cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rm3100-core.c (15656B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * PNI RM3100 3-axis geomagnetic sensor driver core.
      4 *
      5 * Copyright (C) 2018 Song Qiang <songqiang1304521@gmail.com>
      6 *
      7 * User Manual available at
      8 * <https://www.pnicorp.com/download/rm3100-user-manual/>
      9 *
     10 * TODO: event generation, pm.
     11 */
     12
     13#include <linux/delay.h>
     14#include <linux/interrupt.h>
     15#include <linux/module.h>
     16#include <linux/slab.h>
     17
     18#include <linux/iio/buffer.h>
     19#include <linux/iio/iio.h>
     20#include <linux/iio/sysfs.h>
     21#include <linux/iio/trigger.h>
     22#include <linux/iio/triggered_buffer.h>
     23#include <linux/iio/trigger_consumer.h>
     24
     25#include <asm/unaligned.h>
     26
     27#include "rm3100.h"
     28
     29/* Cycle Count Registers. */
     30#define RM3100_REG_CC_X			0x05
     31#define RM3100_REG_CC_Y			0x07
     32#define RM3100_REG_CC_Z			0x09
     33
     34/* Poll Measurement Mode register. */
     35#define RM3100_REG_POLL			0x00
     36#define		RM3100_POLL_X		BIT(4)
     37#define		RM3100_POLL_Y		BIT(5)
     38#define		RM3100_POLL_Z		BIT(6)
     39
     40/* Continuous Measurement Mode register. */
     41#define RM3100_REG_CMM			0x01
     42#define		RM3100_CMM_START	BIT(0)
     43#define		RM3100_CMM_X		BIT(4)
     44#define		RM3100_CMM_Y		BIT(5)
     45#define		RM3100_CMM_Z		BIT(6)
     46
     47/* TiMe Rate Configuration register. */
     48#define RM3100_REG_TMRC			0x0B
     49#define RM3100_TMRC_OFFSET		0x92
     50
     51/* Result Status register. */
     52#define RM3100_REG_STATUS		0x34
     53#define		RM3100_STATUS_DRDY	BIT(7)
     54
     55/* Measurement result registers. */
     56#define RM3100_REG_MX2			0x24
     57#define RM3100_REG_MY2			0x27
     58#define RM3100_REG_MZ2			0x2a
     59
     60#define RM3100_W_REG_START		RM3100_REG_POLL
     61#define RM3100_W_REG_END		RM3100_REG_TMRC
     62#define RM3100_R_REG_START		RM3100_REG_POLL
     63#define RM3100_R_REG_END		RM3100_REG_STATUS
     64#define RM3100_V_REG_START		RM3100_REG_POLL
     65#define RM3100_V_REG_END		RM3100_REG_STATUS
     66
     67/*
     68 * This is computed by hand, is the sum of channel storage bits and padding
     69 * bits, which is 4+4+4+12=24 in here.
     70 */
     71#define RM3100_SCAN_BYTES		24
     72
     73#define RM3100_CMM_AXIS_SHIFT		4
     74
     75struct rm3100_data {
     76	struct regmap *regmap;
     77	struct completion measuring_done;
     78	bool use_interrupt;
     79	int conversion_time;
     80	int scale;
     81	/* Ensure naturally aligned timestamp */
     82	u8 buffer[RM3100_SCAN_BYTES] __aligned(8);
     83	struct iio_trigger *drdy_trig;
     84
     85	/*
     86	 * This lock is for protecting the consistency of series of i2c
     87	 * operations, that is, to make sure a measurement process will
     88	 * not be interrupted by a set frequency operation, which should
     89	 * be taken where a series of i2c operation starts, released where
     90	 * the operation ends.
     91	 */
     92	struct mutex lock;
     93};
     94
     95static const struct regmap_range rm3100_readable_ranges[] = {
     96	regmap_reg_range(RM3100_R_REG_START, RM3100_R_REG_END),
     97};
     98
     99const struct regmap_access_table rm3100_readable_table = {
    100	.yes_ranges = rm3100_readable_ranges,
    101	.n_yes_ranges = ARRAY_SIZE(rm3100_readable_ranges),
    102};
    103EXPORT_SYMBOL_NS_GPL(rm3100_readable_table, IIO_RM3100);
    104
    105static const struct regmap_range rm3100_writable_ranges[] = {
    106	regmap_reg_range(RM3100_W_REG_START, RM3100_W_REG_END),
    107};
    108
    109const struct regmap_access_table rm3100_writable_table = {
    110	.yes_ranges = rm3100_writable_ranges,
    111	.n_yes_ranges = ARRAY_SIZE(rm3100_writable_ranges),
    112};
    113EXPORT_SYMBOL_NS_GPL(rm3100_writable_table, IIO_RM3100);
    114
    115static const struct regmap_range rm3100_volatile_ranges[] = {
    116	regmap_reg_range(RM3100_V_REG_START, RM3100_V_REG_END),
    117};
    118
    119const struct regmap_access_table rm3100_volatile_table = {
    120	.yes_ranges = rm3100_volatile_ranges,
    121	.n_yes_ranges = ARRAY_SIZE(rm3100_volatile_ranges),
    122};
    123EXPORT_SYMBOL_NS_GPL(rm3100_volatile_table, IIO_RM3100);
    124
    125static irqreturn_t rm3100_thread_fn(int irq, void *d)
    126{
    127	struct iio_dev *indio_dev = d;
    128	struct rm3100_data *data = iio_priv(indio_dev);
    129
    130	/*
    131	 * Write operation to any register or read operation
    132	 * to first byte of results will clear the interrupt.
    133	 */
    134	regmap_write(data->regmap, RM3100_REG_POLL, 0);
    135
    136	return IRQ_HANDLED;
    137}
    138
    139static irqreturn_t rm3100_irq_handler(int irq, void *d)
    140{
    141	struct iio_dev *indio_dev = d;
    142	struct rm3100_data *data = iio_priv(indio_dev);
    143
    144	if (!iio_buffer_enabled(indio_dev))
    145		complete(&data->measuring_done);
    146	else
    147		iio_trigger_poll(data->drdy_trig);
    148
    149	return IRQ_WAKE_THREAD;
    150}
    151
    152static int rm3100_wait_measurement(struct rm3100_data *data)
    153{
    154	struct regmap *regmap = data->regmap;
    155	unsigned int val;
    156	int tries = 20;
    157	int ret;
    158
    159	/*
    160	 * A read cycle of 400kbits i2c bus is about 20us, plus the time
    161	 * used for scheduling, a read cycle of fast mode of this device
    162	 * can reach 1.7ms, it may be possible for data to arrive just
    163	 * after we check the RM3100_REG_STATUS. In this case, irq_handler is
    164	 * called before measuring_done is reinitialized, it will wait
    165	 * forever for data that has already been ready.
    166	 * Reinitialize measuring_done before looking up makes sure we
    167	 * will always capture interrupt no matter when it happens.
    168	 */
    169	if (data->use_interrupt)
    170		reinit_completion(&data->measuring_done);
    171
    172	ret = regmap_read(regmap, RM3100_REG_STATUS, &val);
    173	if (ret < 0)
    174		return ret;
    175
    176	if ((val & RM3100_STATUS_DRDY) != RM3100_STATUS_DRDY) {
    177		if (data->use_interrupt) {
    178			ret = wait_for_completion_timeout(&data->measuring_done,
    179				msecs_to_jiffies(data->conversion_time));
    180			if (!ret)
    181				return -ETIMEDOUT;
    182		} else {
    183			do {
    184				usleep_range(1000, 5000);
    185
    186				ret = regmap_read(regmap, RM3100_REG_STATUS,
    187						  &val);
    188				if (ret < 0)
    189					return ret;
    190
    191				if (val & RM3100_STATUS_DRDY)
    192					break;
    193			} while (--tries);
    194			if (!tries)
    195				return -ETIMEDOUT;
    196		}
    197	}
    198	return 0;
    199}
    200
    201static int rm3100_read_mag(struct rm3100_data *data, int idx, int *val)
    202{
    203	struct regmap *regmap = data->regmap;
    204	u8 buffer[3];
    205	int ret;
    206
    207	mutex_lock(&data->lock);
    208	ret = regmap_write(regmap, RM3100_REG_POLL, BIT(4 + idx));
    209	if (ret < 0)
    210		goto unlock_return;
    211
    212	ret = rm3100_wait_measurement(data);
    213	if (ret < 0)
    214		goto unlock_return;
    215
    216	ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * idx, buffer, 3);
    217	if (ret < 0)
    218		goto unlock_return;
    219	mutex_unlock(&data->lock);
    220
    221	*val = sign_extend32(get_unaligned_be24(&buffer[0]), 23);
    222
    223	return IIO_VAL_INT;
    224
    225unlock_return:
    226	mutex_unlock(&data->lock);
    227	return ret;
    228}
    229
    230#define RM3100_CHANNEL(axis, idx)					\
    231	{								\
    232		.type = IIO_MAGN,					\
    233		.modified = 1,						\
    234		.channel2 = IIO_MOD_##axis,				\
    235		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
    236		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
    237			BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
    238		.scan_index = idx,					\
    239		.scan_type = {						\
    240			.sign = 's',					\
    241			.realbits = 24,					\
    242			.storagebits = 32,				\
    243			.shift = 8,					\
    244			.endianness = IIO_BE,				\
    245		},							\
    246	}
    247
    248static const struct iio_chan_spec rm3100_channels[] = {
    249	RM3100_CHANNEL(X, 0),
    250	RM3100_CHANNEL(Y, 1),
    251	RM3100_CHANNEL(Z, 2),
    252	IIO_CHAN_SOFT_TIMESTAMP(3),
    253};
    254
    255static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
    256	"600 300 150 75 37 18 9 4.5 2.3 1.2 0.6 0.3 0.015 0.075"
    257);
    258
    259static struct attribute *rm3100_attributes[] = {
    260	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
    261	NULL,
    262};
    263
    264static const struct attribute_group rm3100_attribute_group = {
    265	.attrs = rm3100_attributes,
    266};
    267
    268#define RM3100_SAMP_NUM			14
    269
    270/*
    271 * Frequency : rm3100_samp_rates[][0].rm3100_samp_rates[][1]Hz.
    272 * Time between reading: rm3100_sam_rates[][2]ms.
    273 * The first one is actually 1.7ms.
    274 */
    275static const int rm3100_samp_rates[RM3100_SAMP_NUM][3] = {
    276	{600, 0, 2}, {300, 0, 3}, {150, 0, 7}, {75, 0, 13}, {37, 0, 27},
    277	{18, 0, 55}, {9, 0, 110}, {4, 500000, 220}, {2, 300000, 440},
    278	{1, 200000, 800}, {0, 600000, 1600}, {0, 300000, 3300},
    279	{0, 15000, 6700},  {0, 75000, 13000}
    280};
    281
    282static int rm3100_get_samp_freq(struct rm3100_data *data, int *val, int *val2)
    283{
    284	unsigned int tmp;
    285	int ret;
    286
    287	mutex_lock(&data->lock);
    288	ret = regmap_read(data->regmap, RM3100_REG_TMRC, &tmp);
    289	mutex_unlock(&data->lock);
    290	if (ret < 0)
    291		return ret;
    292	*val = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][0];
    293	*val2 = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][1];
    294
    295	return IIO_VAL_INT_PLUS_MICRO;
    296}
    297
    298static int rm3100_set_cycle_count(struct rm3100_data *data, int val)
    299{
    300	int ret;
    301	u8 i;
    302
    303	for (i = 0; i < 3; i++) {
    304		ret = regmap_write(data->regmap, RM3100_REG_CC_X + 2 * i, val);
    305		if (ret < 0)
    306			return ret;
    307	}
    308
    309	/*
    310	 * The scale of this sensor depends on the cycle count value, these
    311	 * three values are corresponding to the cycle count value 50, 100,
    312	 * 200. scale = output / gain * 10^4.
    313	 */
    314	switch (val) {
    315	case 50:
    316		data->scale = 500;
    317		break;
    318	case 100:
    319		data->scale = 263;
    320		break;
    321	/*
    322	 * case 200:
    323	 * This function will never be called by users' code, so here we
    324	 * assume that it will never get a wrong parameter.
    325	 */
    326	default:
    327		data->scale = 133;
    328	}
    329
    330	return 0;
    331}
    332
    333static int rm3100_set_samp_freq(struct iio_dev *indio_dev, int val, int val2)
    334{
    335	struct rm3100_data *data = iio_priv(indio_dev);
    336	struct regmap *regmap = data->regmap;
    337	unsigned int cycle_count;
    338	int ret;
    339	int i;
    340
    341	mutex_lock(&data->lock);
    342	/* All cycle count registers use the same value. */
    343	ret = regmap_read(regmap, RM3100_REG_CC_X, &cycle_count);
    344	if (ret < 0)
    345		goto unlock_return;
    346
    347	for (i = 0; i < RM3100_SAMP_NUM; i++) {
    348		if (val == rm3100_samp_rates[i][0] &&
    349		    val2 == rm3100_samp_rates[i][1])
    350			break;
    351	}
    352	if (i == RM3100_SAMP_NUM) {
    353		ret = -EINVAL;
    354		goto unlock_return;
    355	}
    356
    357	ret = regmap_write(regmap, RM3100_REG_TMRC, i + RM3100_TMRC_OFFSET);
    358	if (ret < 0)
    359		goto unlock_return;
    360
    361	/* Checking if cycle count registers need changing. */
    362	if (val == 600 && cycle_count == 200) {
    363		ret = rm3100_set_cycle_count(data, 100);
    364		if (ret < 0)
    365			goto unlock_return;
    366	} else if (val != 600 && cycle_count == 100) {
    367		ret = rm3100_set_cycle_count(data, 200);
    368		if (ret < 0)
    369			goto unlock_return;
    370	}
    371
    372	if (iio_buffer_enabled(indio_dev)) {
    373		/* Writing TMRC registers requires CMM reset. */
    374		ret = regmap_write(regmap, RM3100_REG_CMM, 0);
    375		if (ret < 0)
    376			goto unlock_return;
    377		ret = regmap_write(data->regmap, RM3100_REG_CMM,
    378			(*indio_dev->active_scan_mask & 0x7) <<
    379			RM3100_CMM_AXIS_SHIFT | RM3100_CMM_START);
    380		if (ret < 0)
    381			goto unlock_return;
    382	}
    383	mutex_unlock(&data->lock);
    384
    385	data->conversion_time = rm3100_samp_rates[i][2] * 2;
    386	return 0;
    387
    388unlock_return:
    389	mutex_unlock(&data->lock);
    390	return ret;
    391}
    392
    393static int rm3100_read_raw(struct iio_dev *indio_dev,
    394			   const struct iio_chan_spec *chan,
    395			   int *val, int *val2, long mask)
    396{
    397	struct rm3100_data *data = iio_priv(indio_dev);
    398	int ret;
    399
    400	switch (mask) {
    401	case IIO_CHAN_INFO_RAW:
    402		ret = iio_device_claim_direct_mode(indio_dev);
    403		if (ret < 0)
    404			return ret;
    405
    406		ret = rm3100_read_mag(data, chan->scan_index, val);
    407		iio_device_release_direct_mode(indio_dev);
    408
    409		return ret;
    410	case IIO_CHAN_INFO_SCALE:
    411		*val = 0;
    412		*val2 = data->scale;
    413
    414		return IIO_VAL_INT_PLUS_MICRO;
    415	case IIO_CHAN_INFO_SAMP_FREQ:
    416		return rm3100_get_samp_freq(data, val, val2);
    417	default:
    418		return -EINVAL;
    419	}
    420}
    421
    422static int rm3100_write_raw(struct iio_dev *indio_dev,
    423			    struct iio_chan_spec const *chan,
    424			    int val, int val2, long mask)
    425{
    426	switch (mask) {
    427	case IIO_CHAN_INFO_SAMP_FREQ:
    428		return rm3100_set_samp_freq(indio_dev, val, val2);
    429	default:
    430		return -EINVAL;
    431	}
    432}
    433
    434static const struct iio_info rm3100_info = {
    435	.attrs = &rm3100_attribute_group,
    436	.read_raw = rm3100_read_raw,
    437	.write_raw = rm3100_write_raw,
    438};
    439
    440static int rm3100_buffer_preenable(struct iio_dev *indio_dev)
    441{
    442	struct rm3100_data *data = iio_priv(indio_dev);
    443
    444	/* Starting channels enabled. */
    445	return regmap_write(data->regmap, RM3100_REG_CMM,
    446		(*indio_dev->active_scan_mask & 0x7) << RM3100_CMM_AXIS_SHIFT |
    447		RM3100_CMM_START);
    448}
    449
    450static int rm3100_buffer_postdisable(struct iio_dev *indio_dev)
    451{
    452	struct rm3100_data *data = iio_priv(indio_dev);
    453
    454	return regmap_write(data->regmap, RM3100_REG_CMM, 0);
    455}
    456
    457static const struct iio_buffer_setup_ops rm3100_buffer_ops = {
    458	.preenable = rm3100_buffer_preenable,
    459	.postdisable = rm3100_buffer_postdisable,
    460};
    461
    462static irqreturn_t rm3100_trigger_handler(int irq, void *p)
    463{
    464	struct iio_poll_func *pf = p;
    465	struct iio_dev *indio_dev = pf->indio_dev;
    466	unsigned long scan_mask = *indio_dev->active_scan_mask;
    467	unsigned int mask_len = indio_dev->masklength;
    468	struct rm3100_data *data = iio_priv(indio_dev);
    469	struct regmap *regmap = data->regmap;
    470	int ret, i, bit;
    471
    472	mutex_lock(&data->lock);
    473	switch (scan_mask) {
    474	case BIT(0) | BIT(1) | BIT(2):
    475		ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
    476		mutex_unlock(&data->lock);
    477		if (ret < 0)
    478			goto done;
    479		/* Convert XXXYYYZZZxxx to XXXxYYYxZZZx. x for paddings. */
    480		for (i = 2; i > 0; i--)
    481			memmove(data->buffer + i * 4, data->buffer + i * 3, 3);
    482		break;
    483	case BIT(0) | BIT(1):
    484		ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 6);
    485		mutex_unlock(&data->lock);
    486		if (ret < 0)
    487			goto done;
    488		memmove(data->buffer + 4, data->buffer + 3, 3);
    489		break;
    490	case BIT(1) | BIT(2):
    491		ret = regmap_bulk_read(regmap, RM3100_REG_MY2, data->buffer, 6);
    492		mutex_unlock(&data->lock);
    493		if (ret < 0)
    494			goto done;
    495		memmove(data->buffer + 4, data->buffer + 3, 3);
    496		break;
    497	case BIT(0) | BIT(2):
    498		ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
    499		mutex_unlock(&data->lock);
    500		if (ret < 0)
    501			goto done;
    502		memmove(data->buffer + 4, data->buffer + 6, 3);
    503		break;
    504	default:
    505		for_each_set_bit(bit, &scan_mask, mask_len) {
    506			ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * bit,
    507					       data->buffer, 3);
    508			if (ret < 0) {
    509				mutex_unlock(&data->lock);
    510				goto done;
    511			}
    512		}
    513		mutex_unlock(&data->lock);
    514	}
    515	/*
    516	 * Always using the same buffer so that we wouldn't need to set the
    517	 * paddings to 0 in case of leaking any data.
    518	 */
    519	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
    520					   pf->timestamp);
    521done:
    522	iio_trigger_notify_done(indio_dev->trig);
    523
    524	return IRQ_HANDLED;
    525}
    526
    527int rm3100_common_probe(struct device *dev, struct regmap *regmap, int irq)
    528{
    529	struct iio_dev *indio_dev;
    530	struct rm3100_data *data;
    531	unsigned int tmp;
    532	int ret;
    533
    534	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
    535	if (!indio_dev)
    536		return -ENOMEM;
    537
    538	data = iio_priv(indio_dev);
    539	data->regmap = regmap;
    540
    541	mutex_init(&data->lock);
    542
    543	indio_dev->name = "rm3100";
    544	indio_dev->info = &rm3100_info;
    545	indio_dev->channels = rm3100_channels;
    546	indio_dev->num_channels = ARRAY_SIZE(rm3100_channels);
    547	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
    548
    549	if (!irq)
    550		data->use_interrupt = false;
    551	else {
    552		data->use_interrupt = true;
    553
    554		init_completion(&data->measuring_done);
    555		ret = devm_request_threaded_irq(dev,
    556						irq,
    557						rm3100_irq_handler,
    558						rm3100_thread_fn,
    559						IRQF_TRIGGER_HIGH |
    560						IRQF_ONESHOT,
    561						indio_dev->name,
    562						indio_dev);
    563		if (ret < 0) {
    564			dev_err(dev, "request irq line failed.\n");
    565			return ret;
    566		}
    567
    568		data->drdy_trig = devm_iio_trigger_alloc(dev, "%s-drdy%d",
    569							 indio_dev->name,
    570							 iio_device_id(indio_dev));
    571		if (!data->drdy_trig)
    572			return -ENOMEM;
    573
    574		ret = devm_iio_trigger_register(dev, data->drdy_trig);
    575		if (ret < 0)
    576			return ret;
    577	}
    578
    579	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
    580					      &iio_pollfunc_store_time,
    581					      rm3100_trigger_handler,
    582					      &rm3100_buffer_ops);
    583	if (ret < 0)
    584		return ret;
    585
    586	ret = regmap_read(regmap, RM3100_REG_TMRC, &tmp);
    587	if (ret < 0)
    588		return ret;
    589	/* Initializing max wait time, which is double conversion time. */
    590	data->conversion_time = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][2]
    591				* 2;
    592
    593	/* Cycle count values may not be what we want. */
    594	if ((tmp - RM3100_TMRC_OFFSET) == 0)
    595		rm3100_set_cycle_count(data, 100);
    596	else
    597		rm3100_set_cycle_count(data, 200);
    598
    599	return devm_iio_device_register(dev, indio_dev);
    600}
    601EXPORT_SYMBOL_NS_GPL(rm3100_common_probe, IIO_RM3100);
    602
    603MODULE_AUTHOR("Song Qiang <songqiang1304521@gmail.com>");
    604MODULE_DESCRIPTION("PNI RM3100 3-axis magnetometer i2c driver");
    605MODULE_LICENSE("GPL v2");