cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sps30.c (8490B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Sensirion SPS30 particulate matter sensor driver
      4 *
      5 * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
      6 */
      7
      8#include <linux/crc8.h>
      9#include <linux/delay.h>
     10#include <linux/i2c.h>
     11#include <linux/iio/buffer.h>
     12#include <linux/iio/iio.h>
     13#include <linux/iio/sysfs.h>
     14#include <linux/iio/trigger_consumer.h>
     15#include <linux/iio/triggered_buffer.h>
     16#include <linux/kernel.h>
     17#include <linux/module.h>
     18
     19#include "sps30.h"
     20
     21/* sensor measures reliably up to 3000 ug / m3 */
     22#define SPS30_MAX_PM 3000
     23/* minimum and maximum self cleaning periods in seconds */
     24#define SPS30_AUTO_CLEANING_PERIOD_MIN 0
     25#define SPS30_AUTO_CLEANING_PERIOD_MAX 604800
     26
     27enum {
     28	PM1,
     29	PM2P5,
     30	PM4,
     31	PM10,
     32};
     33
     34enum {
     35	RESET,
     36	MEASURING,
     37};
     38
     39static s32 sps30_float_to_int_clamped(__be32 *fp)
     40{
     41	int val = be32_to_cpup(fp);
     42	int mantissa = val & GENMASK(22, 0);
     43	/* this is fine since passed float is always non-negative */
     44	int exp = val >> 23;
     45	int fraction, shift;
     46
     47	/* special case 0 */
     48	if (!exp && !mantissa)
     49		return 0;
     50
     51	exp -= 127;
     52	if (exp < 0) {
     53		/* return values ranging from 1 to 99 */
     54		return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
     55	}
     56
     57	/* return values ranging from 100 to 300000 */
     58	shift = 23 - exp;
     59	val = (1 << exp) + (mantissa >> shift);
     60	if (val >= SPS30_MAX_PM)
     61		return SPS30_MAX_PM * 100;
     62
     63	fraction = mantissa & GENMASK(shift - 1, 0);
     64
     65	return val * 100 + ((fraction * 100) >> shift);
     66}
     67
     68static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
     69{
     70	int i, ret;
     71
     72	if (state->state == RESET) {
     73		ret = state->ops->start_meas(state);
     74		if (ret)
     75			return ret;
     76
     77		state->state = MEASURING;
     78	}
     79
     80	ret = state->ops->read_meas(state, (__be32 *)data, size);
     81	if (ret)
     82		return ret;
     83
     84	for (i = 0; i < size; i++)
     85		data[i] = sps30_float_to_int_clamped((__be32 *)&data[i]);
     86
     87	return 0;
     88}
     89
     90static int sps30_do_reset(struct sps30_state *state)
     91{
     92	int ret;
     93
     94	ret = state->ops->reset(state);
     95	if (ret)
     96		return ret;
     97
     98	state->state = RESET;
     99
    100	return 0;
    101}
    102
    103static irqreturn_t sps30_trigger_handler(int irq, void *p)
    104{
    105	struct iio_poll_func *pf = p;
    106	struct iio_dev *indio_dev = pf->indio_dev;
    107	struct sps30_state *state = iio_priv(indio_dev);
    108	int ret;
    109	struct {
    110		s32 data[4]; /* PM1, PM2P5, PM4, PM10 */
    111		s64 ts;
    112	} scan;
    113
    114	mutex_lock(&state->lock);
    115	ret = sps30_do_meas(state, scan.data, ARRAY_SIZE(scan.data));
    116	mutex_unlock(&state->lock);
    117	if (ret)
    118		goto err;
    119
    120	iio_push_to_buffers_with_timestamp(indio_dev, &scan,
    121					   iio_get_time_ns(indio_dev));
    122err:
    123	iio_trigger_notify_done(indio_dev->trig);
    124
    125	return IRQ_HANDLED;
    126}
    127
    128static int sps30_read_raw(struct iio_dev *indio_dev,
    129			  struct iio_chan_spec const *chan,
    130			  int *val, int *val2, long mask)
    131{
    132	struct sps30_state *state = iio_priv(indio_dev);
    133	int data[4], ret = -EINVAL;
    134
    135	switch (mask) {
    136	case IIO_CHAN_INFO_PROCESSED:
    137		switch (chan->type) {
    138		case IIO_MASSCONCENTRATION:
    139			mutex_lock(&state->lock);
    140			/* read up to the number of bytes actually needed */
    141			switch (chan->channel2) {
    142			case IIO_MOD_PM1:
    143				ret = sps30_do_meas(state, data, 1);
    144				break;
    145			case IIO_MOD_PM2P5:
    146				ret = sps30_do_meas(state, data, 2);
    147				break;
    148			case IIO_MOD_PM4:
    149				ret = sps30_do_meas(state, data, 3);
    150				break;
    151			case IIO_MOD_PM10:
    152				ret = sps30_do_meas(state, data, 4);
    153				break;
    154			}
    155			mutex_unlock(&state->lock);
    156			if (ret)
    157				return ret;
    158
    159			*val = data[chan->address] / 100;
    160			*val2 = (data[chan->address] % 100) * 10000;
    161
    162			return IIO_VAL_INT_PLUS_MICRO;
    163		default:
    164			return -EINVAL;
    165		}
    166	case IIO_CHAN_INFO_SCALE:
    167		switch (chan->type) {
    168		case IIO_MASSCONCENTRATION:
    169			switch (chan->channel2) {
    170			case IIO_MOD_PM1:
    171			case IIO_MOD_PM2P5:
    172			case IIO_MOD_PM4:
    173			case IIO_MOD_PM10:
    174				*val = 0;
    175				*val2 = 10000;
    176
    177				return IIO_VAL_INT_PLUS_MICRO;
    178			default:
    179				return -EINVAL;
    180			}
    181		default:
    182			return -EINVAL;
    183		}
    184	}
    185
    186	return -EINVAL;
    187}
    188
    189static ssize_t start_cleaning_store(struct device *dev,
    190				    struct device_attribute *attr,
    191				    const char *buf, size_t len)
    192{
    193	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
    194	struct sps30_state *state = iio_priv(indio_dev);
    195	int val, ret;
    196
    197	if (kstrtoint(buf, 0, &val) || val != 1)
    198		return -EINVAL;
    199
    200	mutex_lock(&state->lock);
    201	ret = state->ops->clean_fan(state);
    202	mutex_unlock(&state->lock);
    203	if (ret)
    204		return ret;
    205
    206	return len;
    207}
    208
    209static ssize_t cleaning_period_show(struct device *dev,
    210				    struct device_attribute *attr,
    211				    char *buf)
    212{
    213	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
    214	struct sps30_state *state = iio_priv(indio_dev);
    215	__be32 val;
    216	int ret;
    217
    218	mutex_lock(&state->lock);
    219	ret = state->ops->read_cleaning_period(state, &val);
    220	mutex_unlock(&state->lock);
    221	if (ret)
    222		return ret;
    223
    224	return sysfs_emit(buf, "%d\n", be32_to_cpu(val));
    225}
    226
    227static ssize_t cleaning_period_store(struct device *dev, struct device_attribute *attr,
    228				     const char *buf, size_t len)
    229{
    230	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
    231	struct sps30_state *state = iio_priv(indio_dev);
    232	int val, ret;
    233
    234	if (kstrtoint(buf, 0, &val))
    235		return -EINVAL;
    236
    237	if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) ||
    238	    (val > SPS30_AUTO_CLEANING_PERIOD_MAX))
    239		return -EINVAL;
    240
    241	mutex_lock(&state->lock);
    242	ret = state->ops->write_cleaning_period(state, cpu_to_be32(val));
    243	if (ret) {
    244		mutex_unlock(&state->lock);
    245		return ret;
    246	}
    247
    248	msleep(20);
    249
    250	/*
    251	 * sensor requires reset in order to return up to date self cleaning
    252	 * period
    253	 */
    254	ret = sps30_do_reset(state);
    255	if (ret)
    256		dev_warn(dev,
    257			 "period changed but reads will return the old value\n");
    258
    259	mutex_unlock(&state->lock);
    260
    261	return len;
    262}
    263
    264static ssize_t cleaning_period_available_show(struct device *dev,
    265					      struct device_attribute *attr,
    266					      char *buf)
    267{
    268	return sysfs_emit(buf, "[%d %d %d]\n",
    269			  SPS30_AUTO_CLEANING_PERIOD_MIN, 1,
    270			  SPS30_AUTO_CLEANING_PERIOD_MAX);
    271}
    272
    273static IIO_DEVICE_ATTR_WO(start_cleaning, 0);
    274static IIO_DEVICE_ATTR_RW(cleaning_period, 0);
    275static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0);
    276
    277static struct attribute *sps30_attrs[] = {
    278	&iio_dev_attr_start_cleaning.dev_attr.attr,
    279	&iio_dev_attr_cleaning_period.dev_attr.attr,
    280	&iio_dev_attr_cleaning_period_available.dev_attr.attr,
    281	NULL
    282};
    283
    284static const struct attribute_group sps30_attr_group = {
    285	.attrs = sps30_attrs,
    286};
    287
    288static const struct iio_info sps30_info = {
    289	.attrs = &sps30_attr_group,
    290	.read_raw = sps30_read_raw,
    291};
    292
    293#define SPS30_CHAN(_index, _mod) { \
    294	.type = IIO_MASSCONCENTRATION, \
    295	.modified = 1, \
    296	.channel2 = IIO_MOD_ ## _mod, \
    297	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
    298	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
    299	.address = _mod, \
    300	.scan_index = _index, \
    301	.scan_type = { \
    302		.sign = 'u', \
    303		.realbits = 19, \
    304		.storagebits = 32, \
    305		.endianness = IIO_CPU, \
    306	}, \
    307}
    308
    309static const struct iio_chan_spec sps30_channels[] = {
    310	SPS30_CHAN(0, PM1),
    311	SPS30_CHAN(1, PM2P5),
    312	SPS30_CHAN(2, PM4),
    313	SPS30_CHAN(3, PM10),
    314	IIO_CHAN_SOFT_TIMESTAMP(4),
    315};
    316
    317static void sps30_devm_stop_meas(void *data)
    318{
    319	struct sps30_state *state = data;
    320
    321	if (state->state == MEASURING)
    322		state->ops->stop_meas(state);
    323}
    324
    325static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
    326
    327int sps30_probe(struct device *dev, const char *name, void *priv, const struct sps30_ops *ops)
    328{
    329	struct iio_dev *indio_dev;
    330	struct sps30_state *state;
    331	int ret;
    332
    333	indio_dev = devm_iio_device_alloc(dev, sizeof(*state));
    334	if (!indio_dev)
    335		return -ENOMEM;
    336
    337	dev_set_drvdata(dev, indio_dev);
    338
    339	state = iio_priv(indio_dev);
    340	state->dev = dev;
    341	state->priv = priv;
    342	state->ops = ops;
    343	mutex_init(&state->lock);
    344
    345	indio_dev->info = &sps30_info;
    346	indio_dev->name = name;
    347	indio_dev->channels = sps30_channels;
    348	indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
    349	indio_dev->modes = INDIO_DIRECT_MODE;
    350	indio_dev->available_scan_masks = sps30_scan_masks;
    351
    352	ret = sps30_do_reset(state);
    353	if (ret) {
    354		dev_err(dev, "failed to reset device\n");
    355		return ret;
    356	}
    357
    358	ret = state->ops->show_info(state);
    359	if (ret) {
    360		dev_err(dev, "failed to read device info\n");
    361		return ret;
    362	}
    363
    364	ret = devm_add_action_or_reset(dev, sps30_devm_stop_meas, state);
    365	if (ret)
    366		return ret;
    367
    368	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
    369					      sps30_trigger_handler, NULL);
    370	if (ret)
    371		return ret;
    372
    373	return devm_iio_device_register(dev, indio_dev);
    374}
    375EXPORT_SYMBOL_GPL(sps30_probe);
    376
    377MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
    378MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
    379MODULE_LICENSE("GPL v2");