cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fxas21002c_core.c (26374B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Driver for NXP FXAS21002C Gyroscope - Core
      4 *
      5 * Copyright (C) 2019 Linaro Ltd.
      6 */
      7
      8#include <linux/interrupt.h>
      9#include <linux/module.h>
     10#include <linux/pm.h>
     11#include <linux/pm_runtime.h>
     12#include <linux/property.h>
     13#include <linux/regmap.h>
     14#include <linux/regulator/consumer.h>
     15
     16#include <linux/iio/events.h>
     17#include <linux/iio/iio.h>
     18#include <linux/iio/buffer.h>
     19#include <linux/iio/sysfs.h>
     20#include <linux/iio/trigger.h>
     21#include <linux/iio/trigger_consumer.h>
     22#include <linux/iio/triggered_buffer.h>
     23
     24#include "fxas21002c.h"
     25
     26#define FXAS21002C_CHIP_ID_1	0xD6
     27#define FXAS21002C_CHIP_ID_2	0xD7
     28
     29enum fxas21002c_mode_state {
     30	FXAS21002C_MODE_STANDBY,
     31	FXAS21002C_MODE_READY,
     32	FXAS21002C_MODE_ACTIVE,
     33};
     34
     35#define FXAS21002C_STANDBY_ACTIVE_TIME_MS	62
     36#define FXAS21002C_READY_ACTIVE_TIME_MS		7
     37
     38#define FXAS21002C_ODR_LIST_MAX		10
     39
     40#define FXAS21002C_SCALE_FRACTIONAL	32
     41#define FXAS21002C_RANGE_LIMIT_DOUBLE	2000
     42
     43#define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2))
     44
     45static const struct reg_field fxas21002c_reg_fields[] = {
     46	[F_DR_STATUS]		= REG_FIELD(FXAS21002C_REG_STATUS, 0, 7),
     47	[F_OUT_X_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7),
     48	[F_OUT_X_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7),
     49	[F_OUT_Y_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7),
     50	[F_OUT_Y_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7),
     51	[F_OUT_Z_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7),
     52	[F_OUT_Z_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7),
     53	[F_ZYX_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7),
     54	[F_Z_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6),
     55	[F_Y_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5),
     56	[F_X_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4),
     57	[F_ZYX_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3),
     58	[F_Z_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2),
     59	[F_Y_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1),
     60	[F_X_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0),
     61	[F_OVF]			= REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7),
     62	[F_WMKF]		= REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6),
     63	[F_CNT]			= REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5),
     64	[F_MODE]		= REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7),
     65	[F_WMRK]		= REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5),
     66	[F_EVENT]		= REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5),
     67	[FE_TIME]		= REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4),
     68	[F_BOOTEND]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3),
     69	[F_SRC_FIFO]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2),
     70	[F_SRC_RT]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1),
     71	[F_SRC_DRDY]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0),
     72	[F_WHO_AM_I]		= REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7),
     73	[F_BW]			= REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7),
     74	[F_SPIW]		= REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5),
     75	[F_SEL]			= REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4),
     76	[F_HPF_EN]		= REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2),
     77	[F_FS]			= REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1),
     78	[F_ELE]			= REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3),
     79	[F_ZTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2),
     80	[F_YTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1),
     81	[F_XTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0),
     82	[F_EA]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6),
     83	[F_ZRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5),
     84	[F_ZRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4),
     85	[F_YRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3),
     86	[F_YRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2),
     87	[F_XRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1),
     88	[F_XRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0),
     89	[F_DBCNTM]		= REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7),
     90	[F_THS]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6),
     91	[F_RT_COUNT]		= REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7),
     92	[F_TEMP]		= REG_FIELD(FXAS21002C_REG_TEMP, 0, 7),
     93	[F_RST]			= REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6),
     94	[F_ST]			= REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5),
     95	[F_DR]			= REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4),
     96	[F_ACTIVE]		= REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1),
     97	[F_READY]		= REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0),
     98	[F_INT_CFG_FIFO]	= REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7),
     99	[F_INT_EN_FIFO]		= REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6),
    100	[F_INT_CFG_RT]		= REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5),
    101	[F_INT_EN_RT]		= REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4),
    102	[F_INT_CFG_DRDY]	= REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3),
    103	[F_INT_EN_DRDY]		= REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2),
    104	[F_IPOL]		= REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1),
    105	[F_PP_OD]		= REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0),
    106	[F_WRAPTOONE]		= REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3),
    107	[F_EXTCTRLEN]		= REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2),
    108	[F_FS_DOUBLE]		= REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0),
    109};
    110
    111static const int fxas21002c_odr_values[] = {
    112	800, 400, 200, 100, 50, 25, 12, 12
    113};
    114
    115/*
    116 * These values are taken from the low-pass filter cutoff frequency calculated
    117 * ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32
    118 * => LPF cutoff frequency = 800 * 0.32 = 256 Hz
    119 */
    120static const int fxas21002c_lpf_values[] = {
    121	32, 16, 8
    122};
    123
    124/*
    125 * These values are taken from the high-pass filter cutoff frequency calculated
    126 * ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750
    127 * => HPF cutoff frequency = 800 * 0.018750 = 15 Hz
    128 */
    129static const int fxas21002c_hpf_values[] = {
    130	18750, 9625, 4875, 2475
    131};
    132
    133static const int fxas21002c_range_values[] = {
    134	4000, 2000, 1000, 500, 250
    135};
    136
    137struct fxas21002c_data {
    138	u8 chip_id;
    139	enum fxas21002c_mode_state mode;
    140	enum fxas21002c_mode_state prev_mode;
    141
    142	struct mutex lock;		/* serialize data access */
    143	struct regmap *regmap;
    144	struct regmap_field *regmap_fields[F_MAX_FIELDS];
    145	struct iio_trigger *dready_trig;
    146	s64 timestamp;
    147	int irq;
    148
    149	struct regulator *vdd;
    150	struct regulator *vddio;
    151
    152	/*
    153	 * DMA (thus cache coherency maintenance) requires the
    154	 * transfer buffers to live in their own cache lines.
    155	 */
    156	s16 buffer[8] ____cacheline_aligned;
    157};
    158
    159enum fxas21002c_channel_index {
    160	CHANNEL_SCAN_INDEX_X,
    161	CHANNEL_SCAN_INDEX_Y,
    162	CHANNEL_SCAN_INDEX_Z,
    163	CHANNEL_SCAN_MAX,
    164};
    165
    166static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value)
    167{
    168	int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1;
    169
    170	value = min_t(u8, value, odr_value_max);
    171
    172	return fxas21002c_odr_values[value];
    173}
    174
    175static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data,
    176					unsigned int hz)
    177{
    178	int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values);
    179	int i;
    180
    181	for (i = 0; i < odr_table_size; i++)
    182		if (fxas21002c_odr_values[i] == hz)
    183			return i;
    184
    185	return -EINVAL;
    186}
    187
    188static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value)
    189{
    190	int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1;
    191
    192	value = min_t(u8, value, lpf_value_max);
    193
    194	return fxas21002c_lpf_values[value];
    195}
    196
    197static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data,
    198					unsigned int hz)
    199{
    200	int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values);
    201	int i;
    202
    203	for (i = 0; i < lpf_table_size; i++)
    204		if (fxas21002c_lpf_values[i] == hz)
    205			return i;
    206
    207	return -EINVAL;
    208}
    209
    210static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value)
    211{
    212	int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1;
    213
    214	value = min_t(u8, value, hpf_value_max);
    215
    216	return fxas21002c_hpf_values[value];
    217}
    218
    219static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data,
    220					 unsigned int hz)
    221{
    222	int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values);
    223	int i;
    224
    225	for (i = 0; i < hpf_table_size; i++)
    226		if (fxas21002c_hpf_values[i] == hz)
    227			return i;
    228
    229	return -EINVAL;
    230}
    231
    232static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data,
    233					  u8 value)
    234{
    235	int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1;
    236	unsigned int fs_double;
    237	int ret;
    238
    239	/* We need to check if FS_DOUBLE is enabled to offset the value */
    240	ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double);
    241	if (ret < 0)
    242		return ret;
    243
    244	if (!fs_double)
    245		value += 1;
    246
    247	value = min_t(u8, value, range_value_max);
    248
    249	return fxas21002c_range_values[value];
    250}
    251
    252static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data,
    253					  unsigned int range)
    254{
    255	int range_table_size = ARRAY_SIZE(fxas21002c_range_values);
    256	bool found = false;
    257	int fs_double = 0;
    258	int ret;
    259	int i;
    260
    261	for (i = 0; i < range_table_size; i++)
    262		if (fxas21002c_range_values[i] == range) {
    263			found = true;
    264			break;
    265		}
    266
    267	if (!found)
    268		return -EINVAL;
    269
    270	if (range > FXAS21002C_RANGE_LIMIT_DOUBLE)
    271		fs_double = 1;
    272
    273	ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double);
    274	if (ret < 0)
    275		return ret;
    276
    277	return i;
    278}
    279
    280static int fxas21002c_mode_get(struct fxas21002c_data *data)
    281{
    282	unsigned int active;
    283	unsigned int ready;
    284	int ret;
    285
    286	ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active);
    287	if (ret < 0)
    288		return ret;
    289	if (active)
    290		return FXAS21002C_MODE_ACTIVE;
    291
    292	ret = regmap_field_read(data->regmap_fields[F_READY], &ready);
    293	if (ret < 0)
    294		return ret;
    295	if (ready)
    296		return FXAS21002C_MODE_READY;
    297
    298	return FXAS21002C_MODE_STANDBY;
    299}
    300
    301static int fxas21002c_mode_set(struct fxas21002c_data *data,
    302			       enum fxas21002c_mode_state mode)
    303{
    304	int ret;
    305
    306	if (mode == data->mode)
    307		return 0;
    308
    309	if (mode == FXAS21002C_MODE_READY)
    310		ret = regmap_field_write(data->regmap_fields[F_READY], 1);
    311	else
    312		ret = regmap_field_write(data->regmap_fields[F_READY], 0);
    313	if (ret < 0)
    314		return ret;
    315
    316	if (mode == FXAS21002C_MODE_ACTIVE)
    317		ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1);
    318	else
    319		ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0);
    320	if (ret < 0)
    321		return ret;
    322
    323	/* if going to active wait the setup times */
    324	if (mode == FXAS21002C_MODE_ACTIVE &&
    325	    data->mode == FXAS21002C_MODE_STANDBY)
    326		msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS);
    327
    328	if (data->mode == FXAS21002C_MODE_READY)
    329		msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS);
    330
    331	data->prev_mode = data->mode;
    332	data->mode = mode;
    333
    334	return ret;
    335}
    336
    337static int fxas21002c_write(struct fxas21002c_data *data,
    338			    enum fxas21002c_fields field, int bits)
    339{
    340	int actual_mode;
    341	int ret;
    342
    343	mutex_lock(&data->lock);
    344
    345	actual_mode = fxas21002c_mode_get(data);
    346	if (actual_mode < 0) {
    347		ret = actual_mode;
    348		goto out_unlock;
    349	}
    350
    351	ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
    352	if (ret < 0)
    353		goto out_unlock;
    354
    355	ret = regmap_field_write(data->regmap_fields[field], bits);
    356	if (ret < 0)
    357		goto out_unlock;
    358
    359	ret = fxas21002c_mode_set(data, data->prev_mode);
    360
    361out_unlock:
    362	mutex_unlock(&data->lock);
    363
    364	return ret;
    365}
    366
    367static int  fxas21002c_pm_get(struct fxas21002c_data *data)
    368{
    369	return pm_runtime_resume_and_get(regmap_get_device(data->regmap));
    370}
    371
    372static int  fxas21002c_pm_put(struct fxas21002c_data *data)
    373{
    374	struct device *dev = regmap_get_device(data->regmap);
    375
    376	pm_runtime_mark_last_busy(dev);
    377
    378	return pm_runtime_put_autosuspend(dev);
    379}
    380
    381static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val)
    382{
    383	struct device *dev = regmap_get_device(data->regmap);
    384	unsigned int temp;
    385	int ret;
    386
    387	mutex_lock(&data->lock);
    388	ret = fxas21002c_pm_get(data);
    389	if (ret < 0)
    390		goto data_unlock;
    391
    392	ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp);
    393	if (ret < 0) {
    394		dev_err(dev, "failed to read temp: %d\n", ret);
    395		fxas21002c_pm_put(data);
    396		goto data_unlock;
    397	}
    398
    399	*val = sign_extend32(temp, 7);
    400
    401	ret = fxas21002c_pm_put(data);
    402	if (ret < 0)
    403		goto data_unlock;
    404
    405	ret = IIO_VAL_INT;
    406
    407data_unlock:
    408	mutex_unlock(&data->lock);
    409
    410	return ret;
    411}
    412
    413static int fxas21002c_axis_get(struct fxas21002c_data *data,
    414			       int index, int *val)
    415{
    416	struct device *dev = regmap_get_device(data->regmap);
    417	__be16 axis_be;
    418	int ret;
    419
    420	mutex_lock(&data->lock);
    421	ret = fxas21002c_pm_get(data);
    422	if (ret < 0)
    423		goto data_unlock;
    424
    425	ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index),
    426			       &axis_be, sizeof(axis_be));
    427	if (ret < 0) {
    428		dev_err(dev, "failed to read axis: %d: %d\n", index, ret);
    429		fxas21002c_pm_put(data);
    430		goto data_unlock;
    431	}
    432
    433	*val = sign_extend32(be16_to_cpu(axis_be), 15);
    434
    435	ret = fxas21002c_pm_put(data);
    436	if (ret < 0)
    437		goto data_unlock;
    438
    439	ret = IIO_VAL_INT;
    440
    441data_unlock:
    442	mutex_unlock(&data->lock);
    443
    444	return ret;
    445}
    446
    447static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr)
    448{
    449	unsigned int odr_bits;
    450	int ret;
    451
    452	mutex_lock(&data->lock);
    453	ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits);
    454	if (ret < 0)
    455		goto data_unlock;
    456
    457	*odr = fxas21002c_odr_hz_from_value(data, odr_bits);
    458
    459	ret = IIO_VAL_INT;
    460
    461data_unlock:
    462	mutex_unlock(&data->lock);
    463
    464	return ret;
    465}
    466
    467static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr)
    468{
    469	int odr_bits;
    470
    471	odr_bits = fxas21002c_odr_value_from_hz(data, odr);
    472	if (odr_bits < 0)
    473		return odr_bits;
    474
    475	return fxas21002c_write(data, F_DR, odr_bits);
    476}
    477
    478static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2)
    479{
    480	unsigned int bw_bits;
    481	int ret;
    482
    483	mutex_lock(&data->lock);
    484	ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits);
    485	if (ret < 0)
    486		goto data_unlock;
    487
    488	*val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000;
    489
    490	ret = IIO_VAL_INT_PLUS_MICRO;
    491
    492data_unlock:
    493	mutex_unlock(&data->lock);
    494
    495	return ret;
    496}
    497
    498static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw)
    499{
    500	int bw_bits;
    501	int odr;
    502	int ret;
    503
    504	bw_bits = fxas21002c_lpf_value_from_bw(data, bw);
    505	if (bw_bits < 0)
    506		return bw_bits;
    507
    508	/*
    509	 * From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08
    510	 * is not allowed and for ODR = 12.5 value 0.16 is also not allowed
    511	 */
    512	ret = fxas21002c_odr_get(data, &odr);
    513	if (ret < 0)
    514		return -EINVAL;
    515
    516	if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0))
    517		return -EINVAL;
    518
    519	return fxas21002c_write(data, F_BW, bw_bits);
    520}
    521
    522static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2)
    523{
    524	unsigned int sel_bits;
    525	int ret;
    526
    527	mutex_lock(&data->lock);
    528	ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits);
    529	if (ret < 0)
    530		goto data_unlock;
    531
    532	*val2 = fxas21002c_hpf_sel_from_value(data, sel_bits);
    533
    534	ret = IIO_VAL_INT_PLUS_MICRO;
    535
    536data_unlock:
    537	mutex_unlock(&data->lock);
    538
    539	return ret;
    540}
    541
    542static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel)
    543{
    544	int sel_bits;
    545
    546	sel_bits = fxas21002c_hpf_value_from_sel(data, sel);
    547	if (sel_bits < 0)
    548		return sel_bits;
    549
    550	return fxas21002c_write(data, F_SEL, sel_bits);
    551}
    552
    553static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val)
    554{
    555	int fs_bits;
    556	int scale;
    557	int ret;
    558
    559	mutex_lock(&data->lock);
    560	ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits);
    561	if (ret < 0)
    562		goto data_unlock;
    563
    564	scale = fxas21002c_range_fs_from_value(data, fs_bits);
    565	if (scale < 0) {
    566		ret = scale;
    567		goto data_unlock;
    568	}
    569
    570	*val = scale;
    571
    572data_unlock:
    573	mutex_unlock(&data->lock);
    574
    575	return ret;
    576}
    577
    578static int fxas21002c_scale_set(struct fxas21002c_data *data, int range)
    579{
    580	int fs_bits;
    581
    582	fs_bits = fxas21002c_range_value_from_fs(data, range);
    583	if (fs_bits < 0)
    584		return fs_bits;
    585
    586	return fxas21002c_write(data, F_FS, fs_bits);
    587}
    588
    589static int fxas21002c_read_raw(struct iio_dev *indio_dev,
    590			       struct iio_chan_spec const *chan, int *val,
    591			       int *val2, long mask)
    592{
    593	struct fxas21002c_data *data = iio_priv(indio_dev);
    594	int ret;
    595
    596	switch (mask) {
    597	case IIO_CHAN_INFO_RAW:
    598		switch (chan->type) {
    599		case IIO_TEMP:
    600			return fxas21002c_temp_get(data, val);
    601		case IIO_ANGL_VEL:
    602			return fxas21002c_axis_get(data, chan->scan_index, val);
    603		default:
    604			return -EINVAL;
    605		}
    606	case IIO_CHAN_INFO_SCALE:
    607		switch (chan->type) {
    608		case IIO_ANGL_VEL:
    609			*val2 = FXAS21002C_SCALE_FRACTIONAL;
    610			ret = fxas21002c_scale_get(data, val);
    611			if (ret < 0)
    612				return ret;
    613
    614			return IIO_VAL_FRACTIONAL;
    615		default:
    616			return -EINVAL;
    617		}
    618	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
    619		*val = 0;
    620		return fxas21002c_lpf_get(data, val2);
    621	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
    622		*val = 0;
    623		return fxas21002c_hpf_get(data, val2);
    624	case IIO_CHAN_INFO_SAMP_FREQ:
    625		*val2 = 0;
    626		return fxas21002c_odr_get(data, val);
    627	default:
    628		return -EINVAL;
    629	}
    630}
    631
    632static int fxas21002c_write_raw(struct iio_dev *indio_dev,
    633				struct iio_chan_spec const *chan, int val,
    634				int val2, long mask)
    635{
    636	struct fxas21002c_data *data = iio_priv(indio_dev);
    637	int range;
    638
    639	switch (mask) {
    640	case IIO_CHAN_INFO_SAMP_FREQ:
    641		if (val2)
    642			return -EINVAL;
    643
    644		return fxas21002c_odr_set(data, val);
    645	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
    646		if (val)
    647			return -EINVAL;
    648
    649		val2 = val2 / 10000;
    650		return fxas21002c_lpf_set(data, val2);
    651	case IIO_CHAN_INFO_SCALE:
    652		switch (chan->type) {
    653		case IIO_ANGL_VEL:
    654			range = (((val * 1000 + val2 / 1000) *
    655				  FXAS21002C_SCALE_FRACTIONAL) / 1000);
    656			return fxas21002c_scale_set(data, range);
    657		default:
    658			return -EINVAL;
    659		}
    660	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
    661		return fxas21002c_hpf_set(data, val2);
    662	default:
    663		return -EINVAL;
    664	}
    665}
    666
    667static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800");
    668
    669static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available,
    670		      "0.32 0.16 0.08");
    671
    672static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available,
    673		      "0.018750 0.009625 0.004875 0.002475");
    674
    675static IIO_CONST_ATTR(in_anglvel_scale_available,
    676		      "125.0 62.5 31.25 15.625 7.8125");
    677
    678static struct attribute *fxas21002c_attributes[] = {
    679	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
    680	&iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr,
    681	&iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr,
    682	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
    683	NULL,
    684};
    685
    686static const struct attribute_group fxas21002c_attrs_group = {
    687	.attrs = fxas21002c_attributes,
    688};
    689
    690#define FXAS21002C_CHANNEL(_axis) {					\
    691	.type = IIO_ANGL_VEL,						\
    692	.modified = 1,							\
    693	.channel2 = IIO_MOD_##_axis,					\
    694	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
    695	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
    696		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |	\
    697		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) |	\
    698		BIT(IIO_CHAN_INFO_SAMP_FREQ),				\
    699	.scan_index = CHANNEL_SCAN_INDEX_##_axis,			\
    700	.scan_type = {							\
    701		.sign = 's',						\
    702		.realbits = 16,						\
    703		.storagebits = 16,					\
    704		.endianness = IIO_BE,					\
    705	},								\
    706}
    707
    708static const struct iio_chan_spec fxas21002c_channels[] = {
    709	{
    710		.type = IIO_TEMP,
    711		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
    712		.scan_index = -1,
    713	},
    714	FXAS21002C_CHANNEL(X),
    715	FXAS21002C_CHANNEL(Y),
    716	FXAS21002C_CHANNEL(Z),
    717};
    718
    719static const struct iio_info fxas21002c_info = {
    720	.attrs			= &fxas21002c_attrs_group,
    721	.read_raw		= &fxas21002c_read_raw,
    722	.write_raw		= &fxas21002c_write_raw,
    723};
    724
    725static irqreturn_t fxas21002c_trigger_handler(int irq, void *p)
    726{
    727	struct iio_poll_func *pf = p;
    728	struct iio_dev *indio_dev = pf->indio_dev;
    729	struct fxas21002c_data *data = iio_priv(indio_dev);
    730	int ret;
    731
    732	mutex_lock(&data->lock);
    733	ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB,
    734			       data->buffer, CHANNEL_SCAN_MAX * sizeof(s16));
    735	if (ret < 0)
    736		goto out_unlock;
    737
    738	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
    739					   data->timestamp);
    740
    741out_unlock:
    742	mutex_unlock(&data->lock);
    743
    744	iio_trigger_notify_done(indio_dev->trig);
    745
    746	return IRQ_HANDLED;
    747}
    748
    749static int fxas21002c_chip_init(struct fxas21002c_data *data)
    750{
    751	struct device *dev = regmap_get_device(data->regmap);
    752	unsigned int chip_id;
    753	int ret;
    754
    755	ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id);
    756	if (ret < 0)
    757		return ret;
    758
    759	if (chip_id != FXAS21002C_CHIP_ID_1 &&
    760	    chip_id != FXAS21002C_CHIP_ID_2) {
    761		dev_err(dev, "chip id 0x%02x is not supported\n", chip_id);
    762		return -EINVAL;
    763	}
    764
    765	data->chip_id = chip_id;
    766
    767	ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
    768	if (ret < 0)
    769		return ret;
    770
    771	/* Set ODR to 200HZ as default */
    772	ret = fxas21002c_odr_set(data, 200);
    773	if (ret < 0)
    774		dev_err(dev, "failed to set ODR: %d\n", ret);
    775
    776	return ret;
    777}
    778
    779static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig,
    780						 bool state)
    781{
    782	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
    783	struct fxas21002c_data *data = iio_priv(indio_dev);
    784
    785	return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state);
    786}
    787
    788static const struct iio_trigger_ops fxas21002c_trigger_ops = {
    789	.set_trigger_state = &fxas21002c_data_rdy_trigger_set_state,
    790};
    791
    792static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private)
    793{
    794	struct iio_dev *indio_dev = private;
    795	struct fxas21002c_data *data = iio_priv(indio_dev);
    796
    797	data->timestamp = iio_get_time_ns(indio_dev);
    798
    799	return IRQ_WAKE_THREAD;
    800}
    801
    802static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private)
    803{
    804	struct iio_dev *indio_dev = private;
    805	struct fxas21002c_data *data = iio_priv(indio_dev);
    806	unsigned int data_ready;
    807	int ret;
    808
    809	ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready);
    810	if (ret < 0)
    811		return IRQ_NONE;
    812
    813	if (!data_ready)
    814		return IRQ_NONE;
    815
    816	iio_trigger_poll_chained(data->dready_trig);
    817
    818	return IRQ_HANDLED;
    819}
    820
    821static int fxas21002c_trigger_probe(struct fxas21002c_data *data)
    822{
    823	struct device *dev = regmap_get_device(data->regmap);
    824	struct iio_dev *indio_dev = dev_get_drvdata(dev);
    825	unsigned long irq_trig;
    826	bool irq_open_drain;
    827	int irq1;
    828	int ret;
    829
    830	if (!data->irq)
    831		return 0;
    832
    833	irq1 = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
    834	if (irq1 == data->irq) {
    835		dev_info(dev, "using interrupt line INT1\n");
    836		ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY],
    837					 1);
    838		if (ret < 0)
    839			return ret;
    840	}
    841
    842	dev_info(dev, "using interrupt line INT2\n");
    843
    844	irq_open_drain = device_property_read_bool(dev, "drive-open-drain");
    845
    846	data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
    847						   indio_dev->name,
    848						   iio_device_id(indio_dev));
    849	if (!data->dready_trig)
    850		return -ENOMEM;
    851
    852	irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq));
    853
    854	if (irq_trig == IRQF_TRIGGER_RISING) {
    855		ret = regmap_field_write(data->regmap_fields[F_IPOL], 1);
    856		if (ret < 0)
    857			return ret;
    858	}
    859
    860	if (irq_open_drain)
    861		irq_trig |= IRQF_SHARED;
    862
    863	ret = devm_request_threaded_irq(dev, data->irq,
    864					fxas21002c_data_rdy_handler,
    865					fxas21002c_data_rdy_thread,
    866					irq_trig, "fxas21002c_data_ready",
    867					indio_dev);
    868	if (ret < 0)
    869		return ret;
    870
    871	data->dready_trig->ops = &fxas21002c_trigger_ops;
    872	iio_trigger_set_drvdata(data->dready_trig, indio_dev);
    873
    874	return devm_iio_trigger_register(dev, data->dready_trig);
    875}
    876
    877static int fxas21002c_power_enable(struct fxas21002c_data *data)
    878{
    879	int ret;
    880
    881	ret = regulator_enable(data->vdd);
    882	if (ret < 0)
    883		return ret;
    884
    885	ret = regulator_enable(data->vddio);
    886	if (ret < 0) {
    887		regulator_disable(data->vdd);
    888		return ret;
    889	}
    890
    891	return 0;
    892}
    893
    894static void fxas21002c_power_disable(struct fxas21002c_data *data)
    895{
    896	regulator_disable(data->vdd);
    897	regulator_disable(data->vddio);
    898}
    899
    900static void fxas21002c_power_disable_action(void *_data)
    901{
    902	struct fxas21002c_data *data = _data;
    903
    904	fxas21002c_power_disable(data);
    905}
    906
    907static int fxas21002c_regulators_get(struct fxas21002c_data *data)
    908{
    909	struct device *dev = regmap_get_device(data->regmap);
    910
    911	data->vdd = devm_regulator_get(dev->parent, "vdd");
    912	if (IS_ERR(data->vdd))
    913		return PTR_ERR(data->vdd);
    914
    915	data->vddio = devm_regulator_get(dev->parent, "vddio");
    916
    917	return PTR_ERR_OR_ZERO(data->vddio);
    918}
    919
    920int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq,
    921			  const char *name)
    922{
    923	struct fxas21002c_data *data;
    924	struct iio_dev *indio_dev;
    925	struct regmap_field *f;
    926	int i;
    927	int ret;
    928
    929	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
    930	if (!indio_dev)
    931		return -ENOMEM;
    932
    933	data = iio_priv(indio_dev);
    934	dev_set_drvdata(dev, indio_dev);
    935	data->irq = irq;
    936	data->regmap = regmap;
    937
    938	for (i = 0; i < F_MAX_FIELDS; i++) {
    939		f = devm_regmap_field_alloc(dev, data->regmap,
    940					    fxas21002c_reg_fields[i]);
    941		if (IS_ERR(f))
    942			return PTR_ERR(f);
    943
    944		data->regmap_fields[i] = f;
    945	}
    946
    947	mutex_init(&data->lock);
    948
    949	ret = fxas21002c_regulators_get(data);
    950	if (ret < 0)
    951		return ret;
    952
    953	ret = fxas21002c_power_enable(data);
    954	if (ret < 0)
    955		return ret;
    956
    957	ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action,
    958				       data);
    959	if (ret < 0)
    960		return ret;
    961
    962	ret = fxas21002c_chip_init(data);
    963	if (ret < 0)
    964		return ret;
    965
    966	indio_dev->channels = fxas21002c_channels;
    967	indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels);
    968	indio_dev->name = name;
    969	indio_dev->modes = INDIO_DIRECT_MODE;
    970	indio_dev->info = &fxas21002c_info;
    971
    972	ret = fxas21002c_trigger_probe(data);
    973	if (ret < 0)
    974		return ret;
    975
    976	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
    977					      fxas21002c_trigger_handler, NULL);
    978	if (ret < 0)
    979		return ret;
    980
    981	ret = pm_runtime_set_active(dev);
    982	if (ret)
    983		return ret;
    984
    985	pm_runtime_enable(dev);
    986	pm_runtime_set_autosuspend_delay(dev, 2000);
    987	pm_runtime_use_autosuspend(dev);
    988
    989	ret = iio_device_register(indio_dev);
    990	if (ret < 0)
    991		goto pm_disable;
    992
    993	return 0;
    994
    995pm_disable:
    996	pm_runtime_disable(dev);
    997	pm_runtime_set_suspended(dev);
    998
    999	return ret;
   1000}
   1001EXPORT_SYMBOL_GPL(fxas21002c_core_probe);
   1002
   1003void fxas21002c_core_remove(struct device *dev)
   1004{
   1005	struct iio_dev *indio_dev = dev_get_drvdata(dev);
   1006
   1007	iio_device_unregister(indio_dev);
   1008
   1009	pm_runtime_disable(dev);
   1010	pm_runtime_set_suspended(dev);
   1011}
   1012EXPORT_SYMBOL_GPL(fxas21002c_core_remove);
   1013
   1014static int __maybe_unused fxas21002c_suspend(struct device *dev)
   1015{
   1016	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
   1017
   1018	fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
   1019	fxas21002c_power_disable(data);
   1020
   1021	return 0;
   1022}
   1023
   1024static int __maybe_unused fxas21002c_resume(struct device *dev)
   1025{
   1026	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
   1027	int ret;
   1028
   1029	ret = fxas21002c_power_enable(data);
   1030	if (ret < 0)
   1031		return ret;
   1032
   1033	return fxas21002c_mode_set(data, data->prev_mode);
   1034}
   1035
   1036static int __maybe_unused fxas21002c_runtime_suspend(struct device *dev)
   1037{
   1038	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
   1039
   1040	return fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
   1041}
   1042
   1043static int __maybe_unused fxas21002c_runtime_resume(struct device *dev)
   1044{
   1045	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
   1046
   1047	return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE);
   1048}
   1049
   1050const struct dev_pm_ops fxas21002c_pm_ops = {
   1051	SET_SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume)
   1052	SET_RUNTIME_PM_OPS(fxas21002c_runtime_suspend,
   1053			   fxas21002c_runtime_resume, NULL)
   1054};
   1055EXPORT_SYMBOL_GPL(fxas21002c_pm_ops);
   1056
   1057MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
   1058MODULE_LICENSE("GPL v2");
   1059MODULE_DESCRIPTION("FXAS21002C Gyro driver");