cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bmi160_core.c (22086B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
      4 *
      5 * Copyright (c) 2016, Intel Corporation.
      6 * Copyright (c) 2019, Martin Kelly.
      7 *
      8 * IIO core driver for BMI160, with support for I2C/SPI busses
      9 *
     10 * TODO: magnetometer, hardware FIFO
     11 */
     12#include <linux/module.h>
     13#include <linux/regmap.h>
     14#include <linux/delay.h>
     15#include <linux/irq.h>
     16#include <linux/property.h>
     17#include <linux/regulator/consumer.h>
     18
     19#include <linux/iio/iio.h>
     20#include <linux/iio/triggered_buffer.h>
     21#include <linux/iio/trigger_consumer.h>
     22#include <linux/iio/buffer.h>
     23#include <linux/iio/sysfs.h>
     24#include <linux/iio/trigger.h>
     25
     26#include "bmi160.h"
     27
     28#define BMI160_REG_CHIP_ID	0x00
     29#define BMI160_CHIP_ID_VAL	0xD1
     30
     31#define BMI160_REG_PMU_STATUS	0x03
     32
     33/* X axis data low byte address, the rest can be obtained using axis offset */
     34#define BMI160_REG_DATA_MAGN_XOUT_L	0x04
     35#define BMI160_REG_DATA_GYRO_XOUT_L	0x0C
     36#define BMI160_REG_DATA_ACCEL_XOUT_L	0x12
     37
     38#define BMI160_REG_ACCEL_CONFIG		0x40
     39#define BMI160_ACCEL_CONFIG_ODR_MASK	GENMASK(3, 0)
     40#define BMI160_ACCEL_CONFIG_BWP_MASK	GENMASK(6, 4)
     41
     42#define BMI160_REG_ACCEL_RANGE		0x41
     43#define BMI160_ACCEL_RANGE_2G		0x03
     44#define BMI160_ACCEL_RANGE_4G		0x05
     45#define BMI160_ACCEL_RANGE_8G		0x08
     46#define BMI160_ACCEL_RANGE_16G		0x0C
     47
     48#define BMI160_REG_GYRO_CONFIG		0x42
     49#define BMI160_GYRO_CONFIG_ODR_MASK	GENMASK(3, 0)
     50#define BMI160_GYRO_CONFIG_BWP_MASK	GENMASK(5, 4)
     51
     52#define BMI160_REG_GYRO_RANGE		0x43
     53#define BMI160_GYRO_RANGE_2000DPS	0x00
     54#define BMI160_GYRO_RANGE_1000DPS	0x01
     55#define BMI160_GYRO_RANGE_500DPS	0x02
     56#define BMI160_GYRO_RANGE_250DPS	0x03
     57#define BMI160_GYRO_RANGE_125DPS	0x04
     58
     59#define BMI160_REG_CMD			0x7E
     60#define BMI160_CMD_ACCEL_PM_SUSPEND	0x10
     61#define BMI160_CMD_ACCEL_PM_NORMAL	0x11
     62#define BMI160_CMD_ACCEL_PM_LOW_POWER	0x12
     63#define BMI160_CMD_GYRO_PM_SUSPEND	0x14
     64#define BMI160_CMD_GYRO_PM_NORMAL	0x15
     65#define BMI160_CMD_GYRO_PM_FAST_STARTUP	0x17
     66#define BMI160_CMD_SOFTRESET		0xB6
     67
     68#define BMI160_REG_INT_EN		0x51
     69#define BMI160_DRDY_INT_EN		BIT(4)
     70
     71#define BMI160_REG_INT_OUT_CTRL		0x53
     72#define BMI160_INT_OUT_CTRL_MASK	0x0f
     73#define BMI160_INT1_OUT_CTRL_SHIFT	0
     74#define BMI160_INT2_OUT_CTRL_SHIFT	4
     75#define BMI160_EDGE_TRIGGERED		BIT(0)
     76#define BMI160_ACTIVE_HIGH		BIT(1)
     77#define BMI160_OPEN_DRAIN		BIT(2)
     78#define BMI160_OUTPUT_EN		BIT(3)
     79
     80#define BMI160_REG_INT_LATCH		0x54
     81#define BMI160_INT1_LATCH_MASK		BIT(4)
     82#define BMI160_INT2_LATCH_MASK		BIT(5)
     83
     84/* INT1 and INT2 are in the opposite order as in INT_OUT_CTRL! */
     85#define BMI160_REG_INT_MAP		0x56
     86#define BMI160_INT1_MAP_DRDY_EN		0x80
     87#define BMI160_INT2_MAP_DRDY_EN		0x08
     88
     89#define BMI160_REG_DUMMY		0x7F
     90
     91#define BMI160_NORMAL_WRITE_USLEEP	2
     92#define BMI160_SUSPENDED_WRITE_USLEEP	450
     93
     94#define BMI160_ACCEL_PMU_MIN_USLEEP	3800
     95#define BMI160_GYRO_PMU_MIN_USLEEP	80000
     96#define BMI160_SOFTRESET_USLEEP		1000
     97
     98#define BMI160_CHANNEL(_type, _axis, _index) {			\
     99	.type = _type,						\
    100	.modified = 1,						\
    101	.channel2 = IIO_MOD_##_axis,				\
    102	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
    103	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
    104		BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
    105	.scan_index = _index,					\
    106	.scan_type = {						\
    107		.sign = 's',					\
    108		.realbits = 16,					\
    109		.storagebits = 16,				\
    110		.endianness = IIO_LE,				\
    111	},							\
    112	.ext_info = bmi160_ext_info,				\
    113}
    114
    115/* scan indexes follow DATA register order */
    116enum bmi160_scan_axis {
    117	BMI160_SCAN_EXT_MAGN_X = 0,
    118	BMI160_SCAN_EXT_MAGN_Y,
    119	BMI160_SCAN_EXT_MAGN_Z,
    120	BMI160_SCAN_RHALL,
    121	BMI160_SCAN_GYRO_X,
    122	BMI160_SCAN_GYRO_Y,
    123	BMI160_SCAN_GYRO_Z,
    124	BMI160_SCAN_ACCEL_X,
    125	BMI160_SCAN_ACCEL_Y,
    126	BMI160_SCAN_ACCEL_Z,
    127	BMI160_SCAN_TIMESTAMP,
    128};
    129
    130enum bmi160_sensor_type {
    131	BMI160_ACCEL	= 0,
    132	BMI160_GYRO,
    133	BMI160_EXT_MAGN,
    134	BMI160_NUM_SENSORS /* must be last */
    135};
    136
    137enum bmi160_int_pin {
    138	BMI160_PIN_INT1,
    139	BMI160_PIN_INT2
    140};
    141
    142const struct regmap_config bmi160_regmap_config = {
    143	.reg_bits = 8,
    144	.val_bits = 8,
    145};
    146EXPORT_SYMBOL(bmi160_regmap_config);
    147
    148struct bmi160_regs {
    149	u8 data; /* LSB byte register for X-axis */
    150	u8 config;
    151	u8 config_odr_mask;
    152	u8 config_bwp_mask;
    153	u8 range;
    154	u8 pmu_cmd_normal;
    155	u8 pmu_cmd_suspend;
    156};
    157
    158static struct bmi160_regs bmi160_regs[] = {
    159	[BMI160_ACCEL] = {
    160		.data	= BMI160_REG_DATA_ACCEL_XOUT_L,
    161		.config	= BMI160_REG_ACCEL_CONFIG,
    162		.config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
    163		.config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
    164		.range	= BMI160_REG_ACCEL_RANGE,
    165		.pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
    166		.pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
    167	},
    168	[BMI160_GYRO] = {
    169		.data	= BMI160_REG_DATA_GYRO_XOUT_L,
    170		.config	= BMI160_REG_GYRO_CONFIG,
    171		.config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
    172		.config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
    173		.range	= BMI160_REG_GYRO_RANGE,
    174		.pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
    175		.pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
    176	},
    177};
    178
    179static unsigned long bmi160_pmu_time[] = {
    180	[BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP,
    181	[BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP,
    182};
    183
    184struct bmi160_scale {
    185	u8 bits;
    186	int uscale;
    187};
    188
    189struct bmi160_odr {
    190	u8 bits;
    191	int odr;
    192	int uodr;
    193};
    194
    195static const struct bmi160_scale bmi160_accel_scale[] = {
    196	{ BMI160_ACCEL_RANGE_2G, 598},
    197	{ BMI160_ACCEL_RANGE_4G, 1197},
    198	{ BMI160_ACCEL_RANGE_8G, 2394},
    199	{ BMI160_ACCEL_RANGE_16G, 4788},
    200};
    201
    202static const struct bmi160_scale bmi160_gyro_scale[] = {
    203	{ BMI160_GYRO_RANGE_2000DPS, 1065},
    204	{ BMI160_GYRO_RANGE_1000DPS, 532},
    205	{ BMI160_GYRO_RANGE_500DPS, 266},
    206	{ BMI160_GYRO_RANGE_250DPS, 133},
    207	{ BMI160_GYRO_RANGE_125DPS, 66},
    208};
    209
    210struct bmi160_scale_item {
    211	const struct bmi160_scale *tbl;
    212	int num;
    213};
    214
    215static const struct  bmi160_scale_item bmi160_scale_table[] = {
    216	[BMI160_ACCEL] = {
    217		.tbl	= bmi160_accel_scale,
    218		.num	= ARRAY_SIZE(bmi160_accel_scale),
    219	},
    220	[BMI160_GYRO] = {
    221		.tbl	= bmi160_gyro_scale,
    222		.num	= ARRAY_SIZE(bmi160_gyro_scale),
    223	},
    224};
    225
    226static const struct bmi160_odr bmi160_accel_odr[] = {
    227	{0x01, 0, 781250},
    228	{0x02, 1, 562500},
    229	{0x03, 3, 125000},
    230	{0x04, 6, 250000},
    231	{0x05, 12, 500000},
    232	{0x06, 25, 0},
    233	{0x07, 50, 0},
    234	{0x08, 100, 0},
    235	{0x09, 200, 0},
    236	{0x0A, 400, 0},
    237	{0x0B, 800, 0},
    238	{0x0C, 1600, 0},
    239};
    240
    241static const struct bmi160_odr bmi160_gyro_odr[] = {
    242	{0x06, 25, 0},
    243	{0x07, 50, 0},
    244	{0x08, 100, 0},
    245	{0x09, 200, 0},
    246	{0x0A, 400, 0},
    247	{0x0B, 800, 0},
    248	{0x0C, 1600, 0},
    249	{0x0D, 3200, 0},
    250};
    251
    252struct bmi160_odr_item {
    253	const struct bmi160_odr *tbl;
    254	int num;
    255};
    256
    257static const struct  bmi160_odr_item bmi160_odr_table[] = {
    258	[BMI160_ACCEL] = {
    259		.tbl	= bmi160_accel_odr,
    260		.num	= ARRAY_SIZE(bmi160_accel_odr),
    261	},
    262	[BMI160_GYRO] = {
    263		.tbl	= bmi160_gyro_odr,
    264		.num	= ARRAY_SIZE(bmi160_gyro_odr),
    265	},
    266};
    267
    268static const struct iio_mount_matrix *
    269bmi160_get_mount_matrix(const struct iio_dev *indio_dev,
    270			const struct iio_chan_spec *chan)
    271{
    272	struct bmi160_data *data = iio_priv(indio_dev);
    273
    274	return &data->orientation;
    275}
    276
    277static const struct iio_chan_spec_ext_info bmi160_ext_info[] = {
    278	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmi160_get_mount_matrix),
    279	{ }
    280};
    281
    282static const struct iio_chan_spec bmi160_channels[] = {
    283	BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
    284	BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
    285	BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
    286	BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
    287	BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
    288	BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
    289	IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
    290};
    291
    292static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
    293{
    294	switch (iio_type) {
    295	case IIO_ACCEL:
    296		return BMI160_ACCEL;
    297	case IIO_ANGL_VEL:
    298		return BMI160_GYRO;
    299	default:
    300		return -EINVAL;
    301	}
    302}
    303
    304static
    305int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
    306		    bool mode)
    307{
    308	int ret;
    309	u8 cmd;
    310
    311	if (mode)
    312		cmd = bmi160_regs[t].pmu_cmd_normal;
    313	else
    314		cmd = bmi160_regs[t].pmu_cmd_suspend;
    315
    316	ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
    317	if (ret)
    318		return ret;
    319
    320	usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000);
    321
    322	return 0;
    323}
    324
    325static
    326int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
    327		     int uscale)
    328{
    329	int i;
    330
    331	for (i = 0; i < bmi160_scale_table[t].num; i++)
    332		if (bmi160_scale_table[t].tbl[i].uscale == uscale)
    333			break;
    334
    335	if (i == bmi160_scale_table[t].num)
    336		return -EINVAL;
    337
    338	return regmap_write(data->regmap, bmi160_regs[t].range,
    339			    bmi160_scale_table[t].tbl[i].bits);
    340}
    341
    342static
    343int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
    344		     int *uscale)
    345{
    346	int i, ret, val;
    347
    348	ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
    349	if (ret)
    350		return ret;
    351
    352	for (i = 0; i < bmi160_scale_table[t].num; i++)
    353		if (bmi160_scale_table[t].tbl[i].bits == val) {
    354			*uscale = bmi160_scale_table[t].tbl[i].uscale;
    355			return 0;
    356		}
    357
    358	return -EINVAL;
    359}
    360
    361static int bmi160_get_data(struct bmi160_data *data, int chan_type,
    362			   int axis, int *val)
    363{
    364	u8 reg;
    365	int ret;
    366	__le16 sample;
    367	enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
    368
    369	reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample);
    370
    371	ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample));
    372	if (ret)
    373		return ret;
    374
    375	*val = sign_extend32(le16_to_cpu(sample), 15);
    376
    377	return 0;
    378}
    379
    380static
    381int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
    382		   int odr, int uodr)
    383{
    384	int i;
    385
    386	for (i = 0; i < bmi160_odr_table[t].num; i++)
    387		if (bmi160_odr_table[t].tbl[i].odr == odr &&
    388		    bmi160_odr_table[t].tbl[i].uodr == uodr)
    389			break;
    390
    391	if (i >= bmi160_odr_table[t].num)
    392		return -EINVAL;
    393
    394	return regmap_update_bits(data->regmap,
    395				  bmi160_regs[t].config,
    396				  bmi160_regs[t].config_odr_mask,
    397				  bmi160_odr_table[t].tbl[i].bits);
    398}
    399
    400static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
    401			  int *odr, int *uodr)
    402{
    403	int i, val, ret;
    404
    405	ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
    406	if (ret)
    407		return ret;
    408
    409	val &= bmi160_regs[t].config_odr_mask;
    410
    411	for (i = 0; i < bmi160_odr_table[t].num; i++)
    412		if (val == bmi160_odr_table[t].tbl[i].bits)
    413			break;
    414
    415	if (i >= bmi160_odr_table[t].num)
    416		return -EINVAL;
    417
    418	*odr = bmi160_odr_table[t].tbl[i].odr;
    419	*uodr = bmi160_odr_table[t].tbl[i].uodr;
    420
    421	return 0;
    422}
    423
    424static irqreturn_t bmi160_trigger_handler(int irq, void *p)
    425{
    426	struct iio_poll_func *pf = p;
    427	struct iio_dev *indio_dev = pf->indio_dev;
    428	struct bmi160_data *data = iio_priv(indio_dev);
    429	int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
    430	__le16 sample;
    431
    432	for_each_set_bit(i, indio_dev->active_scan_mask,
    433			 indio_dev->masklength) {
    434		ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
    435				       &sample, sizeof(sample));
    436		if (ret)
    437			goto done;
    438		data->buf[j++] = sample;
    439	}
    440
    441	iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp);
    442done:
    443	iio_trigger_notify_done(indio_dev->trig);
    444	return IRQ_HANDLED;
    445}
    446
    447static int bmi160_read_raw(struct iio_dev *indio_dev,
    448			   struct iio_chan_spec const *chan,
    449			   int *val, int *val2, long mask)
    450{
    451	int ret;
    452	struct bmi160_data *data = iio_priv(indio_dev);
    453
    454	switch (mask) {
    455	case IIO_CHAN_INFO_RAW:
    456		ret = bmi160_get_data(data, chan->type, chan->channel2, val);
    457		if (ret)
    458			return ret;
    459		return IIO_VAL_INT;
    460	case IIO_CHAN_INFO_SCALE:
    461		*val = 0;
    462		ret = bmi160_get_scale(data,
    463				       bmi160_to_sensor(chan->type), val2);
    464		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
    465	case IIO_CHAN_INFO_SAMP_FREQ:
    466		ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
    467				     val, val2);
    468		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
    469	default:
    470		return -EINVAL;
    471	}
    472
    473	return 0;
    474}
    475
    476static int bmi160_write_raw(struct iio_dev *indio_dev,
    477			    struct iio_chan_spec const *chan,
    478			    int val, int val2, long mask)
    479{
    480	struct bmi160_data *data = iio_priv(indio_dev);
    481
    482	switch (mask) {
    483	case IIO_CHAN_INFO_SCALE:
    484		return bmi160_set_scale(data,
    485					bmi160_to_sensor(chan->type), val2);
    486	case IIO_CHAN_INFO_SAMP_FREQ:
    487		return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
    488				      val, val2);
    489	default:
    490		return -EINVAL;
    491	}
    492
    493	return 0;
    494}
    495
    496static
    497IIO_CONST_ATTR(in_accel_sampling_frequency_available,
    498	       "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600");
    499static
    500IIO_CONST_ATTR(in_anglvel_sampling_frequency_available,
    501	       "25 50 100 200 400 800 1600 3200");
    502static
    503IIO_CONST_ATTR(in_accel_scale_available,
    504	       "0.000598 0.001197 0.002394 0.004788");
    505static
    506IIO_CONST_ATTR(in_anglvel_scale_available,
    507	       "0.001065 0.000532 0.000266 0.000133 0.000066");
    508
    509static struct attribute *bmi160_attrs[] = {
    510	&iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr,
    511	&iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr,
    512	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
    513	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
    514	NULL,
    515};
    516
    517static const struct attribute_group bmi160_attrs_group = {
    518	.attrs = bmi160_attrs,
    519};
    520
    521static const struct iio_info bmi160_info = {
    522	.read_raw = bmi160_read_raw,
    523	.write_raw = bmi160_write_raw,
    524	.attrs = &bmi160_attrs_group,
    525};
    526
    527static int bmi160_write_conf_reg(struct regmap *regmap, unsigned int reg,
    528				 unsigned int mask, unsigned int bits,
    529				 unsigned int write_usleep)
    530{
    531	int ret;
    532	unsigned int val;
    533
    534	ret = regmap_read(regmap, reg, &val);
    535	if (ret)
    536		return ret;
    537
    538	val = (val & ~mask) | bits;
    539
    540	ret = regmap_write(regmap, reg, val);
    541	if (ret)
    542		return ret;
    543
    544	/*
    545	 * We need to wait after writing before we can write again. See the
    546	 * datasheet, page 93.
    547	 */
    548	usleep_range(write_usleep, write_usleep + 1000);
    549
    550	return 0;
    551}
    552
    553static int bmi160_config_pin(struct regmap *regmap, enum bmi160_int_pin pin,
    554			     bool open_drain, u8 irq_mask,
    555			     unsigned long write_usleep)
    556{
    557	int ret;
    558	struct device *dev = regmap_get_device(regmap);
    559	u8 int_out_ctrl_shift;
    560	u8 int_latch_mask;
    561	u8 int_map_mask;
    562	u8 int_out_ctrl_mask;
    563	u8 int_out_ctrl_bits;
    564	const char *pin_name;
    565
    566	switch (pin) {
    567	case BMI160_PIN_INT1:
    568		int_out_ctrl_shift = BMI160_INT1_OUT_CTRL_SHIFT;
    569		int_latch_mask = BMI160_INT1_LATCH_MASK;
    570		int_map_mask = BMI160_INT1_MAP_DRDY_EN;
    571		break;
    572	case BMI160_PIN_INT2:
    573		int_out_ctrl_shift = BMI160_INT2_OUT_CTRL_SHIFT;
    574		int_latch_mask = BMI160_INT2_LATCH_MASK;
    575		int_map_mask = BMI160_INT2_MAP_DRDY_EN;
    576		break;
    577	}
    578	int_out_ctrl_mask = BMI160_INT_OUT_CTRL_MASK << int_out_ctrl_shift;
    579
    580	/*
    581	 * Enable the requested pin with the right settings:
    582	 * - Push-pull/open-drain
    583	 * - Active low/high
    584	 * - Edge/level triggered
    585	 */
    586	int_out_ctrl_bits = BMI160_OUTPUT_EN;
    587	if (open_drain)
    588		/* Default is push-pull. */
    589		int_out_ctrl_bits |= BMI160_OPEN_DRAIN;
    590	int_out_ctrl_bits |= irq_mask;
    591	int_out_ctrl_bits <<= int_out_ctrl_shift;
    592
    593	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_OUT_CTRL,
    594				    int_out_ctrl_mask, int_out_ctrl_bits,
    595				    write_usleep);
    596	if (ret)
    597		return ret;
    598
    599	/* Set the pin to input mode with no latching. */
    600	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_LATCH,
    601				    int_latch_mask, int_latch_mask,
    602				    write_usleep);
    603	if (ret)
    604		return ret;
    605
    606	/* Map interrupts to the requested pin. */
    607	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_MAP,
    608				    int_map_mask, int_map_mask,
    609				    write_usleep);
    610	if (ret) {
    611		switch (pin) {
    612		case BMI160_PIN_INT1:
    613			pin_name = "INT1";
    614			break;
    615		case BMI160_PIN_INT2:
    616			pin_name = "INT2";
    617			break;
    618		}
    619		dev_err(dev, "Failed to configure %s IRQ pin", pin_name);
    620	}
    621
    622	return ret;
    623}
    624
    625int bmi160_enable_irq(struct regmap *regmap, bool enable)
    626{
    627	unsigned int enable_bit = 0;
    628
    629	if (enable)
    630		enable_bit = BMI160_DRDY_INT_EN;
    631
    632	return bmi160_write_conf_reg(regmap, BMI160_REG_INT_EN,
    633				     BMI160_DRDY_INT_EN, enable_bit,
    634				     BMI160_NORMAL_WRITE_USLEEP);
    635}
    636EXPORT_SYMBOL(bmi160_enable_irq);
    637
    638static int bmi160_get_irq(struct fwnode_handle *fwnode, enum bmi160_int_pin *pin)
    639{
    640	int irq;
    641
    642	/* Use INT1 if possible, otherwise fall back to INT2. */
    643	irq = fwnode_irq_get_byname(fwnode, "INT1");
    644	if (irq > 0) {
    645		*pin = BMI160_PIN_INT1;
    646		return irq;
    647	}
    648
    649	irq = fwnode_irq_get_byname(fwnode, "INT2");
    650	if (irq > 0)
    651		*pin = BMI160_PIN_INT2;
    652
    653	return irq;
    654}
    655
    656static int bmi160_config_device_irq(struct iio_dev *indio_dev, int irq_type,
    657				    enum bmi160_int_pin pin)
    658{
    659	bool open_drain;
    660	u8 irq_mask;
    661	struct bmi160_data *data = iio_priv(indio_dev);
    662	struct device *dev = regmap_get_device(data->regmap);
    663
    664	/* Level-triggered, active-low is the default if we set all zeroes. */
    665	if (irq_type == IRQF_TRIGGER_RISING)
    666		irq_mask = BMI160_ACTIVE_HIGH | BMI160_EDGE_TRIGGERED;
    667	else if (irq_type == IRQF_TRIGGER_FALLING)
    668		irq_mask = BMI160_EDGE_TRIGGERED;
    669	else if (irq_type == IRQF_TRIGGER_HIGH)
    670		irq_mask = BMI160_ACTIVE_HIGH;
    671	else if (irq_type == IRQF_TRIGGER_LOW)
    672		irq_mask = 0;
    673	else {
    674		dev_err(&indio_dev->dev,
    675			"Invalid interrupt type 0x%x specified\n", irq_type);
    676		return -EINVAL;
    677	}
    678
    679	open_drain = device_property_read_bool(dev, "drive-open-drain");
    680
    681	return bmi160_config_pin(data->regmap, pin, open_drain, irq_mask,
    682				 BMI160_NORMAL_WRITE_USLEEP);
    683}
    684
    685static int bmi160_setup_irq(struct iio_dev *indio_dev, int irq,
    686			    enum bmi160_int_pin pin)
    687{
    688	struct irq_data *desc;
    689	u32 irq_type;
    690	int ret;
    691
    692	desc = irq_get_irq_data(irq);
    693	if (!desc) {
    694		dev_err(&indio_dev->dev, "Could not find IRQ %d\n", irq);
    695		return -EINVAL;
    696	}
    697
    698	irq_type = irqd_get_trigger_type(desc);
    699
    700	ret = bmi160_config_device_irq(indio_dev, irq_type, pin);
    701	if (ret)
    702		return ret;
    703
    704	return bmi160_probe_trigger(indio_dev, irq, irq_type);
    705}
    706
    707static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
    708{
    709	int ret;
    710	unsigned int val;
    711	struct device *dev = regmap_get_device(data->regmap);
    712
    713	ret = regulator_bulk_enable(ARRAY_SIZE(data->supplies), data->supplies);
    714	if (ret) {
    715		dev_err(dev, "Failed to enable regulators: %d\n", ret);
    716		return ret;
    717	}
    718
    719	ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
    720	if (ret)
    721		goto disable_regulator;
    722
    723	usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
    724
    725	/*
    726	 * CS rising edge is needed before starting SPI, so do a dummy read
    727	 * See Section 3.2.1, page 86 of the datasheet
    728	 */
    729	if (use_spi) {
    730		ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
    731		if (ret)
    732			goto disable_regulator;
    733	}
    734
    735	ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
    736	if (ret) {
    737		dev_err(dev, "Error reading chip id\n");
    738		goto disable_regulator;
    739	}
    740	if (val != BMI160_CHIP_ID_VAL) {
    741		dev_err(dev, "Wrong chip id, got %x expected %x\n",
    742			val, BMI160_CHIP_ID_VAL);
    743		ret = -ENODEV;
    744		goto disable_regulator;
    745	}
    746
    747	ret = bmi160_set_mode(data, BMI160_ACCEL, true);
    748	if (ret)
    749		goto disable_regulator;
    750
    751	ret = bmi160_set_mode(data, BMI160_GYRO, true);
    752	if (ret)
    753		goto disable_accel;
    754
    755	return 0;
    756
    757disable_accel:
    758	bmi160_set_mode(data, BMI160_ACCEL, false);
    759
    760disable_regulator:
    761	regulator_bulk_disable(ARRAY_SIZE(data->supplies), data->supplies);
    762	return ret;
    763}
    764
    765static int bmi160_data_rdy_trigger_set_state(struct iio_trigger *trig,
    766					     bool enable)
    767{
    768	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
    769	struct bmi160_data *data = iio_priv(indio_dev);
    770
    771	return bmi160_enable_irq(data->regmap, enable);
    772}
    773
    774static const struct iio_trigger_ops bmi160_trigger_ops = {
    775	.set_trigger_state = &bmi160_data_rdy_trigger_set_state,
    776};
    777
    778int bmi160_probe_trigger(struct iio_dev *indio_dev, int irq, u32 irq_type)
    779{
    780	struct bmi160_data *data = iio_priv(indio_dev);
    781	int ret;
    782
    783	data->trig = devm_iio_trigger_alloc(&indio_dev->dev, "%s-dev%d",
    784					    indio_dev->name,
    785					    iio_device_id(indio_dev));
    786
    787	if (data->trig == NULL)
    788		return -ENOMEM;
    789
    790	ret = devm_request_irq(&indio_dev->dev, irq,
    791			       &iio_trigger_generic_data_rdy_poll,
    792			       irq_type, "bmi160", data->trig);
    793	if (ret)
    794		return ret;
    795
    796	data->trig->dev.parent = regmap_get_device(data->regmap);
    797	data->trig->ops = &bmi160_trigger_ops;
    798	iio_trigger_set_drvdata(data->trig, indio_dev);
    799
    800	ret = devm_iio_trigger_register(&indio_dev->dev, data->trig);
    801	if (ret)
    802		return ret;
    803
    804	indio_dev->trig = iio_trigger_get(data->trig);
    805
    806	return 0;
    807}
    808
    809static void bmi160_chip_uninit(void *data)
    810{
    811	struct bmi160_data *bmi_data = data;
    812	struct device *dev = regmap_get_device(bmi_data->regmap);
    813	int ret;
    814
    815	bmi160_set_mode(bmi_data, BMI160_GYRO, false);
    816	bmi160_set_mode(bmi_data, BMI160_ACCEL, false);
    817
    818	ret = regulator_bulk_disable(ARRAY_SIZE(bmi_data->supplies),
    819				     bmi_data->supplies);
    820	if (ret)
    821		dev_err(dev, "Failed to disable regulators: %d\n", ret);
    822}
    823
    824int bmi160_core_probe(struct device *dev, struct regmap *regmap,
    825		      const char *name, bool use_spi)
    826{
    827	struct iio_dev *indio_dev;
    828	struct bmi160_data *data;
    829	int irq;
    830	enum bmi160_int_pin int_pin;
    831	int ret;
    832
    833	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
    834	if (!indio_dev)
    835		return -ENOMEM;
    836
    837	data = iio_priv(indio_dev);
    838	dev_set_drvdata(dev, indio_dev);
    839	data->regmap = regmap;
    840
    841	data->supplies[0].supply = "vdd";
    842	data->supplies[1].supply = "vddio";
    843	ret = devm_regulator_bulk_get(dev,
    844				      ARRAY_SIZE(data->supplies),
    845				      data->supplies);
    846	if (ret) {
    847		dev_err(dev, "Failed to get regulators: %d\n", ret);
    848		return ret;
    849	}
    850
    851	ret = iio_read_mount_matrix(dev, &data->orientation);
    852	if (ret)
    853		return ret;
    854
    855	ret = bmi160_chip_init(data, use_spi);
    856	if (ret)
    857		return ret;
    858
    859	ret = devm_add_action_or_reset(dev, bmi160_chip_uninit, data);
    860	if (ret)
    861		return ret;
    862
    863	indio_dev->channels = bmi160_channels;
    864	indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
    865	indio_dev->name = name;
    866	indio_dev->modes = INDIO_DIRECT_MODE;
    867	indio_dev->info = &bmi160_info;
    868
    869	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
    870					      iio_pollfunc_store_time,
    871					      bmi160_trigger_handler, NULL);
    872	if (ret)
    873		return ret;
    874
    875	irq = bmi160_get_irq(dev_fwnode(dev), &int_pin);
    876	if (irq > 0) {
    877		ret = bmi160_setup_irq(indio_dev, irq, int_pin);
    878		if (ret)
    879			dev_err(&indio_dev->dev, "Failed to setup IRQ %d\n",
    880				irq);
    881	} else {
    882		dev_info(&indio_dev->dev, "Not setting up IRQ trigger\n");
    883	}
    884
    885	return devm_iio_device_register(dev, indio_dev);
    886}
    887EXPORT_SYMBOL_GPL(bmi160_core_probe);
    888
    889MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
    890MODULE_DESCRIPTION("Bosch BMI160 driver");
    891MODULE_LICENSE("GPL v2");