cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xilinx-ams.c (38861B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Xilinx AMS driver
      4 *
      5 *  Copyright (C) 2021 Xilinx, Inc.
      6 *
      7 *  Manish Narani <mnarani@xilinx.com>
      8 *  Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
      9 */
     10
     11#include <linux/bits.h>
     12#include <linux/bitfield.h>
     13#include <linux/clk.h>
     14#include <linux/delay.h>
     15#include <linux/devm-helpers.h>
     16#include <linux/interrupt.h>
     17#include <linux/io.h>
     18#include <linux/iopoll.h>
     19#include <linux/kernel.h>
     20#include <linux/module.h>
     21#include <linux/mod_devicetable.h>
     22#include <linux/overflow.h>
     23#include <linux/platform_device.h>
     24#include <linux/property.h>
     25#include <linux/slab.h>
     26
     27#include <linux/iio/events.h>
     28#include <linux/iio/iio.h>
     29
     30/* AMS registers definitions */
     31#define AMS_ISR_0			0x010
     32#define AMS_ISR_1			0x014
     33#define AMS_IER_0			0x020
     34#define AMS_IER_1			0x024
     35#define AMS_IDR_0			0x028
     36#define AMS_IDR_1			0x02C
     37#define AMS_PS_CSTS			0x040
     38#define AMS_PL_CSTS			0x044
     39
     40#define AMS_VCC_PSPLL0			0x060
     41#define AMS_VCC_PSPLL3			0x06C
     42#define AMS_VCCINT			0x078
     43#define AMS_VCCBRAM			0x07C
     44#define AMS_VCCAUX			0x080
     45#define AMS_PSDDRPLL			0x084
     46#define AMS_PSINTFPDDR			0x09C
     47
     48#define AMS_VCC_PSPLL0_CH		48
     49#define AMS_VCC_PSPLL3_CH		51
     50#define AMS_VCCINT_CH			54
     51#define AMS_VCCBRAM_CH			55
     52#define AMS_VCCAUX_CH			56
     53#define AMS_PSDDRPLL_CH			57
     54#define AMS_PSINTFPDDR_CH		63
     55
     56#define AMS_REG_CONFIG0			0x100
     57#define AMS_REG_CONFIG1			0x104
     58#define AMS_REG_CONFIG3			0x10C
     59#define AMS_REG_CONFIG4			0x110
     60#define AMS_REG_SEQ_CH0			0x120
     61#define AMS_REG_SEQ_CH1			0x124
     62#define AMS_REG_SEQ_CH2			0x118
     63
     64#define AMS_VUSER0_MASK			BIT(0)
     65#define AMS_VUSER1_MASK			BIT(1)
     66#define AMS_VUSER2_MASK			BIT(2)
     67#define AMS_VUSER3_MASK			BIT(3)
     68
     69#define AMS_TEMP			0x000
     70#define AMS_SUPPLY1			0x004
     71#define AMS_SUPPLY2			0x008
     72#define AMS_VP_VN			0x00C
     73#define AMS_VREFP			0x010
     74#define AMS_VREFN			0x014
     75#define AMS_SUPPLY3			0x018
     76#define AMS_SUPPLY4			0x034
     77#define AMS_SUPPLY5			0x038
     78#define AMS_SUPPLY6			0x03C
     79#define AMS_SUPPLY7			0x200
     80#define AMS_SUPPLY8			0x204
     81#define AMS_SUPPLY9			0x208
     82#define AMS_SUPPLY10			0x20C
     83#define AMS_VCCAMS			0x210
     84#define AMS_TEMP_REMOTE			0x214
     85
     86#define AMS_REG_VAUX(x)			(0x40 + 4 * (x))
     87
     88#define AMS_PS_RESET_VALUE		0xFFFF
     89#define AMS_PL_RESET_VALUE		0xFFFF
     90
     91#define AMS_CONF0_CHANNEL_NUM_MASK	GENMASK(6, 0)
     92
     93#define AMS_CONF1_SEQ_MASK		GENMASK(15, 12)
     94#define AMS_CONF1_SEQ_DEFAULT		FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
     95#define AMS_CONF1_SEQ_CONTINUOUS	FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
     96#define AMS_CONF1_SEQ_SINGLE_CHANNEL	FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
     97
     98#define AMS_REG_SEQ0_MASK		GENMASK(15, 0)
     99#define AMS_REG_SEQ2_MASK		GENMASK(21, 16)
    100#define AMS_REG_SEQ1_MASK		GENMASK_ULL(37, 22)
    101
    102#define AMS_PS_SEQ_MASK			GENMASK(21, 0)
    103#define AMS_PL_SEQ_MASK			GENMASK_ULL(59, 22)
    104
    105#define AMS_ALARM_TEMP			0x140
    106#define AMS_ALARM_SUPPLY1		0x144
    107#define AMS_ALARM_SUPPLY2		0x148
    108#define AMS_ALARM_SUPPLY3		0x160
    109#define AMS_ALARM_SUPPLY4		0x164
    110#define AMS_ALARM_SUPPLY5		0x168
    111#define AMS_ALARM_SUPPLY6		0x16C
    112#define AMS_ALARM_SUPPLY7		0x180
    113#define AMS_ALARM_SUPPLY8		0x184
    114#define AMS_ALARM_SUPPLY9		0x188
    115#define AMS_ALARM_SUPPLY10		0x18C
    116#define AMS_ALARM_VCCAMS		0x190
    117#define AMS_ALARM_TEMP_REMOTE		0x194
    118#define AMS_ALARM_THRESHOLD_OFF_10	0x10
    119#define AMS_ALARM_THRESHOLD_OFF_20	0x20
    120
    121#define AMS_ALARM_THR_DIRECT_MASK	BIT(1)
    122#define AMS_ALARM_THR_MIN		0x0000
    123#define AMS_ALARM_THR_MAX		(BIT(16) - 1)
    124
    125#define AMS_ALARM_MASK			GENMASK_ULL(63, 0)
    126#define AMS_NO_OF_ALARMS		32
    127#define AMS_PL_ALARM_START		16
    128#define AMS_PL_ALARM_MASK		GENMASK(31, 16)
    129#define AMS_ISR0_ALARM_MASK		GENMASK(31, 0)
    130#define AMS_ISR1_ALARM_MASK		(GENMASK(31, 29) | GENMASK(4, 0))
    131#define AMS_ISR1_EOC_MASK		BIT(3)
    132#define AMS_ISR1_INTR_MASK		GENMASK_ULL(63, 32)
    133#define AMS_ISR0_ALARM_2_TO_0_MASK	GENMASK(2, 0)
    134#define AMS_ISR0_ALARM_6_TO_3_MASK	GENMASK(6, 3)
    135#define AMS_ISR0_ALARM_12_TO_7_MASK	GENMASK(13, 8)
    136#define AMS_CONF1_ALARM_2_TO_0_MASK	GENMASK(3, 1)
    137#define AMS_CONF1_ALARM_6_TO_3_MASK	GENMASK(11, 8)
    138#define AMS_CONF1_ALARM_12_TO_7_MASK	GENMASK(5, 0)
    139#define AMS_REGCFG1_ALARM_MASK  \
    140	(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
    141#define AMS_REGCFG3_ALARM_MASK		AMS_CONF1_ALARM_12_TO_7_MASK
    142
    143#define AMS_PS_CSTS_PS_READY		(BIT(27) | BIT(16))
    144#define AMS_PL_CSTS_ACCESS_MASK		BIT(1)
    145
    146#define AMS_PL_MAX_FIXED_CHANNEL	10
    147#define AMS_PL_MAX_EXT_CHANNEL		20
    148
    149#define AMS_INIT_POLL_TIME_US		200
    150#define AMS_INIT_TIMEOUT_US		10000
    151#define AMS_UNMASK_TIMEOUT_MS		500
    152
    153/*
    154 * Following scale and offset value is derived from
    155 * UG580 (v1.7) December 20, 2016
    156 */
    157#define AMS_SUPPLY_SCALE_1VOLT_mV		1000
    158#define AMS_SUPPLY_SCALE_3VOLT_mV		3000
    159#define AMS_SUPPLY_SCALE_6VOLT_mV		6000
    160#define AMS_SUPPLY_SCALE_DIV_BIT	16
    161
    162#define AMS_TEMP_SCALE			509314
    163#define AMS_TEMP_SCALE_DIV_BIT		16
    164#define AMS_TEMP_OFFSET			-((280230LL << 16) / 509314)
    165
    166enum ams_alarm_bit {
    167	AMS_ALARM_BIT_TEMP = 0,
    168	AMS_ALARM_BIT_SUPPLY1 = 1,
    169	AMS_ALARM_BIT_SUPPLY2 = 2,
    170	AMS_ALARM_BIT_SUPPLY3 = 3,
    171	AMS_ALARM_BIT_SUPPLY4 = 4,
    172	AMS_ALARM_BIT_SUPPLY5 = 5,
    173	AMS_ALARM_BIT_SUPPLY6 = 6,
    174	AMS_ALARM_BIT_RESERVED = 7,
    175	AMS_ALARM_BIT_SUPPLY7 = 8,
    176	AMS_ALARM_BIT_SUPPLY8 = 9,
    177	AMS_ALARM_BIT_SUPPLY9 = 10,
    178	AMS_ALARM_BIT_SUPPLY10 = 11,
    179	AMS_ALARM_BIT_VCCAMS = 12,
    180	AMS_ALARM_BIT_TEMP_REMOTE = 13,
    181};
    182
    183enum ams_seq {
    184	AMS_SEQ_VCC_PSPLL = 0,
    185	AMS_SEQ_VCC_PSBATT = 1,
    186	AMS_SEQ_VCCINT = 2,
    187	AMS_SEQ_VCCBRAM = 3,
    188	AMS_SEQ_VCCAUX = 4,
    189	AMS_SEQ_PSDDRPLL = 5,
    190	AMS_SEQ_INTDDR = 6,
    191};
    192
    193enum ams_ps_pl_seq {
    194	AMS_SEQ_CALIB = 0,
    195	AMS_SEQ_RSVD_1 = 1,
    196	AMS_SEQ_RSVD_2 = 2,
    197	AMS_SEQ_TEST = 3,
    198	AMS_SEQ_RSVD_4 = 4,
    199	AMS_SEQ_SUPPLY4 = 5,
    200	AMS_SEQ_SUPPLY5 = 6,
    201	AMS_SEQ_SUPPLY6 = 7,
    202	AMS_SEQ_TEMP = 8,
    203	AMS_SEQ_SUPPLY2 = 9,
    204	AMS_SEQ_SUPPLY1 = 10,
    205	AMS_SEQ_VP_VN = 11,
    206	AMS_SEQ_VREFP = 12,
    207	AMS_SEQ_VREFN = 13,
    208	AMS_SEQ_SUPPLY3 = 14,
    209	AMS_SEQ_CURRENT_MON = 15,
    210	AMS_SEQ_SUPPLY7 = 16,
    211	AMS_SEQ_SUPPLY8 = 17,
    212	AMS_SEQ_SUPPLY9 = 18,
    213	AMS_SEQ_SUPPLY10 = 19,
    214	AMS_SEQ_VCCAMS = 20,
    215	AMS_SEQ_TEMP_REMOTE = 21,
    216	AMS_SEQ_MAX = 22
    217};
    218
    219#define AMS_PS_SEQ_MAX		AMS_SEQ_MAX
    220#define AMS_SEQ(x)		(AMS_SEQ_MAX + (x))
    221#define PS_SEQ(x)		(x)
    222#define PL_SEQ(x)		(AMS_PS_SEQ_MAX + (x))
    223#define AMS_CTRL_SEQ_BASE	(AMS_PS_SEQ_MAX * 3)
    224
    225#define AMS_CHAN_TEMP(_scan_index, _addr) { \
    226	.type = IIO_TEMP, \
    227	.indexed = 1, \
    228	.address = (_addr), \
    229	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
    230		BIT(IIO_CHAN_INFO_SCALE) | \
    231		BIT(IIO_CHAN_INFO_OFFSET), \
    232	.event_spec = ams_temp_events, \
    233	.scan_index = _scan_index, \
    234	.num_event_specs = ARRAY_SIZE(ams_temp_events), \
    235}
    236
    237#define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \
    238	.type = IIO_VOLTAGE, \
    239	.indexed = 1, \
    240	.address = (_addr), \
    241	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
    242		BIT(IIO_CHAN_INFO_SCALE), \
    243	.event_spec = (_alarm) ? ams_voltage_events : NULL, \
    244	.scan_index = _scan_index, \
    245	.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
    246}
    247
    248#define AMS_PS_CHAN_TEMP(_scan_index, _addr) \
    249	AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr)
    250#define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \
    251	AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true)
    252
    253#define AMS_PL_CHAN_TEMP(_scan_index, _addr) \
    254	AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr)
    255#define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \
    256	AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm)
    257#define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
    258	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false)
    259#define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \
    260	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false)
    261
    262/**
    263 * struct ams - This structure contains necessary state for xilinx-ams to operate
    264 * @base: physical base address of device
    265 * @ps_base: physical base address of PS device
    266 * @pl_base: physical base address of PL device
    267 * @clk: clocks associated with the device
    268 * @dev: pointer to device struct
    269 * @lock: to handle multiple user interaction
    270 * @intr_lock: to protect interrupt mask values
    271 * @alarm_mask: alarm configuration
    272 * @current_masked_alarm: currently masked due to alarm
    273 * @intr_mask: interrupt configuration
    274 * @ams_unmask_work: re-enables event once the event condition disappears
    275 *
    276 */
    277struct ams {
    278	void __iomem *base;
    279	void __iomem *ps_base;
    280	void __iomem *pl_base;
    281	struct clk *clk;
    282	struct device *dev;
    283	struct mutex lock;
    284	spinlock_t intr_lock;
    285	unsigned int alarm_mask;
    286	unsigned int current_masked_alarm;
    287	u64 intr_mask;
    288	struct delayed_work ams_unmask_work;
    289};
    290
    291static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
    292				     u32 mask, u32 data)
    293{
    294	u32 val, regval;
    295
    296	val = readl(ams->ps_base + offset);
    297	regval = (val & ~mask) | (data & mask);
    298	writel(regval, ams->ps_base + offset);
    299}
    300
    301static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
    302				     u32 mask, u32 data)
    303{
    304	u32 val, regval;
    305
    306	val = readl(ams->pl_base + offset);
    307	regval = (val & ~mask) | (data & mask);
    308	writel(regval, ams->pl_base + offset);
    309}
    310
    311static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
    312{
    313	u32 regval;
    314
    315	ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
    316
    317	regval = ~(ams->intr_mask | ams->current_masked_alarm);
    318	writel(regval, ams->base + AMS_IER_0);
    319
    320	regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
    321	writel(regval, ams->base + AMS_IER_1);
    322
    323	regval = ams->intr_mask | ams->current_masked_alarm;
    324	writel(regval, ams->base + AMS_IDR_0);
    325
    326	regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
    327	writel(regval, ams->base + AMS_IDR_1);
    328}
    329
    330static void ams_disable_all_alarms(struct ams *ams)
    331{
    332	/* disable PS module alarm */
    333	if (ams->ps_base) {
    334		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
    335				  AMS_REGCFG1_ALARM_MASK);
    336		ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
    337				  AMS_REGCFG3_ALARM_MASK);
    338	}
    339
    340	/* disable PL module alarm */
    341	if (ams->pl_base) {
    342		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
    343				  AMS_REGCFG1_ALARM_MASK);
    344		ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
    345				  AMS_REGCFG3_ALARM_MASK);
    346	}
    347}
    348
    349static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
    350{
    351	u32 cfg;
    352	u32 val;
    353
    354	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
    355	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
    356
    357	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
    358	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
    359
    360	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
    361
    362	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
    363	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
    364	ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
    365}
    366
    367static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
    368{
    369	unsigned long pl_alarm_mask;
    370	u32 cfg;
    371	u32 val;
    372
    373	pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
    374
    375	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
    376	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
    377
    378	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
    379	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
    380
    381	ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
    382
    383	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
    384	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
    385	ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
    386}
    387
    388static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
    389{
    390	unsigned long flags;
    391
    392	if (ams->ps_base)
    393		ams_update_ps_alarm(ams, alarm_mask);
    394
    395	if (ams->pl_base)
    396		ams_update_pl_alarm(ams, alarm_mask);
    397
    398	spin_lock_irqsave(&ams->intr_lock, flags);
    399	ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
    400	spin_unlock_irqrestore(&ams->intr_lock, flags);
    401}
    402
    403static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
    404{
    405	struct ams *ams = iio_priv(indio_dev);
    406	unsigned long long scan_mask;
    407	int i;
    408	u32 regval;
    409
    410	/*
    411	 * Enable channel sequence. First 22 bits of scan_mask represent
    412	 * PS channels, and next remaining bits represent PL channels.
    413	 */
    414
    415	/* Run calibration of PS & PL as part of the sequence */
    416	scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
    417	for (i = 0; i < indio_dev->num_channels; i++)
    418		scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index);
    419
    420	if (ams->ps_base) {
    421		/* put sysmon in a soft reset to change the sequence */
    422		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
    423				  AMS_CONF1_SEQ_DEFAULT);
    424
    425		/* configure basic channels */
    426		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
    427		writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
    428
    429		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
    430		writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
    431
    432		/* set continuous sequence mode */
    433		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
    434				  AMS_CONF1_SEQ_CONTINUOUS);
    435	}
    436
    437	if (ams->pl_base) {
    438		/* put sysmon in a soft reset to change the sequence */
    439		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
    440				  AMS_CONF1_SEQ_DEFAULT);
    441
    442		/* configure basic channels */
    443		scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
    444
    445		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
    446		writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
    447
    448		regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
    449		writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
    450
    451		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
    452		writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
    453
    454		/* set continuous sequence mode */
    455		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
    456				  AMS_CONF1_SEQ_CONTINUOUS);
    457	}
    458}
    459
    460static int ams_init_device(struct ams *ams)
    461{
    462	u32 expect = AMS_PS_CSTS_PS_READY;
    463	u32 reg, value;
    464	int ret;
    465
    466	/* reset AMS */
    467	if (ams->ps_base) {
    468		writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
    469
    470		ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
    471					 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
    472		if (ret)
    473			return ret;
    474
    475		/* put sysmon in a default state */
    476		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
    477				  AMS_CONF1_SEQ_DEFAULT);
    478	}
    479
    480	if (ams->pl_base) {
    481		value = readl(ams->base + AMS_PL_CSTS);
    482		if (value == 0)
    483			return 0;
    484
    485		writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
    486
    487		/* put sysmon in a default state */
    488		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
    489				  AMS_CONF1_SEQ_DEFAULT);
    490	}
    491
    492	ams_disable_all_alarms(ams);
    493
    494	/* Disable interrupt */
    495	ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
    496
    497	/* Clear any pending interrupt */
    498	writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
    499	writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
    500
    501	return 0;
    502}
    503
    504static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
    505{
    506	u8 channel_num;
    507
    508	switch (offset) {
    509	case AMS_VCC_PSPLL0:
    510		channel_num = AMS_VCC_PSPLL0_CH;
    511		break;
    512	case AMS_VCC_PSPLL3:
    513		channel_num = AMS_VCC_PSPLL3_CH;
    514		break;
    515	case AMS_VCCINT:
    516		channel_num = AMS_VCCINT_CH;
    517		break;
    518	case AMS_VCCBRAM:
    519		channel_num = AMS_VCCBRAM_CH;
    520		break;
    521	case AMS_VCCAUX:
    522		channel_num = AMS_VCCAUX_CH;
    523		break;
    524	case AMS_PSDDRPLL:
    525		channel_num = AMS_PSDDRPLL_CH;
    526		break;
    527	case AMS_PSINTFPDDR:
    528		channel_num = AMS_PSINTFPDDR_CH;
    529		break;
    530	default:
    531		return -EINVAL;
    532	}
    533
    534	/* put sysmon in a soft reset to change the sequence */
    535	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
    536			  AMS_CONF1_SEQ_DEFAULT);
    537
    538	/* write the channel number */
    539	ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
    540			  channel_num);
    541
    542	/* set single channel, sequencer off mode */
    543	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
    544			  AMS_CONF1_SEQ_SINGLE_CHANNEL);
    545
    546	return 0;
    547}
    548
    549static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
    550{
    551	u32 expect = AMS_ISR1_EOC_MASK;
    552	u32 reg;
    553	int ret;
    554
    555	ret = ams_enable_single_channel(ams, offset);
    556	if (ret)
    557		return ret;
    558
    559	/* clear end-of-conversion flag, wait for next conversion to complete */
    560	writel(expect, ams->base + AMS_ISR_1);
    561	ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
    562				 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
    563	if (ret)
    564		return ret;
    565
    566	*data = readl(ams->base + offset);
    567
    568	return 0;
    569}
    570
    571static int ams_get_ps_scale(int address)
    572{
    573	int val;
    574
    575	switch (address) {
    576	case AMS_SUPPLY1:
    577	case AMS_SUPPLY2:
    578	case AMS_SUPPLY3:
    579	case AMS_SUPPLY4:
    580	case AMS_SUPPLY9:
    581	case AMS_SUPPLY10:
    582	case AMS_VCCAMS:
    583		val = AMS_SUPPLY_SCALE_3VOLT_mV;
    584		break;
    585	case AMS_SUPPLY5:
    586	case AMS_SUPPLY6:
    587	case AMS_SUPPLY7:
    588	case AMS_SUPPLY8:
    589		val = AMS_SUPPLY_SCALE_6VOLT_mV;
    590		break;
    591	default:
    592		val = AMS_SUPPLY_SCALE_1VOLT_mV;
    593		break;
    594	}
    595
    596	return val;
    597}
    598
    599static int ams_get_pl_scale(struct ams *ams, int address)
    600{
    601	int val, regval;
    602
    603	switch (address) {
    604	case AMS_SUPPLY1:
    605	case AMS_SUPPLY2:
    606	case AMS_SUPPLY3:
    607	case AMS_SUPPLY4:
    608	case AMS_SUPPLY5:
    609	case AMS_SUPPLY6:
    610	case AMS_VCCAMS:
    611	case AMS_VREFP:
    612	case AMS_VREFN:
    613		val = AMS_SUPPLY_SCALE_3VOLT_mV;
    614		break;
    615	case AMS_SUPPLY7:
    616		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
    617		if (FIELD_GET(AMS_VUSER0_MASK, regval))
    618			val = AMS_SUPPLY_SCALE_6VOLT_mV;
    619		else
    620			val = AMS_SUPPLY_SCALE_3VOLT_mV;
    621		break;
    622	case AMS_SUPPLY8:
    623		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
    624		if (FIELD_GET(AMS_VUSER1_MASK, regval))
    625			val = AMS_SUPPLY_SCALE_6VOLT_mV;
    626		else
    627			val = AMS_SUPPLY_SCALE_3VOLT_mV;
    628		break;
    629	case AMS_SUPPLY9:
    630		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
    631		if (FIELD_GET(AMS_VUSER2_MASK, regval))
    632			val = AMS_SUPPLY_SCALE_6VOLT_mV;
    633		else
    634			val = AMS_SUPPLY_SCALE_3VOLT_mV;
    635		break;
    636	case AMS_SUPPLY10:
    637		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
    638		if (FIELD_GET(AMS_VUSER3_MASK, regval))
    639			val = AMS_SUPPLY_SCALE_6VOLT_mV;
    640		else
    641			val = AMS_SUPPLY_SCALE_3VOLT_mV;
    642		break;
    643	case AMS_VP_VN:
    644	case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
    645		val = AMS_SUPPLY_SCALE_1VOLT_mV;
    646		break;
    647	default:
    648		val = AMS_SUPPLY_SCALE_1VOLT_mV;
    649		break;
    650	}
    651
    652	return val;
    653}
    654
    655static int ams_get_ctrl_scale(int address)
    656{
    657	int val;
    658
    659	switch (address) {
    660	case AMS_VCC_PSPLL0:
    661	case AMS_VCC_PSPLL3:
    662	case AMS_VCCINT:
    663	case AMS_VCCBRAM:
    664	case AMS_VCCAUX:
    665	case AMS_PSDDRPLL:
    666	case AMS_PSINTFPDDR:
    667		val = AMS_SUPPLY_SCALE_3VOLT_mV;
    668		break;
    669	default:
    670		val = AMS_SUPPLY_SCALE_1VOLT_mV;
    671		break;
    672	}
    673
    674	return val;
    675}
    676
    677static int ams_read_raw(struct iio_dev *indio_dev,
    678			struct iio_chan_spec const *chan,
    679			int *val, int *val2, long mask)
    680{
    681	struct ams *ams = iio_priv(indio_dev);
    682	int ret;
    683
    684	switch (mask) {
    685	case IIO_CHAN_INFO_RAW:
    686		mutex_lock(&ams->lock);
    687		if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
    688			ret = ams_read_vcc_reg(ams, chan->address, val);
    689			if (ret)
    690				goto unlock_mutex;
    691			ams_enable_channel_sequence(indio_dev);
    692		} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
    693			*val = readl(ams->pl_base + chan->address);
    694		else
    695			*val = readl(ams->ps_base + chan->address);
    696
    697		ret = IIO_VAL_INT;
    698unlock_mutex:
    699		mutex_unlock(&ams->lock);
    700		return ret;
    701	case IIO_CHAN_INFO_SCALE:
    702		switch (chan->type) {
    703		case IIO_VOLTAGE:
    704			if (chan->scan_index < AMS_PS_SEQ_MAX)
    705				*val = ams_get_ps_scale(chan->address);
    706			else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
    707				 chan->scan_index < AMS_CTRL_SEQ_BASE)
    708				*val = ams_get_pl_scale(ams, chan->address);
    709			else
    710				*val = ams_get_ctrl_scale(chan->address);
    711
    712			*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
    713			return IIO_VAL_FRACTIONAL_LOG2;
    714		case IIO_TEMP:
    715			*val = AMS_TEMP_SCALE;
    716			*val2 = AMS_TEMP_SCALE_DIV_BIT;
    717			return IIO_VAL_FRACTIONAL_LOG2;
    718		default:
    719			return -EINVAL;
    720		}
    721	case IIO_CHAN_INFO_OFFSET:
    722		/* Only the temperature channel has an offset */
    723		*val = AMS_TEMP_OFFSET;
    724		return IIO_VAL_INT;
    725	default:
    726		return -EINVAL;
    727	}
    728}
    729
    730static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
    731{
    732	int offset;
    733
    734	if (scan_index >= AMS_PS_SEQ_MAX)
    735		scan_index -= AMS_PS_SEQ_MAX;
    736
    737	if (dir == IIO_EV_DIR_FALLING) {
    738		if (scan_index < AMS_SEQ_SUPPLY7)
    739			offset = AMS_ALARM_THRESHOLD_OFF_10;
    740		else
    741			offset = AMS_ALARM_THRESHOLD_OFF_20;
    742	} else {
    743		offset = 0;
    744	}
    745
    746	switch (scan_index) {
    747	case AMS_SEQ_TEMP:
    748		return AMS_ALARM_TEMP + offset;
    749	case AMS_SEQ_SUPPLY1:
    750		return AMS_ALARM_SUPPLY1 + offset;
    751	case AMS_SEQ_SUPPLY2:
    752		return AMS_ALARM_SUPPLY2 + offset;
    753	case AMS_SEQ_SUPPLY3:
    754		return AMS_ALARM_SUPPLY3 + offset;
    755	case AMS_SEQ_SUPPLY4:
    756		return AMS_ALARM_SUPPLY4 + offset;
    757	case AMS_SEQ_SUPPLY5:
    758		return AMS_ALARM_SUPPLY5 + offset;
    759	case AMS_SEQ_SUPPLY6:
    760		return AMS_ALARM_SUPPLY6 + offset;
    761	case AMS_SEQ_SUPPLY7:
    762		return AMS_ALARM_SUPPLY7 + offset;
    763	case AMS_SEQ_SUPPLY8:
    764		return AMS_ALARM_SUPPLY8 + offset;
    765	case AMS_SEQ_SUPPLY9:
    766		return AMS_ALARM_SUPPLY9 + offset;
    767	case AMS_SEQ_SUPPLY10:
    768		return AMS_ALARM_SUPPLY10 + offset;
    769	case AMS_SEQ_VCCAMS:
    770		return AMS_ALARM_VCCAMS + offset;
    771	case AMS_SEQ_TEMP_REMOTE:
    772		return AMS_ALARM_TEMP_REMOTE + offset;
    773	default:
    774		return 0;
    775	}
    776}
    777
    778static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
    779							u32 event)
    780{
    781	int scan_index = 0, i;
    782
    783	if (event >= AMS_PL_ALARM_START) {
    784		event -= AMS_PL_ALARM_START;
    785		scan_index = AMS_PS_SEQ_MAX;
    786	}
    787
    788	switch (event) {
    789	case AMS_ALARM_BIT_TEMP:
    790		scan_index += AMS_SEQ_TEMP;
    791		break;
    792	case AMS_ALARM_BIT_SUPPLY1:
    793		scan_index += AMS_SEQ_SUPPLY1;
    794		break;
    795	case AMS_ALARM_BIT_SUPPLY2:
    796		scan_index += AMS_SEQ_SUPPLY2;
    797		break;
    798	case AMS_ALARM_BIT_SUPPLY3:
    799		scan_index += AMS_SEQ_SUPPLY3;
    800		break;
    801	case AMS_ALARM_BIT_SUPPLY4:
    802		scan_index += AMS_SEQ_SUPPLY4;
    803		break;
    804	case AMS_ALARM_BIT_SUPPLY5:
    805		scan_index += AMS_SEQ_SUPPLY5;
    806		break;
    807	case AMS_ALARM_BIT_SUPPLY6:
    808		scan_index += AMS_SEQ_SUPPLY6;
    809		break;
    810	case AMS_ALARM_BIT_SUPPLY7:
    811		scan_index += AMS_SEQ_SUPPLY7;
    812		break;
    813	case AMS_ALARM_BIT_SUPPLY8:
    814		scan_index += AMS_SEQ_SUPPLY8;
    815		break;
    816	case AMS_ALARM_BIT_SUPPLY9:
    817		scan_index += AMS_SEQ_SUPPLY9;
    818		break;
    819	case AMS_ALARM_BIT_SUPPLY10:
    820		scan_index += AMS_SEQ_SUPPLY10;
    821		break;
    822	case AMS_ALARM_BIT_VCCAMS:
    823		scan_index += AMS_SEQ_VCCAMS;
    824		break;
    825	case AMS_ALARM_BIT_TEMP_REMOTE:
    826		scan_index += AMS_SEQ_TEMP_REMOTE;
    827		break;
    828	default:
    829		break;
    830	}
    831
    832	for (i = 0; i < dev->num_channels; i++)
    833		if (dev->channels[i].scan_index == scan_index)
    834			break;
    835
    836	return &dev->channels[i];
    837}
    838
    839static int ams_get_alarm_mask(int scan_index)
    840{
    841	int bit = 0;
    842
    843	if (scan_index >= AMS_PS_SEQ_MAX) {
    844		bit = AMS_PL_ALARM_START;
    845		scan_index -= AMS_PS_SEQ_MAX;
    846	}
    847
    848	switch (scan_index) {
    849	case AMS_SEQ_TEMP:
    850		return BIT(AMS_ALARM_BIT_TEMP + bit);
    851	case AMS_SEQ_SUPPLY1:
    852		return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
    853	case AMS_SEQ_SUPPLY2:
    854		return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
    855	case AMS_SEQ_SUPPLY3:
    856		return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
    857	case AMS_SEQ_SUPPLY4:
    858		return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
    859	case AMS_SEQ_SUPPLY5:
    860		return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
    861	case AMS_SEQ_SUPPLY6:
    862		return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
    863	case AMS_SEQ_SUPPLY7:
    864		return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
    865	case AMS_SEQ_SUPPLY8:
    866		return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
    867	case AMS_SEQ_SUPPLY9:
    868		return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
    869	case AMS_SEQ_SUPPLY10:
    870		return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
    871	case AMS_SEQ_VCCAMS:
    872		return BIT(AMS_ALARM_BIT_VCCAMS + bit);
    873	case AMS_SEQ_TEMP_REMOTE:
    874		return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
    875	default:
    876		return 0;
    877	}
    878}
    879
    880static int ams_read_event_config(struct iio_dev *indio_dev,
    881				 const struct iio_chan_spec *chan,
    882				 enum iio_event_type type,
    883				 enum iio_event_direction dir)
    884{
    885	struct ams *ams = iio_priv(indio_dev);
    886
    887	return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
    888}
    889
    890static int ams_write_event_config(struct iio_dev *indio_dev,
    891				  const struct iio_chan_spec *chan,
    892				  enum iio_event_type type,
    893				  enum iio_event_direction dir,
    894				  int state)
    895{
    896	struct ams *ams = iio_priv(indio_dev);
    897	unsigned int alarm;
    898
    899	alarm = ams_get_alarm_mask(chan->scan_index);
    900
    901	mutex_lock(&ams->lock);
    902
    903	if (state)
    904		ams->alarm_mask |= alarm;
    905	else
    906		ams->alarm_mask &= ~alarm;
    907
    908	ams_update_alarm(ams, ams->alarm_mask);
    909
    910	mutex_unlock(&ams->lock);
    911
    912	return 0;
    913}
    914
    915static int ams_read_event_value(struct iio_dev *indio_dev,
    916				const struct iio_chan_spec *chan,
    917				enum iio_event_type type,
    918				enum iio_event_direction dir,
    919				enum iio_event_info info, int *val, int *val2)
    920{
    921	struct ams *ams = iio_priv(indio_dev);
    922	unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
    923
    924	mutex_lock(&ams->lock);
    925
    926	if (chan->scan_index >= AMS_PS_SEQ_MAX)
    927		*val = readl(ams->pl_base + offset);
    928	else
    929		*val = readl(ams->ps_base + offset);
    930
    931	mutex_unlock(&ams->lock);
    932
    933	return IIO_VAL_INT;
    934}
    935
    936static int ams_write_event_value(struct iio_dev *indio_dev,
    937				 const struct iio_chan_spec *chan,
    938				 enum iio_event_type type,
    939				 enum iio_event_direction dir,
    940				 enum iio_event_info info, int val, int val2)
    941{
    942	struct ams *ams = iio_priv(indio_dev);
    943	unsigned int offset;
    944
    945	mutex_lock(&ams->lock);
    946
    947	/* Set temperature channel threshold to direct threshold */
    948	if (chan->type == IIO_TEMP) {
    949		offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
    950
    951		if (chan->scan_index >= AMS_PS_SEQ_MAX)
    952			ams_pl_update_reg(ams, offset,
    953					  AMS_ALARM_THR_DIRECT_MASK,
    954					  AMS_ALARM_THR_DIRECT_MASK);
    955		else
    956			ams_ps_update_reg(ams, offset,
    957					  AMS_ALARM_THR_DIRECT_MASK,
    958					  AMS_ALARM_THR_DIRECT_MASK);
    959	}
    960
    961	offset = ams_get_alarm_offset(chan->scan_index, dir);
    962	if (chan->scan_index >= AMS_PS_SEQ_MAX)
    963		writel(val, ams->pl_base + offset);
    964	else
    965		writel(val, ams->ps_base + offset);
    966
    967	mutex_unlock(&ams->lock);
    968
    969	return 0;
    970}
    971
    972static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
    973{
    974	const struct iio_chan_spec *chan;
    975
    976	chan = ams_event_to_channel(indio_dev, event);
    977
    978	if (chan->type == IIO_TEMP) {
    979		/*
    980		 * The temperature channel only supports over-temperature
    981		 * events.
    982		 */
    983		iio_push_event(indio_dev,
    984			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
    985						    IIO_EV_TYPE_THRESH,
    986						    IIO_EV_DIR_RISING),
    987			       iio_get_time_ns(indio_dev));
    988	} else {
    989		/*
    990		 * For other channels we don't know whether it is a upper or
    991		 * lower threshold event. Userspace will have to check the
    992		 * channel value if it wants to know.
    993		 */
    994		iio_push_event(indio_dev,
    995			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
    996						    IIO_EV_TYPE_THRESH,
    997						    IIO_EV_DIR_EITHER),
    998			       iio_get_time_ns(indio_dev));
    999	}
   1000}
   1001
   1002static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
   1003{
   1004	unsigned int bit;
   1005
   1006	for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
   1007		ams_handle_event(indio_dev, bit);
   1008}
   1009
   1010/**
   1011 * ams_unmask_worker - ams alarm interrupt unmask worker
   1012 * @work: work to be done
   1013 *
   1014 * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
   1015 * threshold condition go way from within the interrupt handler, this means as
   1016 * soon as a threshold condition is present we would enter the interrupt handler
   1017 * again and again. To work around this we mask all active threshold interrupts
   1018 * in the interrupt handler and start a timer. In this timer we poll the
   1019 * interrupt status and only if the interrupt is inactive we unmask it again.
   1020 */
   1021static void ams_unmask_worker(struct work_struct *work)
   1022{
   1023	struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
   1024	unsigned int status, unmask;
   1025
   1026	spin_lock_irq(&ams->intr_lock);
   1027
   1028	status = readl(ams->base + AMS_ISR_0);
   1029
   1030	/* Clear those bits which are not active anymore */
   1031	unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
   1032
   1033	/* Clear status of disabled alarm */
   1034	unmask |= ams->intr_mask;
   1035
   1036	ams->current_masked_alarm &= status;
   1037
   1038	/* Also clear those which are masked out anyway */
   1039	ams->current_masked_alarm &= ~ams->intr_mask;
   1040
   1041	/* Clear the interrupts before we unmask them */
   1042	writel(unmask, ams->base + AMS_ISR_0);
   1043
   1044	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
   1045
   1046	spin_unlock_irq(&ams->intr_lock);
   1047
   1048	/* If still pending some alarm re-trigger the timer */
   1049	if (ams->current_masked_alarm)
   1050		schedule_delayed_work(&ams->ams_unmask_work,
   1051				      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
   1052}
   1053
   1054static irqreturn_t ams_irq(int irq, void *data)
   1055{
   1056	struct iio_dev *indio_dev = data;
   1057	struct ams *ams = iio_priv(indio_dev);
   1058	u32 isr0;
   1059
   1060	spin_lock(&ams->intr_lock);
   1061
   1062	isr0 = readl(ams->base + AMS_ISR_0);
   1063
   1064	/* Only process alarms that are not masked */
   1065	isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
   1066	if (!isr0) {
   1067		spin_unlock(&ams->intr_lock);
   1068		return IRQ_NONE;
   1069	}
   1070
   1071	/* Clear interrupt */
   1072	writel(isr0, ams->base + AMS_ISR_0);
   1073
   1074	/* Mask the alarm interrupts until cleared */
   1075	ams->current_masked_alarm |= isr0;
   1076	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
   1077
   1078	ams_handle_events(indio_dev, isr0);
   1079
   1080	schedule_delayed_work(&ams->ams_unmask_work,
   1081			      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
   1082
   1083	spin_unlock(&ams->intr_lock);
   1084
   1085	return IRQ_HANDLED;
   1086}
   1087
   1088static const struct iio_event_spec ams_temp_events[] = {
   1089	{
   1090		.type = IIO_EV_TYPE_THRESH,
   1091		.dir = IIO_EV_DIR_RISING,
   1092		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
   1093	},
   1094};
   1095
   1096static const struct iio_event_spec ams_voltage_events[] = {
   1097	{
   1098		.type = IIO_EV_TYPE_THRESH,
   1099		.dir = IIO_EV_DIR_RISING,
   1100		.mask_separate = BIT(IIO_EV_INFO_VALUE),
   1101	},
   1102	{
   1103		.type = IIO_EV_TYPE_THRESH,
   1104		.dir = IIO_EV_DIR_FALLING,
   1105		.mask_separate = BIT(IIO_EV_INFO_VALUE),
   1106	},
   1107	{
   1108		.type = IIO_EV_TYPE_THRESH,
   1109		.dir = IIO_EV_DIR_EITHER,
   1110		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
   1111	},
   1112};
   1113
   1114static const struct iio_chan_spec ams_ps_channels[] = {
   1115	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
   1116	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE),
   1117	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1),
   1118	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2),
   1119	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3),
   1120	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4),
   1121	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5),
   1122	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6),
   1123	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7),
   1124	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8),
   1125	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9),
   1126	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10),
   1127	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS),
   1128};
   1129
   1130static const struct iio_chan_spec ams_pl_channels[] = {
   1131	AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
   1132	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true),
   1133	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true),
   1134	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false),
   1135	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false),
   1136	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true),
   1137	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true),
   1138	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true),
   1139	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true),
   1140	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true),
   1141	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false),
   1142	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true),
   1143	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true),
   1144	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true),
   1145	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true),
   1146	AMS_PL_AUX_CHAN_VOLTAGE(0),
   1147	AMS_PL_AUX_CHAN_VOLTAGE(1),
   1148	AMS_PL_AUX_CHAN_VOLTAGE(2),
   1149	AMS_PL_AUX_CHAN_VOLTAGE(3),
   1150	AMS_PL_AUX_CHAN_VOLTAGE(4),
   1151	AMS_PL_AUX_CHAN_VOLTAGE(5),
   1152	AMS_PL_AUX_CHAN_VOLTAGE(6),
   1153	AMS_PL_AUX_CHAN_VOLTAGE(7),
   1154	AMS_PL_AUX_CHAN_VOLTAGE(8),
   1155	AMS_PL_AUX_CHAN_VOLTAGE(9),
   1156	AMS_PL_AUX_CHAN_VOLTAGE(10),
   1157	AMS_PL_AUX_CHAN_VOLTAGE(11),
   1158	AMS_PL_AUX_CHAN_VOLTAGE(12),
   1159	AMS_PL_AUX_CHAN_VOLTAGE(13),
   1160	AMS_PL_AUX_CHAN_VOLTAGE(14),
   1161	AMS_PL_AUX_CHAN_VOLTAGE(15),
   1162};
   1163
   1164static const struct iio_chan_spec ams_ctrl_channels[] = {
   1165	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0),
   1166	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3),
   1167	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT),
   1168	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM),
   1169	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX),
   1170	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL),
   1171	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR),
   1172};
   1173
   1174static int ams_get_ext_chan(struct fwnode_handle *chan_node,
   1175			    struct iio_chan_spec *channels, int num_channels)
   1176{
   1177	struct iio_chan_spec *chan;
   1178	struct fwnode_handle *child;
   1179	unsigned int reg, ext_chan;
   1180	int ret;
   1181
   1182	fwnode_for_each_child_node(chan_node, child) {
   1183		ret = fwnode_property_read_u32(child, "reg", &reg);
   1184		if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
   1185			continue;
   1186
   1187		chan = &channels[num_channels];
   1188		ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
   1189		memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
   1190
   1191		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
   1192			chan->scan_type.sign = 's';
   1193
   1194		num_channels++;
   1195	}
   1196
   1197	return num_channels;
   1198}
   1199
   1200static void ams_iounmap_ps(void *data)
   1201{
   1202	struct ams *ams = data;
   1203
   1204	iounmap(ams->ps_base);
   1205}
   1206
   1207static void ams_iounmap_pl(void *data)
   1208{
   1209	struct ams *ams = data;
   1210
   1211	iounmap(ams->pl_base);
   1212}
   1213
   1214static int ams_init_module(struct iio_dev *indio_dev,
   1215			   struct fwnode_handle *fwnode,
   1216			   struct iio_chan_spec *channels)
   1217{
   1218	struct device *dev = indio_dev->dev.parent;
   1219	struct ams *ams = iio_priv(indio_dev);
   1220	int num_channels = 0;
   1221	int ret;
   1222
   1223	if (fwnode_property_match_string(fwnode, "compatible",
   1224					 "xlnx,zynqmp-ams-ps") == 0) {
   1225		ams->ps_base = fwnode_iomap(fwnode, 0);
   1226		if (!ams->ps_base)
   1227			return -ENXIO;
   1228		ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
   1229		if (ret < 0)
   1230			return ret;
   1231
   1232		/* add PS channels to iio device channels */
   1233		memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
   1234		num_channels = ARRAY_SIZE(ams_ps_channels);
   1235	} else if (fwnode_property_match_string(fwnode, "compatible",
   1236						"xlnx,zynqmp-ams-pl") == 0) {
   1237		ams->pl_base = fwnode_iomap(fwnode, 0);
   1238		if (!ams->pl_base)
   1239			return -ENXIO;
   1240
   1241		ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
   1242		if (ret < 0)
   1243			return ret;
   1244
   1245		/* Copy only first 10 fix channels */
   1246		memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
   1247		num_channels += AMS_PL_MAX_FIXED_CHANNEL;
   1248		num_channels = ams_get_ext_chan(fwnode, channels,
   1249						num_channels);
   1250	} else if (fwnode_property_match_string(fwnode, "compatible",
   1251						"xlnx,zynqmp-ams") == 0) {
   1252		/* add AMS channels to iio device channels */
   1253		memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
   1254		num_channels += ARRAY_SIZE(ams_ctrl_channels);
   1255	} else {
   1256		return -EINVAL;
   1257	}
   1258
   1259	return num_channels;
   1260}
   1261
   1262static int ams_parse_firmware(struct iio_dev *indio_dev)
   1263{
   1264	struct ams *ams = iio_priv(indio_dev);
   1265	struct iio_chan_spec *ams_channels, *dev_channels;
   1266	struct device *dev = indio_dev->dev.parent;
   1267	struct fwnode_handle *child = NULL;
   1268	struct fwnode_handle *fwnode = dev_fwnode(dev);
   1269	size_t ams_size, dev_size;
   1270	int ret, ch_cnt = 0, i, rising_off, falling_off;
   1271	unsigned int num_channels = 0;
   1272
   1273	ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
   1274		ARRAY_SIZE(ams_ctrl_channels);
   1275
   1276	/* Initialize buffer for channel specification */
   1277	ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
   1278	if (!ams_channels)
   1279		return -ENOMEM;
   1280
   1281	if (fwnode_device_is_available(fwnode)) {
   1282		ret = ams_init_module(indio_dev, fwnode, ams_channels);
   1283		if (ret < 0)
   1284			return ret;
   1285
   1286		num_channels += ret;
   1287	}
   1288
   1289	fwnode_for_each_child_node(fwnode, child) {
   1290		if (fwnode_device_is_available(child)) {
   1291			ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
   1292			if (ret < 0) {
   1293				fwnode_handle_put(child);
   1294				return ret;
   1295			}
   1296
   1297			num_channels += ret;
   1298		}
   1299	}
   1300
   1301	for (i = 0; i < num_channels; i++) {
   1302		ams_channels[i].channel = ch_cnt++;
   1303
   1304		if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
   1305			/* set threshold to max and min for each channel */
   1306			falling_off =
   1307				ams_get_alarm_offset(ams_channels[i].scan_index,
   1308						     IIO_EV_DIR_FALLING);
   1309			rising_off =
   1310				ams_get_alarm_offset(ams_channels[i].scan_index,
   1311						     IIO_EV_DIR_RISING);
   1312			if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
   1313				writel(AMS_ALARM_THR_MIN,
   1314				       ams->pl_base + falling_off);
   1315				writel(AMS_ALARM_THR_MAX,
   1316				       ams->pl_base + rising_off);
   1317			} else {
   1318				writel(AMS_ALARM_THR_MIN,
   1319				       ams->ps_base + falling_off);
   1320				writel(AMS_ALARM_THR_MAX,
   1321				       ams->ps_base + rising_off);
   1322			}
   1323		}
   1324	}
   1325
   1326	dev_size = array_size(sizeof(*dev_channels), num_channels);
   1327	if (dev_size == SIZE_MAX)
   1328		return -ENOMEM;
   1329
   1330	dev_channels = devm_krealloc(dev, ams_channels, dev_size, GFP_KERNEL);
   1331	if (!dev_channels)
   1332		ret = -ENOMEM;
   1333
   1334	indio_dev->channels = dev_channels;
   1335	indio_dev->num_channels = num_channels;
   1336
   1337	return 0;
   1338}
   1339
   1340static const struct iio_info iio_ams_info = {
   1341	.read_raw = &ams_read_raw,
   1342	.read_event_config = &ams_read_event_config,
   1343	.write_event_config = &ams_write_event_config,
   1344	.read_event_value = &ams_read_event_value,
   1345	.write_event_value = &ams_write_event_value,
   1346};
   1347
   1348static const struct of_device_id ams_of_match_table[] = {
   1349	{ .compatible = "xlnx,zynqmp-ams" },
   1350	{ }
   1351};
   1352MODULE_DEVICE_TABLE(of, ams_of_match_table);
   1353
   1354static void ams_clk_disable_unprepare(void *data)
   1355{
   1356	clk_disable_unprepare(data);
   1357}
   1358
   1359static int ams_probe(struct platform_device *pdev)
   1360{
   1361	struct iio_dev *indio_dev;
   1362	struct ams *ams;
   1363	int ret;
   1364	int irq;
   1365
   1366	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
   1367	if (!indio_dev)
   1368		return -ENOMEM;
   1369
   1370	ams = iio_priv(indio_dev);
   1371	mutex_init(&ams->lock);
   1372	spin_lock_init(&ams->intr_lock);
   1373
   1374	indio_dev->name = "xilinx-ams";
   1375
   1376	indio_dev->info = &iio_ams_info;
   1377	indio_dev->modes = INDIO_DIRECT_MODE;
   1378
   1379	ams->base = devm_platform_ioremap_resource(pdev, 0);
   1380	if (IS_ERR(ams->base))
   1381		return PTR_ERR(ams->base);
   1382
   1383	ams->clk = devm_clk_get(&pdev->dev, NULL);
   1384	if (IS_ERR(ams->clk))
   1385		return PTR_ERR(ams->clk);
   1386
   1387	ret = clk_prepare_enable(ams->clk);
   1388	if (ret < 0)
   1389		return ret;
   1390
   1391	ret = devm_add_action_or_reset(&pdev->dev, ams_clk_disable_unprepare, ams->clk);
   1392	if (ret < 0)
   1393		return ret;
   1394
   1395	ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
   1396					   ams_unmask_worker);
   1397	if (ret < 0)
   1398		return ret;
   1399
   1400	ret = ams_parse_firmware(indio_dev);
   1401	if (ret)
   1402		return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
   1403
   1404	ret = ams_init_device(ams);
   1405	if (ret)
   1406		return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
   1407
   1408	ams_enable_channel_sequence(indio_dev);
   1409
   1410	irq = platform_get_irq(pdev, 0);
   1411	if (irq < 0)
   1412		return irq;
   1413
   1414	ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
   1415			       indio_dev);
   1416	if (ret < 0)
   1417		return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
   1418
   1419	platform_set_drvdata(pdev, indio_dev);
   1420
   1421	return devm_iio_device_register(&pdev->dev, indio_dev);
   1422}
   1423
   1424static int __maybe_unused ams_suspend(struct device *dev)
   1425{
   1426	struct ams *ams = iio_priv(dev_get_drvdata(dev));
   1427
   1428	clk_disable_unprepare(ams->clk);
   1429
   1430	return 0;
   1431}
   1432
   1433static int __maybe_unused ams_resume(struct device *dev)
   1434{
   1435	struct ams *ams = iio_priv(dev_get_drvdata(dev));
   1436
   1437	return clk_prepare_enable(ams->clk);
   1438}
   1439
   1440static SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
   1441
   1442static struct platform_driver ams_driver = {
   1443	.probe = ams_probe,
   1444	.driver = {
   1445		.name = "xilinx-ams",
   1446		.pm = &ams_pm_ops,
   1447		.of_match_table = ams_of_match_table,
   1448	},
   1449};
   1450module_platform_driver(ams_driver);
   1451
   1452MODULE_LICENSE("GPL v2");
   1453MODULE_AUTHOR("Xilinx, Inc.");