cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xilinx-xadc-core.c (39796B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Xilinx XADC driver
      4 *
      5 * Copyright 2013-2014 Analog Devices Inc.
      6 *  Author: Lars-Peter Clausen <lars@metafoo.de>
      7 *
      8 * Documentation for the parts can be found at:
      9 *  - XADC hardmacro: Xilinx UG480
     10 *  - ZYNQ XADC interface: Xilinx UG585
     11 *  - AXI XADC interface: Xilinx PG019
     12 */
     13
     14#include <linux/clk.h>
     15#include <linux/device.h>
     16#include <linux/err.h>
     17#include <linux/interrupt.h>
     18#include <linux/io.h>
     19#include <linux/kernel.h>
     20#include <linux/module.h>
     21#include <linux/of.h>
     22#include <linux/overflow.h>
     23#include <linux/platform_device.h>
     24#include <linux/slab.h>
     25#include <linux/sysfs.h>
     26
     27#include <linux/iio/buffer.h>
     28#include <linux/iio/events.h>
     29#include <linux/iio/iio.h>
     30#include <linux/iio/sysfs.h>
     31#include <linux/iio/trigger.h>
     32#include <linux/iio/trigger_consumer.h>
     33#include <linux/iio/triggered_buffer.h>
     34
     35#include "xilinx-xadc.h"
     36
     37static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
     38
     39/* ZYNQ register definitions */
     40#define XADC_ZYNQ_REG_CFG	0x00
     41#define XADC_ZYNQ_REG_INTSTS	0x04
     42#define XADC_ZYNQ_REG_INTMSK	0x08
     43#define XADC_ZYNQ_REG_STATUS	0x0c
     44#define XADC_ZYNQ_REG_CFIFO	0x10
     45#define XADC_ZYNQ_REG_DFIFO	0x14
     46#define XADC_ZYNQ_REG_CTL		0x18
     47
     48#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
     49#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
     50#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
     51#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
     52#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
     53#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
     54#define XADC_ZYNQ_CFG_REDGE		BIT(12)
     55#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
     56#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
     57#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
     58#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
     59#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
     60#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
     61#define XADC_ZYNQ_CFG_IGAP(x)		(x)
     62
     63#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
     64#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
     65#define XADC_ZYNQ_INT_ALARM_MASK	0xff
     66#define XADC_ZYNQ_INT_ALARM_OFFSET	0
     67
     68#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
     69#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
     70#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
     71#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
     72#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
     73#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
     74#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
     75#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
     76#define XADC_ZYNQ_STATUS_OT		BIT(7)
     77#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
     78
     79#define XADC_ZYNQ_CTL_RESET		BIT(4)
     80
     81#define XADC_ZYNQ_CMD_NOP		0x00
     82#define XADC_ZYNQ_CMD_READ		0x01
     83#define XADC_ZYNQ_CMD_WRITE		0x02
     84
     85#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
     86
     87/* AXI register definitions */
     88#define XADC_AXI_REG_RESET		0x00
     89#define XADC_AXI_REG_STATUS		0x04
     90#define XADC_AXI_REG_ALARM_STATUS	0x08
     91#define XADC_AXI_REG_CONVST		0x0c
     92#define XADC_AXI_REG_XADC_RESET		0x10
     93#define XADC_AXI_REG_GIER		0x5c
     94#define XADC_AXI_REG_IPISR		0x60
     95#define XADC_AXI_REG_IPIER		0x68
     96
     97/* 7 Series */
     98#define XADC_7S_AXI_ADC_REG_OFFSET	0x200
     99
    100/* UltraScale */
    101#define XADC_US_AXI_ADC_REG_OFFSET	0x400
    102
    103#define XADC_AXI_RESET_MAGIC		0xa
    104#define XADC_AXI_GIER_ENABLE		BIT(31)
    105
    106#define XADC_AXI_INT_EOS		BIT(4)
    107#define XADC_AXI_INT_ALARM_MASK		0x3c0f
    108
    109#define XADC_FLAGS_BUFFERED BIT(0)
    110#define XADC_FLAGS_IRQ_OPTIONAL BIT(1)
    111
    112/*
    113 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
    114 * not have a hardware FIFO. Which means an interrupt is generated for each
    115 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
    116 * overloaded by the interrupts that it soft-lockups. For this reason the driver
    117 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
    118 * but still responsive.
    119 */
    120#define XADC_MAX_SAMPLERATE 150000
    121
    122static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
    123	uint32_t val)
    124{
    125	writel(val, xadc->base + reg);
    126}
    127
    128static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
    129	uint32_t *val)
    130{
    131	*val = readl(xadc->base + reg);
    132}
    133
    134/*
    135 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
    136 * XADC. Reads and writes to the XADC register are performed by submitting a
    137 * request to the command FIFO (CFIFO), once the request has been completed the
    138 * result can be read from the data FIFO (DFIFO). The method currently used in
    139 * this driver is to submit the request for a read/write operation, then go to
    140 * sleep and wait for an interrupt that signals that a response is available in
    141 * the data FIFO.
    142 */
    143
    144static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
    145	unsigned int n)
    146{
    147	unsigned int i;
    148
    149	for (i = 0; i < n; i++)
    150		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
    151}
    152
    153static void xadc_zynq_drain_fifo(struct xadc *xadc)
    154{
    155	uint32_t status, tmp;
    156
    157	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
    158
    159	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
    160		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
    161		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
    162	}
    163}
    164
    165static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
    166	unsigned int val)
    167{
    168	xadc->zynq_intmask &= ~mask;
    169	xadc->zynq_intmask |= val;
    170
    171	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
    172		xadc->zynq_intmask | xadc->zynq_masked_alarm);
    173}
    174
    175static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
    176	uint16_t val)
    177{
    178	uint32_t cmd[1];
    179	uint32_t tmp;
    180	int ret;
    181
    182	spin_lock_irq(&xadc->lock);
    183	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
    184			XADC_ZYNQ_INT_DFIFO_GTH);
    185
    186	reinit_completion(&xadc->completion);
    187
    188	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
    189	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
    190	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
    191	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
    192	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
    193	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
    194
    195	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
    196	spin_unlock_irq(&xadc->lock);
    197
    198	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
    199	if (ret == 0)
    200		ret = -EIO;
    201	else
    202		ret = 0;
    203
    204	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
    205
    206	return ret;
    207}
    208
    209static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
    210	uint16_t *val)
    211{
    212	uint32_t cmd[2];
    213	uint32_t resp, tmp;
    214	int ret;
    215
    216	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
    217	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
    218
    219	spin_lock_irq(&xadc->lock);
    220	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
    221			XADC_ZYNQ_INT_DFIFO_GTH);
    222	xadc_zynq_drain_fifo(xadc);
    223	reinit_completion(&xadc->completion);
    224
    225	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
    226	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
    227	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
    228	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
    229	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
    230
    231	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
    232	spin_unlock_irq(&xadc->lock);
    233	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
    234	if (ret == 0)
    235		ret = -EIO;
    236	if (ret < 0)
    237		return ret;
    238
    239	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
    240	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
    241
    242	*val = resp & 0xffff;
    243
    244	return 0;
    245}
    246
    247static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
    248{
    249	return ((alarm & 0x80) >> 4) |
    250		((alarm & 0x78) << 1) |
    251		(alarm & 0x07);
    252}
    253
    254/*
    255 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
    256 * threshold condition go way from within the interrupt handler, this means as
    257 * soon as a threshold condition is present we would enter the interrupt handler
    258 * again and again. To work around this we mask all active thresholds interrupts
    259 * in the interrupt handler and start a timer. In this timer we poll the
    260 * interrupt status and only if the interrupt is inactive we unmask it again.
    261 */
    262static void xadc_zynq_unmask_worker(struct work_struct *work)
    263{
    264	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
    265	unsigned int misc_sts, unmask;
    266
    267	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
    268
    269	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
    270
    271	spin_lock_irq(&xadc->lock);
    272
    273	/* Clear those bits which are not active anymore */
    274	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
    275	xadc->zynq_masked_alarm &= misc_sts;
    276
    277	/* Also clear those which are masked out anyway */
    278	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
    279
    280	/* Clear the interrupts before we unmask them */
    281	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
    282
    283	xadc_zynq_update_intmsk(xadc, 0, 0);
    284
    285	spin_unlock_irq(&xadc->lock);
    286
    287	/* if still pending some alarm re-trigger the timer */
    288	if (xadc->zynq_masked_alarm) {
    289		schedule_delayed_work(&xadc->zynq_unmask_work,
    290				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
    291	}
    292
    293}
    294
    295static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
    296{
    297	struct iio_dev *indio_dev = devid;
    298	struct xadc *xadc = iio_priv(indio_dev);
    299	uint32_t status;
    300
    301	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
    302
    303	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
    304
    305	if (!status)
    306		return IRQ_NONE;
    307
    308	spin_lock(&xadc->lock);
    309
    310	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
    311
    312	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
    313		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
    314			XADC_ZYNQ_INT_DFIFO_GTH);
    315		complete(&xadc->completion);
    316	}
    317
    318	status &= XADC_ZYNQ_INT_ALARM_MASK;
    319	if (status) {
    320		xadc->zynq_masked_alarm |= status;
    321		/*
    322		 * mask the current event interrupt,
    323		 * unmask it when the interrupt is no more active.
    324		 */
    325		xadc_zynq_update_intmsk(xadc, 0, 0);
    326
    327		xadc_handle_events(indio_dev,
    328				xadc_zynq_transform_alarm(status));
    329
    330		/* unmask the required interrupts in timer. */
    331		schedule_delayed_work(&xadc->zynq_unmask_work,
    332				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
    333	}
    334	spin_unlock(&xadc->lock);
    335
    336	return IRQ_HANDLED;
    337}
    338
    339#define XADC_ZYNQ_TCK_RATE_MAX 50000000
    340#define XADC_ZYNQ_IGAP_DEFAULT 20
    341#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
    342
    343static int xadc_zynq_setup(struct platform_device *pdev,
    344	struct iio_dev *indio_dev, int irq)
    345{
    346	struct xadc *xadc = iio_priv(indio_dev);
    347	unsigned long pcap_rate;
    348	unsigned int tck_div;
    349	unsigned int div;
    350	unsigned int igap;
    351	unsigned int tck_rate;
    352	int ret;
    353
    354	/* TODO: Figure out how to make igap and tck_rate configurable */
    355	igap = XADC_ZYNQ_IGAP_DEFAULT;
    356	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
    357
    358	xadc->zynq_intmask = ~0;
    359
    360	pcap_rate = clk_get_rate(xadc->clk);
    361	if (!pcap_rate)
    362		return -EINVAL;
    363
    364	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
    365		ret = clk_set_rate(xadc->clk,
    366				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
    367		if (ret)
    368			return ret;
    369	}
    370
    371	if (tck_rate > pcap_rate / 2) {
    372		div = 2;
    373	} else {
    374		div = pcap_rate / tck_rate;
    375		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
    376			div++;
    377	}
    378
    379	if (div <= 3)
    380		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
    381	else if (div <= 7)
    382		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
    383	else if (div <= 15)
    384		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
    385	else
    386		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
    387
    388	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
    389	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
    390	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
    391	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
    392	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
    393			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
    394			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
    395
    396	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
    397		ret = clk_set_rate(xadc->clk, pcap_rate);
    398		if (ret)
    399			return ret;
    400	}
    401
    402	return 0;
    403}
    404
    405static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
    406{
    407	unsigned int div;
    408	uint32_t val;
    409
    410	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
    411
    412	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
    413	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
    414		div = 4;
    415		break;
    416	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
    417		div = 8;
    418		break;
    419	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
    420		div = 16;
    421		break;
    422	default:
    423		div = 2;
    424		break;
    425	}
    426
    427	return clk_get_rate(xadc->clk) / div;
    428}
    429
    430static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
    431{
    432	unsigned long flags;
    433	uint32_t status;
    434
    435	/* Move OT to bit 7 */
    436	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
    437
    438	spin_lock_irqsave(&xadc->lock, flags);
    439
    440	/* Clear previous interrupts if any. */
    441	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
    442	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
    443
    444	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
    445		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
    446
    447	spin_unlock_irqrestore(&xadc->lock, flags);
    448}
    449
    450static const struct xadc_ops xadc_zynq_ops = {
    451	.read = xadc_zynq_read_adc_reg,
    452	.write = xadc_zynq_write_adc_reg,
    453	.setup = xadc_zynq_setup,
    454	.get_dclk_rate = xadc_zynq_get_dclk_rate,
    455	.interrupt_handler = xadc_zynq_interrupt_handler,
    456	.update_alarm = xadc_zynq_update_alarm,
    457	.type = XADC_TYPE_S7,
    458};
    459
    460static const unsigned int xadc_axi_reg_offsets[] = {
    461	[XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
    462	[XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
    463};
    464
    465static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
    466	uint16_t *val)
    467{
    468	uint32_t val32;
    469
    470	xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
    471		&val32);
    472	*val = val32 & 0xffff;
    473
    474	return 0;
    475}
    476
    477static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
    478	uint16_t val)
    479{
    480	xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
    481		val);
    482
    483	return 0;
    484}
    485
    486static int xadc_axi_setup(struct platform_device *pdev,
    487	struct iio_dev *indio_dev, int irq)
    488{
    489	struct xadc *xadc = iio_priv(indio_dev);
    490
    491	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
    492	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
    493
    494	return 0;
    495}
    496
    497static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
    498{
    499	struct iio_dev *indio_dev = devid;
    500	struct xadc *xadc = iio_priv(indio_dev);
    501	uint32_t status, mask;
    502	unsigned int events;
    503
    504	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
    505	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
    506	status &= mask;
    507
    508	if (!status)
    509		return IRQ_NONE;
    510
    511	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
    512		iio_trigger_poll(xadc->trigger);
    513
    514	if (status & XADC_AXI_INT_ALARM_MASK) {
    515		/*
    516		 * The order of the bits in the AXI-XADC status register does
    517		 * not match the order of the bits in the XADC alarm enable
    518		 * register. xadc_handle_events() expects the events to be in
    519		 * the same order as the XADC alarm enable register.
    520		 */
    521		events = (status & 0x000e) >> 1;
    522		events |= (status & 0x0001) << 3;
    523		events |= (status & 0x3c00) >> 6;
    524		xadc_handle_events(indio_dev, events);
    525	}
    526
    527	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
    528
    529	return IRQ_HANDLED;
    530}
    531
    532static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
    533{
    534	uint32_t val;
    535	unsigned long flags;
    536
    537	/*
    538	 * The order of the bits in the AXI-XADC status register does not match
    539	 * the order of the bits in the XADC alarm enable register. We get
    540	 * passed the alarm mask in the same order as in the XADC alarm enable
    541	 * register.
    542	 */
    543	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
    544			((alarm & 0xf0) << 6);
    545
    546	spin_lock_irqsave(&xadc->lock, flags);
    547	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
    548	val &= ~XADC_AXI_INT_ALARM_MASK;
    549	val |= alarm;
    550	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
    551	spin_unlock_irqrestore(&xadc->lock, flags);
    552}
    553
    554static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
    555{
    556	return clk_get_rate(xadc->clk);
    557}
    558
    559static const struct xadc_ops xadc_7s_axi_ops = {
    560	.read = xadc_axi_read_adc_reg,
    561	.write = xadc_axi_write_adc_reg,
    562	.setup = xadc_axi_setup,
    563	.get_dclk_rate = xadc_axi_get_dclk,
    564	.update_alarm = xadc_axi_update_alarm,
    565	.interrupt_handler = xadc_axi_interrupt_handler,
    566	.flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
    567	.type = XADC_TYPE_S7,
    568};
    569
    570static const struct xadc_ops xadc_us_axi_ops = {
    571	.read = xadc_axi_read_adc_reg,
    572	.write = xadc_axi_write_adc_reg,
    573	.setup = xadc_axi_setup,
    574	.get_dclk_rate = xadc_axi_get_dclk,
    575	.update_alarm = xadc_axi_update_alarm,
    576	.interrupt_handler = xadc_axi_interrupt_handler,
    577	.flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
    578	.type = XADC_TYPE_US,
    579};
    580
    581static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
    582	uint16_t mask, uint16_t val)
    583{
    584	uint16_t tmp;
    585	int ret;
    586
    587	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
    588	if (ret)
    589		return ret;
    590
    591	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
    592}
    593
    594static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
    595	uint16_t mask, uint16_t val)
    596{
    597	int ret;
    598
    599	mutex_lock(&xadc->mutex);
    600	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
    601	mutex_unlock(&xadc->mutex);
    602
    603	return ret;
    604}
    605
    606static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
    607{
    608	return xadc->ops->get_dclk_rate(xadc);
    609}
    610
    611static int xadc_update_scan_mode(struct iio_dev *indio_dev,
    612	const unsigned long *mask)
    613{
    614	struct xadc *xadc = iio_priv(indio_dev);
    615	size_t new_size, n;
    616	void *data;
    617
    618	n = bitmap_weight(mask, indio_dev->masklength);
    619
    620	if (check_mul_overflow(n, sizeof(*xadc->data), &new_size))
    621		return -ENOMEM;
    622
    623	data = devm_krealloc(indio_dev->dev.parent, xadc->data,
    624			     new_size, GFP_KERNEL);
    625	if (!data)
    626		return -ENOMEM;
    627
    628	memset(data, 0, new_size);
    629	xadc->data = data;
    630
    631	return 0;
    632}
    633
    634static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
    635{
    636	switch (scan_index) {
    637	case 5:
    638		return XADC_REG_VCCPINT;
    639	case 6:
    640		return XADC_REG_VCCPAUX;
    641	case 7:
    642		return XADC_REG_VCCO_DDR;
    643	case 8:
    644		return XADC_REG_TEMP;
    645	case 9:
    646		return XADC_REG_VCCINT;
    647	case 10:
    648		return XADC_REG_VCCAUX;
    649	case 11:
    650		return XADC_REG_VPVN;
    651	case 12:
    652		return XADC_REG_VREFP;
    653	case 13:
    654		return XADC_REG_VREFN;
    655	case 14:
    656		return XADC_REG_VCCBRAM;
    657	default:
    658		return XADC_REG_VAUX(scan_index - 16);
    659	}
    660}
    661
    662static irqreturn_t xadc_trigger_handler(int irq, void *p)
    663{
    664	struct iio_poll_func *pf = p;
    665	struct iio_dev *indio_dev = pf->indio_dev;
    666	struct xadc *xadc = iio_priv(indio_dev);
    667	unsigned int chan;
    668	int i, j;
    669
    670	if (!xadc->data)
    671		goto out;
    672
    673	j = 0;
    674	for_each_set_bit(i, indio_dev->active_scan_mask,
    675		indio_dev->masklength) {
    676		chan = xadc_scan_index_to_channel(i);
    677		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
    678		j++;
    679	}
    680
    681	iio_push_to_buffers(indio_dev, xadc->data);
    682
    683out:
    684	iio_trigger_notify_done(indio_dev->trig);
    685
    686	return IRQ_HANDLED;
    687}
    688
    689static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
    690{
    691	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
    692	unsigned long flags;
    693	unsigned int convst;
    694	unsigned int val;
    695	int ret = 0;
    696
    697	mutex_lock(&xadc->mutex);
    698
    699	if (state) {
    700		/* Only one of the two triggers can be active at a time. */
    701		if (xadc->trigger != NULL) {
    702			ret = -EBUSY;
    703			goto err_out;
    704		} else {
    705			xadc->trigger = trigger;
    706			if (trigger == xadc->convst_trigger)
    707				convst = XADC_CONF0_EC;
    708			else
    709				convst = 0;
    710		}
    711		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
    712					convst);
    713		if (ret)
    714			goto err_out;
    715	} else {
    716		xadc->trigger = NULL;
    717	}
    718
    719	spin_lock_irqsave(&xadc->lock, flags);
    720	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
    721	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
    722	if (state)
    723		val |= XADC_AXI_INT_EOS;
    724	else
    725		val &= ~XADC_AXI_INT_EOS;
    726	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
    727	spin_unlock_irqrestore(&xadc->lock, flags);
    728
    729err_out:
    730	mutex_unlock(&xadc->mutex);
    731
    732	return ret;
    733}
    734
    735static const struct iio_trigger_ops xadc_trigger_ops = {
    736	.set_trigger_state = &xadc_trigger_set_state,
    737};
    738
    739static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
    740	const char *name)
    741{
    742	struct device *dev = indio_dev->dev.parent;
    743	struct iio_trigger *trig;
    744	int ret;
    745
    746	trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
    747				      iio_device_id(indio_dev), name);
    748	if (trig == NULL)
    749		return ERR_PTR(-ENOMEM);
    750
    751	trig->ops = &xadc_trigger_ops;
    752	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
    753
    754	ret = devm_iio_trigger_register(dev, trig);
    755	if (ret)
    756		return ERR_PTR(ret);
    757
    758	return trig;
    759}
    760
    761static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
    762{
    763	uint16_t val;
    764
    765	/*
    766	 * As per datasheet the power-down bits are don't care in the
    767	 * UltraScale, but as per reality setting the power-down bit for the
    768	 * non-existing ADC-B powers down the main ADC, so just return and don't
    769	 * do anything.
    770	 */
    771	if (xadc->ops->type == XADC_TYPE_US)
    772		return 0;
    773
    774	/* Powerdown the ADC-B when it is not needed. */
    775	switch (seq_mode) {
    776	case XADC_CONF1_SEQ_SIMULTANEOUS:
    777	case XADC_CONF1_SEQ_INDEPENDENT:
    778		val = 0;
    779		break;
    780	default:
    781		val = XADC_CONF2_PD_ADC_B;
    782		break;
    783	}
    784
    785	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
    786		val);
    787}
    788
    789static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
    790{
    791	unsigned int aux_scan_mode = scan_mode >> 16;
    792
    793	/* UltraScale has only one ADC and supports only continuous mode */
    794	if (xadc->ops->type == XADC_TYPE_US)
    795		return XADC_CONF1_SEQ_CONTINUOUS;
    796
    797	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
    798		return XADC_CONF1_SEQ_SIMULTANEOUS;
    799
    800	if ((aux_scan_mode & 0xff00) == 0 ||
    801		(aux_scan_mode & 0x00ff) == 0)
    802		return XADC_CONF1_SEQ_CONTINUOUS;
    803
    804	return XADC_CONF1_SEQ_SIMULTANEOUS;
    805}
    806
    807static int xadc_postdisable(struct iio_dev *indio_dev)
    808{
    809	struct xadc *xadc = iio_priv(indio_dev);
    810	unsigned long scan_mask;
    811	int ret;
    812	int i;
    813
    814	scan_mask = 1; /* Run calibration as part of the sequence */
    815	for (i = 0; i < indio_dev->num_channels; i++)
    816		scan_mask |= BIT(indio_dev->channels[i].scan_index);
    817
    818	/* Enable all channels and calibration */
    819	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
    820	if (ret)
    821		return ret;
    822
    823	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
    824	if (ret)
    825		return ret;
    826
    827	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
    828		XADC_CONF1_SEQ_CONTINUOUS);
    829	if (ret)
    830		return ret;
    831
    832	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
    833}
    834
    835static int xadc_preenable(struct iio_dev *indio_dev)
    836{
    837	struct xadc *xadc = iio_priv(indio_dev);
    838	unsigned long scan_mask;
    839	int seq_mode;
    840	int ret;
    841
    842	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
    843		XADC_CONF1_SEQ_DEFAULT);
    844	if (ret)
    845		goto err;
    846
    847	scan_mask = *indio_dev->active_scan_mask;
    848	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
    849
    850	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
    851	if (ret)
    852		goto err;
    853
    854	/*
    855	 * In simultaneous mode the upper and lower aux channels are samples at
    856	 * the same time. In this mode the upper 8 bits in the sequencer
    857	 * register are don't care and the lower 8 bits control two channels
    858	 * each. As such we must set the bit if either the channel in the lower
    859	 * group or the upper group is enabled.
    860	 */
    861	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
    862		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
    863
    864	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
    865	if (ret)
    866		goto err;
    867
    868	ret = xadc_power_adc_b(xadc, seq_mode);
    869	if (ret)
    870		goto err;
    871
    872	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
    873		seq_mode);
    874	if (ret)
    875		goto err;
    876
    877	return 0;
    878err:
    879	xadc_postdisable(indio_dev);
    880	return ret;
    881}
    882
    883static const struct iio_buffer_setup_ops xadc_buffer_ops = {
    884	.preenable = &xadc_preenable,
    885	.postdisable = &xadc_postdisable,
    886};
    887
    888static int xadc_read_samplerate(struct xadc *xadc)
    889{
    890	unsigned int div;
    891	uint16_t val16;
    892	int ret;
    893
    894	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
    895	if (ret)
    896		return ret;
    897
    898	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
    899	if (div < 2)
    900		div = 2;
    901
    902	return xadc_get_dclk_rate(xadc) / div / 26;
    903}
    904
    905static int xadc_read_raw(struct iio_dev *indio_dev,
    906	struct iio_chan_spec const *chan, int *val, int *val2, long info)
    907{
    908	struct xadc *xadc = iio_priv(indio_dev);
    909	unsigned int bits = chan->scan_type.realbits;
    910	uint16_t val16;
    911	int ret;
    912
    913	switch (info) {
    914	case IIO_CHAN_INFO_RAW:
    915		if (iio_buffer_enabled(indio_dev))
    916			return -EBUSY;
    917		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
    918		if (ret < 0)
    919			return ret;
    920
    921		val16 >>= chan->scan_type.shift;
    922		if (chan->scan_type.sign == 'u')
    923			*val = val16;
    924		else
    925			*val = sign_extend32(val16, bits - 1);
    926
    927		return IIO_VAL_INT;
    928	case IIO_CHAN_INFO_SCALE:
    929		switch (chan->type) {
    930		case IIO_VOLTAGE:
    931			/* V = (val * 3.0) / 2**bits */
    932			switch (chan->address) {
    933			case XADC_REG_VCCINT:
    934			case XADC_REG_VCCAUX:
    935			case XADC_REG_VREFP:
    936			case XADC_REG_VREFN:
    937			case XADC_REG_VCCBRAM:
    938			case XADC_REG_VCCPINT:
    939			case XADC_REG_VCCPAUX:
    940			case XADC_REG_VCCO_DDR:
    941				*val = 3000;
    942				break;
    943			default:
    944				*val = 1000;
    945				break;
    946			}
    947			*val2 = bits;
    948			return IIO_VAL_FRACTIONAL_LOG2;
    949		case IIO_TEMP:
    950			/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
    951			*val = 503975;
    952			*val2 = bits;
    953			return IIO_VAL_FRACTIONAL_LOG2;
    954		default:
    955			return -EINVAL;
    956		}
    957	case IIO_CHAN_INFO_OFFSET:
    958		/* Only the temperature channel has an offset */
    959		*val = -((273150 << bits) / 503975);
    960		return IIO_VAL_INT;
    961	case IIO_CHAN_INFO_SAMP_FREQ:
    962		ret = xadc_read_samplerate(xadc);
    963		if (ret < 0)
    964			return ret;
    965
    966		*val = ret;
    967		return IIO_VAL_INT;
    968	default:
    969		return -EINVAL;
    970	}
    971}
    972
    973static int xadc_write_samplerate(struct xadc *xadc, int val)
    974{
    975	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
    976	unsigned int div;
    977
    978	if (!clk_rate)
    979		return -EINVAL;
    980
    981	if (val <= 0)
    982		return -EINVAL;
    983
    984	/* Max. 150 kSPS */
    985	if (val > XADC_MAX_SAMPLERATE)
    986		val = XADC_MAX_SAMPLERATE;
    987
    988	val *= 26;
    989
    990	/* Min 1MHz */
    991	if (val < 1000000)
    992		val = 1000000;
    993
    994	/*
    995	 * We want to round down, but only if we do not exceed the 150 kSPS
    996	 * limit.
    997	 */
    998	div = clk_rate / val;
    999	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
   1000		div++;
   1001	if (div < 2)
   1002		div = 2;
   1003	else if (div > 0xff)
   1004		div = 0xff;
   1005
   1006	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
   1007		div << XADC_CONF2_DIV_OFFSET);
   1008}
   1009
   1010static int xadc_write_raw(struct iio_dev *indio_dev,
   1011	struct iio_chan_spec const *chan, int val, int val2, long info)
   1012{
   1013	struct xadc *xadc = iio_priv(indio_dev);
   1014
   1015	if (info != IIO_CHAN_INFO_SAMP_FREQ)
   1016		return -EINVAL;
   1017
   1018	return xadc_write_samplerate(xadc, val);
   1019}
   1020
   1021static const struct iio_event_spec xadc_temp_events[] = {
   1022	{
   1023		.type = IIO_EV_TYPE_THRESH,
   1024		.dir = IIO_EV_DIR_RISING,
   1025		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
   1026				BIT(IIO_EV_INFO_VALUE) |
   1027				BIT(IIO_EV_INFO_HYSTERESIS),
   1028	},
   1029};
   1030
   1031/* Separate values for upper and lower thresholds, but only a shared enabled */
   1032static const struct iio_event_spec xadc_voltage_events[] = {
   1033	{
   1034		.type = IIO_EV_TYPE_THRESH,
   1035		.dir = IIO_EV_DIR_RISING,
   1036		.mask_separate = BIT(IIO_EV_INFO_VALUE),
   1037	}, {
   1038		.type = IIO_EV_TYPE_THRESH,
   1039		.dir = IIO_EV_DIR_FALLING,
   1040		.mask_separate = BIT(IIO_EV_INFO_VALUE),
   1041	}, {
   1042		.type = IIO_EV_TYPE_THRESH,
   1043		.dir = IIO_EV_DIR_EITHER,
   1044		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
   1045	},
   1046};
   1047
   1048#define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
   1049	.type = IIO_TEMP, \
   1050	.indexed = 1, \
   1051	.channel = (_chan), \
   1052	.address = (_addr), \
   1053	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
   1054		BIT(IIO_CHAN_INFO_SCALE) | \
   1055		BIT(IIO_CHAN_INFO_OFFSET), \
   1056	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
   1057	.event_spec = xadc_temp_events, \
   1058	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
   1059	.scan_index = (_scan_index), \
   1060	.scan_type = { \
   1061		.sign = 'u', \
   1062		.realbits = (_bits), \
   1063		.storagebits = 16, \
   1064		.shift = 16 - (_bits), \
   1065		.endianness = IIO_CPU, \
   1066	}, \
   1067}
   1068
   1069#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
   1070	.type = IIO_VOLTAGE, \
   1071	.indexed = 1, \
   1072	.channel = (_chan), \
   1073	.address = (_addr), \
   1074	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
   1075		BIT(IIO_CHAN_INFO_SCALE), \
   1076	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
   1077	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
   1078	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
   1079	.scan_index = (_scan_index), \
   1080	.scan_type = { \
   1081		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
   1082		.realbits = (_bits), \
   1083		.storagebits = 16, \
   1084		.shift = 16 - (_bits), \
   1085		.endianness = IIO_CPU, \
   1086	}, \
   1087	.extend_name = _ext, \
   1088}
   1089
   1090/* 7 Series */
   1091#define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
   1092	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
   1093#define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
   1094	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
   1095
   1096static const struct iio_chan_spec xadc_7s_channels[] = {
   1097	XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
   1098	XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
   1099	XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
   1100	XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
   1101	XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
   1102	XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
   1103	XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
   1104	XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
   1105	XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
   1106	XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
   1107	XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
   1108	XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
   1109	XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
   1110	XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
   1111	XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
   1112	XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
   1113	XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
   1114	XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
   1115	XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
   1116	XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
   1117	XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
   1118	XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
   1119	XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
   1120	XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
   1121	XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
   1122	XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
   1123};
   1124
   1125/* UltraScale */
   1126#define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
   1127	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
   1128#define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
   1129	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
   1130
   1131static const struct iio_chan_spec xadc_us_channels[] = {
   1132	XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
   1133	XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
   1134	XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
   1135	XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
   1136	XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
   1137	XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
   1138	XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
   1139	XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
   1140	XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
   1141	XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
   1142	XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
   1143	XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
   1144	XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
   1145	XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
   1146	XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
   1147	XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
   1148	XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
   1149	XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
   1150	XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
   1151	XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
   1152	XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
   1153	XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
   1154	XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
   1155	XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
   1156	XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
   1157	XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
   1158};
   1159
   1160static const struct iio_info xadc_info = {
   1161	.read_raw = &xadc_read_raw,
   1162	.write_raw = &xadc_write_raw,
   1163	.read_event_config = &xadc_read_event_config,
   1164	.write_event_config = &xadc_write_event_config,
   1165	.read_event_value = &xadc_read_event_value,
   1166	.write_event_value = &xadc_write_event_value,
   1167	.update_scan_mode = &xadc_update_scan_mode,
   1168};
   1169
   1170static const struct of_device_id xadc_of_match_table[] = {
   1171	{
   1172		.compatible = "xlnx,zynq-xadc-1.00.a",
   1173		.data = &xadc_zynq_ops
   1174	}, {
   1175		.compatible = "xlnx,axi-xadc-1.00.a",
   1176		.data = &xadc_7s_axi_ops
   1177	}, {
   1178		.compatible = "xlnx,system-management-wiz-1.3",
   1179		.data = &xadc_us_axi_ops
   1180	},
   1181	{ },
   1182};
   1183MODULE_DEVICE_TABLE(of, xadc_of_match_table);
   1184
   1185static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
   1186	unsigned int *conf, int irq)
   1187{
   1188	struct device *dev = indio_dev->dev.parent;
   1189	struct xadc *xadc = iio_priv(indio_dev);
   1190	const struct iio_chan_spec *channel_templates;
   1191	struct iio_chan_spec *channels, *chan;
   1192	struct device_node *chan_node, *child;
   1193	unsigned int max_channels;
   1194	unsigned int num_channels;
   1195	const char *external_mux;
   1196	u32 ext_mux_chan;
   1197	u32 reg;
   1198	int ret;
   1199	int i;
   1200
   1201	*conf = 0;
   1202
   1203	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
   1204	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
   1205		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
   1206	else if (strcasecmp(external_mux, "single") == 0)
   1207		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
   1208	else if (strcasecmp(external_mux, "dual") == 0)
   1209		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
   1210	else
   1211		return -EINVAL;
   1212
   1213	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
   1214		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
   1215					&ext_mux_chan);
   1216		if (ret < 0)
   1217			return ret;
   1218
   1219		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
   1220			if (ext_mux_chan == 0)
   1221				ext_mux_chan = XADC_REG_VPVN;
   1222			else if (ext_mux_chan <= 16)
   1223				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
   1224			else
   1225				return -EINVAL;
   1226		} else {
   1227			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
   1228				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
   1229			else
   1230				return -EINVAL;
   1231		}
   1232
   1233		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
   1234	}
   1235	if (xadc->ops->type == XADC_TYPE_S7) {
   1236		channel_templates = xadc_7s_channels;
   1237		max_channels = ARRAY_SIZE(xadc_7s_channels);
   1238	} else {
   1239		channel_templates = xadc_us_channels;
   1240		max_channels = ARRAY_SIZE(xadc_us_channels);
   1241	}
   1242	channels = devm_kmemdup(dev, channel_templates,
   1243				sizeof(channels[0]) * max_channels, GFP_KERNEL);
   1244	if (!channels)
   1245		return -ENOMEM;
   1246
   1247	num_channels = 9;
   1248	chan = &channels[9];
   1249
   1250	chan_node = of_get_child_by_name(np, "xlnx,channels");
   1251	if (chan_node) {
   1252		for_each_child_of_node(chan_node, child) {
   1253			if (num_channels >= max_channels) {
   1254				of_node_put(child);
   1255				break;
   1256			}
   1257
   1258			ret = of_property_read_u32(child, "reg", &reg);
   1259			if (ret || reg > 16)
   1260				continue;
   1261
   1262			if (of_property_read_bool(child, "xlnx,bipolar"))
   1263				chan->scan_type.sign = 's';
   1264
   1265			if (reg == 0) {
   1266				chan->scan_index = 11;
   1267				chan->address = XADC_REG_VPVN;
   1268			} else {
   1269				chan->scan_index = 15 + reg;
   1270				chan->address = XADC_REG_VAUX(reg - 1);
   1271			}
   1272			num_channels++;
   1273			chan++;
   1274		}
   1275	}
   1276	of_node_put(chan_node);
   1277
   1278	/* No IRQ => no events */
   1279	if (irq <= 0) {
   1280		for (i = 0; i < num_channels; i++) {
   1281			channels[i].event_spec = NULL;
   1282			channels[i].num_event_specs = 0;
   1283		}
   1284	}
   1285
   1286	indio_dev->num_channels = num_channels;
   1287	indio_dev->channels = devm_krealloc(dev, channels,
   1288					    sizeof(*channels) * num_channels,
   1289					    GFP_KERNEL);
   1290	/* If we can't resize the channels array, just use the original */
   1291	if (!indio_dev->channels)
   1292		indio_dev->channels = channels;
   1293
   1294	return 0;
   1295}
   1296
   1297static const char * const xadc_type_names[] = {
   1298	[XADC_TYPE_S7] = "xadc",
   1299	[XADC_TYPE_US] = "xilinx-system-monitor",
   1300};
   1301
   1302static void xadc_clk_disable_unprepare(void *data)
   1303{
   1304	struct clk *clk = data;
   1305
   1306	clk_disable_unprepare(clk);
   1307}
   1308
   1309static void xadc_cancel_delayed_work(void *data)
   1310{
   1311	struct delayed_work *work = data;
   1312
   1313	cancel_delayed_work_sync(work);
   1314}
   1315
   1316static int xadc_probe(struct platform_device *pdev)
   1317{
   1318	struct device *dev = &pdev->dev;
   1319	const struct of_device_id *id;
   1320	const struct xadc_ops *ops;
   1321	struct iio_dev *indio_dev;
   1322	unsigned int bipolar_mask;
   1323	unsigned int conf0;
   1324	struct xadc *xadc;
   1325	int ret;
   1326	int irq;
   1327	int i;
   1328
   1329	if (!dev->of_node)
   1330		return -ENODEV;
   1331
   1332	id = of_match_node(xadc_of_match_table, dev->of_node);
   1333	if (!id)
   1334		return -EINVAL;
   1335
   1336	ops = id->data;
   1337
   1338	irq = platform_get_irq_optional(pdev, 0);
   1339	if (irq < 0 &&
   1340	    (irq != -ENXIO || !(ops->flags & XADC_FLAGS_IRQ_OPTIONAL)))
   1341		return irq;
   1342
   1343	indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
   1344	if (!indio_dev)
   1345		return -ENOMEM;
   1346
   1347	xadc = iio_priv(indio_dev);
   1348	xadc->ops = id->data;
   1349	init_completion(&xadc->completion);
   1350	mutex_init(&xadc->mutex);
   1351	spin_lock_init(&xadc->lock);
   1352	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
   1353
   1354	xadc->base = devm_platform_ioremap_resource(pdev, 0);
   1355	if (IS_ERR(xadc->base))
   1356		return PTR_ERR(xadc->base);
   1357
   1358	indio_dev->name = xadc_type_names[xadc->ops->type];
   1359	indio_dev->modes = INDIO_DIRECT_MODE;
   1360	indio_dev->info = &xadc_info;
   1361
   1362	ret = xadc_parse_dt(indio_dev, dev->of_node, &conf0, irq);
   1363	if (ret)
   1364		return ret;
   1365
   1366	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
   1367		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
   1368						      &iio_pollfunc_store_time,
   1369						      &xadc_trigger_handler,
   1370						      &xadc_buffer_ops);
   1371		if (ret)
   1372			return ret;
   1373
   1374		if (irq > 0) {
   1375			xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
   1376			if (IS_ERR(xadc->convst_trigger))
   1377				return PTR_ERR(xadc->convst_trigger);
   1378
   1379			xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
   1380				"samplerate");
   1381			if (IS_ERR(xadc->samplerate_trigger))
   1382				return PTR_ERR(xadc->samplerate_trigger);
   1383		}
   1384	}
   1385
   1386	xadc->clk = devm_clk_get(dev, NULL);
   1387	if (IS_ERR(xadc->clk))
   1388		return PTR_ERR(xadc->clk);
   1389
   1390	ret = clk_prepare_enable(xadc->clk);
   1391	if (ret)
   1392		return ret;
   1393
   1394	ret = devm_add_action_or_reset(dev,
   1395				       xadc_clk_disable_unprepare, xadc->clk);
   1396	if (ret)
   1397		return ret;
   1398
   1399	/*
   1400	 * Make sure not to exceed the maximum samplerate since otherwise the
   1401	 * resulting interrupt storm will soft-lock the system.
   1402	 */
   1403	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
   1404		ret = xadc_read_samplerate(xadc);
   1405		if (ret < 0)
   1406			return ret;
   1407
   1408		if (ret > XADC_MAX_SAMPLERATE) {
   1409			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
   1410			if (ret < 0)
   1411				return ret;
   1412		}
   1413	}
   1414
   1415	if (irq > 0) {
   1416		ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler,
   1417				       0, dev_name(dev), indio_dev);
   1418		if (ret)
   1419			return ret;
   1420
   1421		ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
   1422					       &xadc->zynq_unmask_work);
   1423		if (ret)
   1424			return ret;
   1425	}
   1426
   1427	ret = xadc->ops->setup(pdev, indio_dev, irq);
   1428	if (ret)
   1429		return ret;
   1430
   1431	for (i = 0; i < 16; i++)
   1432		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
   1433			&xadc->threshold[i]);
   1434
   1435	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
   1436	if (ret)
   1437		return ret;
   1438
   1439	bipolar_mask = 0;
   1440	for (i = 0; i < indio_dev->num_channels; i++) {
   1441		if (indio_dev->channels[i].scan_type.sign == 's')
   1442			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
   1443	}
   1444
   1445	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
   1446	if (ret)
   1447		return ret;
   1448
   1449	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
   1450		bipolar_mask >> 16);
   1451	if (ret)
   1452		return ret;
   1453
   1454	/* Disable all alarms */
   1455	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
   1456				  XADC_CONF1_ALARM_MASK);
   1457	if (ret)
   1458		return ret;
   1459
   1460	/* Set thresholds to min/max */
   1461	for (i = 0; i < 16; i++) {
   1462		/*
   1463		 * Set max voltage threshold and both temperature thresholds to
   1464		 * 0xffff, min voltage threshold to 0.
   1465		 */
   1466		if (i % 8 < 4 || i == 7)
   1467			xadc->threshold[i] = 0xffff;
   1468		else
   1469			xadc->threshold[i] = 0;
   1470		ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
   1471			xadc->threshold[i]);
   1472		if (ret)
   1473			return ret;
   1474	}
   1475
   1476	/* Go to non-buffered mode */
   1477	xadc_postdisable(indio_dev);
   1478
   1479	return devm_iio_device_register(dev, indio_dev);
   1480}
   1481
   1482static struct platform_driver xadc_driver = {
   1483	.probe = xadc_probe,
   1484	.driver = {
   1485		.name = "xadc",
   1486		.of_match_table = xadc_of_match_table,
   1487	},
   1488};
   1489module_platform_driver(xadc_driver);
   1490
   1491MODULE_LICENSE("GPL v2");
   1492MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
   1493MODULE_DESCRIPTION("Xilinx XADC IIO driver");