ad7150.c (18177B)
1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * AD7150 capacitive sensor driver supporting AD7150/1/6 4 * 5 * Copyright 2010-2011 Analog Devices Inc. 6 * Copyright 2021 Jonathan Cameron <Jonathan.Cameron@huawei.com> 7 */ 8 9#include <linux/bitfield.h> 10#include <linux/device.h> 11#include <linux/interrupt.h> 12#include <linux/irq.h> 13#include <linux/i2c.h> 14#include <linux/kernel.h> 15#include <linux/module.h> 16#include <linux/mod_devicetable.h> 17#include <linux/regulator/consumer.h> 18#include <linux/slab.h> 19 20#include <linux/iio/iio.h> 21#include <linux/iio/sysfs.h> 22#include <linux/iio/events.h> 23 24#define AD7150_STATUS_REG 0 25#define AD7150_STATUS_OUT1 BIT(3) 26#define AD7150_STATUS_OUT2 BIT(5) 27#define AD7150_CH1_DATA_HIGH_REG 1 28#define AD7150_CH2_DATA_HIGH_REG 3 29#define AD7150_CH1_AVG_HIGH_REG 5 30#define AD7150_CH2_AVG_HIGH_REG 7 31#define AD7150_CH1_SENSITIVITY_REG 9 32#define AD7150_CH1_THR_HOLD_H_REG 9 33#define AD7150_CH1_TIMEOUT_REG 10 34#define AD7150_CH_TIMEOUT_RECEDING GENMASK(3, 0) 35#define AD7150_CH_TIMEOUT_APPROACHING GENMASK(7, 4) 36#define AD7150_CH1_SETUP_REG 11 37#define AD7150_CH2_SENSITIVITY_REG 12 38#define AD7150_CH2_THR_HOLD_H_REG 12 39#define AD7150_CH2_TIMEOUT_REG 13 40#define AD7150_CH2_SETUP_REG 14 41#define AD7150_CFG_REG 15 42#define AD7150_CFG_FIX BIT(7) 43#define AD7150_CFG_THRESHTYPE_MSK GENMASK(6, 5) 44#define AD7150_CFG_TT_NEG 0x0 45#define AD7150_CFG_TT_POS 0x1 46#define AD7150_CFG_TT_IN_WINDOW 0x2 47#define AD7150_CFG_TT_OUT_WINDOW 0x3 48#define AD7150_PD_TIMER_REG 16 49#define AD7150_CH1_CAPDAC_REG 17 50#define AD7150_CH2_CAPDAC_REG 18 51#define AD7150_SN3_REG 19 52#define AD7150_SN2_REG 20 53#define AD7150_SN1_REG 21 54#define AD7150_SN0_REG 22 55#define AD7150_ID_REG 23 56 57enum { 58 AD7150, 59 AD7151, 60}; 61 62/** 63 * struct ad7150_chip_info - instance specific chip data 64 * @client: i2c client for this device 65 * @threshold: thresholds for simple capacitance value events 66 * @thresh_sensitivity: threshold for simple capacitance offset 67 * from 'average' value. 68 * @thresh_timeout: a timeout, in samples from the moment an 69 * adaptive threshold event occurs to when the average 70 * value jumps to current value. Note made up of two fields, 71 * 3:0 are for timeout receding - applies if below lower threshold 72 * 7:4 are for timeout approaching - applies if above upper threshold 73 * @state_lock: ensure consistent state of this structure wrt the 74 * hardware. 75 * @interrupts: one or two interrupt numbers depending on device type. 76 * @int_enabled: is a given interrupt currently enabled. 77 * @type: threshold type 78 * @dir: threshold direction 79 */ 80struct ad7150_chip_info { 81 struct i2c_client *client; 82 u16 threshold[2][2]; 83 u8 thresh_sensitivity[2][2]; 84 u8 thresh_timeout[2][2]; 85 struct mutex state_lock; 86 int interrupts[2]; 87 bool int_enabled[2]; 88 enum iio_event_type type; 89 enum iio_event_direction dir; 90}; 91 92static const u8 ad7150_addresses[][6] = { 93 { AD7150_CH1_DATA_HIGH_REG, AD7150_CH1_AVG_HIGH_REG, 94 AD7150_CH1_SETUP_REG, AD7150_CH1_THR_HOLD_H_REG, 95 AD7150_CH1_SENSITIVITY_REG, AD7150_CH1_TIMEOUT_REG }, 96 { AD7150_CH2_DATA_HIGH_REG, AD7150_CH2_AVG_HIGH_REG, 97 AD7150_CH2_SETUP_REG, AD7150_CH2_THR_HOLD_H_REG, 98 AD7150_CH2_SENSITIVITY_REG, AD7150_CH2_TIMEOUT_REG }, 99}; 100 101static int ad7150_read_raw(struct iio_dev *indio_dev, 102 struct iio_chan_spec const *chan, 103 int *val, 104 int *val2, 105 long mask) 106{ 107 struct ad7150_chip_info *chip = iio_priv(indio_dev); 108 int channel = chan->channel; 109 int ret; 110 111 switch (mask) { 112 case IIO_CHAN_INFO_RAW: 113 ret = i2c_smbus_read_word_swapped(chip->client, 114 ad7150_addresses[channel][0]); 115 if (ret < 0) 116 return ret; 117 *val = ret >> 4; 118 119 return IIO_VAL_INT; 120 case IIO_CHAN_INFO_AVERAGE_RAW: 121 ret = i2c_smbus_read_word_swapped(chip->client, 122 ad7150_addresses[channel][1]); 123 if (ret < 0) 124 return ret; 125 *val = ret; 126 127 return IIO_VAL_INT; 128 case IIO_CHAN_INFO_SCALE: 129 /* 130 * Base units for capacitance are nano farads and the value 131 * calculated from the datasheet formula is in picofarad 132 * so multiply by 1000 133 */ 134 *val = 1000; 135 *val2 = 40944 >> 4; /* To match shift in _RAW */ 136 return IIO_VAL_FRACTIONAL; 137 case IIO_CHAN_INFO_OFFSET: 138 *val = -(12288 >> 4); /* To match shift in _RAW */ 139 return IIO_VAL_INT; 140 case IIO_CHAN_INFO_SAMP_FREQ: 141 /* Strangely same for both 1 and 2 chan parts */ 142 *val = 100; 143 return IIO_VAL_INT; 144 default: 145 return -EINVAL; 146 } 147} 148 149static int ad7150_read_event_config(struct iio_dev *indio_dev, 150 const struct iio_chan_spec *chan, 151 enum iio_event_type type, 152 enum iio_event_direction dir) 153{ 154 struct ad7150_chip_info *chip = iio_priv(indio_dev); 155 u8 threshtype; 156 bool thrfixed; 157 int ret; 158 159 ret = i2c_smbus_read_byte_data(chip->client, AD7150_CFG_REG); 160 if (ret < 0) 161 return ret; 162 163 threshtype = FIELD_GET(AD7150_CFG_THRESHTYPE_MSK, ret); 164 165 /*check if threshold mode is fixed or adaptive*/ 166 thrfixed = FIELD_GET(AD7150_CFG_FIX, ret); 167 168 switch (type) { 169 case IIO_EV_TYPE_THRESH_ADAPTIVE: 170 if (dir == IIO_EV_DIR_RISING) 171 return !thrfixed && (threshtype == AD7150_CFG_TT_POS); 172 return !thrfixed && (threshtype == AD7150_CFG_TT_NEG); 173 case IIO_EV_TYPE_THRESH: 174 if (dir == IIO_EV_DIR_RISING) 175 return thrfixed && (threshtype == AD7150_CFG_TT_POS); 176 return thrfixed && (threshtype == AD7150_CFG_TT_NEG); 177 default: 178 break; 179 } 180 return -EINVAL; 181} 182 183/* state_lock should be held to ensure consistent state */ 184static int ad7150_write_event_params(struct iio_dev *indio_dev, 185 unsigned int chan, 186 enum iio_event_type type, 187 enum iio_event_direction dir) 188{ 189 struct ad7150_chip_info *chip = iio_priv(indio_dev); 190 int rising = (dir == IIO_EV_DIR_RISING); 191 192 /* Only update value live, if parameter is in use */ 193 if ((type != chip->type) || (dir != chip->dir)) 194 return 0; 195 196 switch (type) { 197 /* Note completely different from the adaptive versions */ 198 case IIO_EV_TYPE_THRESH: { 199 u16 value = chip->threshold[rising][chan]; 200 return i2c_smbus_write_word_swapped(chip->client, 201 ad7150_addresses[chan][3], 202 value); 203 } 204 case IIO_EV_TYPE_THRESH_ADAPTIVE: { 205 int ret; 206 u8 sens, timeout; 207 208 sens = chip->thresh_sensitivity[rising][chan]; 209 ret = i2c_smbus_write_byte_data(chip->client, 210 ad7150_addresses[chan][4], 211 sens); 212 if (ret) 213 return ret; 214 215 /* 216 * Single timeout register contains timeouts for both 217 * directions. 218 */ 219 timeout = FIELD_PREP(AD7150_CH_TIMEOUT_APPROACHING, 220 chip->thresh_timeout[1][chan]); 221 timeout |= FIELD_PREP(AD7150_CH_TIMEOUT_RECEDING, 222 chip->thresh_timeout[0][chan]); 223 return i2c_smbus_write_byte_data(chip->client, 224 ad7150_addresses[chan][5], 225 timeout); 226 } 227 default: 228 return -EINVAL; 229 } 230} 231 232static int ad7150_write_event_config(struct iio_dev *indio_dev, 233 const struct iio_chan_spec *chan, 234 enum iio_event_type type, 235 enum iio_event_direction dir, int state) 236{ 237 struct ad7150_chip_info *chip = iio_priv(indio_dev); 238 int ret = 0; 239 240 /* 241 * There is only a single shared control and no on chip 242 * interrupt disables for the two interrupt lines. 243 * So, enabling will switch the events configured to enable 244 * whatever was most recently requested and if necessary enable_irq() 245 * the interrupt and any disable will disable_irq() for that 246 * channels interrupt. 247 */ 248 if (!state) { 249 if ((chip->int_enabled[chan->channel]) && 250 (type == chip->type) && (dir == chip->dir)) { 251 disable_irq(chip->interrupts[chan->channel]); 252 chip->int_enabled[chan->channel] = false; 253 } 254 return 0; 255 } 256 257 mutex_lock(&chip->state_lock); 258 if ((type != chip->type) || (dir != chip->dir)) { 259 int rising = (dir == IIO_EV_DIR_RISING); 260 u8 thresh_type, cfg, fixed; 261 262 /* 263 * Need to temporarily disable both interrupts if 264 * enabled - this is to avoid races around changing 265 * config and thresholds. 266 * Note enable/disable_irq() are reference counted so 267 * no need to check if already enabled. 268 */ 269 disable_irq(chip->interrupts[0]); 270 disable_irq(chip->interrupts[1]); 271 272 ret = i2c_smbus_read_byte_data(chip->client, AD7150_CFG_REG); 273 if (ret < 0) 274 goto error_ret; 275 276 cfg = ret & ~(AD7150_CFG_THRESHTYPE_MSK | AD7150_CFG_FIX); 277 278 if (type == IIO_EV_TYPE_THRESH_ADAPTIVE) 279 fixed = 0; 280 else 281 fixed = 1; 282 283 if (rising) 284 thresh_type = AD7150_CFG_TT_POS; 285 else 286 thresh_type = AD7150_CFG_TT_NEG; 287 288 cfg |= FIELD_PREP(AD7150_CFG_FIX, fixed) | 289 FIELD_PREP(AD7150_CFG_THRESHTYPE_MSK, thresh_type); 290 291 ret = i2c_smbus_write_byte_data(chip->client, AD7150_CFG_REG, 292 cfg); 293 if (ret < 0) 294 goto error_ret; 295 296 /* 297 * There is a potential race condition here, but not easy 298 * to close given we can't disable the interrupt at the 299 * chip side of things. Rely on the status bit. 300 */ 301 chip->type = type; 302 chip->dir = dir; 303 304 /* update control attributes */ 305 ret = ad7150_write_event_params(indio_dev, chan->channel, type, 306 dir); 307 if (ret) 308 goto error_ret; 309 /* reenable any irq's we disabled whilst changing mode */ 310 enable_irq(chip->interrupts[0]); 311 enable_irq(chip->interrupts[1]); 312 } 313 if (!chip->int_enabled[chan->channel]) { 314 enable_irq(chip->interrupts[chan->channel]); 315 chip->int_enabled[chan->channel] = true; 316 } 317 318error_ret: 319 mutex_unlock(&chip->state_lock); 320 321 return ret; 322} 323 324static int ad7150_read_event_value(struct iio_dev *indio_dev, 325 const struct iio_chan_spec *chan, 326 enum iio_event_type type, 327 enum iio_event_direction dir, 328 enum iio_event_info info, 329 int *val, int *val2) 330{ 331 struct ad7150_chip_info *chip = iio_priv(indio_dev); 332 int rising = (dir == IIO_EV_DIR_RISING); 333 334 /* Complex register sharing going on here */ 335 switch (info) { 336 case IIO_EV_INFO_VALUE: 337 switch (type) { 338 case IIO_EV_TYPE_THRESH_ADAPTIVE: 339 *val = chip->thresh_sensitivity[rising][chan->channel]; 340 return IIO_VAL_INT; 341 case IIO_EV_TYPE_THRESH: 342 *val = chip->threshold[rising][chan->channel]; 343 return IIO_VAL_INT; 344 default: 345 return -EINVAL; 346 } 347 case IIO_EV_INFO_TIMEOUT: 348 *val = 0; 349 *val2 = chip->thresh_timeout[rising][chan->channel] * 10000; 350 return IIO_VAL_INT_PLUS_MICRO; 351 default: 352 return -EINVAL; 353 } 354} 355 356static int ad7150_write_event_value(struct iio_dev *indio_dev, 357 const struct iio_chan_spec *chan, 358 enum iio_event_type type, 359 enum iio_event_direction dir, 360 enum iio_event_info info, 361 int val, int val2) 362{ 363 int ret; 364 struct ad7150_chip_info *chip = iio_priv(indio_dev); 365 int rising = (dir == IIO_EV_DIR_RISING); 366 367 mutex_lock(&chip->state_lock); 368 switch (info) { 369 case IIO_EV_INFO_VALUE: 370 switch (type) { 371 case IIO_EV_TYPE_THRESH_ADAPTIVE: 372 chip->thresh_sensitivity[rising][chan->channel] = val; 373 break; 374 case IIO_EV_TYPE_THRESH: 375 chip->threshold[rising][chan->channel] = val; 376 break; 377 default: 378 ret = -EINVAL; 379 goto error_ret; 380 } 381 break; 382 case IIO_EV_INFO_TIMEOUT: { 383 /* 384 * Raw timeout is in cycles of 10 msecs as long as both 385 * channels are enabled. 386 * In terms of INT_PLUS_MICRO, that is in units of 10,000 387 */ 388 int timeout = val2 / 10000; 389 390 if (val != 0 || timeout < 0 || timeout > 15 || val2 % 10000) { 391 ret = -EINVAL; 392 goto error_ret; 393 } 394 395 chip->thresh_timeout[rising][chan->channel] = timeout; 396 break; 397 } 398 default: 399 ret = -EINVAL; 400 goto error_ret; 401 } 402 403 /* write back if active */ 404 ret = ad7150_write_event_params(indio_dev, chan->channel, type, dir); 405 406error_ret: 407 mutex_unlock(&chip->state_lock); 408 return ret; 409} 410 411static const struct iio_event_spec ad7150_events[] = { 412 { 413 .type = IIO_EV_TYPE_THRESH, 414 .dir = IIO_EV_DIR_RISING, 415 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 416 BIT(IIO_EV_INFO_ENABLE), 417 }, { 418 .type = IIO_EV_TYPE_THRESH, 419 .dir = IIO_EV_DIR_FALLING, 420 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 421 BIT(IIO_EV_INFO_ENABLE), 422 }, { 423 .type = IIO_EV_TYPE_THRESH_ADAPTIVE, 424 .dir = IIO_EV_DIR_RISING, 425 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 426 BIT(IIO_EV_INFO_ENABLE) | 427 BIT(IIO_EV_INFO_TIMEOUT), 428 }, { 429 .type = IIO_EV_TYPE_THRESH_ADAPTIVE, 430 .dir = IIO_EV_DIR_FALLING, 431 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 432 BIT(IIO_EV_INFO_ENABLE) | 433 BIT(IIO_EV_INFO_TIMEOUT), 434 }, 435}; 436 437#define AD7150_CAPACITANCE_CHAN(_chan) { \ 438 .type = IIO_CAPACITANCE, \ 439 .indexed = 1, \ 440 .channel = _chan, \ 441 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 442 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \ 443 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 444 BIT(IIO_CHAN_INFO_OFFSET), \ 445 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ 446 .event_spec = ad7150_events, \ 447 .num_event_specs = ARRAY_SIZE(ad7150_events), \ 448 } 449 450#define AD7150_CAPACITANCE_CHAN_NO_IRQ(_chan) { \ 451 .type = IIO_CAPACITANCE, \ 452 .indexed = 1, \ 453 .channel = _chan, \ 454 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 455 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \ 456 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 457 BIT(IIO_CHAN_INFO_OFFSET), \ 458 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ 459 } 460 461static const struct iio_chan_spec ad7150_channels[] = { 462 AD7150_CAPACITANCE_CHAN(0), 463 AD7150_CAPACITANCE_CHAN(1), 464}; 465 466static const struct iio_chan_spec ad7150_channels_no_irq[] = { 467 AD7150_CAPACITANCE_CHAN_NO_IRQ(0), 468 AD7150_CAPACITANCE_CHAN_NO_IRQ(1), 469}; 470 471static const struct iio_chan_spec ad7151_channels[] = { 472 AD7150_CAPACITANCE_CHAN(0), 473}; 474 475static const struct iio_chan_spec ad7151_channels_no_irq[] = { 476 AD7150_CAPACITANCE_CHAN_NO_IRQ(0), 477}; 478 479static irqreturn_t __ad7150_event_handler(void *private, u8 status_mask, 480 int channel) 481{ 482 struct iio_dev *indio_dev = private; 483 struct ad7150_chip_info *chip = iio_priv(indio_dev); 484 s64 timestamp = iio_get_time_ns(indio_dev); 485 int int_status; 486 487 int_status = i2c_smbus_read_byte_data(chip->client, AD7150_STATUS_REG); 488 if (int_status < 0) 489 return IRQ_HANDLED; 490 491 if (!(int_status & status_mask)) 492 return IRQ_HANDLED; 493 494 iio_push_event(indio_dev, 495 IIO_UNMOD_EVENT_CODE(IIO_CAPACITANCE, channel, 496 chip->type, chip->dir), 497 timestamp); 498 499 return IRQ_HANDLED; 500} 501 502static irqreturn_t ad7150_event_handler_ch1(int irq, void *private) 503{ 504 return __ad7150_event_handler(private, AD7150_STATUS_OUT1, 0); 505} 506 507static irqreturn_t ad7150_event_handler_ch2(int irq, void *private) 508{ 509 return __ad7150_event_handler(private, AD7150_STATUS_OUT2, 1); 510} 511 512static IIO_CONST_ATTR(in_capacitance_thresh_adaptive_timeout_available, 513 "[0 0.01 0.15]"); 514 515static struct attribute *ad7150_event_attributes[] = { 516 &iio_const_attr_in_capacitance_thresh_adaptive_timeout_available 517 .dev_attr.attr, 518 NULL, 519}; 520 521static const struct attribute_group ad7150_event_attribute_group = { 522 .attrs = ad7150_event_attributes, 523 .name = "events", 524}; 525 526static const struct iio_info ad7150_info = { 527 .event_attrs = &ad7150_event_attribute_group, 528 .read_raw = &ad7150_read_raw, 529 .read_event_config = &ad7150_read_event_config, 530 .write_event_config = &ad7150_write_event_config, 531 .read_event_value = &ad7150_read_event_value, 532 .write_event_value = &ad7150_write_event_value, 533}; 534 535static const struct iio_info ad7150_info_no_irq = { 536 .read_raw = &ad7150_read_raw, 537}; 538 539static void ad7150_reg_disable(void *data) 540{ 541 struct regulator *reg = data; 542 543 regulator_disable(reg); 544} 545 546static int ad7150_probe(struct i2c_client *client, 547 const struct i2c_device_id *id) 548{ 549 struct ad7150_chip_info *chip; 550 struct iio_dev *indio_dev; 551 struct regulator *reg; 552 int ret; 553 554 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip)); 555 if (!indio_dev) 556 return -ENOMEM; 557 558 chip = iio_priv(indio_dev); 559 mutex_init(&chip->state_lock); 560 chip->client = client; 561 562 indio_dev->name = id->name; 563 564 indio_dev->modes = INDIO_DIRECT_MODE; 565 566 reg = devm_regulator_get(&client->dev, "vdd"); 567 if (IS_ERR(reg)) 568 return PTR_ERR(reg); 569 570 ret = regulator_enable(reg); 571 if (ret) 572 return ret; 573 574 ret = devm_add_action_or_reset(&client->dev, ad7150_reg_disable, reg); 575 if (ret) 576 return ret; 577 578 chip->interrupts[0] = fwnode_irq_get(dev_fwnode(&client->dev), 0); 579 if (chip->interrupts[0] < 0) 580 return chip->interrupts[0]; 581 if (id->driver_data == AD7150) { 582 chip->interrupts[1] = fwnode_irq_get(dev_fwnode(&client->dev), 1); 583 if (chip->interrupts[1] < 0) 584 return chip->interrupts[1]; 585 } 586 if (chip->interrupts[0] && 587 (id->driver_data == AD7151 || chip->interrupts[1])) { 588 irq_set_status_flags(chip->interrupts[0], IRQ_NOAUTOEN); 589 ret = devm_request_threaded_irq(&client->dev, 590 chip->interrupts[0], 591 NULL, 592 &ad7150_event_handler_ch1, 593 IRQF_TRIGGER_RISING | 594 IRQF_ONESHOT, 595 "ad7150_irq1", 596 indio_dev); 597 if (ret) 598 return ret; 599 600 indio_dev->info = &ad7150_info; 601 switch (id->driver_data) { 602 case AD7150: 603 indio_dev->channels = ad7150_channels; 604 indio_dev->num_channels = ARRAY_SIZE(ad7150_channels); 605 irq_set_status_flags(chip->interrupts[1], IRQ_NOAUTOEN); 606 ret = devm_request_threaded_irq(&client->dev, 607 chip->interrupts[1], 608 NULL, 609 &ad7150_event_handler_ch2, 610 IRQF_TRIGGER_RISING | 611 IRQF_ONESHOT, 612 "ad7150_irq2", 613 indio_dev); 614 if (ret) 615 return ret; 616 break; 617 case AD7151: 618 indio_dev->channels = ad7151_channels; 619 indio_dev->num_channels = ARRAY_SIZE(ad7151_channels); 620 break; 621 default: 622 return -EINVAL; 623 } 624 625 } else { 626 indio_dev->info = &ad7150_info_no_irq; 627 switch (id->driver_data) { 628 case AD7150: 629 indio_dev->channels = ad7150_channels_no_irq; 630 indio_dev->num_channels = 631 ARRAY_SIZE(ad7150_channels_no_irq); 632 break; 633 case AD7151: 634 indio_dev->channels = ad7151_channels_no_irq; 635 indio_dev->num_channels = 636 ARRAY_SIZE(ad7151_channels_no_irq); 637 break; 638 default: 639 return -EINVAL; 640 } 641 } 642 643 return devm_iio_device_register(indio_dev->dev.parent, indio_dev); 644} 645 646static const struct i2c_device_id ad7150_id[] = { 647 { "ad7150", AD7150 }, 648 { "ad7151", AD7151 }, 649 { "ad7156", AD7150 }, 650 {} 651}; 652 653MODULE_DEVICE_TABLE(i2c, ad7150_id); 654 655static const struct of_device_id ad7150_of_match[] = { 656 { "adi,ad7150" }, 657 { "adi,ad7151" }, 658 { "adi,ad7156" }, 659 {} 660}; 661static struct i2c_driver ad7150_driver = { 662 .driver = { 663 .name = "ad7150", 664 .of_match_table = ad7150_of_match, 665 }, 666 .probe = ad7150_probe, 667 .id_table = ad7150_id, 668}; 669module_i2c_driver(ad7150_driver); 670 671MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); 672MODULE_DESCRIPTION("Analog Devices AD7150/1/6 capacitive sensor driver"); 673MODULE_LICENSE("GPL v2");