cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

inv_icm42600_timestamp.c (5828B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2020 Invensense, Inc.
      4 */
      5
      6#include <linux/kernel.h>
      7#include <linux/regmap.h>
      8#include <linux/math64.h>
      9
     10#include "inv_icm42600.h"
     11#include "inv_icm42600_timestamp.h"
     12
     13/* internal chip period is 32kHz, 31250ns */
     14#define INV_ICM42600_TIMESTAMP_PERIOD		31250
     15/* allow a jitter of +/- 2% */
     16#define INV_ICM42600_TIMESTAMP_JITTER		2
     17/* compute min and max periods accepted */
     18#define INV_ICM42600_TIMESTAMP_MIN_PERIOD(_p)		\
     19	(((_p) * (100 - INV_ICM42600_TIMESTAMP_JITTER)) / 100)
     20#define INV_ICM42600_TIMESTAMP_MAX_PERIOD(_p)		\
     21	(((_p) * (100 + INV_ICM42600_TIMESTAMP_JITTER)) / 100)
     22
     23/* Add a new value inside an accumulator and update the estimate value */
     24static void inv_update_acc(struct inv_icm42600_timestamp_acc *acc, uint32_t val)
     25{
     26	uint64_t sum = 0;
     27	size_t i;
     28
     29	acc->values[acc->idx++] = val;
     30	if (acc->idx >= ARRAY_SIZE(acc->values))
     31		acc->idx = 0;
     32
     33	/* compute the mean of all stored values, use 0 as empty slot */
     34	for (i = 0; i < ARRAY_SIZE(acc->values); ++i) {
     35		if (acc->values[i] == 0)
     36			break;
     37		sum += acc->values[i];
     38	}
     39
     40	acc->val = div_u64(sum, i);
     41}
     42
     43void inv_icm42600_timestamp_init(struct inv_icm42600_timestamp *ts,
     44				 uint32_t period)
     45{
     46	/* initial odr for sensor after reset is 1kHz */
     47	const uint32_t default_period = 1000000;
     48
     49	/* current multiplier and period values after reset */
     50	ts->mult = default_period / INV_ICM42600_TIMESTAMP_PERIOD;
     51	ts->period = default_period;
     52	/* new set multiplier is the one from chip initialization */
     53	ts->new_mult = period / INV_ICM42600_TIMESTAMP_PERIOD;
     54
     55	/* use theoretical value for chip period */
     56	inv_update_acc(&ts->chip_period, INV_ICM42600_TIMESTAMP_PERIOD);
     57}
     58
     59int inv_icm42600_timestamp_setup(struct inv_icm42600_state *st)
     60{
     61	unsigned int val;
     62
     63	/* enable timestamp register */
     64	val = INV_ICM42600_TMST_CONFIG_TMST_TO_REGS_EN |
     65	      INV_ICM42600_TMST_CONFIG_TMST_EN;
     66	return regmap_update_bits(st->map, INV_ICM42600_REG_TMST_CONFIG,
     67				  INV_ICM42600_TMST_CONFIG_MASK, val);
     68}
     69
     70int inv_icm42600_timestamp_update_odr(struct inv_icm42600_timestamp *ts,
     71				      uint32_t period, bool fifo)
     72{
     73	/* when FIFO is on, prevent odr change if one is already pending */
     74	if (fifo && ts->new_mult != 0)
     75		return -EAGAIN;
     76
     77	ts->new_mult = period / INV_ICM42600_TIMESTAMP_PERIOD;
     78
     79	return 0;
     80}
     81
     82static bool inv_validate_period(uint32_t period, uint32_t mult)
     83{
     84	const uint32_t chip_period = INV_ICM42600_TIMESTAMP_PERIOD;
     85	uint32_t period_min, period_max;
     86
     87	/* check that period is acceptable */
     88	period_min = INV_ICM42600_TIMESTAMP_MIN_PERIOD(chip_period) * mult;
     89	period_max = INV_ICM42600_TIMESTAMP_MAX_PERIOD(chip_period) * mult;
     90	if (period > period_min && period < period_max)
     91		return true;
     92	else
     93		return false;
     94}
     95
     96static bool inv_compute_chip_period(struct inv_icm42600_timestamp *ts,
     97				    uint32_t mult, uint32_t period)
     98{
     99	uint32_t new_chip_period;
    100
    101	if (!inv_validate_period(period, mult))
    102		return false;
    103
    104	/* update chip internal period estimation */
    105	new_chip_period = period / mult;
    106	inv_update_acc(&ts->chip_period, new_chip_period);
    107
    108	return true;
    109}
    110
    111void inv_icm42600_timestamp_interrupt(struct inv_icm42600_timestamp *ts,
    112				      uint32_t fifo_period, size_t fifo_nb,
    113				      size_t sensor_nb, int64_t timestamp)
    114{
    115	struct inv_icm42600_timestamp_interval *it;
    116	int64_t delta, interval;
    117	const uint32_t fifo_mult = fifo_period / INV_ICM42600_TIMESTAMP_PERIOD;
    118	uint32_t period = ts->period;
    119	int32_t m;
    120	bool valid = false;
    121
    122	if (fifo_nb == 0)
    123		return;
    124
    125	/* update interrupt timestamp and compute chip and sensor periods */
    126	it = &ts->it;
    127	it->lo = it->up;
    128	it->up = timestamp;
    129	delta = it->up - it->lo;
    130	if (it->lo != 0) {
    131		/* compute period: delta time divided by number of samples */
    132		period = div_s64(delta, fifo_nb);
    133		valid = inv_compute_chip_period(ts, fifo_mult, period);
    134		/* update sensor period if chip internal period is updated */
    135		if (valid)
    136			ts->period = ts->mult * ts->chip_period.val;
    137	}
    138
    139	/* no previous data, compute theoritical value from interrupt */
    140	if (ts->timestamp == 0) {
    141		/* elapsed time: sensor period * sensor samples number */
    142		interval = (int64_t)ts->period * (int64_t)sensor_nb;
    143		ts->timestamp = it->up - interval;
    144		return;
    145	}
    146
    147	/* if interrupt interval is valid, sync with interrupt timestamp */
    148	if (valid) {
    149		/* compute measured fifo_period */
    150		fifo_period = fifo_mult * ts->chip_period.val;
    151		/* delta time between last sample and last interrupt */
    152		delta = it->lo - ts->timestamp;
    153		/* if there are multiple samples, go back to first one */
    154		while (delta >= (fifo_period * 3 / 2))
    155			delta -= fifo_period;
    156		/* compute maximal adjustment value */
    157		m = INV_ICM42600_TIMESTAMP_MAX_PERIOD(ts->period) - ts->period;
    158		if (delta > m)
    159			delta = m;
    160		else if (delta < -m)
    161			delta = -m;
    162		ts->timestamp += delta;
    163	}
    164}
    165
    166void inv_icm42600_timestamp_apply_odr(struct inv_icm42600_timestamp *ts,
    167				      uint32_t fifo_period, size_t fifo_nb,
    168				      unsigned int fifo_no)
    169{
    170	int64_t interval;
    171	uint32_t fifo_mult;
    172
    173	if (ts->new_mult == 0)
    174		return;
    175
    176	/* update to new multiplier and update period */
    177	ts->mult = ts->new_mult;
    178	ts->new_mult = 0;
    179	ts->period = ts->mult * ts->chip_period.val;
    180
    181	/*
    182	 * After ODR change the time interval with the previous sample is
    183	 * undertermined (depends when the change occures). So we compute the
    184	 * timestamp from the current interrupt using the new FIFO period, the
    185	 * total number of samples and the current sample numero.
    186	 */
    187	if (ts->timestamp != 0) {
    188		/* compute measured fifo period */
    189		fifo_mult = fifo_period / INV_ICM42600_TIMESTAMP_PERIOD;
    190		fifo_period = fifo_mult * ts->chip_period.val;
    191		/* computes time interval between interrupt and this sample */
    192		interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period;
    193		ts->timestamp = ts->it.up - interval;
    194	}
    195}