cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bmp280-core.c (28925B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
      4 * Copyright (c) 2012 Bosch Sensortec GmbH
      5 * Copyright (c) 2012 Unixphere AB
      6 * Copyright (c) 2014 Intel Corporation
      7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
      8 *
      9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
     10 *
     11 * Datasheet:
     12 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
     13 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
     14 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
     15 */
     16
     17#define pr_fmt(fmt) "bmp280: " fmt
     18
     19#include <linux/device.h>
     20#include <linux/module.h>
     21#include <linux/regmap.h>
     22#include <linux/delay.h>
     23#include <linux/iio/iio.h>
     24#include <linux/iio/sysfs.h>
     25#include <linux/gpio/consumer.h>
     26#include <linux/regulator/consumer.h>
     27#include <linux/interrupt.h>
     28#include <linux/irq.h> /* For irq_get_irq_data() */
     29#include <linux/completion.h>
     30#include <linux/pm_runtime.h>
     31#include <linux/random.h>
     32
     33#include "bmp280.h"
     34
     35/*
     36 * These enums are used for indexing into the array of calibration
     37 * coefficients for BMP180.
     38 */
     39enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
     40
     41struct bmp180_calib {
     42	s16 AC1;
     43	s16 AC2;
     44	s16 AC3;
     45	u16 AC4;
     46	u16 AC5;
     47	u16 AC6;
     48	s16 B1;
     49	s16 B2;
     50	s16 MB;
     51	s16 MC;
     52	s16 MD;
     53};
     54
     55/* See datasheet Section 4.2.2. */
     56struct bmp280_calib {
     57	u16 T1;
     58	s16 T2;
     59	s16 T3;
     60	u16 P1;
     61	s16 P2;
     62	s16 P3;
     63	s16 P4;
     64	s16 P5;
     65	s16 P6;
     66	s16 P7;
     67	s16 P8;
     68	s16 P9;
     69	u8  H1;
     70	s16 H2;
     71	u8  H3;
     72	s16 H4;
     73	s16 H5;
     74	s8  H6;
     75};
     76
     77static const char *const bmp280_supply_names[] = {
     78	"vddd", "vdda"
     79};
     80
     81#define BMP280_NUM_SUPPLIES ARRAY_SIZE(bmp280_supply_names)
     82
     83struct bmp280_data {
     84	struct device *dev;
     85	struct mutex lock;
     86	struct regmap *regmap;
     87	struct completion done;
     88	bool use_eoc;
     89	const struct bmp280_chip_info *chip_info;
     90	union {
     91		struct bmp180_calib bmp180;
     92		struct bmp280_calib bmp280;
     93	} calib;
     94	struct regulator_bulk_data supplies[BMP280_NUM_SUPPLIES];
     95	unsigned int start_up_time; /* in microseconds */
     96
     97	/* log of base 2 of oversampling rate */
     98	u8 oversampling_press;
     99	u8 oversampling_temp;
    100	u8 oversampling_humid;
    101
    102	/*
    103	 * Carryover value from temperature conversion, used in pressure
    104	 * calculation.
    105	 */
    106	s32 t_fine;
    107};
    108
    109struct bmp280_chip_info {
    110	const int *oversampling_temp_avail;
    111	int num_oversampling_temp_avail;
    112
    113	const int *oversampling_press_avail;
    114	int num_oversampling_press_avail;
    115
    116	const int *oversampling_humid_avail;
    117	int num_oversampling_humid_avail;
    118
    119	int (*chip_config)(struct bmp280_data *);
    120	int (*read_temp)(struct bmp280_data *, int *);
    121	int (*read_press)(struct bmp280_data *, int *, int *);
    122	int (*read_humid)(struct bmp280_data *, int *, int *);
    123};
    124
    125/*
    126 * These enums are used for indexing into the array of compensation
    127 * parameters for BMP280.
    128 */
    129enum { T1, T2, T3 };
    130enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
    131
    132static const struct iio_chan_spec bmp280_channels[] = {
    133	{
    134		.type = IIO_PRESSURE,
    135		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
    136				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
    137	},
    138	{
    139		.type = IIO_TEMP,
    140		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
    141				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
    142	},
    143	{
    144		.type = IIO_HUMIDITYRELATIVE,
    145		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
    146				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
    147	},
    148};
    149
    150static int bmp280_read_calib(struct bmp280_data *data,
    151			     struct bmp280_calib *calib,
    152			     unsigned int chip)
    153{
    154	int ret;
    155	unsigned int tmp;
    156	__le16 l16;
    157	__be16 b16;
    158	struct device *dev = data->dev;
    159	__le16 t_buf[BMP280_COMP_TEMP_REG_COUNT / 2];
    160	__le16 p_buf[BMP280_COMP_PRESS_REG_COUNT / 2];
    161
    162	/* Read temperature calibration values. */
    163	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
    164			       t_buf, BMP280_COMP_TEMP_REG_COUNT);
    165	if (ret < 0) {
    166		dev_err(data->dev,
    167			"failed to read temperature calibration parameters\n");
    168		return ret;
    169	}
    170
    171	/* Toss the temperature calibration data into the entropy pool */
    172	add_device_randomness(t_buf, sizeof(t_buf));
    173
    174	calib->T1 = le16_to_cpu(t_buf[T1]);
    175	calib->T2 = le16_to_cpu(t_buf[T2]);
    176	calib->T3 = le16_to_cpu(t_buf[T3]);
    177
    178	/* Read pressure calibration values. */
    179	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
    180			       p_buf, BMP280_COMP_PRESS_REG_COUNT);
    181	if (ret < 0) {
    182		dev_err(data->dev,
    183			"failed to read pressure calibration parameters\n");
    184		return ret;
    185	}
    186
    187	/* Toss the pressure calibration data into the entropy pool */
    188	add_device_randomness(p_buf, sizeof(p_buf));
    189
    190	calib->P1 = le16_to_cpu(p_buf[P1]);
    191	calib->P2 = le16_to_cpu(p_buf[P2]);
    192	calib->P3 = le16_to_cpu(p_buf[P3]);
    193	calib->P4 = le16_to_cpu(p_buf[P4]);
    194	calib->P5 = le16_to_cpu(p_buf[P5]);
    195	calib->P6 = le16_to_cpu(p_buf[P6]);
    196	calib->P7 = le16_to_cpu(p_buf[P7]);
    197	calib->P8 = le16_to_cpu(p_buf[P8]);
    198	calib->P9 = le16_to_cpu(p_buf[P9]);
    199
    200	/*
    201	 * Read humidity calibration values.
    202	 * Due to some odd register addressing we cannot just
    203	 * do a big bulk read. Instead, we have to read each Hx
    204	 * value separately and sometimes do some bit shifting...
    205	 * Humidity data is only available on BME280.
    206	 */
    207	if (chip != BME280_CHIP_ID)
    208		return 0;
    209
    210	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
    211	if (ret < 0) {
    212		dev_err(dev, "failed to read H1 comp value\n");
    213		return ret;
    214	}
    215	calib->H1 = tmp;
    216
    217	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &l16, 2);
    218	if (ret < 0) {
    219		dev_err(dev, "failed to read H2 comp value\n");
    220		return ret;
    221	}
    222	calib->H2 = sign_extend32(le16_to_cpu(l16), 15);
    223
    224	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
    225	if (ret < 0) {
    226		dev_err(dev, "failed to read H3 comp value\n");
    227		return ret;
    228	}
    229	calib->H3 = tmp;
    230
    231	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &b16, 2);
    232	if (ret < 0) {
    233		dev_err(dev, "failed to read H4 comp value\n");
    234		return ret;
    235	}
    236	calib->H4 = sign_extend32(((be16_to_cpu(b16) >> 4) & 0xff0) |
    237				  (be16_to_cpu(b16) & 0xf), 11);
    238
    239	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &l16, 2);
    240	if (ret < 0) {
    241		dev_err(dev, "failed to read H5 comp value\n");
    242		return ret;
    243	}
    244	calib->H5 = sign_extend32(((le16_to_cpu(l16) >> 4) & 0xfff), 11);
    245
    246	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
    247	if (ret < 0) {
    248		dev_err(dev, "failed to read H6 comp value\n");
    249		return ret;
    250	}
    251	calib->H6 = sign_extend32(tmp, 7);
    252
    253	return 0;
    254}
    255/*
    256 * Returns humidity in percent, resolution is 0.01 percent. Output value of
    257 * "47445" represents 47445/1024 = 46.333 %RH.
    258 *
    259 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
    260 */
    261static u32 bmp280_compensate_humidity(struct bmp280_data *data,
    262				      s32 adc_humidity)
    263{
    264	s32 var;
    265	struct bmp280_calib *calib = &data->calib.bmp280;
    266
    267	var = ((s32)data->t_fine) - (s32)76800;
    268	var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
    269		+ (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
    270		* (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
    271		+ (s32)2097152) * calib->H2 + 8192) >> 14);
    272	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
    273
    274	var = clamp_val(var, 0, 419430400);
    275
    276	return var >> 12;
    277};
    278
    279/*
    280 * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
    281 * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
    282 * value.
    283 *
    284 * Taken from datasheet, Section 3.11.3, "Compensation formula".
    285 */
    286static s32 bmp280_compensate_temp(struct bmp280_data *data,
    287				  s32 adc_temp)
    288{
    289	s32 var1, var2;
    290	struct bmp280_calib *calib = &data->calib.bmp280;
    291
    292	var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
    293		((s32)calib->T2)) >> 11;
    294	var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
    295		  ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
    296		((s32)calib->T3)) >> 14;
    297	data->t_fine = var1 + var2;
    298
    299	return (data->t_fine * 5 + 128) >> 8;
    300}
    301
    302/*
    303 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
    304 * integer bits and 8 fractional bits).  Output value of "24674867"
    305 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
    306 *
    307 * Taken from datasheet, Section 3.11.3, "Compensation formula".
    308 */
    309static u32 bmp280_compensate_press(struct bmp280_data *data,
    310				   s32 adc_press)
    311{
    312	s64 var1, var2, p;
    313	struct bmp280_calib *calib = &data->calib.bmp280;
    314
    315	var1 = ((s64)data->t_fine) - 128000;
    316	var2 = var1 * var1 * (s64)calib->P6;
    317	var2 += (var1 * (s64)calib->P5) << 17;
    318	var2 += ((s64)calib->P4) << 35;
    319	var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
    320		((var1 * (s64)calib->P2) << 12);
    321	var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
    322
    323	if (var1 == 0)
    324		return 0;
    325
    326	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
    327	p = div64_s64(p, var1);
    328	var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
    329	var2 = ((s64)(calib->P8) * p) >> 19;
    330	p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
    331
    332	return (u32)p;
    333}
    334
    335static int bmp280_read_temp(struct bmp280_data *data,
    336			    int *val)
    337{
    338	int ret;
    339	__be32 tmp = 0;
    340	s32 adc_temp, comp_temp;
    341
    342	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, &tmp, 3);
    343	if (ret < 0) {
    344		dev_err(data->dev, "failed to read temperature\n");
    345		return ret;
    346	}
    347
    348	adc_temp = be32_to_cpu(tmp) >> 12;
    349	if (adc_temp == BMP280_TEMP_SKIPPED) {
    350		/* reading was skipped */
    351		dev_err(data->dev, "reading temperature skipped\n");
    352		return -EIO;
    353	}
    354	comp_temp = bmp280_compensate_temp(data, adc_temp);
    355
    356	/*
    357	 * val might be NULL if we're called by the read_press routine,
    358	 * who only cares about the carry over t_fine value.
    359	 */
    360	if (val) {
    361		*val = comp_temp * 10;
    362		return IIO_VAL_INT;
    363	}
    364
    365	return 0;
    366}
    367
    368static int bmp280_read_press(struct bmp280_data *data,
    369			     int *val, int *val2)
    370{
    371	int ret;
    372	__be32 tmp = 0;
    373	s32 adc_press;
    374	u32 comp_press;
    375
    376	/* Read and compensate temperature so we get a reading of t_fine. */
    377	ret = bmp280_read_temp(data, NULL);
    378	if (ret < 0)
    379		return ret;
    380
    381	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, &tmp, 3);
    382	if (ret < 0) {
    383		dev_err(data->dev, "failed to read pressure\n");
    384		return ret;
    385	}
    386
    387	adc_press = be32_to_cpu(tmp) >> 12;
    388	if (adc_press == BMP280_PRESS_SKIPPED) {
    389		/* reading was skipped */
    390		dev_err(data->dev, "reading pressure skipped\n");
    391		return -EIO;
    392	}
    393	comp_press = bmp280_compensate_press(data, adc_press);
    394
    395	*val = comp_press;
    396	*val2 = 256000;
    397
    398	return IIO_VAL_FRACTIONAL;
    399}
    400
    401static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
    402{
    403	__be16 tmp;
    404	int ret;
    405	s32 adc_humidity;
    406	u32 comp_humidity;
    407
    408	/* Read and compensate temperature so we get a reading of t_fine. */
    409	ret = bmp280_read_temp(data, NULL);
    410	if (ret < 0)
    411		return ret;
    412
    413	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB, &tmp, 2);
    414	if (ret < 0) {
    415		dev_err(data->dev, "failed to read humidity\n");
    416		return ret;
    417	}
    418
    419	adc_humidity = be16_to_cpu(tmp);
    420	if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
    421		/* reading was skipped */
    422		dev_err(data->dev, "reading humidity skipped\n");
    423		return -EIO;
    424	}
    425	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
    426
    427	*val = comp_humidity * 1000 / 1024;
    428
    429	return IIO_VAL_INT;
    430}
    431
    432static int bmp280_read_raw(struct iio_dev *indio_dev,
    433			   struct iio_chan_spec const *chan,
    434			   int *val, int *val2, long mask)
    435{
    436	int ret;
    437	struct bmp280_data *data = iio_priv(indio_dev);
    438
    439	pm_runtime_get_sync(data->dev);
    440	mutex_lock(&data->lock);
    441
    442	switch (mask) {
    443	case IIO_CHAN_INFO_PROCESSED:
    444		switch (chan->type) {
    445		case IIO_HUMIDITYRELATIVE:
    446			ret = data->chip_info->read_humid(data, val, val2);
    447			break;
    448		case IIO_PRESSURE:
    449			ret = data->chip_info->read_press(data, val, val2);
    450			break;
    451		case IIO_TEMP:
    452			ret = data->chip_info->read_temp(data, val);
    453			break;
    454		default:
    455			ret = -EINVAL;
    456			break;
    457		}
    458		break;
    459	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
    460		switch (chan->type) {
    461		case IIO_HUMIDITYRELATIVE:
    462			*val = 1 << data->oversampling_humid;
    463			ret = IIO_VAL_INT;
    464			break;
    465		case IIO_PRESSURE:
    466			*val = 1 << data->oversampling_press;
    467			ret = IIO_VAL_INT;
    468			break;
    469		case IIO_TEMP:
    470			*val = 1 << data->oversampling_temp;
    471			ret = IIO_VAL_INT;
    472			break;
    473		default:
    474			ret = -EINVAL;
    475			break;
    476		}
    477		break;
    478	default:
    479		ret = -EINVAL;
    480		break;
    481	}
    482
    483	mutex_unlock(&data->lock);
    484	pm_runtime_mark_last_busy(data->dev);
    485	pm_runtime_put_autosuspend(data->dev);
    486
    487	return ret;
    488}
    489
    490static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
    491					       int val)
    492{
    493	int i;
    494	const int *avail = data->chip_info->oversampling_humid_avail;
    495	const int n = data->chip_info->num_oversampling_humid_avail;
    496
    497	for (i = 0; i < n; i++) {
    498		if (avail[i] == val) {
    499			data->oversampling_humid = ilog2(val);
    500
    501			return data->chip_info->chip_config(data);
    502		}
    503	}
    504	return -EINVAL;
    505}
    506
    507static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
    508					       int val)
    509{
    510	int i;
    511	const int *avail = data->chip_info->oversampling_temp_avail;
    512	const int n = data->chip_info->num_oversampling_temp_avail;
    513
    514	for (i = 0; i < n; i++) {
    515		if (avail[i] == val) {
    516			data->oversampling_temp = ilog2(val);
    517
    518			return data->chip_info->chip_config(data);
    519		}
    520	}
    521	return -EINVAL;
    522}
    523
    524static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
    525					       int val)
    526{
    527	int i;
    528	const int *avail = data->chip_info->oversampling_press_avail;
    529	const int n = data->chip_info->num_oversampling_press_avail;
    530
    531	for (i = 0; i < n; i++) {
    532		if (avail[i] == val) {
    533			data->oversampling_press = ilog2(val);
    534
    535			return data->chip_info->chip_config(data);
    536		}
    537	}
    538	return -EINVAL;
    539}
    540
    541static int bmp280_write_raw(struct iio_dev *indio_dev,
    542			    struct iio_chan_spec const *chan,
    543			    int val, int val2, long mask)
    544{
    545	int ret = 0;
    546	struct bmp280_data *data = iio_priv(indio_dev);
    547
    548	switch (mask) {
    549	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
    550		pm_runtime_get_sync(data->dev);
    551		mutex_lock(&data->lock);
    552		switch (chan->type) {
    553		case IIO_HUMIDITYRELATIVE:
    554			ret = bmp280_write_oversampling_ratio_humid(data, val);
    555			break;
    556		case IIO_PRESSURE:
    557			ret = bmp280_write_oversampling_ratio_press(data, val);
    558			break;
    559		case IIO_TEMP:
    560			ret = bmp280_write_oversampling_ratio_temp(data, val);
    561			break;
    562		default:
    563			ret = -EINVAL;
    564			break;
    565		}
    566		mutex_unlock(&data->lock);
    567		pm_runtime_mark_last_busy(data->dev);
    568		pm_runtime_put_autosuspend(data->dev);
    569		break;
    570	default:
    571		return -EINVAL;
    572	}
    573
    574	return ret;
    575}
    576
    577static int bmp280_read_avail(struct iio_dev *indio_dev,
    578			     struct iio_chan_spec const *chan,
    579			     const int **vals, int *type, int *length,
    580			     long mask)
    581{
    582	struct bmp280_data *data = iio_priv(indio_dev);
    583
    584	switch (mask) {
    585	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
    586		switch (chan->type) {
    587		case IIO_PRESSURE:
    588			*vals = data->chip_info->oversampling_press_avail;
    589			*length = data->chip_info->num_oversampling_press_avail;
    590			break;
    591		case IIO_TEMP:
    592			*vals = data->chip_info->oversampling_temp_avail;
    593			*length = data->chip_info->num_oversampling_temp_avail;
    594			break;
    595		default:
    596			return -EINVAL;
    597		}
    598		*type = IIO_VAL_INT;
    599		return IIO_AVAIL_LIST;
    600	default:
    601		return -EINVAL;
    602	}
    603}
    604
    605static const struct iio_info bmp280_info = {
    606	.read_raw = &bmp280_read_raw,
    607	.read_avail = &bmp280_read_avail,
    608	.write_raw = &bmp280_write_raw,
    609};
    610
    611static int bmp280_chip_config(struct bmp280_data *data)
    612{
    613	int ret;
    614	u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
    615		  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
    616
    617	ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
    618				 BMP280_OSRS_TEMP_MASK |
    619				 BMP280_OSRS_PRESS_MASK |
    620				 BMP280_MODE_MASK,
    621				 osrs | BMP280_MODE_NORMAL);
    622	if (ret < 0) {
    623		dev_err(data->dev,
    624			"failed to write ctrl_meas register\n");
    625		return ret;
    626	}
    627
    628	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
    629				 BMP280_FILTER_MASK,
    630				 BMP280_FILTER_4X);
    631	if (ret < 0) {
    632		dev_err(data->dev,
    633			"failed to write config register\n");
    634		return ret;
    635	}
    636
    637	return ret;
    638}
    639
    640static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
    641
    642static const struct bmp280_chip_info bmp280_chip_info = {
    643	.oversampling_temp_avail = bmp280_oversampling_avail,
    644	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
    645
    646	.oversampling_press_avail = bmp280_oversampling_avail,
    647	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
    648
    649	.chip_config = bmp280_chip_config,
    650	.read_temp = bmp280_read_temp,
    651	.read_press = bmp280_read_press,
    652};
    653
    654static int bme280_chip_config(struct bmp280_data *data)
    655{
    656	int ret;
    657	u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
    658
    659	/*
    660	 * Oversampling of humidity must be set before oversampling of
    661	 * temperature/pressure is set to become effective.
    662	 */
    663	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
    664				  BMP280_OSRS_HUMIDITY_MASK, osrs);
    665
    666	if (ret < 0)
    667		return ret;
    668
    669	return bmp280_chip_config(data);
    670}
    671
    672static const struct bmp280_chip_info bme280_chip_info = {
    673	.oversampling_temp_avail = bmp280_oversampling_avail,
    674	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
    675
    676	.oversampling_press_avail = bmp280_oversampling_avail,
    677	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
    678
    679	.oversampling_humid_avail = bmp280_oversampling_avail,
    680	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
    681
    682	.chip_config = bme280_chip_config,
    683	.read_temp = bmp280_read_temp,
    684	.read_press = bmp280_read_press,
    685	.read_humid = bmp280_read_humid,
    686};
    687
    688static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
    689{
    690	int ret;
    691	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
    692	unsigned int delay_us;
    693	unsigned int ctrl;
    694
    695	if (data->use_eoc)
    696		reinit_completion(&data->done);
    697
    698	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
    699	if (ret)
    700		return ret;
    701
    702	if (data->use_eoc) {
    703		/*
    704		 * If we have a completion interrupt, use it, wait up to
    705		 * 100ms. The longest conversion time listed is 76.5 ms for
    706		 * advanced resolution mode.
    707		 */
    708		ret = wait_for_completion_timeout(&data->done,
    709						  1 + msecs_to_jiffies(100));
    710		if (!ret)
    711			dev_err(data->dev, "timeout waiting for completion\n");
    712	} else {
    713		if (ctrl_meas == BMP180_MEAS_TEMP)
    714			delay_us = 4500;
    715		else
    716			delay_us =
    717				conversion_time_max[data->oversampling_press];
    718
    719		usleep_range(delay_us, delay_us + 1000);
    720	}
    721
    722	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
    723	if (ret)
    724		return ret;
    725
    726	/* The value of this bit reset to "0" after conversion is complete */
    727	if (ctrl & BMP180_MEAS_SCO)
    728		return -EIO;
    729
    730	return 0;
    731}
    732
    733static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
    734{
    735	__be16 tmp;
    736	int ret;
    737
    738	ret = bmp180_measure(data, BMP180_MEAS_TEMP);
    739	if (ret)
    740		return ret;
    741
    742	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, &tmp, 2);
    743	if (ret)
    744		return ret;
    745
    746	*val = be16_to_cpu(tmp);
    747
    748	return 0;
    749}
    750
    751static int bmp180_read_calib(struct bmp280_data *data,
    752			     struct bmp180_calib *calib)
    753{
    754	int ret;
    755	int i;
    756	__be16 buf[BMP180_REG_CALIB_COUNT / 2];
    757
    758	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
    759			       sizeof(buf));
    760
    761	if (ret < 0)
    762		return ret;
    763
    764	/* None of the words has the value 0 or 0xFFFF */
    765	for (i = 0; i < ARRAY_SIZE(buf); i++) {
    766		if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
    767			return -EIO;
    768	}
    769
    770	/* Toss the calibration data into the entropy pool */
    771	add_device_randomness(buf, sizeof(buf));
    772
    773	calib->AC1 = be16_to_cpu(buf[AC1]);
    774	calib->AC2 = be16_to_cpu(buf[AC2]);
    775	calib->AC3 = be16_to_cpu(buf[AC3]);
    776	calib->AC4 = be16_to_cpu(buf[AC4]);
    777	calib->AC5 = be16_to_cpu(buf[AC5]);
    778	calib->AC6 = be16_to_cpu(buf[AC6]);
    779	calib->B1 = be16_to_cpu(buf[B1]);
    780	calib->B2 = be16_to_cpu(buf[B2]);
    781	calib->MB = be16_to_cpu(buf[MB]);
    782	calib->MC = be16_to_cpu(buf[MC]);
    783	calib->MD = be16_to_cpu(buf[MD]);
    784
    785	return 0;
    786}
    787
    788/*
    789 * Returns temperature in DegC, resolution is 0.1 DegC.
    790 * t_fine carries fine temperature as global value.
    791 *
    792 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
    793 */
    794static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
    795{
    796	s32 x1, x2;
    797	struct bmp180_calib *calib = &data->calib.bmp180;
    798
    799	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
    800	x2 = (calib->MC << 11) / (x1 + calib->MD);
    801	data->t_fine = x1 + x2;
    802
    803	return (data->t_fine + 8) >> 4;
    804}
    805
    806static int bmp180_read_temp(struct bmp280_data *data, int *val)
    807{
    808	int ret;
    809	s32 adc_temp, comp_temp;
    810
    811	ret = bmp180_read_adc_temp(data, &adc_temp);
    812	if (ret)
    813		return ret;
    814
    815	comp_temp = bmp180_compensate_temp(data, adc_temp);
    816
    817	/*
    818	 * val might be NULL if we're called by the read_press routine,
    819	 * who only cares about the carry over t_fine value.
    820	 */
    821	if (val) {
    822		*val = comp_temp * 100;
    823		return IIO_VAL_INT;
    824	}
    825
    826	return 0;
    827}
    828
    829static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
    830{
    831	int ret;
    832	__be32 tmp = 0;
    833	u8 oss = data->oversampling_press;
    834
    835	ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
    836	if (ret)
    837		return ret;
    838
    839	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, &tmp, 3);
    840	if (ret)
    841		return ret;
    842
    843	*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
    844
    845	return 0;
    846}
    847
    848/*
    849 * Returns pressure in Pa, resolution is 1 Pa.
    850 *
    851 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
    852 */
    853static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
    854{
    855	s32 x1, x2, x3, p;
    856	s32 b3, b6;
    857	u32 b4, b7;
    858	s32 oss = data->oversampling_press;
    859	struct bmp180_calib *calib = &data->calib.bmp180;
    860
    861	b6 = data->t_fine - 4000;
    862	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
    863	x2 = calib->AC2 * b6 >> 11;
    864	x3 = x1 + x2;
    865	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
    866	x1 = calib->AC3 * b6 >> 13;
    867	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
    868	x3 = (x1 + x2 + 2) >> 2;
    869	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
    870	b7 = ((u32)adc_press - b3) * (50000 >> oss);
    871	if (b7 < 0x80000000)
    872		p = (b7 * 2) / b4;
    873	else
    874		p = (b7 / b4) * 2;
    875
    876	x1 = (p >> 8) * (p >> 8);
    877	x1 = (x1 * 3038) >> 16;
    878	x2 = (-7357 * p) >> 16;
    879
    880	return p + ((x1 + x2 + 3791) >> 4);
    881}
    882
    883static int bmp180_read_press(struct bmp280_data *data,
    884			     int *val, int *val2)
    885{
    886	int ret;
    887	s32 adc_press;
    888	u32 comp_press;
    889
    890	/* Read and compensate temperature so we get a reading of t_fine. */
    891	ret = bmp180_read_temp(data, NULL);
    892	if (ret)
    893		return ret;
    894
    895	ret = bmp180_read_adc_press(data, &adc_press);
    896	if (ret)
    897		return ret;
    898
    899	comp_press = bmp180_compensate_press(data, adc_press);
    900
    901	*val = comp_press;
    902	*val2 = 1000;
    903
    904	return IIO_VAL_FRACTIONAL;
    905}
    906
    907static int bmp180_chip_config(struct bmp280_data *data)
    908{
    909	return 0;
    910}
    911
    912static const int bmp180_oversampling_temp_avail[] = { 1 };
    913static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
    914
    915static const struct bmp280_chip_info bmp180_chip_info = {
    916	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
    917	.num_oversampling_temp_avail =
    918		ARRAY_SIZE(bmp180_oversampling_temp_avail),
    919
    920	.oversampling_press_avail = bmp180_oversampling_press_avail,
    921	.num_oversampling_press_avail =
    922		ARRAY_SIZE(bmp180_oversampling_press_avail),
    923
    924	.chip_config = bmp180_chip_config,
    925	.read_temp = bmp180_read_temp,
    926	.read_press = bmp180_read_press,
    927};
    928
    929static irqreturn_t bmp085_eoc_irq(int irq, void *d)
    930{
    931	struct bmp280_data *data = d;
    932
    933	complete(&data->done);
    934
    935	return IRQ_HANDLED;
    936}
    937
    938static int bmp085_fetch_eoc_irq(struct device *dev,
    939				const char *name,
    940				int irq,
    941				struct bmp280_data *data)
    942{
    943	unsigned long irq_trig;
    944	int ret;
    945
    946	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
    947	if (irq_trig != IRQF_TRIGGER_RISING) {
    948		dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
    949		irq_trig = IRQF_TRIGGER_RISING;
    950	}
    951
    952	init_completion(&data->done);
    953
    954	ret = devm_request_threaded_irq(dev,
    955			irq,
    956			bmp085_eoc_irq,
    957			NULL,
    958			irq_trig,
    959			name,
    960			data);
    961	if (ret) {
    962		/* Bail out without IRQ but keep the driver in place */
    963		dev_err(dev, "unable to request DRDY IRQ\n");
    964		return 0;
    965	}
    966
    967	data->use_eoc = true;
    968	return 0;
    969}
    970
    971static void bmp280_pm_disable(void *data)
    972{
    973	struct device *dev = data;
    974
    975	pm_runtime_get_sync(dev);
    976	pm_runtime_put_noidle(dev);
    977	pm_runtime_disable(dev);
    978}
    979
    980static void bmp280_regulators_disable(void *data)
    981{
    982	struct regulator_bulk_data *supplies = data;
    983
    984	regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
    985}
    986
    987int bmp280_common_probe(struct device *dev,
    988			struct regmap *regmap,
    989			unsigned int chip,
    990			const char *name,
    991			int irq)
    992{
    993	int ret;
    994	struct iio_dev *indio_dev;
    995	struct bmp280_data *data;
    996	unsigned int chip_id;
    997	struct gpio_desc *gpiod;
    998
    999	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
   1000	if (!indio_dev)
   1001		return -ENOMEM;
   1002
   1003	data = iio_priv(indio_dev);
   1004	mutex_init(&data->lock);
   1005	data->dev = dev;
   1006
   1007	indio_dev->name = name;
   1008	indio_dev->channels = bmp280_channels;
   1009	indio_dev->info = &bmp280_info;
   1010	indio_dev->modes = INDIO_DIRECT_MODE;
   1011
   1012	switch (chip) {
   1013	case BMP180_CHIP_ID:
   1014		indio_dev->num_channels = 2;
   1015		data->chip_info = &bmp180_chip_info;
   1016		data->oversampling_press = ilog2(8);
   1017		data->oversampling_temp = ilog2(1);
   1018		data->start_up_time = 10000;
   1019		break;
   1020	case BMP280_CHIP_ID:
   1021		indio_dev->num_channels = 2;
   1022		data->chip_info = &bmp280_chip_info;
   1023		data->oversampling_press = ilog2(16);
   1024		data->oversampling_temp = ilog2(2);
   1025		data->start_up_time = 2000;
   1026		break;
   1027	case BME280_CHIP_ID:
   1028		indio_dev->num_channels = 3;
   1029		data->chip_info = &bme280_chip_info;
   1030		data->oversampling_press = ilog2(16);
   1031		data->oversampling_humid = ilog2(16);
   1032		data->oversampling_temp = ilog2(2);
   1033		data->start_up_time = 2000;
   1034		break;
   1035	default:
   1036		return -EINVAL;
   1037	}
   1038
   1039	/* Bring up regulators */
   1040	regulator_bulk_set_supply_names(data->supplies,
   1041					bmp280_supply_names,
   1042					BMP280_NUM_SUPPLIES);
   1043
   1044	ret = devm_regulator_bulk_get(dev,
   1045				      BMP280_NUM_SUPPLIES, data->supplies);
   1046	if (ret) {
   1047		dev_err(dev, "failed to get regulators\n");
   1048		return ret;
   1049	}
   1050
   1051	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
   1052	if (ret) {
   1053		dev_err(dev, "failed to enable regulators\n");
   1054		return ret;
   1055	}
   1056
   1057	ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
   1058				       data->supplies);
   1059	if (ret)
   1060		return ret;
   1061
   1062	/* Wait to make sure we started up properly */
   1063	usleep_range(data->start_up_time, data->start_up_time + 100);
   1064
   1065	/* Bring chip out of reset if there is an assigned GPIO line */
   1066	gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
   1067	/* Deassert the signal */
   1068	if (gpiod) {
   1069		dev_info(dev, "release reset\n");
   1070		gpiod_set_value(gpiod, 0);
   1071	}
   1072
   1073	data->regmap = regmap;
   1074	ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
   1075	if (ret < 0)
   1076		return ret;
   1077	if (chip_id != chip) {
   1078		dev_err(dev, "bad chip id: expected %x got %x\n",
   1079			chip, chip_id);
   1080		return -EINVAL;
   1081	}
   1082
   1083	ret = data->chip_info->chip_config(data);
   1084	if (ret < 0)
   1085		return ret;
   1086
   1087	dev_set_drvdata(dev, indio_dev);
   1088
   1089	/*
   1090	 * Some chips have calibration parameters "programmed into the devices'
   1091	 * non-volatile memory during production". Let's read them out at probe
   1092	 * time once. They will not change.
   1093	 */
   1094	if (chip_id  == BMP180_CHIP_ID) {
   1095		ret = bmp180_read_calib(data, &data->calib.bmp180);
   1096		if (ret < 0) {
   1097			dev_err(data->dev,
   1098				"failed to read calibration coefficients\n");
   1099			return ret;
   1100		}
   1101	} else if (chip_id == BMP280_CHIP_ID || chip_id == BME280_CHIP_ID) {
   1102		ret = bmp280_read_calib(data, &data->calib.bmp280, chip_id);
   1103		if (ret < 0) {
   1104			dev_err(data->dev,
   1105				"failed to read calibration coefficients\n");
   1106			return ret;
   1107		}
   1108	}
   1109
   1110	/*
   1111	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
   1112	 * however as it happens, the BMP085 shares the chip ID of BMP180
   1113	 * so we look for an IRQ if we have that.
   1114	 */
   1115	if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
   1116		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
   1117		if (ret)
   1118			return ret;
   1119	}
   1120
   1121	/* Enable runtime PM */
   1122	pm_runtime_get_noresume(dev);
   1123	pm_runtime_set_active(dev);
   1124	pm_runtime_enable(dev);
   1125	/*
   1126	 * Set autosuspend to two orders of magnitude larger than the
   1127	 * start-up time.
   1128	 */
   1129	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
   1130	pm_runtime_use_autosuspend(dev);
   1131	pm_runtime_put(dev);
   1132
   1133	ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
   1134	if (ret)
   1135		return ret;
   1136
   1137	return devm_iio_device_register(dev, indio_dev);
   1138}
   1139EXPORT_SYMBOL(bmp280_common_probe);
   1140
   1141static int bmp280_runtime_suspend(struct device *dev)
   1142{
   1143	struct iio_dev *indio_dev = dev_get_drvdata(dev);
   1144	struct bmp280_data *data = iio_priv(indio_dev);
   1145
   1146	return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
   1147}
   1148
   1149static int bmp280_runtime_resume(struct device *dev)
   1150{
   1151	struct iio_dev *indio_dev = dev_get_drvdata(dev);
   1152	struct bmp280_data *data = iio_priv(indio_dev);
   1153	int ret;
   1154
   1155	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
   1156	if (ret)
   1157		return ret;
   1158	usleep_range(data->start_up_time, data->start_up_time + 100);
   1159	return data->chip_info->chip_config(data);
   1160}
   1161
   1162EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
   1163			  bmp280_runtime_resume, NULL);
   1164
   1165MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
   1166MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
   1167MODULE_LICENSE("GPL v2");