cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

stm32-dfsdm-adc.c (43833B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * This file is the ADC part of the STM32 DFSDM driver
      4 *
      5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
      6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
      7 */
      8
      9#include <linux/dmaengine.h>
     10#include <linux/dma-mapping.h>
     11#include <linux/iio/adc/stm32-dfsdm-adc.h>
     12#include <linux/iio/buffer.h>
     13#include <linux/iio/hw-consumer.h>
     14#include <linux/iio/sysfs.h>
     15#include <linux/iio/timer/stm32-lptim-trigger.h>
     16#include <linux/iio/timer/stm32-timer-trigger.h>
     17#include <linux/iio/trigger.h>
     18#include <linux/iio/trigger_consumer.h>
     19#include <linux/iio/triggered_buffer.h>
     20#include <linux/interrupt.h>
     21#include <linux/module.h>
     22#include <linux/of_device.h>
     23#include <linux/platform_device.h>
     24#include <linux/regmap.h>
     25#include <linux/slab.h>
     26
     27#include "stm32-dfsdm.h"
     28
     29#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
     30
     31/* Conversion timeout */
     32#define DFSDM_TIMEOUT_US 100000
     33#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
     34
     35/* Oversampling attribute default */
     36#define DFSDM_DEFAULT_OVERSAMPLING  100
     37
     38/* Oversampling max values */
     39#define DFSDM_MAX_INT_OVERSAMPLING 256
     40#define DFSDM_MAX_FL_OVERSAMPLING 1024
     41
     42/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
     43#define DFSDM_DATA_MAX BIT(30)
     44/*
     45 * Data are output as two's complement data in a 24 bit field.
     46 * Data from filters are in the range +/-2^(n-1)
     47 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
     48 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
     49 * So, the resolution of samples from filter is actually limited to 23 bits
     50 */
     51#define DFSDM_DATA_RES 24
     52
     53/* Filter configuration */
     54#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
     55			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
     56			    DFSDM_CR1_JSCAN_MASK)
     57
     58enum sd_converter_type {
     59	DFSDM_AUDIO,
     60	DFSDM_IIO,
     61};
     62
     63struct stm32_dfsdm_dev_data {
     64	int type;
     65	int (*init)(struct device *dev, struct iio_dev *indio_dev);
     66	unsigned int num_channels;
     67	const struct regmap_config *regmap_cfg;
     68};
     69
     70struct stm32_dfsdm_adc {
     71	struct stm32_dfsdm *dfsdm;
     72	const struct stm32_dfsdm_dev_data *dev_data;
     73	unsigned int fl_id;
     74	unsigned int nconv;
     75	unsigned long smask;
     76
     77	/* ADC specific */
     78	unsigned int oversamp;
     79	struct iio_hw_consumer *hwc;
     80	struct completion completion;
     81	u32 *buffer;
     82
     83	/* Audio specific */
     84	unsigned int spi_freq;  /* SPI bus clock frequency */
     85	unsigned int sample_freq; /* Sample frequency after filter decimation */
     86	int (*cb)(const void *data, size_t size, void *cb_priv);
     87	void *cb_priv;
     88
     89	/* DMA */
     90	u8 *rx_buf;
     91	unsigned int bufi; /* Buffer current position */
     92	unsigned int buf_sz; /* Buffer size */
     93	struct dma_chan	*dma_chan;
     94	dma_addr_t dma_buf;
     95};
     96
     97struct stm32_dfsdm_str2field {
     98	const char	*name;
     99	unsigned int	val;
    100};
    101
    102/* DFSDM channel serial interface type */
    103static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
    104	{ "SPI_R", 0 }, /* SPI with data on rising edge */
    105	{ "SPI_F", 1 }, /* SPI with data on falling edge */
    106	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
    107	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
    108	{},
    109};
    110
    111/* DFSDM channel clock source */
    112static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
    113	/* External SPI clock (CLKIN x) */
    114	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
    115	/* Internal SPI clock (CLKOUT) */
    116	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
    117	/* Internal SPI clock divided by 2 (falling edge) */
    118	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
    119	/* Internal SPI clock divided by 2 (falling edge) */
    120	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
    121	{},
    122};
    123
    124static int stm32_dfsdm_str2val(const char *str,
    125			       const struct stm32_dfsdm_str2field *list)
    126{
    127	const struct stm32_dfsdm_str2field *p = list;
    128
    129	for (p = list; p && p->name; p++)
    130		if (!strcmp(p->name, str))
    131			return p->val;
    132
    133	return -EINVAL;
    134}
    135
    136/**
    137 * struct stm32_dfsdm_trig_info - DFSDM trigger info
    138 * @name:		name of the trigger, corresponding to its source
    139 * @jextsel:		trigger signal selection
    140 */
    141struct stm32_dfsdm_trig_info {
    142	const char *name;
    143	unsigned int jextsel;
    144};
    145
    146/* hardware injected trigger enable, edge selection */
    147enum stm32_dfsdm_jexten {
    148	STM32_DFSDM_JEXTEN_DISABLED,
    149	STM32_DFSDM_JEXTEN_RISING_EDGE,
    150	STM32_DFSDM_JEXTEN_FALLING_EDGE,
    151	STM32_DFSDM_EXTEN_BOTH_EDGES,
    152};
    153
    154static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
    155	{ TIM1_TRGO, 0 },
    156	{ TIM1_TRGO2, 1 },
    157	{ TIM8_TRGO, 2 },
    158	{ TIM8_TRGO2, 3 },
    159	{ TIM3_TRGO, 4 },
    160	{ TIM4_TRGO, 5 },
    161	{ TIM16_OC1, 6 },
    162	{ TIM6_TRGO, 7 },
    163	{ TIM7_TRGO, 8 },
    164	{ LPTIM1_OUT, 26 },
    165	{ LPTIM2_OUT, 27 },
    166	{ LPTIM3_OUT, 28 },
    167	{},
    168};
    169
    170static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
    171				   struct iio_trigger *trig)
    172{
    173	int i;
    174
    175	/* lookup triggers registered by stm32 timer trigger driver */
    176	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
    177		/**
    178		 * Checking both stm32 timer trigger type and trig name
    179		 * should be safe against arbitrary trigger names.
    180		 */
    181		if ((is_stm32_timer_trigger(trig) ||
    182		     is_stm32_lptim_trigger(trig)) &&
    183		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
    184			return stm32_dfsdm_trigs[i].jextsel;
    185		}
    186	}
    187
    188	return -EINVAL;
    189}
    190
    191static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
    192				    unsigned int fast, unsigned int oversamp)
    193{
    194	unsigned int i, d, fosr, iosr;
    195	u64 res, max;
    196	int bits, shift;
    197	unsigned int m = 1;	/* multiplication factor */
    198	unsigned int p = fl->ford;	/* filter order (ford) */
    199	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
    200
    201	pr_debug("Requested oversampling: %d\n", oversamp);
    202	/*
    203	 * This function tries to compute filter oversampling and integrator
    204	 * oversampling, base on oversampling ratio requested by user.
    205	 *
    206	 * Decimation d depends on the filter order and the oversampling ratios.
    207	 * ford: filter order
    208	 * fosr: filter over sampling ratio
    209	 * iosr: integrator over sampling ratio
    210	 */
    211	if (fl->ford == DFSDM_FASTSINC_ORDER) {
    212		m = 2;
    213		p = 2;
    214	}
    215
    216	/*
    217	 * Look for filter and integrator oversampling ratios which allows
    218	 * to maximize data output resolution.
    219	 */
    220	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
    221		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
    222			if (fast)
    223				d = fosr * iosr;
    224			else if (fl->ford == DFSDM_FASTSINC_ORDER)
    225				d = fosr * (iosr + 3) + 2;
    226			else
    227				d = fosr * (iosr - 1 + p) + p;
    228
    229			if (d > oversamp)
    230				break;
    231			else if (d != oversamp)
    232				continue;
    233			/*
    234			 * Check resolution (limited to signed 32 bits)
    235			 *   res <= 2^31
    236			 * Sincx filters:
    237			 *   res = m * fosr^p x iosr (with m=1, p=ford)
    238			 * FastSinc filter
    239			 *   res = m * fosr^p x iosr (with m=2, p=2)
    240			 */
    241			res = fosr;
    242			for (i = p - 1; i > 0; i--) {
    243				res = res * (u64)fosr;
    244				if (res > DFSDM_DATA_MAX)
    245					break;
    246			}
    247			if (res > DFSDM_DATA_MAX)
    248				continue;
    249
    250			res = res * (u64)m * (u64)iosr;
    251			if (res > DFSDM_DATA_MAX)
    252				continue;
    253
    254			if (res >= flo->res) {
    255				flo->res = res;
    256				flo->fosr = fosr;
    257				flo->iosr = iosr;
    258
    259				bits = fls(flo->res);
    260				/* 8 LBSs in data register contain chan info */
    261				max = flo->res << 8;
    262
    263				/* if resolution is not a power of two */
    264				if (flo->res > BIT(bits - 1))
    265					bits++;
    266				else
    267					max--;
    268
    269				shift = DFSDM_DATA_RES - bits;
    270				/*
    271				 * Compute right/left shift
    272				 * Right shift is performed by hardware
    273				 * when transferring samples to data register.
    274				 * Left shift is done by software on buffer
    275				 */
    276				if (shift > 0) {
    277					/* Resolution is lower than 24 bits */
    278					flo->rshift = 0;
    279					flo->lshift = shift;
    280				} else {
    281					/*
    282					 * If resolution is 24 bits or more,
    283					 * max positive value may be ambiguous
    284					 * (equal to max negative value as sign
    285					 * bit is dropped).
    286					 * Reduce resolution to 23 bits (rshift)
    287					 * to keep the sign on bit 23 and treat
    288					 * saturation before rescaling on 24
    289					 * bits (lshift).
    290					 */
    291					flo->rshift = 1 - shift;
    292					flo->lshift = 1;
    293					max >>= flo->rshift;
    294				}
    295				flo->max = (s32)max;
    296				flo->bits = bits;
    297
    298				pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
    299					 fast, flo->fosr, flo->iosr,
    300					 flo->res, bits, flo->rshift,
    301					 flo->lshift);
    302			}
    303		}
    304	}
    305
    306	if (!flo->res)
    307		return -EINVAL;
    308
    309	return 0;
    310}
    311
    312static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
    313					unsigned int oversamp)
    314{
    315	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    316	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
    317	int ret0, ret1;
    318
    319	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
    320	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
    321
    322	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
    323	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
    324	if (ret0 < 0 && ret1 < 0) {
    325		dev_err(&indio_dev->dev,
    326			"Filter parameters not found: errors %d/%d\n",
    327			ret0, ret1);
    328		return -EINVAL;
    329	}
    330
    331	return 0;
    332}
    333
    334static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
    335{
    336	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    337	struct regmap *regmap = adc->dfsdm->regmap;
    338	const struct iio_chan_spec *chan;
    339	unsigned int bit;
    340	int ret;
    341
    342	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
    343		chan = indio_dev->channels + bit;
    344		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
    345					 DFSDM_CHCFGR1_CHEN_MASK,
    346					 DFSDM_CHCFGR1_CHEN(1));
    347		if (ret < 0)
    348			return ret;
    349	}
    350
    351	return 0;
    352}
    353
    354static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
    355{
    356	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    357	struct regmap *regmap = adc->dfsdm->regmap;
    358	const struct iio_chan_spec *chan;
    359	unsigned int bit;
    360
    361	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
    362		chan = indio_dev->channels + bit;
    363		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
    364				   DFSDM_CHCFGR1_CHEN_MASK,
    365				   DFSDM_CHCFGR1_CHEN(0));
    366	}
    367}
    368
    369static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
    370				      struct stm32_dfsdm_channel *ch)
    371{
    372	unsigned int id = ch->id;
    373	struct regmap *regmap = dfsdm->regmap;
    374	int ret;
    375
    376	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
    377				 DFSDM_CHCFGR1_SITP_MASK,
    378				 DFSDM_CHCFGR1_SITP(ch->type));
    379	if (ret < 0)
    380		return ret;
    381	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
    382				 DFSDM_CHCFGR1_SPICKSEL_MASK,
    383				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
    384	if (ret < 0)
    385		return ret;
    386	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
    387				  DFSDM_CHCFGR1_CHINSEL_MASK,
    388				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
    389}
    390
    391static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
    392				    unsigned int fl_id,
    393				    struct iio_trigger *trig)
    394{
    395	struct stm32_dfsdm *dfsdm = adc->dfsdm;
    396	int ret;
    397
    398	/* Enable filter */
    399	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
    400				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
    401	if (ret < 0)
    402		return ret;
    403
    404	/* Nothing more to do for injected (scan mode/triggered) conversions */
    405	if (adc->nconv > 1 || trig)
    406		return 0;
    407
    408	/* Software start (single or continuous) regular conversion */
    409	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
    410				  DFSDM_CR1_RSWSTART_MASK,
    411				  DFSDM_CR1_RSWSTART(1));
    412}
    413
    414static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
    415				    unsigned int fl_id)
    416{
    417	/* Disable conversion */
    418	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
    419			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
    420}
    421
    422static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
    423				       unsigned int fl_id,
    424				       struct iio_trigger *trig)
    425{
    426	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    427	struct regmap *regmap = adc->dfsdm->regmap;
    428	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
    429	int ret;
    430
    431	if (trig) {
    432		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
    433		if (ret < 0)
    434			return ret;
    435
    436		/* set trigger source and polarity (default to rising edge) */
    437		jextsel = ret;
    438		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
    439	}
    440
    441	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
    442				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
    443				 DFSDM_CR1_JEXTSEL(jextsel) |
    444				 DFSDM_CR1_JEXTEN(jexten));
    445	if (ret < 0)
    446		return ret;
    447
    448	return 0;
    449}
    450
    451static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
    452					  unsigned int fl_id,
    453					  struct iio_trigger *trig)
    454{
    455	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    456	struct regmap *regmap = adc->dfsdm->regmap;
    457	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
    458	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
    459	const struct iio_chan_spec *chan;
    460	unsigned int bit;
    461	int ret;
    462
    463	fl->fast = 0;
    464
    465	/*
    466	 * In continuous mode, use fast mode configuration,
    467	 * if it provides a better resolution.
    468	 */
    469	if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
    470		if (fl->flo[1].res >= fl->flo[0].res) {
    471			fl->fast = 1;
    472			flo = &fl->flo[1];
    473		}
    474	}
    475
    476	if (!flo->res)
    477		return -EINVAL;
    478
    479	dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
    480		min(flo->bits, (u32)DFSDM_DATA_RES - 1));
    481
    482	for_each_set_bit(bit, &adc->smask,
    483			 sizeof(adc->smask) * BITS_PER_BYTE) {
    484		chan = indio_dev->channels + bit;
    485
    486		ret = regmap_update_bits(regmap,
    487					 DFSDM_CHCFGR2(chan->channel),
    488					 DFSDM_CHCFGR2_DTRBS_MASK,
    489					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
    490		if (ret)
    491			return ret;
    492	}
    493
    494	return 0;
    495}
    496
    497static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
    498					unsigned int fl_id,
    499					struct iio_trigger *trig)
    500{
    501	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    502	struct regmap *regmap = adc->dfsdm->regmap;
    503	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
    504	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
    505	u32 cr1;
    506	const struct iio_chan_spec *chan;
    507	unsigned int bit, jchg = 0;
    508	int ret;
    509
    510	/* Average integrator oversampling */
    511	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
    512				 DFSDM_FCR_IOSR(flo->iosr - 1));
    513	if (ret)
    514		return ret;
    515
    516	/* Filter order and Oversampling */
    517	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
    518				 DFSDM_FCR_FOSR(flo->fosr - 1));
    519	if (ret)
    520		return ret;
    521
    522	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
    523				 DFSDM_FCR_FORD(fl->ford));
    524	if (ret)
    525		return ret;
    526
    527	ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
    528	if (ret)
    529		return ret;
    530
    531	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
    532				 DFSDM_CR1_FAST_MASK,
    533				 DFSDM_CR1_FAST(fl->fast));
    534	if (ret)
    535		return ret;
    536
    537	/*
    538	 * DFSDM modes configuration W.R.T audio/iio type modes
    539	 * ----------------------------------------------------------------
    540	 * Modes         | regular |  regular     | injected | injected   |
    541	 *               |         |  continuous  |          | + scan     |
    542	 * --------------|---------|--------------|----------|------------|
    543	 * single conv   |    x    |              |          |            |
    544	 * (1 chan)      |         |              |          |            |
    545	 * --------------|---------|--------------|----------|------------|
    546	 * 1 Audio chan	 |         | sample freq  |          |            |
    547	 *               |         | or sync_mode |          |            |
    548	 * --------------|---------|--------------|----------|------------|
    549	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
    550	 *               |         | or sync_mode |          |            |
    551	 * --------------|---------|--------------|----------|------------|
    552	 * 2+ IIO chans  |         |              |          | trigger or |
    553	 *               |         |              |          | sync_mode  |
    554	 * ----------------------------------------------------------------
    555	 */
    556	if (adc->nconv == 1 && !trig) {
    557		bit = __ffs(adc->smask);
    558		chan = indio_dev->channels + bit;
    559
    560		/* Use regular conversion for single channel without trigger */
    561		cr1 = DFSDM_CR1_RCH(chan->channel);
    562
    563		/* Continuous conversions triggered by SPI clk in buffer mode */
    564		if (iio_buffer_enabled(indio_dev))
    565			cr1 |= DFSDM_CR1_RCONT(1);
    566
    567		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
    568	} else {
    569		/* Use injected conversion for multiple channels */
    570		for_each_set_bit(bit, &adc->smask,
    571				 sizeof(adc->smask) * BITS_PER_BYTE) {
    572			chan = indio_dev->channels + bit;
    573			jchg |= BIT(chan->channel);
    574		}
    575		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
    576		if (ret < 0)
    577			return ret;
    578
    579		/* Use scan mode for multiple channels */
    580		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
    581
    582		/*
    583		 * Continuous conversions not supported in injected mode,
    584		 * either use:
    585		 * - conversions in sync with filter 0
    586		 * - triggered conversions
    587		 */
    588		if (!fl->sync_mode && !trig)
    589			return -EINVAL;
    590		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
    591	}
    592
    593	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
    594				  cr1);
    595}
    596
    597static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
    598					struct iio_dev *indio_dev,
    599					struct iio_chan_spec *ch)
    600{
    601	struct stm32_dfsdm_channel *df_ch;
    602	const char *of_str;
    603	int chan_idx = ch->scan_index;
    604	int ret, val;
    605
    606	ret = of_property_read_u32_index(indio_dev->dev.of_node,
    607					 "st,adc-channels", chan_idx,
    608					 &ch->channel);
    609	if (ret < 0) {
    610		dev_err(&indio_dev->dev,
    611			" Error parsing 'st,adc-channels' for idx %d\n",
    612			chan_idx);
    613		return ret;
    614	}
    615	if (ch->channel >= dfsdm->num_chs) {
    616		dev_err(&indio_dev->dev,
    617			" Error bad channel number %d (max = %d)\n",
    618			ch->channel, dfsdm->num_chs);
    619		return -EINVAL;
    620	}
    621
    622	ret = of_property_read_string_index(indio_dev->dev.of_node,
    623					    "st,adc-channel-names", chan_idx,
    624					    &ch->datasheet_name);
    625	if (ret < 0) {
    626		dev_err(&indio_dev->dev,
    627			" Error parsing 'st,adc-channel-names' for idx %d\n",
    628			chan_idx);
    629		return ret;
    630	}
    631
    632	df_ch =  &dfsdm->ch_list[ch->channel];
    633	df_ch->id = ch->channel;
    634
    635	ret = of_property_read_string_index(indio_dev->dev.of_node,
    636					    "st,adc-channel-types", chan_idx,
    637					    &of_str);
    638	if (!ret) {
    639		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
    640		if (val < 0)
    641			return val;
    642	} else {
    643		val = 0;
    644	}
    645	df_ch->type = val;
    646
    647	ret = of_property_read_string_index(indio_dev->dev.of_node,
    648					    "st,adc-channel-clk-src", chan_idx,
    649					    &of_str);
    650	if (!ret) {
    651		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
    652		if (val < 0)
    653			return val;
    654	} else {
    655		val = 0;
    656	}
    657	df_ch->src = val;
    658
    659	ret = of_property_read_u32_index(indio_dev->dev.of_node,
    660					 "st,adc-alt-channel", chan_idx,
    661					 &df_ch->alt_si);
    662	if (ret < 0)
    663		df_ch->alt_si = 0;
    664
    665	return 0;
    666}
    667
    668static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
    669					  uintptr_t priv,
    670					  const struct iio_chan_spec *chan,
    671					  char *buf)
    672{
    673	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    674
    675	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
    676}
    677
    678static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
    679				   unsigned int sample_freq,
    680				   unsigned int spi_freq)
    681{
    682	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    683	unsigned int oversamp;
    684	int ret;
    685
    686	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
    687	if (spi_freq % sample_freq)
    688		dev_dbg(&indio_dev->dev,
    689			"Rate not accurate. requested (%u), actual (%u)\n",
    690			sample_freq, spi_freq / oversamp);
    691
    692	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
    693	if (ret < 0)
    694		return ret;
    695
    696	adc->sample_freq = spi_freq / oversamp;
    697	adc->oversamp = oversamp;
    698
    699	return 0;
    700}
    701
    702static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
    703					  uintptr_t priv,
    704					  const struct iio_chan_spec *chan,
    705					  const char *buf, size_t len)
    706{
    707	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    708	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
    709	unsigned int sample_freq = adc->sample_freq;
    710	unsigned int spi_freq;
    711	int ret;
    712
    713	dev_err(&indio_dev->dev, "enter %s\n", __func__);
    714	/* If DFSDM is master on SPI, SPI freq can not be updated */
    715	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
    716		return -EPERM;
    717
    718	ret = kstrtoint(buf, 0, &spi_freq);
    719	if (ret)
    720		return ret;
    721
    722	if (!spi_freq)
    723		return -EINVAL;
    724
    725	if (sample_freq) {
    726		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
    727		if (ret < 0)
    728			return ret;
    729	}
    730	adc->spi_freq = spi_freq;
    731
    732	return len;
    733}
    734
    735static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
    736				  struct iio_trigger *trig)
    737{
    738	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    739	struct regmap *regmap = adc->dfsdm->regmap;
    740	int ret;
    741
    742	ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
    743	if (ret < 0)
    744		return ret;
    745
    746	ret = stm32_dfsdm_start_channel(indio_dev);
    747	if (ret < 0)
    748		return ret;
    749
    750	ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
    751	if (ret < 0)
    752		goto stop_channels;
    753
    754	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
    755	if (ret < 0)
    756		goto filter_unconfigure;
    757
    758	return 0;
    759
    760filter_unconfigure:
    761	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
    762			   DFSDM_CR1_CFG_MASK, 0);
    763stop_channels:
    764	stm32_dfsdm_stop_channel(indio_dev);
    765
    766	return ret;
    767}
    768
    769static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
    770{
    771	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    772	struct regmap *regmap = adc->dfsdm->regmap;
    773
    774	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
    775
    776	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
    777			   DFSDM_CR1_CFG_MASK, 0);
    778
    779	stm32_dfsdm_stop_channel(indio_dev);
    780}
    781
    782static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
    783				     unsigned int val)
    784{
    785	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    786	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
    787	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
    788
    789	/*
    790	 * DMA cyclic transfers are used, buffer is split into two periods.
    791	 * There should be :
    792	 * - always one buffer (period) DMA is working on
    793	 * - one buffer (period) driver pushed to ASoC side.
    794	 */
    795	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
    796	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
    797
    798	return 0;
    799}
    800
    801static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
    802{
    803	struct dma_tx_state state;
    804	enum dma_status status;
    805
    806	status = dmaengine_tx_status(adc->dma_chan,
    807				     adc->dma_chan->cookie,
    808				     &state);
    809	if (status == DMA_IN_PROGRESS) {
    810		/* Residue is size in bytes from end of buffer */
    811		unsigned int i = adc->buf_sz - state.residue;
    812		unsigned int size;
    813
    814		/* Return available bytes */
    815		if (i >= adc->bufi)
    816			size = i - adc->bufi;
    817		else
    818			size = adc->buf_sz + i - adc->bufi;
    819
    820		return size;
    821	}
    822
    823	return 0;
    824}
    825
    826static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
    827					    s32 *buffer)
    828{
    829	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
    830	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
    831	unsigned int i = adc->nconv;
    832	s32 *ptr = buffer;
    833
    834	while (i--) {
    835		/* Mask 8 LSB that contains the channel ID */
    836		*ptr &= 0xFFFFFF00;
    837		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
    838		if (*ptr > flo->max)
    839			*ptr -= 1;
    840		/*
    841		 * Samples from filter are retrieved with 23 bits resolution
    842		 * or less. Shift left to align MSB on 24 bits.
    843		 */
    844		*ptr <<= flo->lshift;
    845
    846		ptr++;
    847	}
    848}
    849
    850static void stm32_dfsdm_dma_buffer_done(void *data)
    851{
    852	struct iio_dev *indio_dev = data;
    853	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    854	int available = stm32_dfsdm_adc_dma_residue(adc);
    855	size_t old_pos;
    856
    857	/*
    858	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
    859	 * offers only an interface to push data samples per samples.
    860	 * For this reason IIO buffer interface is not used and interface is
    861	 * bypassed using a private callback registered by ASoC.
    862	 * This should be a temporary solution waiting a cyclic DMA engine
    863	 * support in IIO.
    864	 */
    865
    866	dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
    867		adc->bufi, available);
    868	old_pos = adc->bufi;
    869
    870	while (available >= indio_dev->scan_bytes) {
    871		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
    872
    873		stm32_dfsdm_process_data(adc, buffer);
    874
    875		available -= indio_dev->scan_bytes;
    876		adc->bufi += indio_dev->scan_bytes;
    877		if (adc->bufi >= adc->buf_sz) {
    878			if (adc->cb)
    879				adc->cb(&adc->rx_buf[old_pos],
    880					 adc->buf_sz - old_pos, adc->cb_priv);
    881			adc->bufi = 0;
    882			old_pos = 0;
    883		}
    884		/*
    885		 * In DMA mode the trigger services of IIO are not used
    886		 * (e.g. no call to iio_trigger_poll).
    887		 * Calling irq handler associated to the hardware trigger is not
    888		 * relevant as the conversions have already been done. Data
    889		 * transfers are performed directly in DMA callback instead.
    890		 * This implementation avoids to call trigger irq handler that
    891		 * may sleep, in an atomic context (DMA irq handler context).
    892		 */
    893		if (adc->dev_data->type == DFSDM_IIO)
    894			iio_push_to_buffers(indio_dev, buffer);
    895	}
    896	if (adc->cb)
    897		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
    898			adc->cb_priv);
    899}
    900
    901static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
    902{
    903	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    904	/*
    905	 * The DFSDM supports half-word transfers. However, for 16 bits record,
    906	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
    907	 * shift is required.
    908	 */
    909	struct dma_slave_config config = {
    910		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
    911		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
    912	};
    913	struct dma_async_tx_descriptor *desc;
    914	dma_cookie_t cookie;
    915	int ret;
    916
    917	if (!adc->dma_chan)
    918		return -EINVAL;
    919
    920	dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
    921		adc->buf_sz, adc->buf_sz / 2);
    922
    923	if (adc->nconv == 1 && !indio_dev->trig)
    924		config.src_addr += DFSDM_RDATAR(adc->fl_id);
    925	else
    926		config.src_addr += DFSDM_JDATAR(adc->fl_id);
    927	ret = dmaengine_slave_config(adc->dma_chan, &config);
    928	if (ret)
    929		return ret;
    930
    931	/* Prepare a DMA cyclic transaction */
    932	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
    933					 adc->dma_buf,
    934					 adc->buf_sz, adc->buf_sz / 2,
    935					 DMA_DEV_TO_MEM,
    936					 DMA_PREP_INTERRUPT);
    937	if (!desc)
    938		return -EBUSY;
    939
    940	desc->callback = stm32_dfsdm_dma_buffer_done;
    941	desc->callback_param = indio_dev;
    942
    943	cookie = dmaengine_submit(desc);
    944	ret = dma_submit_error(cookie);
    945	if (ret)
    946		goto err_stop_dma;
    947
    948	/* Issue pending DMA requests */
    949	dma_async_issue_pending(adc->dma_chan);
    950
    951	if (adc->nconv == 1 && !indio_dev->trig) {
    952		/* Enable regular DMA transfer*/
    953		ret = regmap_update_bits(adc->dfsdm->regmap,
    954					 DFSDM_CR1(adc->fl_id),
    955					 DFSDM_CR1_RDMAEN_MASK,
    956					 DFSDM_CR1_RDMAEN_MASK);
    957	} else {
    958		/* Enable injected DMA transfer*/
    959		ret = regmap_update_bits(adc->dfsdm->regmap,
    960					 DFSDM_CR1(adc->fl_id),
    961					 DFSDM_CR1_JDMAEN_MASK,
    962					 DFSDM_CR1_JDMAEN_MASK);
    963	}
    964
    965	if (ret < 0)
    966		goto err_stop_dma;
    967
    968	return 0;
    969
    970err_stop_dma:
    971	dmaengine_terminate_all(adc->dma_chan);
    972
    973	return ret;
    974}
    975
    976static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
    977{
    978	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    979
    980	if (!adc->dma_chan)
    981		return;
    982
    983	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
    984			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
    985	dmaengine_terminate_all(adc->dma_chan);
    986}
    987
    988static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
    989					const unsigned long *scan_mask)
    990{
    991	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
    992
    993	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
    994	adc->smask = *scan_mask;
    995
    996	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
    997
    998	return 0;
    999}
   1000
   1001static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
   1002{
   1003	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1004	int ret;
   1005
   1006	/* Reset adc buffer index */
   1007	adc->bufi = 0;
   1008
   1009	if (adc->hwc) {
   1010		ret = iio_hw_consumer_enable(adc->hwc);
   1011		if (ret < 0)
   1012			return ret;
   1013	}
   1014
   1015	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
   1016	if (ret < 0)
   1017		goto err_stop_hwc;
   1018
   1019	ret = stm32_dfsdm_adc_dma_start(indio_dev);
   1020	if (ret) {
   1021		dev_err(&indio_dev->dev, "Can't start DMA\n");
   1022		goto stop_dfsdm;
   1023	}
   1024
   1025	ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
   1026	if (ret) {
   1027		dev_err(&indio_dev->dev, "Can't start conversion\n");
   1028		goto err_stop_dma;
   1029	}
   1030
   1031	return 0;
   1032
   1033err_stop_dma:
   1034	stm32_dfsdm_adc_dma_stop(indio_dev);
   1035stop_dfsdm:
   1036	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
   1037err_stop_hwc:
   1038	if (adc->hwc)
   1039		iio_hw_consumer_disable(adc->hwc);
   1040
   1041	return ret;
   1042}
   1043
   1044static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
   1045{
   1046	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1047
   1048	stm32_dfsdm_stop_conv(indio_dev);
   1049
   1050	stm32_dfsdm_adc_dma_stop(indio_dev);
   1051
   1052	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
   1053
   1054	if (adc->hwc)
   1055		iio_hw_consumer_disable(adc->hwc);
   1056
   1057	return 0;
   1058}
   1059
   1060static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
   1061	.postenable = &stm32_dfsdm_postenable,
   1062	.predisable = &stm32_dfsdm_predisable,
   1063};
   1064
   1065/**
   1066 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
   1067 *                             DMA transfer period is achieved.
   1068 *
   1069 * @iio_dev: Handle to IIO device.
   1070 * @cb: Pointer to callback function:
   1071 *      - data: pointer to data buffer
   1072 *      - size: size in byte of the data buffer
   1073 *      - private: pointer to consumer private structure.
   1074 * @private: Pointer to consumer private structure.
   1075 */
   1076int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
   1077			    int (*cb)(const void *data, size_t size,
   1078				      void *private),
   1079			    void *private)
   1080{
   1081	struct stm32_dfsdm_adc *adc;
   1082
   1083	if (!iio_dev)
   1084		return -EINVAL;
   1085	adc = iio_priv(iio_dev);
   1086
   1087	adc->cb = cb;
   1088	adc->cb_priv = private;
   1089
   1090	return 0;
   1091}
   1092EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
   1093
   1094/**
   1095 * stm32_dfsdm_release_buff_cb - unregister buffer callback
   1096 *
   1097 * @iio_dev: Handle to IIO device.
   1098 */
   1099int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
   1100{
   1101	struct stm32_dfsdm_adc *adc;
   1102
   1103	if (!iio_dev)
   1104		return -EINVAL;
   1105	adc = iio_priv(iio_dev);
   1106
   1107	adc->cb = NULL;
   1108	adc->cb_priv = NULL;
   1109
   1110	return 0;
   1111}
   1112EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
   1113
   1114static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
   1115				   const struct iio_chan_spec *chan, int *res)
   1116{
   1117	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1118	long timeout;
   1119	int ret;
   1120
   1121	reinit_completion(&adc->completion);
   1122
   1123	adc->buffer = res;
   1124
   1125	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
   1126	if (ret < 0)
   1127		return ret;
   1128
   1129	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
   1130				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
   1131	if (ret < 0)
   1132		goto stop_dfsdm;
   1133
   1134	adc->nconv = 1;
   1135	adc->smask = BIT(chan->scan_index);
   1136	ret = stm32_dfsdm_start_conv(indio_dev, NULL);
   1137	if (ret < 0) {
   1138		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
   1139				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
   1140		goto stop_dfsdm;
   1141	}
   1142
   1143	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
   1144							    DFSDM_TIMEOUT);
   1145
   1146	/* Mask IRQ for regular conversion achievement*/
   1147	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
   1148			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
   1149
   1150	if (timeout == 0)
   1151		ret = -ETIMEDOUT;
   1152	else if (timeout < 0)
   1153		ret = timeout;
   1154	else
   1155		ret = IIO_VAL_INT;
   1156
   1157	stm32_dfsdm_stop_conv(indio_dev);
   1158
   1159	stm32_dfsdm_process_data(adc, res);
   1160
   1161stop_dfsdm:
   1162	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
   1163
   1164	return ret;
   1165}
   1166
   1167static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
   1168				 struct iio_chan_spec const *chan,
   1169				 int val, int val2, long mask)
   1170{
   1171	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1172	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
   1173	unsigned int spi_freq;
   1174	int ret = -EINVAL;
   1175
   1176	switch (ch->src) {
   1177	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
   1178		spi_freq = adc->dfsdm->spi_master_freq;
   1179		break;
   1180	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
   1181	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
   1182		spi_freq = adc->dfsdm->spi_master_freq / 2;
   1183		break;
   1184	default:
   1185		spi_freq = adc->spi_freq;
   1186	}
   1187
   1188	switch (mask) {
   1189	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
   1190		ret = iio_device_claim_direct_mode(indio_dev);
   1191		if (ret)
   1192			return ret;
   1193
   1194		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
   1195		if (!ret) {
   1196			dev_dbg(&indio_dev->dev,
   1197				"Sampling rate changed from (%u) to (%u)\n",
   1198				adc->sample_freq, spi_freq / val);
   1199			adc->oversamp = val;
   1200			adc->sample_freq = spi_freq / val;
   1201		}
   1202		iio_device_release_direct_mode(indio_dev);
   1203		return ret;
   1204
   1205	case IIO_CHAN_INFO_SAMP_FREQ:
   1206		if (!val)
   1207			return -EINVAL;
   1208
   1209		ret = iio_device_claim_direct_mode(indio_dev);
   1210		if (ret)
   1211			return ret;
   1212
   1213		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
   1214		iio_device_release_direct_mode(indio_dev);
   1215		return ret;
   1216	}
   1217
   1218	return -EINVAL;
   1219}
   1220
   1221static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
   1222				struct iio_chan_spec const *chan, int *val,
   1223				int *val2, long mask)
   1224{
   1225	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1226	int ret;
   1227
   1228	switch (mask) {
   1229	case IIO_CHAN_INFO_RAW:
   1230		ret = iio_device_claim_direct_mode(indio_dev);
   1231		if (ret)
   1232			return ret;
   1233		ret = iio_hw_consumer_enable(adc->hwc);
   1234		if (ret < 0) {
   1235			dev_err(&indio_dev->dev,
   1236				"%s: IIO enable failed (channel %d)\n",
   1237				__func__, chan->channel);
   1238			iio_device_release_direct_mode(indio_dev);
   1239			return ret;
   1240		}
   1241		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
   1242		iio_hw_consumer_disable(adc->hwc);
   1243		if (ret < 0) {
   1244			dev_err(&indio_dev->dev,
   1245				"%s: Conversion failed (channel %d)\n",
   1246				__func__, chan->channel);
   1247			iio_device_release_direct_mode(indio_dev);
   1248			return ret;
   1249		}
   1250		iio_device_release_direct_mode(indio_dev);
   1251		return IIO_VAL_INT;
   1252
   1253	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
   1254		*val = adc->oversamp;
   1255
   1256		return IIO_VAL_INT;
   1257
   1258	case IIO_CHAN_INFO_SAMP_FREQ:
   1259		*val = adc->sample_freq;
   1260
   1261		return IIO_VAL_INT;
   1262	}
   1263
   1264	return -EINVAL;
   1265}
   1266
   1267static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
   1268					struct iio_trigger *trig)
   1269{
   1270	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
   1271}
   1272
   1273static const struct iio_info stm32_dfsdm_info_audio = {
   1274	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
   1275	.read_raw = stm32_dfsdm_read_raw,
   1276	.write_raw = stm32_dfsdm_write_raw,
   1277	.update_scan_mode = stm32_dfsdm_update_scan_mode,
   1278};
   1279
   1280static const struct iio_info stm32_dfsdm_info_adc = {
   1281	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
   1282	.read_raw = stm32_dfsdm_read_raw,
   1283	.write_raw = stm32_dfsdm_write_raw,
   1284	.update_scan_mode = stm32_dfsdm_update_scan_mode,
   1285	.validate_trigger = stm32_dfsdm_validate_trigger,
   1286};
   1287
   1288static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
   1289{
   1290	struct iio_dev *indio_dev = arg;
   1291	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1292	struct regmap *regmap = adc->dfsdm->regmap;
   1293	unsigned int status, int_en;
   1294
   1295	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
   1296	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
   1297
   1298	if (status & DFSDM_ISR_REOCF_MASK) {
   1299		/* Read the data register clean the IRQ status */
   1300		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
   1301		complete(&adc->completion);
   1302	}
   1303
   1304	if (status & DFSDM_ISR_ROVRF_MASK) {
   1305		if (int_en & DFSDM_CR2_ROVRIE_MASK)
   1306			dev_warn(&indio_dev->dev, "Overrun detected\n");
   1307		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
   1308				   DFSDM_ICR_CLRROVRF_MASK,
   1309				   DFSDM_ICR_CLRROVRF_MASK);
   1310	}
   1311
   1312	return IRQ_HANDLED;
   1313}
   1314
   1315/*
   1316 * Define external info for SPI Frequency and audio sampling rate that can be
   1317 * configured by ASoC driver through consumer.h API
   1318 */
   1319static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
   1320	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
   1321	{
   1322		.name = "spi_clk_freq",
   1323		.shared = IIO_SHARED_BY_TYPE,
   1324		.read = dfsdm_adc_audio_get_spiclk,
   1325		.write = dfsdm_adc_audio_set_spiclk,
   1326	},
   1327	{},
   1328};
   1329
   1330static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
   1331{
   1332	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1333
   1334	if (adc->dma_chan) {
   1335		dma_free_coherent(adc->dma_chan->device->dev,
   1336				  DFSDM_DMA_BUFFER_SIZE,
   1337				  adc->rx_buf, adc->dma_buf);
   1338		dma_release_channel(adc->dma_chan);
   1339	}
   1340}
   1341
   1342static int stm32_dfsdm_dma_request(struct device *dev,
   1343				   struct iio_dev *indio_dev)
   1344{
   1345	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1346
   1347	adc->dma_chan = dma_request_chan(dev, "rx");
   1348	if (IS_ERR(adc->dma_chan)) {
   1349		int ret = PTR_ERR(adc->dma_chan);
   1350
   1351		adc->dma_chan = NULL;
   1352		return ret;
   1353	}
   1354
   1355	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
   1356					 DFSDM_DMA_BUFFER_SIZE,
   1357					 &adc->dma_buf, GFP_KERNEL);
   1358	if (!adc->rx_buf) {
   1359		dma_release_channel(adc->dma_chan);
   1360		return -ENOMEM;
   1361	}
   1362
   1363	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
   1364	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
   1365
   1366	return 0;
   1367}
   1368
   1369static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
   1370					 struct iio_chan_spec *ch)
   1371{
   1372	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1373	int ret;
   1374
   1375	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
   1376	if (ret < 0)
   1377		return ret;
   1378
   1379	ch->type = IIO_VOLTAGE;
   1380	ch->indexed = 1;
   1381
   1382	/*
   1383	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
   1384	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
   1385	 */
   1386	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
   1387	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
   1388					BIT(IIO_CHAN_INFO_SAMP_FREQ);
   1389
   1390	if (adc->dev_data->type == DFSDM_AUDIO) {
   1391		ch->ext_info = dfsdm_adc_audio_ext_info;
   1392	} else {
   1393		ch->scan_type.shift = 8;
   1394	}
   1395	ch->scan_type.sign = 's';
   1396	ch->scan_type.realbits = 24;
   1397	ch->scan_type.storagebits = 32;
   1398
   1399	return stm32_dfsdm_chan_configure(adc->dfsdm,
   1400					  &adc->dfsdm->ch_list[ch->channel]);
   1401}
   1402
   1403static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
   1404{
   1405	struct iio_chan_spec *ch;
   1406	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1407	struct stm32_dfsdm_channel *d_ch;
   1408	int ret;
   1409
   1410	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
   1411	if (!ch)
   1412		return -ENOMEM;
   1413
   1414	ch->scan_index = 0;
   1415
   1416	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
   1417	if (ret < 0) {
   1418		dev_err(&indio_dev->dev, "Channels init failed\n");
   1419		return ret;
   1420	}
   1421	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
   1422
   1423	d_ch = &adc->dfsdm->ch_list[ch->channel];
   1424	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
   1425		adc->spi_freq = adc->dfsdm->spi_master_freq;
   1426
   1427	indio_dev->num_channels = 1;
   1428	indio_dev->channels = ch;
   1429
   1430	return stm32_dfsdm_dma_request(dev, indio_dev);
   1431}
   1432
   1433static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
   1434{
   1435	struct iio_chan_spec *ch;
   1436	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1437	int num_ch;
   1438	int ret, chan_idx;
   1439
   1440	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
   1441	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
   1442	if (ret < 0)
   1443		return ret;
   1444
   1445	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
   1446					     "st,adc-channels");
   1447	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
   1448		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
   1449		return num_ch < 0 ? num_ch : -EINVAL;
   1450	}
   1451
   1452	/* Bind to SD modulator IIO device */
   1453	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
   1454	if (IS_ERR(adc->hwc))
   1455		return -EPROBE_DEFER;
   1456
   1457	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
   1458			  GFP_KERNEL);
   1459	if (!ch)
   1460		return -ENOMEM;
   1461
   1462	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
   1463		ch[chan_idx].scan_index = chan_idx;
   1464		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
   1465		if (ret < 0) {
   1466			dev_err(&indio_dev->dev, "Channels init failed\n");
   1467			return ret;
   1468		}
   1469	}
   1470
   1471	indio_dev->num_channels = num_ch;
   1472	indio_dev->channels = ch;
   1473
   1474	init_completion(&adc->completion);
   1475
   1476	/* Optionally request DMA */
   1477	ret = stm32_dfsdm_dma_request(dev, indio_dev);
   1478	if (ret) {
   1479		if (ret != -ENODEV)
   1480			return dev_err_probe(dev, ret,
   1481					     "DMA channel request failed with\n");
   1482
   1483		dev_dbg(dev, "No DMA support\n");
   1484		return 0;
   1485	}
   1486
   1487	ret = iio_triggered_buffer_setup(indio_dev,
   1488					 &iio_pollfunc_store_time, NULL,
   1489					 &stm32_dfsdm_buffer_setup_ops);
   1490	if (ret) {
   1491		stm32_dfsdm_dma_release(indio_dev);
   1492		dev_err(&indio_dev->dev, "buffer setup failed\n");
   1493		return ret;
   1494	}
   1495
   1496	/* lptimer/timer hardware triggers */
   1497	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
   1498
   1499	return 0;
   1500}
   1501
   1502static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
   1503	.type = DFSDM_IIO,
   1504	.init = stm32_dfsdm_adc_init,
   1505};
   1506
   1507static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
   1508	.type = DFSDM_AUDIO,
   1509	.init = stm32_dfsdm_audio_init,
   1510};
   1511
   1512static const struct of_device_id stm32_dfsdm_adc_match[] = {
   1513	{
   1514		.compatible = "st,stm32-dfsdm-adc",
   1515		.data = &stm32h7_dfsdm_adc_data,
   1516	},
   1517	{
   1518		.compatible = "st,stm32-dfsdm-dmic",
   1519		.data = &stm32h7_dfsdm_audio_data,
   1520	},
   1521	{}
   1522};
   1523
   1524static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
   1525{
   1526	struct device *dev = &pdev->dev;
   1527	struct stm32_dfsdm_adc *adc;
   1528	struct device_node *np = dev->of_node;
   1529	const struct stm32_dfsdm_dev_data *dev_data;
   1530	struct iio_dev *iio;
   1531	char *name;
   1532	int ret, irq, val;
   1533
   1534	dev_data = of_device_get_match_data(dev);
   1535	iio = devm_iio_device_alloc(dev, sizeof(*adc));
   1536	if (!iio) {
   1537		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
   1538		return -ENOMEM;
   1539	}
   1540
   1541	adc = iio_priv(iio);
   1542	adc->dfsdm = dev_get_drvdata(dev->parent);
   1543
   1544	iio->dev.of_node = np;
   1545	iio->modes = INDIO_DIRECT_MODE;
   1546
   1547	platform_set_drvdata(pdev, iio);
   1548
   1549	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
   1550	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
   1551		dev_err(dev, "Missing or bad reg property\n");
   1552		return -EINVAL;
   1553	}
   1554
   1555	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
   1556	if (!name)
   1557		return -ENOMEM;
   1558	if (dev_data->type == DFSDM_AUDIO) {
   1559		iio->info = &stm32_dfsdm_info_audio;
   1560		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
   1561	} else {
   1562		iio->info = &stm32_dfsdm_info_adc;
   1563		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
   1564	}
   1565	iio->name = name;
   1566
   1567	/*
   1568	 * In a first step IRQs generated for channels are not treated.
   1569	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
   1570	 */
   1571	irq = platform_get_irq(pdev, 0);
   1572	if (irq < 0)
   1573		return irq;
   1574
   1575	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
   1576			       0, pdev->name, iio);
   1577	if (ret < 0) {
   1578		dev_err(dev, "Failed to request IRQ\n");
   1579		return ret;
   1580	}
   1581
   1582	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
   1583	if (ret < 0) {
   1584		dev_err(dev, "Failed to set filter order\n");
   1585		return ret;
   1586	}
   1587
   1588	adc->dfsdm->fl_list[adc->fl_id].ford = val;
   1589
   1590	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
   1591	if (!ret)
   1592		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
   1593
   1594	adc->dev_data = dev_data;
   1595	ret = dev_data->init(dev, iio);
   1596	if (ret < 0)
   1597		return ret;
   1598
   1599	ret = iio_device_register(iio);
   1600	if (ret < 0)
   1601		goto err_cleanup;
   1602
   1603	if (dev_data->type == DFSDM_AUDIO) {
   1604		ret = of_platform_populate(np, NULL, NULL, dev);
   1605		if (ret < 0) {
   1606			dev_err(dev, "Failed to find an audio DAI\n");
   1607			goto err_unregister;
   1608		}
   1609	}
   1610
   1611	return 0;
   1612
   1613err_unregister:
   1614	iio_device_unregister(iio);
   1615err_cleanup:
   1616	stm32_dfsdm_dma_release(iio);
   1617
   1618	return ret;
   1619}
   1620
   1621static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
   1622{
   1623	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
   1624	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1625
   1626	if (adc->dev_data->type == DFSDM_AUDIO)
   1627		of_platform_depopulate(&pdev->dev);
   1628	iio_device_unregister(indio_dev);
   1629	stm32_dfsdm_dma_release(indio_dev);
   1630
   1631	return 0;
   1632}
   1633
   1634static int stm32_dfsdm_adc_suspend(struct device *dev)
   1635{
   1636	struct iio_dev *indio_dev = dev_get_drvdata(dev);
   1637
   1638	if (iio_buffer_enabled(indio_dev))
   1639		stm32_dfsdm_predisable(indio_dev);
   1640
   1641	return 0;
   1642}
   1643
   1644static int stm32_dfsdm_adc_resume(struct device *dev)
   1645{
   1646	struct iio_dev *indio_dev = dev_get_drvdata(dev);
   1647	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
   1648	const struct iio_chan_spec *chan;
   1649	struct stm32_dfsdm_channel *ch;
   1650	int i, ret;
   1651
   1652	/* restore channels configuration */
   1653	for (i = 0; i < indio_dev->num_channels; i++) {
   1654		chan = indio_dev->channels + i;
   1655		ch = &adc->dfsdm->ch_list[chan->channel];
   1656		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
   1657		if (ret)
   1658			return ret;
   1659	}
   1660
   1661	if (iio_buffer_enabled(indio_dev))
   1662		stm32_dfsdm_postenable(indio_dev);
   1663
   1664	return 0;
   1665}
   1666
   1667static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
   1668				stm32_dfsdm_adc_suspend,
   1669				stm32_dfsdm_adc_resume);
   1670
   1671static struct platform_driver stm32_dfsdm_adc_driver = {
   1672	.driver = {
   1673		.name = "stm32-dfsdm-adc",
   1674		.of_match_table = stm32_dfsdm_adc_match,
   1675		.pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
   1676	},
   1677	.probe = stm32_dfsdm_adc_probe,
   1678	.remove = stm32_dfsdm_adc_remove,
   1679};
   1680module_platform_driver(stm32_dfsdm_adc_driver);
   1681
   1682MODULE_DESCRIPTION("STM32 sigma delta ADC");
   1683MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
   1684MODULE_LICENSE("GPL v2");