return -ENOMEM;
    704	}
    705
    706	adc = iio_priv(iio);
    707	adc->lradc = lradc;
    708	adc->dev = dev;
    709
    710	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    711	if (!iores)
    712		return -EINVAL;
    713
    714	adc->base = devm_ioremap(dev, iores->start, resource_size(iores));
    715	if (!adc->base)
    716		return -ENOMEM;
    717
    718	init_completion(&adc->completion);
    719	spin_lock_init(&adc->lock);
    720
    721	platform_set_drvdata(pdev, iio);
    722
    723	iio->name = pdev->name;
    724	iio->dev.of_node = dev->parent->of_node;
    725	iio->info = &mxs_lradc_adc_iio_info;
    726	iio->modes = INDIO_DIRECT_MODE;
    727	iio->masklength = LRADC_MAX_TOTAL_CHANS;
    728
    729	if (lradc->soc == IMX23_LRADC) {
    730		iio->channels = mx23_lradc_chan_spec;
    731		iio->num_channels = ARRAY_SIZE(mx23_lradc_chan_spec);
    732		irq_name = mx23_lradc_adc_irq_names;
    733		n = ARRAY_SIZE(mx23_lradc_adc_irq_names);
    734	} else {
    735		iio->channels = mx28_lradc_chan_spec;
    736		iio->num_channels = ARRAY_SIZE(mx28_lradc_chan_spec);
    737		irq_name = mx28_lradc_adc_irq_names;
    738		n = ARRAY_SIZE(mx28_lradc_adc_irq_names);
    739	}
    740
    741	ret = stmp_reset_block(adc->base);
    742	if (ret)
    743		return ret;
    744
    745	for (i = 0; i < n; i++) {
    746		irq = platform_get_irq_byname(pdev, irq_name[i]);
    747		if (irq < 0)
    748			return irq;
    749
    750		virq = irq_of_parse_and_map(dev->parent->of_node, irq);
    751
    752		ret = devm_request_irq(dev, virq, mxs_lradc_adc_handle_irq,
    753				       0, irq_name[i], iio);
    754		if (ret)
    755			return ret;
    756	}
    757
    758	ret = mxs_lradc_adc_trigger_init(iio);
    759	if (ret)
    760		goto err_trig;
    761
    762	ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
    763					 &mxs_lradc_adc_trigger_handler,
    764					 &mxs_lradc_adc_buffer_ops);
    765	if (ret)
    766		return ret;
    767
    768	adc->vref_mv = mxs_lradc_adc_vref_mv[lradc->soc];
    769
    770	/* Populate available ADC input ranges */
    771	for (i = 0; i < LRADC_MAX_TOTAL_CHANS; i++) {
    772		for (s = 0; s < ARRAY_SIZE(adc->scale_avail[i]); s++) {
    773			/*
    774			 * [s=0] = optional divider by two disabled (default)
    775			 * [s=1] = optional divider by two enabled
    776			 *
    777			 * The scale is calculated by doing:
    778			 *   Vref >> (realbits - s)
    779			 * which multiplies by two on the second component
    780			 * of the array.
    781			 */
    782			scale_uv = ((u64)adc->vref_mv[i] * 100000000) >>
    783				   (LRADC_RESOLUTION - s);
    784			adc->scale_avail[i][s].nano =
    785					do_div(scale_uv, 100000000) * 10;
    786			adc->scale_avail[i][s].integer = scale_uv;
    787		}
    788	}
    789
    790	/* Configure the hardware. */
    791	mxs_lradc_adc_hw_init(adc);
    792
    793	/* Register IIO device. */
    794	ret = iio_device_register(iio);
    795	if (ret) {
    796		dev_err(dev, "Failed to register IIO device\n");
    797		goto err_dev;
    798	}
    799
    800	return 0;
    801
    802err_dev:
    803	mxs_lradc_adc_hw_stop(adc);
    804	mxs_lradc_adc_trigger_remove(iio);
    805err_trig:
    806	iio_triggered_buffer_cleanup(iio);
    807	return ret;
    808}
    809
    810static int mxs_lradc_adc_remove(struct platform_device *pdev)
    811{
    812	struct iio_dev *iio = platform_get_drvdata(pdev);
    813	struct mxs_lradc_adc *adc = iio_priv(iio);
    814
    815	iio_device_unregister(iio);
    816	mxs_lradc_adc_hw_stop(adc);
    817	mxs_lradc_adc_trigger_remove(iio);
    818	iio_triggered_buffer_cleanup(iio);
    819
    820	return 0;
    821}
    822
    823static struct platform_driver mxs_lradc_adc_driver = {
    824	.driver = {
    825		.name	= "mxs-lradc-adc",
    826	},
    827	.probe	= mxs_lradc_adc_probe,
    828	.remove = mxs_lradc_adc_remove,
    829};
    830module_platform_driver(mxs_lradc_adc_driver);
    831
    832MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
    833MODULE_DESCRIPTION("Freescale MXS LRADC driver general purpose ADC driver");
    834MODULE_LICENSE("GPL");
    835MODULE_ALIAS("platform:mxs-lradc-adc");