cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

verbs.c (81652B)


      1/*
      2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
      3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
      4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
      5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
      6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
      7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
      8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
      9 *
     10 * This software is available to you under a choice of one of two
     11 * licenses.  You may choose to be licensed under the terms of the GNU
     12 * General Public License (GPL) Version 2, available from the file
     13 * COPYING in the main directory of this source tree, or the
     14 * OpenIB.org BSD license below:
     15 *
     16 *     Redistribution and use in source and binary forms, with or
     17 *     without modification, are permitted provided that the following
     18 *     conditions are met:
     19 *
     20 *      - Redistributions of source code must retain the above
     21 *        copyright notice, this list of conditions and the following
     22 *        disclaimer.
     23 *
     24 *      - Redistributions in binary form must reproduce the above
     25 *        copyright notice, this list of conditions and the following
     26 *        disclaimer in the documentation and/or other materials
     27 *        provided with the distribution.
     28 *
     29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     36 * SOFTWARE.
     37 */
     38
     39#include <linux/errno.h>
     40#include <linux/err.h>
     41#include <linux/export.h>
     42#include <linux/string.h>
     43#include <linux/slab.h>
     44#include <linux/in.h>
     45#include <linux/in6.h>
     46#include <net/addrconf.h>
     47#include <linux/security.h>
     48
     49#include <rdma/ib_verbs.h>
     50#include <rdma/ib_cache.h>
     51#include <rdma/ib_addr.h>
     52#include <rdma/rw.h>
     53#include <rdma/lag.h>
     54
     55#include "core_priv.h"
     56#include <trace/events/rdma_core.h>
     57
     58static int ib_resolve_eth_dmac(struct ib_device *device,
     59			       struct rdma_ah_attr *ah_attr);
     60
     61static const char * const ib_events[] = {
     62	[IB_EVENT_CQ_ERR]		= "CQ error",
     63	[IB_EVENT_QP_FATAL]		= "QP fatal error",
     64	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
     65	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
     66	[IB_EVENT_COMM_EST]		= "communication established",
     67	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
     68	[IB_EVENT_PATH_MIG]		= "path migration successful",
     69	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
     70	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
     71	[IB_EVENT_PORT_ACTIVE]		= "port active",
     72	[IB_EVENT_PORT_ERR]		= "port error",
     73	[IB_EVENT_LID_CHANGE]		= "LID change",
     74	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
     75	[IB_EVENT_SM_CHANGE]		= "SM change",
     76	[IB_EVENT_SRQ_ERR]		= "SRQ error",
     77	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
     78	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
     79	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
     80	[IB_EVENT_GID_CHANGE]		= "GID changed",
     81};
     82
     83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
     84{
     85	size_t index = event;
     86
     87	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
     88			ib_events[index] : "unrecognized event";
     89}
     90EXPORT_SYMBOL(ib_event_msg);
     91
     92static const char * const wc_statuses[] = {
     93	[IB_WC_SUCCESS]			= "success",
     94	[IB_WC_LOC_LEN_ERR]		= "local length error",
     95	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
     96	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
     97	[IB_WC_LOC_PROT_ERR]		= "local protection error",
     98	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
     99	[IB_WC_MW_BIND_ERR]		= "memory bind operation error",
    100	[IB_WC_BAD_RESP_ERR]		= "bad response error",
    101	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
    102	[IB_WC_REM_INV_REQ_ERR]		= "remote invalid request error",
    103	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
    104	[IB_WC_REM_OP_ERR]		= "remote operation error",
    105	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
    106	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
    107	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
    108	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
    109	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
    110	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
    111	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
    112	[IB_WC_FATAL_ERR]		= "fatal error",
    113	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
    114	[IB_WC_GENERAL_ERR]		= "general error",
    115};
    116
    117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
    118{
    119	size_t index = status;
    120
    121	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
    122			wc_statuses[index] : "unrecognized status";
    123}
    124EXPORT_SYMBOL(ib_wc_status_msg);
    125
    126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
    127{
    128	switch (rate) {
    129	case IB_RATE_2_5_GBPS: return   1;
    130	case IB_RATE_5_GBPS:   return   2;
    131	case IB_RATE_10_GBPS:  return   4;
    132	case IB_RATE_20_GBPS:  return   8;
    133	case IB_RATE_30_GBPS:  return  12;
    134	case IB_RATE_40_GBPS:  return  16;
    135	case IB_RATE_60_GBPS:  return  24;
    136	case IB_RATE_80_GBPS:  return  32;
    137	case IB_RATE_120_GBPS: return  48;
    138	case IB_RATE_14_GBPS:  return   6;
    139	case IB_RATE_56_GBPS:  return  22;
    140	case IB_RATE_112_GBPS: return  45;
    141	case IB_RATE_168_GBPS: return  67;
    142	case IB_RATE_25_GBPS:  return  10;
    143	case IB_RATE_100_GBPS: return  40;
    144	case IB_RATE_200_GBPS: return  80;
    145	case IB_RATE_300_GBPS: return 120;
    146	case IB_RATE_28_GBPS:  return  11;
    147	case IB_RATE_50_GBPS:  return  20;
    148	case IB_RATE_400_GBPS: return 160;
    149	case IB_RATE_600_GBPS: return 240;
    150	default:	       return  -1;
    151	}
    152}
    153EXPORT_SYMBOL(ib_rate_to_mult);
    154
    155__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
    156{
    157	switch (mult) {
    158	case 1:   return IB_RATE_2_5_GBPS;
    159	case 2:   return IB_RATE_5_GBPS;
    160	case 4:   return IB_RATE_10_GBPS;
    161	case 8:   return IB_RATE_20_GBPS;
    162	case 12:  return IB_RATE_30_GBPS;
    163	case 16:  return IB_RATE_40_GBPS;
    164	case 24:  return IB_RATE_60_GBPS;
    165	case 32:  return IB_RATE_80_GBPS;
    166	case 48:  return IB_RATE_120_GBPS;
    167	case 6:   return IB_RATE_14_GBPS;
    168	case 22:  return IB_RATE_56_GBPS;
    169	case 45:  return IB_RATE_112_GBPS;
    170	case 67:  return IB_RATE_168_GBPS;
    171	case 10:  return IB_RATE_25_GBPS;
    172	case 40:  return IB_RATE_100_GBPS;
    173	case 80:  return IB_RATE_200_GBPS;
    174	case 120: return IB_RATE_300_GBPS;
    175	case 11:  return IB_RATE_28_GBPS;
    176	case 20:  return IB_RATE_50_GBPS;
    177	case 160: return IB_RATE_400_GBPS;
    178	case 240: return IB_RATE_600_GBPS;
    179	default:  return IB_RATE_PORT_CURRENT;
    180	}
    181}
    182EXPORT_SYMBOL(mult_to_ib_rate);
    183
    184__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
    185{
    186	switch (rate) {
    187	case IB_RATE_2_5_GBPS: return 2500;
    188	case IB_RATE_5_GBPS:   return 5000;
    189	case IB_RATE_10_GBPS:  return 10000;
    190	case IB_RATE_20_GBPS:  return 20000;
    191	case IB_RATE_30_GBPS:  return 30000;
    192	case IB_RATE_40_GBPS:  return 40000;
    193	case IB_RATE_60_GBPS:  return 60000;
    194	case IB_RATE_80_GBPS:  return 80000;
    195	case IB_RATE_120_GBPS: return 120000;
    196	case IB_RATE_14_GBPS:  return 14062;
    197	case IB_RATE_56_GBPS:  return 56250;
    198	case IB_RATE_112_GBPS: return 112500;
    199	case IB_RATE_168_GBPS: return 168750;
    200	case IB_RATE_25_GBPS:  return 25781;
    201	case IB_RATE_100_GBPS: return 103125;
    202	case IB_RATE_200_GBPS: return 206250;
    203	case IB_RATE_300_GBPS: return 309375;
    204	case IB_RATE_28_GBPS:  return 28125;
    205	case IB_RATE_50_GBPS:  return 53125;
    206	case IB_RATE_400_GBPS: return 425000;
    207	case IB_RATE_600_GBPS: return 637500;
    208	default:	       return -1;
    209	}
    210}
    211EXPORT_SYMBOL(ib_rate_to_mbps);
    212
    213__attribute_const__ enum rdma_transport_type
    214rdma_node_get_transport(unsigned int node_type)
    215{
    216
    217	if (node_type == RDMA_NODE_USNIC)
    218		return RDMA_TRANSPORT_USNIC;
    219	if (node_type == RDMA_NODE_USNIC_UDP)
    220		return RDMA_TRANSPORT_USNIC_UDP;
    221	if (node_type == RDMA_NODE_RNIC)
    222		return RDMA_TRANSPORT_IWARP;
    223	if (node_type == RDMA_NODE_UNSPECIFIED)
    224		return RDMA_TRANSPORT_UNSPECIFIED;
    225
    226	return RDMA_TRANSPORT_IB;
    227}
    228EXPORT_SYMBOL(rdma_node_get_transport);
    229
    230enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
    231					      u32 port_num)
    232{
    233	enum rdma_transport_type lt;
    234	if (device->ops.get_link_layer)
    235		return device->ops.get_link_layer(device, port_num);
    236
    237	lt = rdma_node_get_transport(device->node_type);
    238	if (lt == RDMA_TRANSPORT_IB)
    239		return IB_LINK_LAYER_INFINIBAND;
    240
    241	return IB_LINK_LAYER_ETHERNET;
    242}
    243EXPORT_SYMBOL(rdma_port_get_link_layer);
    244
    245/* Protection domains */
    246
    247/**
    248 * __ib_alloc_pd - Allocates an unused protection domain.
    249 * @device: The device on which to allocate the protection domain.
    250 * @flags: protection domain flags
    251 * @caller: caller's build-time module name
    252 *
    253 * A protection domain object provides an association between QPs, shared
    254 * receive queues, address handles, memory regions, and memory windows.
    255 *
    256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
    257 * memory operations.
    258 */
    259struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
    260		const char *caller)
    261{
    262	struct ib_pd *pd;
    263	int mr_access_flags = 0;
    264	int ret;
    265
    266	pd = rdma_zalloc_drv_obj(device, ib_pd);
    267	if (!pd)
    268		return ERR_PTR(-ENOMEM);
    269
    270	pd->device = device;
    271	pd->flags = flags;
    272
    273	rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
    274	rdma_restrack_set_name(&pd->res, caller);
    275
    276	ret = device->ops.alloc_pd(pd, NULL);
    277	if (ret) {
    278		rdma_restrack_put(&pd->res);
    279		kfree(pd);
    280		return ERR_PTR(ret);
    281	}
    282	rdma_restrack_add(&pd->res);
    283
    284	if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
    285		pd->local_dma_lkey = device->local_dma_lkey;
    286	else
    287		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
    288
    289	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
    290		pr_warn("%s: enabling unsafe global rkey\n", caller);
    291		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
    292	}
    293
    294	if (mr_access_flags) {
    295		struct ib_mr *mr;
    296
    297		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
    298		if (IS_ERR(mr)) {
    299			ib_dealloc_pd(pd);
    300			return ERR_CAST(mr);
    301		}
    302
    303		mr->device	= pd->device;
    304		mr->pd		= pd;
    305		mr->type        = IB_MR_TYPE_DMA;
    306		mr->uobject	= NULL;
    307		mr->need_inval	= false;
    308
    309		pd->__internal_mr = mr;
    310
    311		if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
    312			pd->local_dma_lkey = pd->__internal_mr->lkey;
    313
    314		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
    315			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
    316	}
    317
    318	return pd;
    319}
    320EXPORT_SYMBOL(__ib_alloc_pd);
    321
    322/**
    323 * ib_dealloc_pd_user - Deallocates a protection domain.
    324 * @pd: The protection domain to deallocate.
    325 * @udata: Valid user data or NULL for kernel object
    326 *
    327 * It is an error to call this function while any resources in the pd still
    328 * exist.  The caller is responsible to synchronously destroy them and
    329 * guarantee no new allocations will happen.
    330 */
    331int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
    332{
    333	int ret;
    334
    335	if (pd->__internal_mr) {
    336		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
    337		WARN_ON(ret);
    338		pd->__internal_mr = NULL;
    339	}
    340
    341	ret = pd->device->ops.dealloc_pd(pd, udata);
    342	if (ret)
    343		return ret;
    344
    345	rdma_restrack_del(&pd->res);
    346	kfree(pd);
    347	return ret;
    348}
    349EXPORT_SYMBOL(ib_dealloc_pd_user);
    350
    351/* Address handles */
    352
    353/**
    354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
    355 * @dest:       Pointer to destination ah_attr. Contents of the destination
    356 *              pointer is assumed to be invalid and attribute are overwritten.
    357 * @src:        Pointer to source ah_attr.
    358 */
    359void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
    360		       const struct rdma_ah_attr *src)
    361{
    362	*dest = *src;
    363	if (dest->grh.sgid_attr)
    364		rdma_hold_gid_attr(dest->grh.sgid_attr);
    365}
    366EXPORT_SYMBOL(rdma_copy_ah_attr);
    367
    368/**
    369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
    370 * @old:        Pointer to existing ah_attr which needs to be replaced.
    371 *              old is assumed to be valid or zero'd
    372 * @new:        Pointer to the new ah_attr.
    373 *
    374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
    375 * old the ah_attr is valid; after that it copies the new attribute and holds
    376 * the reference to the replaced ah_attr.
    377 */
    378void rdma_replace_ah_attr(struct rdma_ah_attr *old,
    379			  const struct rdma_ah_attr *new)
    380{
    381	rdma_destroy_ah_attr(old);
    382	*old = *new;
    383	if (old->grh.sgid_attr)
    384		rdma_hold_gid_attr(old->grh.sgid_attr);
    385}
    386EXPORT_SYMBOL(rdma_replace_ah_attr);
    387
    388/**
    389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
    390 * @dest:       Pointer to destination ah_attr to copy to.
    391 *              dest is assumed to be valid or zero'd
    392 * @src:        Pointer to the new ah_attr.
    393 *
    394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
    395 * if it is valid. This also transfers ownership of internal references from
    396 * src to dest, making src invalid in the process. No new reference of the src
    397 * ah_attr is taken.
    398 */
    399void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
    400{
    401	rdma_destroy_ah_attr(dest);
    402	*dest = *src;
    403	src->grh.sgid_attr = NULL;
    404}
    405EXPORT_SYMBOL(rdma_move_ah_attr);
    406
    407/*
    408 * Validate that the rdma_ah_attr is valid for the device before passing it
    409 * off to the driver.
    410 */
    411static int rdma_check_ah_attr(struct ib_device *device,
    412			      struct rdma_ah_attr *ah_attr)
    413{
    414	if (!rdma_is_port_valid(device, ah_attr->port_num))
    415		return -EINVAL;
    416
    417	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
    418	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
    419	    !(ah_attr->ah_flags & IB_AH_GRH))
    420		return -EINVAL;
    421
    422	if (ah_attr->grh.sgid_attr) {
    423		/*
    424		 * Make sure the passed sgid_attr is consistent with the
    425		 * parameters
    426		 */
    427		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
    428		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
    429			return -EINVAL;
    430	}
    431	return 0;
    432}
    433
    434/*
    435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
    436 * On success the caller is responsible to call rdma_unfill_sgid_attr().
    437 */
    438static int rdma_fill_sgid_attr(struct ib_device *device,
    439			       struct rdma_ah_attr *ah_attr,
    440			       const struct ib_gid_attr **old_sgid_attr)
    441{
    442	const struct ib_gid_attr *sgid_attr;
    443	struct ib_global_route *grh;
    444	int ret;
    445
    446	*old_sgid_attr = ah_attr->grh.sgid_attr;
    447
    448	ret = rdma_check_ah_attr(device, ah_attr);
    449	if (ret)
    450		return ret;
    451
    452	if (!(ah_attr->ah_flags & IB_AH_GRH))
    453		return 0;
    454
    455	grh = rdma_ah_retrieve_grh(ah_attr);
    456	if (grh->sgid_attr)
    457		return 0;
    458
    459	sgid_attr =
    460		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
    461	if (IS_ERR(sgid_attr))
    462		return PTR_ERR(sgid_attr);
    463
    464	/* Move ownerhip of the kref into the ah_attr */
    465	grh->sgid_attr = sgid_attr;
    466	return 0;
    467}
    468
    469static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
    470				  const struct ib_gid_attr *old_sgid_attr)
    471{
    472	/*
    473	 * Fill didn't change anything, the caller retains ownership of
    474	 * whatever it passed
    475	 */
    476	if (ah_attr->grh.sgid_attr == old_sgid_attr)
    477		return;
    478
    479	/*
    480	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
    481	 * doesn't see any change in the rdma_ah_attr. If we get here
    482	 * old_sgid_attr is NULL.
    483	 */
    484	rdma_destroy_ah_attr(ah_attr);
    485}
    486
    487static const struct ib_gid_attr *
    488rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
    489		      const struct ib_gid_attr *old_attr)
    490{
    491	if (old_attr)
    492		rdma_put_gid_attr(old_attr);
    493	if (ah_attr->ah_flags & IB_AH_GRH) {
    494		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
    495		return ah_attr->grh.sgid_attr;
    496	}
    497	return NULL;
    498}
    499
    500static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
    501				     struct rdma_ah_attr *ah_attr,
    502				     u32 flags,
    503				     struct ib_udata *udata,
    504				     struct net_device *xmit_slave)
    505{
    506	struct rdma_ah_init_attr init_attr = {};
    507	struct ib_device *device = pd->device;
    508	struct ib_ah *ah;
    509	int ret;
    510
    511	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
    512
    513	if (!udata && !device->ops.create_ah)
    514		return ERR_PTR(-EOPNOTSUPP);
    515
    516	ah = rdma_zalloc_drv_obj_gfp(
    517		device, ib_ah,
    518		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
    519	if (!ah)
    520		return ERR_PTR(-ENOMEM);
    521
    522	ah->device = device;
    523	ah->pd = pd;
    524	ah->type = ah_attr->type;
    525	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
    526	init_attr.ah_attr = ah_attr;
    527	init_attr.flags = flags;
    528	init_attr.xmit_slave = xmit_slave;
    529
    530	if (udata)
    531		ret = device->ops.create_user_ah(ah, &init_attr, udata);
    532	else
    533		ret = device->ops.create_ah(ah, &init_attr, NULL);
    534	if (ret) {
    535		kfree(ah);
    536		return ERR_PTR(ret);
    537	}
    538
    539	atomic_inc(&pd->usecnt);
    540	return ah;
    541}
    542
    543/**
    544 * rdma_create_ah - Creates an address handle for the
    545 * given address vector.
    546 * @pd: The protection domain associated with the address handle.
    547 * @ah_attr: The attributes of the address vector.
    548 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
    549 *
    550 * It returns 0 on success and returns appropriate error code on error.
    551 * The address handle is used to reference a local or global destination
    552 * in all UD QP post sends.
    553 */
    554struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
    555			     u32 flags)
    556{
    557	const struct ib_gid_attr *old_sgid_attr;
    558	struct net_device *slave;
    559	struct ib_ah *ah;
    560	int ret;
    561
    562	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
    563	if (ret)
    564		return ERR_PTR(ret);
    565	slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
    566					   (flags & RDMA_CREATE_AH_SLEEPABLE) ?
    567					   GFP_KERNEL : GFP_ATOMIC);
    568	if (IS_ERR(slave)) {
    569		rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
    570		return (void *)slave;
    571	}
    572	ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
    573	rdma_lag_put_ah_roce_slave(slave);
    574	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
    575	return ah;
    576}
    577EXPORT_SYMBOL(rdma_create_ah);
    578
    579/**
    580 * rdma_create_user_ah - Creates an address handle for the
    581 * given address vector.
    582 * It resolves destination mac address for ah attribute of RoCE type.
    583 * @pd: The protection domain associated with the address handle.
    584 * @ah_attr: The attributes of the address vector.
    585 * @udata: pointer to user's input output buffer information need by
    586 *         provider driver.
    587 *
    588 * It returns 0 on success and returns appropriate error code on error.
    589 * The address handle is used to reference a local or global destination
    590 * in all UD QP post sends.
    591 */
    592struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
    593				  struct rdma_ah_attr *ah_attr,
    594				  struct ib_udata *udata)
    595{
    596	const struct ib_gid_attr *old_sgid_attr;
    597	struct ib_ah *ah;
    598	int err;
    599
    600	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
    601	if (err)
    602		return ERR_PTR(err);
    603
    604	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
    605		err = ib_resolve_eth_dmac(pd->device, ah_attr);
    606		if (err) {
    607			ah = ERR_PTR(err);
    608			goto out;
    609		}
    610	}
    611
    612	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
    613			     udata, NULL);
    614
    615out:
    616	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
    617	return ah;
    618}
    619EXPORT_SYMBOL(rdma_create_user_ah);
    620
    621int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
    622{
    623	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
    624	struct iphdr ip4h_checked;
    625	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
    626
    627	/* If it's IPv6, the version must be 6, otherwise, the first
    628	 * 20 bytes (before the IPv4 header) are garbled.
    629	 */
    630	if (ip6h->version != 6)
    631		return (ip4h->version == 4) ? 4 : 0;
    632	/* version may be 6 or 4 because the first 20 bytes could be garbled */
    633
    634	/* RoCE v2 requires no options, thus header length
    635	 * must be 5 words
    636	 */
    637	if (ip4h->ihl != 5)
    638		return 6;
    639
    640	/* Verify checksum.
    641	 * We can't write on scattered buffers so we need to copy to
    642	 * temp buffer.
    643	 */
    644	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
    645	ip4h_checked.check = 0;
    646	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
    647	/* if IPv4 header checksum is OK, believe it */
    648	if (ip4h->check == ip4h_checked.check)
    649		return 4;
    650	return 6;
    651}
    652EXPORT_SYMBOL(ib_get_rdma_header_version);
    653
    654static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
    655						     u32 port_num,
    656						     const struct ib_grh *grh)
    657{
    658	int grh_version;
    659
    660	if (rdma_protocol_ib(device, port_num))
    661		return RDMA_NETWORK_IB;
    662
    663	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
    664
    665	if (grh_version == 4)
    666		return RDMA_NETWORK_IPV4;
    667
    668	if (grh->next_hdr == IPPROTO_UDP)
    669		return RDMA_NETWORK_IPV6;
    670
    671	return RDMA_NETWORK_ROCE_V1;
    672}
    673
    674struct find_gid_index_context {
    675	u16 vlan_id;
    676	enum ib_gid_type gid_type;
    677};
    678
    679static bool find_gid_index(const union ib_gid *gid,
    680			   const struct ib_gid_attr *gid_attr,
    681			   void *context)
    682{
    683	struct find_gid_index_context *ctx = context;
    684	u16 vlan_id = 0xffff;
    685	int ret;
    686
    687	if (ctx->gid_type != gid_attr->gid_type)
    688		return false;
    689
    690	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
    691	if (ret)
    692		return false;
    693
    694	return ctx->vlan_id == vlan_id;
    695}
    696
    697static const struct ib_gid_attr *
    698get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
    699		       u16 vlan_id, const union ib_gid *sgid,
    700		       enum ib_gid_type gid_type)
    701{
    702	struct find_gid_index_context context = {.vlan_id = vlan_id,
    703						 .gid_type = gid_type};
    704
    705	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
    706				       &context);
    707}
    708
    709int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
    710			      enum rdma_network_type net_type,
    711			      union ib_gid *sgid, union ib_gid *dgid)
    712{
    713	struct sockaddr_in  src_in;
    714	struct sockaddr_in  dst_in;
    715	__be32 src_saddr, dst_saddr;
    716
    717	if (!sgid || !dgid)
    718		return -EINVAL;
    719
    720	if (net_type == RDMA_NETWORK_IPV4) {
    721		memcpy(&src_in.sin_addr.s_addr,
    722		       &hdr->roce4grh.saddr, 4);
    723		memcpy(&dst_in.sin_addr.s_addr,
    724		       &hdr->roce4grh.daddr, 4);
    725		src_saddr = src_in.sin_addr.s_addr;
    726		dst_saddr = dst_in.sin_addr.s_addr;
    727		ipv6_addr_set_v4mapped(src_saddr,
    728				       (struct in6_addr *)sgid);
    729		ipv6_addr_set_v4mapped(dst_saddr,
    730				       (struct in6_addr *)dgid);
    731		return 0;
    732	} else if (net_type == RDMA_NETWORK_IPV6 ||
    733		   net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
    734		*dgid = hdr->ibgrh.dgid;
    735		*sgid = hdr->ibgrh.sgid;
    736		return 0;
    737	} else {
    738		return -EINVAL;
    739	}
    740}
    741EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
    742
    743/* Resolve destination mac address and hop limit for unicast destination
    744 * GID entry, considering the source GID entry as well.
    745 * ah_attribute must have have valid port_num, sgid_index.
    746 */
    747static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
    748				       struct rdma_ah_attr *ah_attr)
    749{
    750	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
    751	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
    752	int hop_limit = 0xff;
    753	int ret = 0;
    754
    755	/* If destination is link local and source GID is RoCEv1,
    756	 * IP stack is not used.
    757	 */
    758	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
    759	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
    760		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
    761				ah_attr->roce.dmac);
    762		return ret;
    763	}
    764
    765	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
    766					   ah_attr->roce.dmac,
    767					   sgid_attr, &hop_limit);
    768
    769	grh->hop_limit = hop_limit;
    770	return ret;
    771}
    772
    773/*
    774 * This function initializes address handle attributes from the incoming packet.
    775 * Incoming packet has dgid of the receiver node on which this code is
    776 * getting executed and, sgid contains the GID of the sender.
    777 *
    778 * When resolving mac address of destination, the arrived dgid is used
    779 * as sgid and, sgid is used as dgid because sgid contains destinations
    780 * GID whom to respond to.
    781 *
    782 * On success the caller is responsible to call rdma_destroy_ah_attr on the
    783 * attr.
    784 */
    785int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
    786			    const struct ib_wc *wc, const struct ib_grh *grh,
    787			    struct rdma_ah_attr *ah_attr)
    788{
    789	u32 flow_class;
    790	int ret;
    791	enum rdma_network_type net_type = RDMA_NETWORK_IB;
    792	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
    793	const struct ib_gid_attr *sgid_attr;
    794	int hoplimit = 0xff;
    795	union ib_gid dgid;
    796	union ib_gid sgid;
    797
    798	might_sleep();
    799
    800	memset(ah_attr, 0, sizeof *ah_attr);
    801	ah_attr->type = rdma_ah_find_type(device, port_num);
    802	if (rdma_cap_eth_ah(device, port_num)) {
    803		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
    804			net_type = wc->network_hdr_type;
    805		else
    806			net_type = ib_get_net_type_by_grh(device, port_num, grh);
    807		gid_type = ib_network_to_gid_type(net_type);
    808	}
    809	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
    810					&sgid, &dgid);
    811	if (ret)
    812		return ret;
    813
    814	rdma_ah_set_sl(ah_attr, wc->sl);
    815	rdma_ah_set_port_num(ah_attr, port_num);
    816
    817	if (rdma_protocol_roce(device, port_num)) {
    818		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
    819				wc->vlan_id : 0xffff;
    820
    821		if (!(wc->wc_flags & IB_WC_GRH))
    822			return -EPROTOTYPE;
    823
    824		sgid_attr = get_sgid_attr_from_eth(device, port_num,
    825						   vlan_id, &dgid,
    826						   gid_type);
    827		if (IS_ERR(sgid_attr))
    828			return PTR_ERR(sgid_attr);
    829
    830		flow_class = be32_to_cpu(grh->version_tclass_flow);
    831		rdma_move_grh_sgid_attr(ah_attr,
    832					&sgid,
    833					flow_class & 0xFFFFF,
    834					hoplimit,
    835					(flow_class >> 20) & 0xFF,
    836					sgid_attr);
    837
    838		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
    839		if (ret)
    840			rdma_destroy_ah_attr(ah_attr);
    841
    842		return ret;
    843	} else {
    844		rdma_ah_set_dlid(ah_attr, wc->slid);
    845		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
    846
    847		if ((wc->wc_flags & IB_WC_GRH) == 0)
    848			return 0;
    849
    850		if (dgid.global.interface_id !=
    851					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
    852			sgid_attr = rdma_find_gid_by_port(
    853				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
    854		} else
    855			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
    856
    857		if (IS_ERR(sgid_attr))
    858			return PTR_ERR(sgid_attr);
    859		flow_class = be32_to_cpu(grh->version_tclass_flow);
    860		rdma_move_grh_sgid_attr(ah_attr,
    861					&sgid,
    862					flow_class & 0xFFFFF,
    863					hoplimit,
    864					(flow_class >> 20) & 0xFF,
    865					sgid_attr);
    866
    867		return 0;
    868	}
    869}
    870EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
    871
    872/**
    873 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
    874 * of the reference
    875 *
    876 * @attr:	Pointer to AH attribute structure
    877 * @dgid:	Destination GID
    878 * @flow_label:	Flow label
    879 * @hop_limit:	Hop limit
    880 * @traffic_class: traffic class
    881 * @sgid_attr:	Pointer to SGID attribute
    882 *
    883 * This takes ownership of the sgid_attr reference. The caller must ensure
    884 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
    885 * calling this function.
    886 */
    887void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
    888			     u32 flow_label, u8 hop_limit, u8 traffic_class,
    889			     const struct ib_gid_attr *sgid_attr)
    890{
    891	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
    892			traffic_class);
    893	attr->grh.sgid_attr = sgid_attr;
    894}
    895EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
    896
    897/**
    898 * rdma_destroy_ah_attr - Release reference to SGID attribute of
    899 * ah attribute.
    900 * @ah_attr: Pointer to ah attribute
    901 *
    902 * Release reference to the SGID attribute of the ah attribute if it is
    903 * non NULL. It is safe to call this multiple times, and safe to call it on
    904 * a zero initialized ah_attr.
    905 */
    906void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
    907{
    908	if (ah_attr->grh.sgid_attr) {
    909		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
    910		ah_attr->grh.sgid_attr = NULL;
    911	}
    912}
    913EXPORT_SYMBOL(rdma_destroy_ah_attr);
    914
    915struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
    916				   const struct ib_grh *grh, u32 port_num)
    917{
    918	struct rdma_ah_attr ah_attr;
    919	struct ib_ah *ah;
    920	int ret;
    921
    922	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
    923	if (ret)
    924		return ERR_PTR(ret);
    925
    926	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
    927
    928	rdma_destroy_ah_attr(&ah_attr);
    929	return ah;
    930}
    931EXPORT_SYMBOL(ib_create_ah_from_wc);
    932
    933int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
    934{
    935	const struct ib_gid_attr *old_sgid_attr;
    936	int ret;
    937
    938	if (ah->type != ah_attr->type)
    939		return -EINVAL;
    940
    941	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
    942	if (ret)
    943		return ret;
    944
    945	ret = ah->device->ops.modify_ah ?
    946		ah->device->ops.modify_ah(ah, ah_attr) :
    947		-EOPNOTSUPP;
    948
    949	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
    950	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
    951	return ret;
    952}
    953EXPORT_SYMBOL(rdma_modify_ah);
    954
    955int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
    956{
    957	ah_attr->grh.sgid_attr = NULL;
    958
    959	return ah->device->ops.query_ah ?
    960		ah->device->ops.query_ah(ah, ah_attr) :
    961		-EOPNOTSUPP;
    962}
    963EXPORT_SYMBOL(rdma_query_ah);
    964
    965int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
    966{
    967	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
    968	struct ib_pd *pd;
    969	int ret;
    970
    971	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
    972
    973	pd = ah->pd;
    974
    975	ret = ah->device->ops.destroy_ah(ah, flags);
    976	if (ret)
    977		return ret;
    978
    979	atomic_dec(&pd->usecnt);
    980	if (sgid_attr)
    981		rdma_put_gid_attr(sgid_attr);
    982
    983	kfree(ah);
    984	return ret;
    985}
    986EXPORT_SYMBOL(rdma_destroy_ah_user);
    987
    988/* Shared receive queues */
    989
    990/**
    991 * ib_create_srq_user - Creates a SRQ associated with the specified protection
    992 *   domain.
    993 * @pd: The protection domain associated with the SRQ.
    994 * @srq_init_attr: A list of initial attributes required to create the
    995 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
    996 *   the actual capabilities of the created SRQ.
    997 * @uobject: uobject pointer if this is not a kernel SRQ
    998 * @udata: udata pointer if this is not a kernel SRQ
    999 *
   1000 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
   1001 * requested size of the SRQ, and set to the actual values allocated
   1002 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
   1003 * will always be at least as large as the requested values.
   1004 */
   1005struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
   1006				  struct ib_srq_init_attr *srq_init_attr,
   1007				  struct ib_usrq_object *uobject,
   1008				  struct ib_udata *udata)
   1009{
   1010	struct ib_srq *srq;
   1011	int ret;
   1012
   1013	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
   1014	if (!srq)
   1015		return ERR_PTR(-ENOMEM);
   1016
   1017	srq->device = pd->device;
   1018	srq->pd = pd;
   1019	srq->event_handler = srq_init_attr->event_handler;
   1020	srq->srq_context = srq_init_attr->srq_context;
   1021	srq->srq_type = srq_init_attr->srq_type;
   1022	srq->uobject = uobject;
   1023
   1024	if (ib_srq_has_cq(srq->srq_type)) {
   1025		srq->ext.cq = srq_init_attr->ext.cq;
   1026		atomic_inc(&srq->ext.cq->usecnt);
   1027	}
   1028	if (srq->srq_type == IB_SRQT_XRC) {
   1029		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
   1030		if (srq->ext.xrc.xrcd)
   1031			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
   1032	}
   1033	atomic_inc(&pd->usecnt);
   1034
   1035	rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
   1036	rdma_restrack_parent_name(&srq->res, &pd->res);
   1037
   1038	ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
   1039	if (ret) {
   1040		rdma_restrack_put(&srq->res);
   1041		atomic_dec(&srq->pd->usecnt);
   1042		if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
   1043			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
   1044		if (ib_srq_has_cq(srq->srq_type))
   1045			atomic_dec(&srq->ext.cq->usecnt);
   1046		kfree(srq);
   1047		return ERR_PTR(ret);
   1048	}
   1049
   1050	rdma_restrack_add(&srq->res);
   1051
   1052	return srq;
   1053}
   1054EXPORT_SYMBOL(ib_create_srq_user);
   1055
   1056int ib_modify_srq(struct ib_srq *srq,
   1057		  struct ib_srq_attr *srq_attr,
   1058		  enum ib_srq_attr_mask srq_attr_mask)
   1059{
   1060	return srq->device->ops.modify_srq ?
   1061		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
   1062					    NULL) : -EOPNOTSUPP;
   1063}
   1064EXPORT_SYMBOL(ib_modify_srq);
   1065
   1066int ib_query_srq(struct ib_srq *srq,
   1067		 struct ib_srq_attr *srq_attr)
   1068{
   1069	return srq->device->ops.query_srq ?
   1070		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
   1071}
   1072EXPORT_SYMBOL(ib_query_srq);
   1073
   1074int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
   1075{
   1076	int ret;
   1077
   1078	if (atomic_read(&srq->usecnt))
   1079		return -EBUSY;
   1080
   1081	ret = srq->device->ops.destroy_srq(srq, udata);
   1082	if (ret)
   1083		return ret;
   1084
   1085	atomic_dec(&srq->pd->usecnt);
   1086	if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
   1087		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
   1088	if (ib_srq_has_cq(srq->srq_type))
   1089		atomic_dec(&srq->ext.cq->usecnt);
   1090	rdma_restrack_del(&srq->res);
   1091	kfree(srq);
   1092
   1093	return ret;
   1094}
   1095EXPORT_SYMBOL(ib_destroy_srq_user);
   1096
   1097/* Queue pairs */
   1098
   1099static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
   1100{
   1101	struct ib_qp *qp = context;
   1102	unsigned long flags;
   1103
   1104	spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
   1105	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
   1106		if (event->element.qp->event_handler)
   1107			event->element.qp->event_handler(event, event->element.qp->qp_context);
   1108	spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
   1109}
   1110
   1111static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
   1112				  void (*event_handler)(struct ib_event *, void *),
   1113				  void *qp_context)
   1114{
   1115	struct ib_qp *qp;
   1116	unsigned long flags;
   1117	int err;
   1118
   1119	qp = kzalloc(sizeof *qp, GFP_KERNEL);
   1120	if (!qp)
   1121		return ERR_PTR(-ENOMEM);
   1122
   1123	qp->real_qp = real_qp;
   1124	err = ib_open_shared_qp_security(qp, real_qp->device);
   1125	if (err) {
   1126		kfree(qp);
   1127		return ERR_PTR(err);
   1128	}
   1129
   1130	qp->real_qp = real_qp;
   1131	atomic_inc(&real_qp->usecnt);
   1132	qp->device = real_qp->device;
   1133	qp->event_handler = event_handler;
   1134	qp->qp_context = qp_context;
   1135	qp->qp_num = real_qp->qp_num;
   1136	qp->qp_type = real_qp->qp_type;
   1137
   1138	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
   1139	list_add(&qp->open_list, &real_qp->open_list);
   1140	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
   1141
   1142	return qp;
   1143}
   1144
   1145struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
   1146			 struct ib_qp_open_attr *qp_open_attr)
   1147{
   1148	struct ib_qp *qp, *real_qp;
   1149
   1150	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
   1151		return ERR_PTR(-EINVAL);
   1152
   1153	down_read(&xrcd->tgt_qps_rwsem);
   1154	real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
   1155	if (!real_qp) {
   1156		up_read(&xrcd->tgt_qps_rwsem);
   1157		return ERR_PTR(-EINVAL);
   1158	}
   1159	qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
   1160			  qp_open_attr->qp_context);
   1161	up_read(&xrcd->tgt_qps_rwsem);
   1162	return qp;
   1163}
   1164EXPORT_SYMBOL(ib_open_qp);
   1165
   1166static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
   1167					struct ib_qp_init_attr *qp_init_attr)
   1168{
   1169	struct ib_qp *real_qp = qp;
   1170	int err;
   1171
   1172	qp->event_handler = __ib_shared_qp_event_handler;
   1173	qp->qp_context = qp;
   1174	qp->pd = NULL;
   1175	qp->send_cq = qp->recv_cq = NULL;
   1176	qp->srq = NULL;
   1177	qp->xrcd = qp_init_attr->xrcd;
   1178	atomic_inc(&qp_init_attr->xrcd->usecnt);
   1179	INIT_LIST_HEAD(&qp->open_list);
   1180
   1181	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
   1182			  qp_init_attr->qp_context);
   1183	if (IS_ERR(qp))
   1184		return qp;
   1185
   1186	err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
   1187			      real_qp, GFP_KERNEL));
   1188	if (err) {
   1189		ib_close_qp(qp);
   1190		return ERR_PTR(err);
   1191	}
   1192	return qp;
   1193}
   1194
   1195static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
   1196			       struct ib_qp_init_attr *attr,
   1197			       struct ib_udata *udata,
   1198			       struct ib_uqp_object *uobj, const char *caller)
   1199{
   1200	struct ib_udata dummy = {};
   1201	struct ib_qp *qp;
   1202	int ret;
   1203
   1204	if (!dev->ops.create_qp)
   1205		return ERR_PTR(-EOPNOTSUPP);
   1206
   1207	qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
   1208	if (!qp)
   1209		return ERR_PTR(-ENOMEM);
   1210
   1211	qp->device = dev;
   1212	qp->pd = pd;
   1213	qp->uobject = uobj;
   1214	qp->real_qp = qp;
   1215
   1216	qp->qp_type = attr->qp_type;
   1217	qp->rwq_ind_tbl = attr->rwq_ind_tbl;
   1218	qp->srq = attr->srq;
   1219	qp->event_handler = attr->event_handler;
   1220	qp->port = attr->port_num;
   1221	qp->qp_context = attr->qp_context;
   1222
   1223	spin_lock_init(&qp->mr_lock);
   1224	INIT_LIST_HEAD(&qp->rdma_mrs);
   1225	INIT_LIST_HEAD(&qp->sig_mrs);
   1226
   1227	qp->send_cq = attr->send_cq;
   1228	qp->recv_cq = attr->recv_cq;
   1229
   1230	rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
   1231	WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
   1232	rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
   1233	ret = dev->ops.create_qp(qp, attr, udata);
   1234	if (ret)
   1235		goto err_create;
   1236
   1237	/*
   1238	 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
   1239	 * Unfortunately, it is not an easy task to fix that driver.
   1240	 */
   1241	qp->send_cq = attr->send_cq;
   1242	qp->recv_cq = attr->recv_cq;
   1243
   1244	ret = ib_create_qp_security(qp, dev);
   1245	if (ret)
   1246		goto err_security;
   1247
   1248	rdma_restrack_add(&qp->res);
   1249	return qp;
   1250
   1251err_security:
   1252	qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
   1253err_create:
   1254	rdma_restrack_put(&qp->res);
   1255	kfree(qp);
   1256	return ERR_PTR(ret);
   1257
   1258}
   1259
   1260/**
   1261 * ib_create_qp_user - Creates a QP associated with the specified protection
   1262 *   domain.
   1263 * @dev: IB device
   1264 * @pd: The protection domain associated with the QP.
   1265 * @attr: A list of initial attributes required to create the
   1266 *   QP.  If QP creation succeeds, then the attributes are updated to
   1267 *   the actual capabilities of the created QP.
   1268 * @udata: User data
   1269 * @uobj: uverbs obect
   1270 * @caller: caller's build-time module name
   1271 */
   1272struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
   1273				struct ib_qp_init_attr *attr,
   1274				struct ib_udata *udata,
   1275				struct ib_uqp_object *uobj, const char *caller)
   1276{
   1277	struct ib_qp *qp, *xrc_qp;
   1278
   1279	if (attr->qp_type == IB_QPT_XRC_TGT)
   1280		qp = create_qp(dev, pd, attr, NULL, NULL, caller);
   1281	else
   1282		qp = create_qp(dev, pd, attr, udata, uobj, NULL);
   1283	if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
   1284		return qp;
   1285
   1286	xrc_qp = create_xrc_qp_user(qp, attr);
   1287	if (IS_ERR(xrc_qp)) {
   1288		ib_destroy_qp(qp);
   1289		return xrc_qp;
   1290	}
   1291
   1292	xrc_qp->uobject = uobj;
   1293	return xrc_qp;
   1294}
   1295EXPORT_SYMBOL(ib_create_qp_user);
   1296
   1297void ib_qp_usecnt_inc(struct ib_qp *qp)
   1298{
   1299	if (qp->pd)
   1300		atomic_inc(&qp->pd->usecnt);
   1301	if (qp->send_cq)
   1302		atomic_inc(&qp->send_cq->usecnt);
   1303	if (qp->recv_cq)
   1304		atomic_inc(&qp->recv_cq->usecnt);
   1305	if (qp->srq)
   1306		atomic_inc(&qp->srq->usecnt);
   1307	if (qp->rwq_ind_tbl)
   1308		atomic_inc(&qp->rwq_ind_tbl->usecnt);
   1309}
   1310EXPORT_SYMBOL(ib_qp_usecnt_inc);
   1311
   1312void ib_qp_usecnt_dec(struct ib_qp *qp)
   1313{
   1314	if (qp->rwq_ind_tbl)
   1315		atomic_dec(&qp->rwq_ind_tbl->usecnt);
   1316	if (qp->srq)
   1317		atomic_dec(&qp->srq->usecnt);
   1318	if (qp->recv_cq)
   1319		atomic_dec(&qp->recv_cq->usecnt);
   1320	if (qp->send_cq)
   1321		atomic_dec(&qp->send_cq->usecnt);
   1322	if (qp->pd)
   1323		atomic_dec(&qp->pd->usecnt);
   1324}
   1325EXPORT_SYMBOL(ib_qp_usecnt_dec);
   1326
   1327struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
   1328				  struct ib_qp_init_attr *qp_init_attr,
   1329				  const char *caller)
   1330{
   1331	struct ib_device *device = pd->device;
   1332	struct ib_qp *qp;
   1333	int ret;
   1334
   1335	/*
   1336	 * If the callers is using the RDMA API calculate the resources
   1337	 * needed for the RDMA READ/WRITE operations.
   1338	 *
   1339	 * Note that these callers need to pass in a port number.
   1340	 */
   1341	if (qp_init_attr->cap.max_rdma_ctxs)
   1342		rdma_rw_init_qp(device, qp_init_attr);
   1343
   1344	qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
   1345	if (IS_ERR(qp))
   1346		return qp;
   1347
   1348	ib_qp_usecnt_inc(qp);
   1349
   1350	if (qp_init_attr->cap.max_rdma_ctxs) {
   1351		ret = rdma_rw_init_mrs(qp, qp_init_attr);
   1352		if (ret)
   1353			goto err;
   1354	}
   1355
   1356	/*
   1357	 * Note: all hw drivers guarantee that max_send_sge is lower than
   1358	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
   1359	 * max_send_sge <= max_sge_rd.
   1360	 */
   1361	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
   1362	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
   1363				 device->attrs.max_sge_rd);
   1364	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
   1365		qp->integrity_en = true;
   1366
   1367	return qp;
   1368
   1369err:
   1370	ib_destroy_qp(qp);
   1371	return ERR_PTR(ret);
   1372
   1373}
   1374EXPORT_SYMBOL(ib_create_qp_kernel);
   1375
   1376static const struct {
   1377	int			valid;
   1378	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
   1379	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
   1380} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
   1381	[IB_QPS_RESET] = {
   1382		[IB_QPS_RESET] = { .valid = 1 },
   1383		[IB_QPS_INIT]  = {
   1384			.valid = 1,
   1385			.req_param = {
   1386				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
   1387						IB_QP_PORT			|
   1388						IB_QP_QKEY),
   1389				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
   1390				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
   1391						IB_QP_PORT			|
   1392						IB_QP_ACCESS_FLAGS),
   1393				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
   1394						IB_QP_PORT			|
   1395						IB_QP_ACCESS_FLAGS),
   1396				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
   1397						IB_QP_PORT			|
   1398						IB_QP_ACCESS_FLAGS),
   1399				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
   1400						IB_QP_PORT			|
   1401						IB_QP_ACCESS_FLAGS),
   1402				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
   1403						IB_QP_QKEY),
   1404				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
   1405						IB_QP_QKEY),
   1406			}
   1407		},
   1408	},
   1409	[IB_QPS_INIT]  = {
   1410		[IB_QPS_RESET] = { .valid = 1 },
   1411		[IB_QPS_ERR] =   { .valid = 1 },
   1412		[IB_QPS_INIT]  = {
   1413			.valid = 1,
   1414			.opt_param = {
   1415				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
   1416						IB_QP_PORT			|
   1417						IB_QP_QKEY),
   1418				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
   1419						IB_QP_PORT			|
   1420						IB_QP_ACCESS_FLAGS),
   1421				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
   1422						IB_QP_PORT			|
   1423						IB_QP_ACCESS_FLAGS),
   1424				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
   1425						IB_QP_PORT			|
   1426						IB_QP_ACCESS_FLAGS),
   1427				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
   1428						IB_QP_PORT			|
   1429						IB_QP_ACCESS_FLAGS),
   1430				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
   1431						IB_QP_QKEY),
   1432				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
   1433						IB_QP_QKEY),
   1434			}
   1435		},
   1436		[IB_QPS_RTR]   = {
   1437			.valid = 1,
   1438			.req_param = {
   1439				[IB_QPT_UC]  = (IB_QP_AV			|
   1440						IB_QP_PATH_MTU			|
   1441						IB_QP_DEST_QPN			|
   1442						IB_QP_RQ_PSN),
   1443				[IB_QPT_RC]  = (IB_QP_AV			|
   1444						IB_QP_PATH_MTU			|
   1445						IB_QP_DEST_QPN			|
   1446						IB_QP_RQ_PSN			|
   1447						IB_QP_MAX_DEST_RD_ATOMIC	|
   1448						IB_QP_MIN_RNR_TIMER),
   1449				[IB_QPT_XRC_INI] = (IB_QP_AV			|
   1450						IB_QP_PATH_MTU			|
   1451						IB_QP_DEST_QPN			|
   1452						IB_QP_RQ_PSN),
   1453				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
   1454						IB_QP_PATH_MTU			|
   1455						IB_QP_DEST_QPN			|
   1456						IB_QP_RQ_PSN			|
   1457						IB_QP_MAX_DEST_RD_ATOMIC	|
   1458						IB_QP_MIN_RNR_TIMER),
   1459			},
   1460			.opt_param = {
   1461				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
   1462						 IB_QP_QKEY),
   1463				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
   1464						 IB_QP_ACCESS_FLAGS		|
   1465						 IB_QP_PKEY_INDEX),
   1466				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
   1467						 IB_QP_ACCESS_FLAGS		|
   1468						 IB_QP_PKEY_INDEX),
   1469				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
   1470						 IB_QP_ACCESS_FLAGS		|
   1471						 IB_QP_PKEY_INDEX),
   1472				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
   1473						 IB_QP_ACCESS_FLAGS		|
   1474						 IB_QP_PKEY_INDEX),
   1475				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
   1476						 IB_QP_QKEY),
   1477				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
   1478						 IB_QP_QKEY),
   1479			 },
   1480		},
   1481	},
   1482	[IB_QPS_RTR]   = {
   1483		[IB_QPS_RESET] = { .valid = 1 },
   1484		[IB_QPS_ERR] =   { .valid = 1 },
   1485		[IB_QPS_RTS]   = {
   1486			.valid = 1,
   1487			.req_param = {
   1488				[IB_QPT_UD]  = IB_QP_SQ_PSN,
   1489				[IB_QPT_UC]  = IB_QP_SQ_PSN,
   1490				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
   1491						IB_QP_RETRY_CNT			|
   1492						IB_QP_RNR_RETRY			|
   1493						IB_QP_SQ_PSN			|
   1494						IB_QP_MAX_QP_RD_ATOMIC),
   1495				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
   1496						IB_QP_RETRY_CNT			|
   1497						IB_QP_RNR_RETRY			|
   1498						IB_QP_SQ_PSN			|
   1499						IB_QP_MAX_QP_RD_ATOMIC),
   1500				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
   1501						IB_QP_SQ_PSN),
   1502				[IB_QPT_SMI] = IB_QP_SQ_PSN,
   1503				[IB_QPT_GSI] = IB_QP_SQ_PSN,
   1504			},
   1505			.opt_param = {
   1506				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
   1507						 IB_QP_QKEY),
   1508				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
   1509						 IB_QP_ALT_PATH			|
   1510						 IB_QP_ACCESS_FLAGS		|
   1511						 IB_QP_PATH_MIG_STATE),
   1512				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
   1513						 IB_QP_ALT_PATH			|
   1514						 IB_QP_ACCESS_FLAGS		|
   1515						 IB_QP_MIN_RNR_TIMER		|
   1516						 IB_QP_PATH_MIG_STATE),
   1517				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
   1518						 IB_QP_ALT_PATH			|
   1519						 IB_QP_ACCESS_FLAGS		|
   1520						 IB_QP_PATH_MIG_STATE),
   1521				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
   1522						 IB_QP_ALT_PATH			|
   1523						 IB_QP_ACCESS_FLAGS		|
   1524						 IB_QP_MIN_RNR_TIMER		|
   1525						 IB_QP_PATH_MIG_STATE),
   1526				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
   1527						 IB_QP_QKEY),
   1528				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
   1529						 IB_QP_QKEY),
   1530				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
   1531			 }
   1532		}
   1533	},
   1534	[IB_QPS_RTS]   = {
   1535		[IB_QPS_RESET] = { .valid = 1 },
   1536		[IB_QPS_ERR] =   { .valid = 1 },
   1537		[IB_QPS_RTS]   = {
   1538			.valid = 1,
   1539			.opt_param = {
   1540				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
   1541						IB_QP_QKEY),
   1542				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
   1543						IB_QP_ACCESS_FLAGS		|
   1544						IB_QP_ALT_PATH			|
   1545						IB_QP_PATH_MIG_STATE),
   1546				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
   1547						IB_QP_ACCESS_FLAGS		|
   1548						IB_QP_ALT_PATH			|
   1549						IB_QP_PATH_MIG_STATE		|
   1550						IB_QP_MIN_RNR_TIMER),
   1551				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
   1552						IB_QP_ACCESS_FLAGS		|
   1553						IB_QP_ALT_PATH			|
   1554						IB_QP_PATH_MIG_STATE),
   1555				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
   1556						IB_QP_ACCESS_FLAGS		|
   1557						IB_QP_ALT_PATH			|
   1558						IB_QP_PATH_MIG_STATE		|
   1559						IB_QP_MIN_RNR_TIMER),
   1560				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
   1561						IB_QP_QKEY),
   1562				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
   1563						IB_QP_QKEY),
   1564				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
   1565			}
   1566		},
   1567		[IB_QPS_SQD]   = {
   1568			.valid = 1,
   1569			.opt_param = {
   1570				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
   1571				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
   1572				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
   1573				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
   1574				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
   1575				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
   1576				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
   1577			}
   1578		},
   1579	},
   1580	[IB_QPS_SQD]   = {
   1581		[IB_QPS_RESET] = { .valid = 1 },
   1582		[IB_QPS_ERR] =   { .valid = 1 },
   1583		[IB_QPS_RTS]   = {
   1584			.valid = 1,
   1585			.opt_param = {
   1586				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
   1587						IB_QP_QKEY),
   1588				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
   1589						IB_QP_ALT_PATH			|
   1590						IB_QP_ACCESS_FLAGS		|
   1591						IB_QP_PATH_MIG_STATE),
   1592				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
   1593						IB_QP_ALT_PATH			|
   1594						IB_QP_ACCESS_FLAGS		|
   1595						IB_QP_MIN_RNR_TIMER		|
   1596						IB_QP_PATH_MIG_STATE),
   1597				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
   1598						IB_QP_ALT_PATH			|
   1599						IB_QP_ACCESS_FLAGS		|
   1600						IB_QP_PATH_MIG_STATE),
   1601				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
   1602						IB_QP_ALT_PATH			|
   1603						IB_QP_ACCESS_FLAGS		|
   1604						IB_QP_MIN_RNR_TIMER		|
   1605						IB_QP_PATH_MIG_STATE),
   1606				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
   1607						IB_QP_QKEY),
   1608				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
   1609						IB_QP_QKEY),
   1610			}
   1611		},
   1612		[IB_QPS_SQD]   = {
   1613			.valid = 1,
   1614			.opt_param = {
   1615				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
   1616						IB_QP_QKEY),
   1617				[IB_QPT_UC]  = (IB_QP_AV			|
   1618						IB_QP_ALT_PATH			|
   1619						IB_QP_ACCESS_FLAGS		|
   1620						IB_QP_PKEY_INDEX		|
   1621						IB_QP_PATH_MIG_STATE),
   1622				[IB_QPT_RC]  = (IB_QP_PORT			|
   1623						IB_QP_AV			|
   1624						IB_QP_TIMEOUT			|
   1625						IB_QP_RETRY_CNT			|
   1626						IB_QP_RNR_RETRY			|
   1627						IB_QP_MAX_QP_RD_ATOMIC		|
   1628						IB_QP_MAX_DEST_RD_ATOMIC	|
   1629						IB_QP_ALT_PATH			|
   1630						IB_QP_ACCESS_FLAGS		|
   1631						IB_QP_PKEY_INDEX		|
   1632						IB_QP_MIN_RNR_TIMER		|
   1633						IB_QP_PATH_MIG_STATE),
   1634				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
   1635						IB_QP_AV			|
   1636						IB_QP_TIMEOUT			|
   1637						IB_QP_RETRY_CNT			|
   1638						IB_QP_RNR_RETRY			|
   1639						IB_QP_MAX_QP_RD_ATOMIC		|
   1640						IB_QP_ALT_PATH			|
   1641						IB_QP_ACCESS_FLAGS		|
   1642						IB_QP_PKEY_INDEX		|
   1643						IB_QP_PATH_MIG_STATE),
   1644				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
   1645						IB_QP_AV			|
   1646						IB_QP_TIMEOUT			|
   1647						IB_QP_MAX_DEST_RD_ATOMIC	|
   1648						IB_QP_ALT_PATH			|
   1649						IB_QP_ACCESS_FLAGS		|
   1650						IB_QP_PKEY_INDEX		|
   1651						IB_QP_MIN_RNR_TIMER		|
   1652						IB_QP_PATH_MIG_STATE),
   1653				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
   1654						IB_QP_QKEY),
   1655				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
   1656						IB_QP_QKEY),
   1657			}
   1658		}
   1659	},
   1660	[IB_QPS_SQE]   = {
   1661		[IB_QPS_RESET] = { .valid = 1 },
   1662		[IB_QPS_ERR] =   { .valid = 1 },
   1663		[IB_QPS_RTS]   = {
   1664			.valid = 1,
   1665			.opt_param = {
   1666				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
   1667						IB_QP_QKEY),
   1668				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
   1669						IB_QP_ACCESS_FLAGS),
   1670				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
   1671						IB_QP_QKEY),
   1672				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
   1673						IB_QP_QKEY),
   1674			}
   1675		}
   1676	},
   1677	[IB_QPS_ERR] = {
   1678		[IB_QPS_RESET] = { .valid = 1 },
   1679		[IB_QPS_ERR] =   { .valid = 1 }
   1680	}
   1681};
   1682
   1683bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
   1684			enum ib_qp_type type, enum ib_qp_attr_mask mask)
   1685{
   1686	enum ib_qp_attr_mask req_param, opt_param;
   1687
   1688	if (mask & IB_QP_CUR_STATE  &&
   1689	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
   1690	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
   1691		return false;
   1692
   1693	if (!qp_state_table[cur_state][next_state].valid)
   1694		return false;
   1695
   1696	req_param = qp_state_table[cur_state][next_state].req_param[type];
   1697	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
   1698
   1699	if ((mask & req_param) != req_param)
   1700		return false;
   1701
   1702	if (mask & ~(req_param | opt_param | IB_QP_STATE))
   1703		return false;
   1704
   1705	return true;
   1706}
   1707EXPORT_SYMBOL(ib_modify_qp_is_ok);
   1708
   1709/**
   1710 * ib_resolve_eth_dmac - Resolve destination mac address
   1711 * @device:		Device to consider
   1712 * @ah_attr:		address handle attribute which describes the
   1713 *			source and destination parameters
   1714 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
   1715 * returns 0 on success or appropriate error code. It initializes the
   1716 * necessary ah_attr fields when call is successful.
   1717 */
   1718static int ib_resolve_eth_dmac(struct ib_device *device,
   1719			       struct rdma_ah_attr *ah_attr)
   1720{
   1721	int ret = 0;
   1722
   1723	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
   1724		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
   1725			__be32 addr = 0;
   1726
   1727			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
   1728			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
   1729		} else {
   1730			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
   1731					(char *)ah_attr->roce.dmac);
   1732		}
   1733	} else {
   1734		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
   1735	}
   1736	return ret;
   1737}
   1738
   1739static bool is_qp_type_connected(const struct ib_qp *qp)
   1740{
   1741	return (qp->qp_type == IB_QPT_UC ||
   1742		qp->qp_type == IB_QPT_RC ||
   1743		qp->qp_type == IB_QPT_XRC_INI ||
   1744		qp->qp_type == IB_QPT_XRC_TGT);
   1745}
   1746
   1747/*
   1748 * IB core internal function to perform QP attributes modification.
   1749 */
   1750static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
   1751			 int attr_mask, struct ib_udata *udata)
   1752{
   1753	u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
   1754	const struct ib_gid_attr *old_sgid_attr_av;
   1755	const struct ib_gid_attr *old_sgid_attr_alt_av;
   1756	int ret;
   1757
   1758	attr->xmit_slave = NULL;
   1759	if (attr_mask & IB_QP_AV) {
   1760		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
   1761					  &old_sgid_attr_av);
   1762		if (ret)
   1763			return ret;
   1764
   1765		if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
   1766		    is_qp_type_connected(qp)) {
   1767			struct net_device *slave;
   1768
   1769			/*
   1770			 * If the user provided the qp_attr then we have to
   1771			 * resolve it. Kerne users have to provide already
   1772			 * resolved rdma_ah_attr's.
   1773			 */
   1774			if (udata) {
   1775				ret = ib_resolve_eth_dmac(qp->device,
   1776							  &attr->ah_attr);
   1777				if (ret)
   1778					goto out_av;
   1779			}
   1780			slave = rdma_lag_get_ah_roce_slave(qp->device,
   1781							   &attr->ah_attr,
   1782							   GFP_KERNEL);
   1783			if (IS_ERR(slave)) {
   1784				ret = PTR_ERR(slave);
   1785				goto out_av;
   1786			}
   1787			attr->xmit_slave = slave;
   1788		}
   1789	}
   1790	if (attr_mask & IB_QP_ALT_PATH) {
   1791		/*
   1792		 * FIXME: This does not track the migration state, so if the
   1793		 * user loads a new alternate path after the HW has migrated
   1794		 * from primary->alternate we will keep the wrong
   1795		 * references. This is OK for IB because the reference
   1796		 * counting does not serve any functional purpose.
   1797		 */
   1798		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
   1799					  &old_sgid_attr_alt_av);
   1800		if (ret)
   1801			goto out_av;
   1802
   1803		/*
   1804		 * Today the core code can only handle alternate paths and APM
   1805		 * for IB. Ban them in roce mode.
   1806		 */
   1807		if (!(rdma_protocol_ib(qp->device,
   1808				       attr->alt_ah_attr.port_num) &&
   1809		      rdma_protocol_ib(qp->device, port))) {
   1810			ret = -EINVAL;
   1811			goto out;
   1812		}
   1813	}
   1814
   1815	if (rdma_ib_or_roce(qp->device, port)) {
   1816		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
   1817			dev_warn(&qp->device->dev,
   1818				 "%s rq_psn overflow, masking to 24 bits\n",
   1819				 __func__);
   1820			attr->rq_psn &= 0xffffff;
   1821		}
   1822
   1823		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
   1824			dev_warn(&qp->device->dev,
   1825				 " %s sq_psn overflow, masking to 24 bits\n",
   1826				 __func__);
   1827			attr->sq_psn &= 0xffffff;
   1828		}
   1829	}
   1830
   1831	/*
   1832	 * Bind this qp to a counter automatically based on the rdma counter
   1833	 * rules. This only set in RST2INIT with port specified
   1834	 */
   1835	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
   1836	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
   1837		rdma_counter_bind_qp_auto(qp, attr->port_num);
   1838
   1839	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
   1840	if (ret)
   1841		goto out;
   1842
   1843	if (attr_mask & IB_QP_PORT)
   1844		qp->port = attr->port_num;
   1845	if (attr_mask & IB_QP_AV)
   1846		qp->av_sgid_attr =
   1847			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
   1848	if (attr_mask & IB_QP_ALT_PATH)
   1849		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
   1850			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
   1851
   1852out:
   1853	if (attr_mask & IB_QP_ALT_PATH)
   1854		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
   1855out_av:
   1856	if (attr_mask & IB_QP_AV) {
   1857		rdma_lag_put_ah_roce_slave(attr->xmit_slave);
   1858		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
   1859	}
   1860	return ret;
   1861}
   1862
   1863/**
   1864 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
   1865 * @ib_qp: The QP to modify.
   1866 * @attr: On input, specifies the QP attributes to modify.  On output,
   1867 *   the current values of selected QP attributes are returned.
   1868 * @attr_mask: A bit-mask used to specify which attributes of the QP
   1869 *   are being modified.
   1870 * @udata: pointer to user's input output buffer information
   1871 *   are being modified.
   1872 * It returns 0 on success and returns appropriate error code on error.
   1873 */
   1874int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
   1875			    int attr_mask, struct ib_udata *udata)
   1876{
   1877	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
   1878}
   1879EXPORT_SYMBOL(ib_modify_qp_with_udata);
   1880
   1881int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
   1882{
   1883	int rc;
   1884	u32 netdev_speed;
   1885	struct net_device *netdev;
   1886	struct ethtool_link_ksettings lksettings;
   1887
   1888	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
   1889		return -EINVAL;
   1890
   1891	netdev = ib_device_get_netdev(dev, port_num);
   1892	if (!netdev)
   1893		return -ENODEV;
   1894
   1895	rtnl_lock();
   1896	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
   1897	rtnl_unlock();
   1898
   1899	dev_put(netdev);
   1900
   1901	if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
   1902		netdev_speed = lksettings.base.speed;
   1903	} else {
   1904		netdev_speed = SPEED_1000;
   1905		pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
   1906			netdev_speed);
   1907	}
   1908
   1909	if (netdev_speed <= SPEED_1000) {
   1910		*width = IB_WIDTH_1X;
   1911		*speed = IB_SPEED_SDR;
   1912	} else if (netdev_speed <= SPEED_10000) {
   1913		*width = IB_WIDTH_1X;
   1914		*speed = IB_SPEED_FDR10;
   1915	} else if (netdev_speed <= SPEED_20000) {
   1916		*width = IB_WIDTH_4X;
   1917		*speed = IB_SPEED_DDR;
   1918	} else if (netdev_speed <= SPEED_25000) {
   1919		*width = IB_WIDTH_1X;
   1920		*speed = IB_SPEED_EDR;
   1921	} else if (netdev_speed <= SPEED_40000) {
   1922		*width = IB_WIDTH_4X;
   1923		*speed = IB_SPEED_FDR10;
   1924	} else {
   1925		*width = IB_WIDTH_4X;
   1926		*speed = IB_SPEED_EDR;
   1927	}
   1928
   1929	return 0;
   1930}
   1931EXPORT_SYMBOL(ib_get_eth_speed);
   1932
   1933int ib_modify_qp(struct ib_qp *qp,
   1934		 struct ib_qp_attr *qp_attr,
   1935		 int qp_attr_mask)
   1936{
   1937	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
   1938}
   1939EXPORT_SYMBOL(ib_modify_qp);
   1940
   1941int ib_query_qp(struct ib_qp *qp,
   1942		struct ib_qp_attr *qp_attr,
   1943		int qp_attr_mask,
   1944		struct ib_qp_init_attr *qp_init_attr)
   1945{
   1946	qp_attr->ah_attr.grh.sgid_attr = NULL;
   1947	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
   1948
   1949	return qp->device->ops.query_qp ?
   1950		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
   1951					 qp_init_attr) : -EOPNOTSUPP;
   1952}
   1953EXPORT_SYMBOL(ib_query_qp);
   1954
   1955int ib_close_qp(struct ib_qp *qp)
   1956{
   1957	struct ib_qp *real_qp;
   1958	unsigned long flags;
   1959
   1960	real_qp = qp->real_qp;
   1961	if (real_qp == qp)
   1962		return -EINVAL;
   1963
   1964	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
   1965	list_del(&qp->open_list);
   1966	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
   1967
   1968	atomic_dec(&real_qp->usecnt);
   1969	if (qp->qp_sec)
   1970		ib_close_shared_qp_security(qp->qp_sec);
   1971	kfree(qp);
   1972
   1973	return 0;
   1974}
   1975EXPORT_SYMBOL(ib_close_qp);
   1976
   1977static int __ib_destroy_shared_qp(struct ib_qp *qp)
   1978{
   1979	struct ib_xrcd *xrcd;
   1980	struct ib_qp *real_qp;
   1981	int ret;
   1982
   1983	real_qp = qp->real_qp;
   1984	xrcd = real_qp->xrcd;
   1985	down_write(&xrcd->tgt_qps_rwsem);
   1986	ib_close_qp(qp);
   1987	if (atomic_read(&real_qp->usecnt) == 0)
   1988		xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
   1989	else
   1990		real_qp = NULL;
   1991	up_write(&xrcd->tgt_qps_rwsem);
   1992
   1993	if (real_qp) {
   1994		ret = ib_destroy_qp(real_qp);
   1995		if (!ret)
   1996			atomic_dec(&xrcd->usecnt);
   1997	}
   1998
   1999	return 0;
   2000}
   2001
   2002int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
   2003{
   2004	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
   2005	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
   2006	struct ib_qp_security *sec;
   2007	int ret;
   2008
   2009	WARN_ON_ONCE(qp->mrs_used > 0);
   2010
   2011	if (atomic_read(&qp->usecnt))
   2012		return -EBUSY;
   2013
   2014	if (qp->real_qp != qp)
   2015		return __ib_destroy_shared_qp(qp);
   2016
   2017	sec  = qp->qp_sec;
   2018	if (sec)
   2019		ib_destroy_qp_security_begin(sec);
   2020
   2021	if (!qp->uobject)
   2022		rdma_rw_cleanup_mrs(qp);
   2023
   2024	rdma_counter_unbind_qp(qp, true);
   2025	ret = qp->device->ops.destroy_qp(qp, udata);
   2026	if (ret) {
   2027		if (sec)
   2028			ib_destroy_qp_security_abort(sec);
   2029		return ret;
   2030	}
   2031
   2032	if (alt_path_sgid_attr)
   2033		rdma_put_gid_attr(alt_path_sgid_attr);
   2034	if (av_sgid_attr)
   2035		rdma_put_gid_attr(av_sgid_attr);
   2036
   2037	ib_qp_usecnt_dec(qp);
   2038	if (sec)
   2039		ib_destroy_qp_security_end(sec);
   2040
   2041	rdma_restrack_del(&qp->res);
   2042	kfree(qp);
   2043	return ret;
   2044}
   2045EXPORT_SYMBOL(ib_destroy_qp_user);
   2046
   2047/* Completion queues */
   2048
   2049struct ib_cq *__ib_create_cq(struct ib_device *device,
   2050			     ib_comp_handler comp_handler,
   2051			     void (*event_handler)(struct ib_event *, void *),
   2052			     void *cq_context,
   2053			     const struct ib_cq_init_attr *cq_attr,
   2054			     const char *caller)
   2055{
   2056	struct ib_cq *cq;
   2057	int ret;
   2058
   2059	cq = rdma_zalloc_drv_obj(device, ib_cq);
   2060	if (!cq)
   2061		return ERR_PTR(-ENOMEM);
   2062
   2063	cq->device = device;
   2064	cq->uobject = NULL;
   2065	cq->comp_handler = comp_handler;
   2066	cq->event_handler = event_handler;
   2067	cq->cq_context = cq_context;
   2068	atomic_set(&cq->usecnt, 0);
   2069
   2070	rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
   2071	rdma_restrack_set_name(&cq->res, caller);
   2072
   2073	ret = device->ops.create_cq(cq, cq_attr, NULL);
   2074	if (ret) {
   2075		rdma_restrack_put(&cq->res);
   2076		kfree(cq);
   2077		return ERR_PTR(ret);
   2078	}
   2079
   2080	rdma_restrack_add(&cq->res);
   2081	return cq;
   2082}
   2083EXPORT_SYMBOL(__ib_create_cq);
   2084
   2085int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
   2086{
   2087	if (cq->shared)
   2088		return -EOPNOTSUPP;
   2089
   2090	return cq->device->ops.modify_cq ?
   2091		cq->device->ops.modify_cq(cq, cq_count,
   2092					  cq_period) : -EOPNOTSUPP;
   2093}
   2094EXPORT_SYMBOL(rdma_set_cq_moderation);
   2095
   2096int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
   2097{
   2098	int ret;
   2099
   2100	if (WARN_ON_ONCE(cq->shared))
   2101		return -EOPNOTSUPP;
   2102
   2103	if (atomic_read(&cq->usecnt))
   2104		return -EBUSY;
   2105
   2106	ret = cq->device->ops.destroy_cq(cq, udata);
   2107	if (ret)
   2108		return ret;
   2109
   2110	rdma_restrack_del(&cq->res);
   2111	kfree(cq);
   2112	return ret;
   2113}
   2114EXPORT_SYMBOL(ib_destroy_cq_user);
   2115
   2116int ib_resize_cq(struct ib_cq *cq, int cqe)
   2117{
   2118	if (cq->shared)
   2119		return -EOPNOTSUPP;
   2120
   2121	return cq->device->ops.resize_cq ?
   2122		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
   2123}
   2124EXPORT_SYMBOL(ib_resize_cq);
   2125
   2126/* Memory regions */
   2127
   2128struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
   2129			     u64 virt_addr, int access_flags)
   2130{
   2131	struct ib_mr *mr;
   2132
   2133	if (access_flags & IB_ACCESS_ON_DEMAND) {
   2134		if (!(pd->device->attrs.kernel_cap_flags &
   2135		      IBK_ON_DEMAND_PAGING)) {
   2136			pr_debug("ODP support not available\n");
   2137			return ERR_PTR(-EINVAL);
   2138		}
   2139	}
   2140
   2141	mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
   2142					 access_flags, NULL);
   2143
   2144	if (IS_ERR(mr))
   2145		return mr;
   2146
   2147	mr->device = pd->device;
   2148	mr->type = IB_MR_TYPE_USER;
   2149	mr->pd = pd;
   2150	mr->dm = NULL;
   2151	atomic_inc(&pd->usecnt);
   2152
   2153	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
   2154	rdma_restrack_parent_name(&mr->res, &pd->res);
   2155	rdma_restrack_add(&mr->res);
   2156
   2157	return mr;
   2158}
   2159EXPORT_SYMBOL(ib_reg_user_mr);
   2160
   2161int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
   2162		 u32 flags, struct ib_sge *sg_list, u32 num_sge)
   2163{
   2164	if (!pd->device->ops.advise_mr)
   2165		return -EOPNOTSUPP;
   2166
   2167	if (!num_sge)
   2168		return 0;
   2169
   2170	return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
   2171					 NULL);
   2172}
   2173EXPORT_SYMBOL(ib_advise_mr);
   2174
   2175int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
   2176{
   2177	struct ib_pd *pd = mr->pd;
   2178	struct ib_dm *dm = mr->dm;
   2179	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
   2180	int ret;
   2181
   2182	trace_mr_dereg(mr);
   2183	rdma_restrack_del(&mr->res);
   2184	ret = mr->device->ops.dereg_mr(mr, udata);
   2185	if (!ret) {
   2186		atomic_dec(&pd->usecnt);
   2187		if (dm)
   2188			atomic_dec(&dm->usecnt);
   2189		kfree(sig_attrs);
   2190	}
   2191
   2192	return ret;
   2193}
   2194EXPORT_SYMBOL(ib_dereg_mr_user);
   2195
   2196/**
   2197 * ib_alloc_mr() - Allocates a memory region
   2198 * @pd:            protection domain associated with the region
   2199 * @mr_type:       memory region type
   2200 * @max_num_sg:    maximum sg entries available for registration.
   2201 *
   2202 * Notes:
   2203 * Memory registeration page/sg lists must not exceed max_num_sg.
   2204 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
   2205 * max_num_sg * used_page_size.
   2206 *
   2207 */
   2208struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
   2209			  u32 max_num_sg)
   2210{
   2211	struct ib_mr *mr;
   2212
   2213	if (!pd->device->ops.alloc_mr) {
   2214		mr = ERR_PTR(-EOPNOTSUPP);
   2215		goto out;
   2216	}
   2217
   2218	if (mr_type == IB_MR_TYPE_INTEGRITY) {
   2219		WARN_ON_ONCE(1);
   2220		mr = ERR_PTR(-EINVAL);
   2221		goto out;
   2222	}
   2223
   2224	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
   2225	if (IS_ERR(mr))
   2226		goto out;
   2227
   2228	mr->device = pd->device;
   2229	mr->pd = pd;
   2230	mr->dm = NULL;
   2231	mr->uobject = NULL;
   2232	atomic_inc(&pd->usecnt);
   2233	mr->need_inval = false;
   2234	mr->type = mr_type;
   2235	mr->sig_attrs = NULL;
   2236
   2237	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
   2238	rdma_restrack_parent_name(&mr->res, &pd->res);
   2239	rdma_restrack_add(&mr->res);
   2240out:
   2241	trace_mr_alloc(pd, mr_type, max_num_sg, mr);
   2242	return mr;
   2243}
   2244EXPORT_SYMBOL(ib_alloc_mr);
   2245
   2246/**
   2247 * ib_alloc_mr_integrity() - Allocates an integrity memory region
   2248 * @pd:                      protection domain associated with the region
   2249 * @max_num_data_sg:         maximum data sg entries available for registration
   2250 * @max_num_meta_sg:         maximum metadata sg entries available for
   2251 *                           registration
   2252 *
   2253 * Notes:
   2254 * Memory registration page/sg lists must not exceed max_num_sg,
   2255 * also the integrity page/sg lists must not exceed max_num_meta_sg.
   2256 *
   2257 */
   2258struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
   2259				    u32 max_num_data_sg,
   2260				    u32 max_num_meta_sg)
   2261{
   2262	struct ib_mr *mr;
   2263	struct ib_sig_attrs *sig_attrs;
   2264
   2265	if (!pd->device->ops.alloc_mr_integrity ||
   2266	    !pd->device->ops.map_mr_sg_pi) {
   2267		mr = ERR_PTR(-EOPNOTSUPP);
   2268		goto out;
   2269	}
   2270
   2271	if (!max_num_meta_sg) {
   2272		mr = ERR_PTR(-EINVAL);
   2273		goto out;
   2274	}
   2275
   2276	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
   2277	if (!sig_attrs) {
   2278		mr = ERR_PTR(-ENOMEM);
   2279		goto out;
   2280	}
   2281
   2282	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
   2283						max_num_meta_sg);
   2284	if (IS_ERR(mr)) {
   2285		kfree(sig_attrs);
   2286		goto out;
   2287	}
   2288
   2289	mr->device = pd->device;
   2290	mr->pd = pd;
   2291	mr->dm = NULL;
   2292	mr->uobject = NULL;
   2293	atomic_inc(&pd->usecnt);
   2294	mr->need_inval = false;
   2295	mr->type = IB_MR_TYPE_INTEGRITY;
   2296	mr->sig_attrs = sig_attrs;
   2297
   2298	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
   2299	rdma_restrack_parent_name(&mr->res, &pd->res);
   2300	rdma_restrack_add(&mr->res);
   2301out:
   2302	trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
   2303	return mr;
   2304}
   2305EXPORT_SYMBOL(ib_alloc_mr_integrity);
   2306
   2307/* Multicast groups */
   2308
   2309static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
   2310{
   2311	struct ib_qp_init_attr init_attr = {};
   2312	struct ib_qp_attr attr = {};
   2313	int num_eth_ports = 0;
   2314	unsigned int port;
   2315
   2316	/* If QP state >= init, it is assigned to a port and we can check this
   2317	 * port only.
   2318	 */
   2319	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
   2320		if (attr.qp_state >= IB_QPS_INIT) {
   2321			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
   2322			    IB_LINK_LAYER_INFINIBAND)
   2323				return true;
   2324			goto lid_check;
   2325		}
   2326	}
   2327
   2328	/* Can't get a quick answer, iterate over all ports */
   2329	rdma_for_each_port(qp->device, port)
   2330		if (rdma_port_get_link_layer(qp->device, port) !=
   2331		    IB_LINK_LAYER_INFINIBAND)
   2332			num_eth_ports++;
   2333
   2334	/* If we have at lease one Ethernet port, RoCE annex declares that
   2335	 * multicast LID should be ignored. We can't tell at this step if the
   2336	 * QP belongs to an IB or Ethernet port.
   2337	 */
   2338	if (num_eth_ports)
   2339		return true;
   2340
   2341	/* If all the ports are IB, we can check according to IB spec. */
   2342lid_check:
   2343	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
   2344		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
   2345}
   2346
   2347int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
   2348{
   2349	int ret;
   2350
   2351	if (!qp->device->ops.attach_mcast)
   2352		return -EOPNOTSUPP;
   2353
   2354	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
   2355	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
   2356		return -EINVAL;
   2357
   2358	ret = qp->device->ops.attach_mcast(qp, gid, lid);
   2359	if (!ret)
   2360		atomic_inc(&qp->usecnt);
   2361	return ret;
   2362}
   2363EXPORT_SYMBOL(ib_attach_mcast);
   2364
   2365int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
   2366{
   2367	int ret;
   2368
   2369	if (!qp->device->ops.detach_mcast)
   2370		return -EOPNOTSUPP;
   2371
   2372	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
   2373	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
   2374		return -EINVAL;
   2375
   2376	ret = qp->device->ops.detach_mcast(qp, gid, lid);
   2377	if (!ret)
   2378		atomic_dec(&qp->usecnt);
   2379	return ret;
   2380}
   2381EXPORT_SYMBOL(ib_detach_mcast);
   2382
   2383/**
   2384 * ib_alloc_xrcd_user - Allocates an XRC domain.
   2385 * @device: The device on which to allocate the XRC domain.
   2386 * @inode: inode to connect XRCD
   2387 * @udata: Valid user data or NULL for kernel object
   2388 */
   2389struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
   2390				   struct inode *inode, struct ib_udata *udata)
   2391{
   2392	struct ib_xrcd *xrcd;
   2393	int ret;
   2394
   2395	if (!device->ops.alloc_xrcd)
   2396		return ERR_PTR(-EOPNOTSUPP);
   2397
   2398	xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
   2399	if (!xrcd)
   2400		return ERR_PTR(-ENOMEM);
   2401
   2402	xrcd->device = device;
   2403	xrcd->inode = inode;
   2404	atomic_set(&xrcd->usecnt, 0);
   2405	init_rwsem(&xrcd->tgt_qps_rwsem);
   2406	xa_init(&xrcd->tgt_qps);
   2407
   2408	ret = device->ops.alloc_xrcd(xrcd, udata);
   2409	if (ret)
   2410		goto err;
   2411	return xrcd;
   2412err:
   2413	kfree(xrcd);
   2414	return ERR_PTR(ret);
   2415}
   2416EXPORT_SYMBOL(ib_alloc_xrcd_user);
   2417
   2418/**
   2419 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
   2420 * @xrcd: The XRC domain to deallocate.
   2421 * @udata: Valid user data or NULL for kernel object
   2422 */
   2423int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
   2424{
   2425	int ret;
   2426
   2427	if (atomic_read(&xrcd->usecnt))
   2428		return -EBUSY;
   2429
   2430	WARN_ON(!xa_empty(&xrcd->tgt_qps));
   2431	ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
   2432	if (ret)
   2433		return ret;
   2434	kfree(xrcd);
   2435	return ret;
   2436}
   2437EXPORT_SYMBOL(ib_dealloc_xrcd_user);
   2438
   2439/**
   2440 * ib_create_wq - Creates a WQ associated with the specified protection
   2441 * domain.
   2442 * @pd: The protection domain associated with the WQ.
   2443 * @wq_attr: A list of initial attributes required to create the
   2444 * WQ. If WQ creation succeeds, then the attributes are updated to
   2445 * the actual capabilities of the created WQ.
   2446 *
   2447 * wq_attr->max_wr and wq_attr->max_sge determine
   2448 * the requested size of the WQ, and set to the actual values allocated
   2449 * on return.
   2450 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
   2451 * at least as large as the requested values.
   2452 */
   2453struct ib_wq *ib_create_wq(struct ib_pd *pd,
   2454			   struct ib_wq_init_attr *wq_attr)
   2455{
   2456	struct ib_wq *wq;
   2457
   2458	if (!pd->device->ops.create_wq)
   2459		return ERR_PTR(-EOPNOTSUPP);
   2460
   2461	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
   2462	if (!IS_ERR(wq)) {
   2463		wq->event_handler = wq_attr->event_handler;
   2464		wq->wq_context = wq_attr->wq_context;
   2465		wq->wq_type = wq_attr->wq_type;
   2466		wq->cq = wq_attr->cq;
   2467		wq->device = pd->device;
   2468		wq->pd = pd;
   2469		wq->uobject = NULL;
   2470		atomic_inc(&pd->usecnt);
   2471		atomic_inc(&wq_attr->cq->usecnt);
   2472		atomic_set(&wq->usecnt, 0);
   2473	}
   2474	return wq;
   2475}
   2476EXPORT_SYMBOL(ib_create_wq);
   2477
   2478/**
   2479 * ib_destroy_wq_user - Destroys the specified user WQ.
   2480 * @wq: The WQ to destroy.
   2481 * @udata: Valid user data
   2482 */
   2483int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
   2484{
   2485	struct ib_cq *cq = wq->cq;
   2486	struct ib_pd *pd = wq->pd;
   2487	int ret;
   2488
   2489	if (atomic_read(&wq->usecnt))
   2490		return -EBUSY;
   2491
   2492	ret = wq->device->ops.destroy_wq(wq, udata);
   2493	if (ret)
   2494		return ret;
   2495
   2496	atomic_dec(&pd->usecnt);
   2497	atomic_dec(&cq->usecnt);
   2498	return ret;
   2499}
   2500EXPORT_SYMBOL(ib_destroy_wq_user);
   2501
   2502int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
   2503		       struct ib_mr_status *mr_status)
   2504{
   2505	if (!mr->device->ops.check_mr_status)
   2506		return -EOPNOTSUPP;
   2507
   2508	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
   2509}
   2510EXPORT_SYMBOL(ib_check_mr_status);
   2511
   2512int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
   2513			 int state)
   2514{
   2515	if (!device->ops.set_vf_link_state)
   2516		return -EOPNOTSUPP;
   2517
   2518	return device->ops.set_vf_link_state(device, vf, port, state);
   2519}
   2520EXPORT_SYMBOL(ib_set_vf_link_state);
   2521
   2522int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
   2523		     struct ifla_vf_info *info)
   2524{
   2525	if (!device->ops.get_vf_config)
   2526		return -EOPNOTSUPP;
   2527
   2528	return device->ops.get_vf_config(device, vf, port, info);
   2529}
   2530EXPORT_SYMBOL(ib_get_vf_config);
   2531
   2532int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
   2533		    struct ifla_vf_stats *stats)
   2534{
   2535	if (!device->ops.get_vf_stats)
   2536		return -EOPNOTSUPP;
   2537
   2538	return device->ops.get_vf_stats(device, vf, port, stats);
   2539}
   2540EXPORT_SYMBOL(ib_get_vf_stats);
   2541
   2542int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
   2543		   int type)
   2544{
   2545	if (!device->ops.set_vf_guid)
   2546		return -EOPNOTSUPP;
   2547
   2548	return device->ops.set_vf_guid(device, vf, port, guid, type);
   2549}
   2550EXPORT_SYMBOL(ib_set_vf_guid);
   2551
   2552int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
   2553		   struct ifla_vf_guid *node_guid,
   2554		   struct ifla_vf_guid *port_guid)
   2555{
   2556	if (!device->ops.get_vf_guid)
   2557		return -EOPNOTSUPP;
   2558
   2559	return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
   2560}
   2561EXPORT_SYMBOL(ib_get_vf_guid);
   2562/**
   2563 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
   2564 *     information) and set an appropriate memory region for registration.
   2565 * @mr:             memory region
   2566 * @data_sg:        dma mapped scatterlist for data
   2567 * @data_sg_nents:  number of entries in data_sg
   2568 * @data_sg_offset: offset in bytes into data_sg
   2569 * @meta_sg:        dma mapped scatterlist for metadata
   2570 * @meta_sg_nents:  number of entries in meta_sg
   2571 * @meta_sg_offset: offset in bytes into meta_sg
   2572 * @page_size:      page vector desired page size
   2573 *
   2574 * Constraints:
   2575 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
   2576 *
   2577 * Return: 0 on success.
   2578 *
   2579 * After this completes successfully, the  memory region
   2580 * is ready for registration.
   2581 */
   2582int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
   2583		    int data_sg_nents, unsigned int *data_sg_offset,
   2584		    struct scatterlist *meta_sg, int meta_sg_nents,
   2585		    unsigned int *meta_sg_offset, unsigned int page_size)
   2586{
   2587	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
   2588		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
   2589		return -EOPNOTSUPP;
   2590
   2591	mr->page_size = page_size;
   2592
   2593	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
   2594					    data_sg_offset, meta_sg,
   2595					    meta_sg_nents, meta_sg_offset);
   2596}
   2597EXPORT_SYMBOL(ib_map_mr_sg_pi);
   2598
   2599/**
   2600 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
   2601 *     and set it the memory region.
   2602 * @mr:            memory region
   2603 * @sg:            dma mapped scatterlist
   2604 * @sg_nents:      number of entries in sg
   2605 * @sg_offset:     offset in bytes into sg
   2606 * @page_size:     page vector desired page size
   2607 *
   2608 * Constraints:
   2609 *
   2610 * - The first sg element is allowed to have an offset.
   2611 * - Each sg element must either be aligned to page_size or virtually
   2612 *   contiguous to the previous element. In case an sg element has a
   2613 *   non-contiguous offset, the mapping prefix will not include it.
   2614 * - The last sg element is allowed to have length less than page_size.
   2615 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
   2616 *   then only max_num_sg entries will be mapped.
   2617 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
   2618 *   constraints holds and the page_size argument is ignored.
   2619 *
   2620 * Returns the number of sg elements that were mapped to the memory region.
   2621 *
   2622 * After this completes successfully, the  memory region
   2623 * is ready for registration.
   2624 */
   2625int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
   2626		 unsigned int *sg_offset, unsigned int page_size)
   2627{
   2628	if (unlikely(!mr->device->ops.map_mr_sg))
   2629		return -EOPNOTSUPP;
   2630
   2631	mr->page_size = page_size;
   2632
   2633	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
   2634}
   2635EXPORT_SYMBOL(ib_map_mr_sg);
   2636
   2637/**
   2638 * ib_sg_to_pages() - Convert the largest prefix of a sg list
   2639 *     to a page vector
   2640 * @mr:            memory region
   2641 * @sgl:           dma mapped scatterlist
   2642 * @sg_nents:      number of entries in sg
   2643 * @sg_offset_p:   ==== =======================================================
   2644 *                 IN   start offset in bytes into sg
   2645 *                 OUT  offset in bytes for element n of the sg of the first
   2646 *                      byte that has not been processed where n is the return
   2647 *                      value of this function.
   2648 *                 ==== =======================================================
   2649 * @set_page:      driver page assignment function pointer
   2650 *
   2651 * Core service helper for drivers to convert the largest
   2652 * prefix of given sg list to a page vector. The sg list
   2653 * prefix converted is the prefix that meet the requirements
   2654 * of ib_map_mr_sg.
   2655 *
   2656 * Returns the number of sg elements that were assigned to
   2657 * a page vector.
   2658 */
   2659int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
   2660		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
   2661{
   2662	struct scatterlist *sg;
   2663	u64 last_end_dma_addr = 0;
   2664	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
   2665	unsigned int last_page_off = 0;
   2666	u64 page_mask = ~((u64)mr->page_size - 1);
   2667	int i, ret;
   2668
   2669	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
   2670		return -EINVAL;
   2671
   2672	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
   2673	mr->length = 0;
   2674
   2675	for_each_sg(sgl, sg, sg_nents, i) {
   2676		u64 dma_addr = sg_dma_address(sg) + sg_offset;
   2677		u64 prev_addr = dma_addr;
   2678		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
   2679		u64 end_dma_addr = dma_addr + dma_len;
   2680		u64 page_addr = dma_addr & page_mask;
   2681
   2682		/*
   2683		 * For the second and later elements, check whether either the
   2684		 * end of element i-1 or the start of element i is not aligned
   2685		 * on a page boundary.
   2686		 */
   2687		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
   2688			/* Stop mapping if there is a gap. */
   2689			if (last_end_dma_addr != dma_addr)
   2690				break;
   2691
   2692			/*
   2693			 * Coalesce this element with the last. If it is small
   2694			 * enough just update mr->length. Otherwise start
   2695			 * mapping from the next page.
   2696			 */
   2697			goto next_page;
   2698		}
   2699
   2700		do {
   2701			ret = set_page(mr, page_addr);
   2702			if (unlikely(ret < 0)) {
   2703				sg_offset = prev_addr - sg_dma_address(sg);
   2704				mr->length += prev_addr - dma_addr;
   2705				if (sg_offset_p)
   2706					*sg_offset_p = sg_offset;
   2707				return i || sg_offset ? i : ret;
   2708			}
   2709			prev_addr = page_addr;
   2710next_page:
   2711			page_addr += mr->page_size;
   2712		} while (page_addr < end_dma_addr);
   2713
   2714		mr->length += dma_len;
   2715		last_end_dma_addr = end_dma_addr;
   2716		last_page_off = end_dma_addr & ~page_mask;
   2717
   2718		sg_offset = 0;
   2719	}
   2720
   2721	if (sg_offset_p)
   2722		*sg_offset_p = 0;
   2723	return i;
   2724}
   2725EXPORT_SYMBOL(ib_sg_to_pages);
   2726
   2727struct ib_drain_cqe {
   2728	struct ib_cqe cqe;
   2729	struct completion done;
   2730};
   2731
   2732static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
   2733{
   2734	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
   2735						cqe);
   2736
   2737	complete(&cqe->done);
   2738}
   2739
   2740/*
   2741 * Post a WR and block until its completion is reaped for the SQ.
   2742 */
   2743static void __ib_drain_sq(struct ib_qp *qp)
   2744{
   2745	struct ib_cq *cq = qp->send_cq;
   2746	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
   2747	struct ib_drain_cqe sdrain;
   2748	struct ib_rdma_wr swr = {
   2749		.wr = {
   2750			.next = NULL,
   2751			{ .wr_cqe	= &sdrain.cqe, },
   2752			.opcode	= IB_WR_RDMA_WRITE,
   2753		},
   2754	};
   2755	int ret;
   2756
   2757	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
   2758	if (ret) {
   2759		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
   2760		return;
   2761	}
   2762
   2763	sdrain.cqe.done = ib_drain_qp_done;
   2764	init_completion(&sdrain.done);
   2765
   2766	ret = ib_post_send(qp, &swr.wr, NULL);
   2767	if (ret) {
   2768		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
   2769		return;
   2770	}
   2771
   2772	if (cq->poll_ctx == IB_POLL_DIRECT)
   2773		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
   2774			ib_process_cq_direct(cq, -1);
   2775	else
   2776		wait_for_completion(&sdrain.done);
   2777}
   2778
   2779/*
   2780 * Post a WR and block until its completion is reaped for the RQ.
   2781 */
   2782static void __ib_drain_rq(struct ib_qp *qp)
   2783{
   2784	struct ib_cq *cq = qp->recv_cq;
   2785	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
   2786	struct ib_drain_cqe rdrain;
   2787	struct ib_recv_wr rwr = {};
   2788	int ret;
   2789
   2790	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
   2791	if (ret) {
   2792		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
   2793		return;
   2794	}
   2795
   2796	rwr.wr_cqe = &rdrain.cqe;
   2797	rdrain.cqe.done = ib_drain_qp_done;
   2798	init_completion(&rdrain.done);
   2799
   2800	ret = ib_post_recv(qp, &rwr, NULL);
   2801	if (ret) {
   2802		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
   2803		return;
   2804	}
   2805
   2806	if (cq->poll_ctx == IB_POLL_DIRECT)
   2807		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
   2808			ib_process_cq_direct(cq, -1);
   2809	else
   2810		wait_for_completion(&rdrain.done);
   2811}
   2812
   2813/**
   2814 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
   2815 *		   application.
   2816 * @qp:            queue pair to drain
   2817 *
   2818 * If the device has a provider-specific drain function, then
   2819 * call that.  Otherwise call the generic drain function
   2820 * __ib_drain_sq().
   2821 *
   2822 * The caller must:
   2823 *
   2824 * ensure there is room in the CQ and SQ for the drain work request and
   2825 * completion.
   2826 *
   2827 * allocate the CQ using ib_alloc_cq().
   2828 *
   2829 * ensure that there are no other contexts that are posting WRs concurrently.
   2830 * Otherwise the drain is not guaranteed.
   2831 */
   2832void ib_drain_sq(struct ib_qp *qp)
   2833{
   2834	if (qp->device->ops.drain_sq)
   2835		qp->device->ops.drain_sq(qp);
   2836	else
   2837		__ib_drain_sq(qp);
   2838	trace_cq_drain_complete(qp->send_cq);
   2839}
   2840EXPORT_SYMBOL(ib_drain_sq);
   2841
   2842/**
   2843 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
   2844 *		   application.
   2845 * @qp:            queue pair to drain
   2846 *
   2847 * If the device has a provider-specific drain function, then
   2848 * call that.  Otherwise call the generic drain function
   2849 * __ib_drain_rq().
   2850 *
   2851 * The caller must:
   2852 *
   2853 * ensure there is room in the CQ and RQ for the drain work request and
   2854 * completion.
   2855 *
   2856 * allocate the CQ using ib_alloc_cq().
   2857 *
   2858 * ensure that there are no other contexts that are posting WRs concurrently.
   2859 * Otherwise the drain is not guaranteed.
   2860 */
   2861void ib_drain_rq(struct ib_qp *qp)
   2862{
   2863	if (qp->device->ops.drain_rq)
   2864		qp->device->ops.drain_rq(qp);
   2865	else
   2866		__ib_drain_rq(qp);
   2867	trace_cq_drain_complete(qp->recv_cq);
   2868}
   2869EXPORT_SYMBOL(ib_drain_rq);
   2870
   2871/**
   2872 * ib_drain_qp() - Block until all CQEs have been consumed by the
   2873 *		   application on both the RQ and SQ.
   2874 * @qp:            queue pair to drain
   2875 *
   2876 * The caller must:
   2877 *
   2878 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
   2879 * and completions.
   2880 *
   2881 * allocate the CQs using ib_alloc_cq().
   2882 *
   2883 * ensure that there are no other contexts that are posting WRs concurrently.
   2884 * Otherwise the drain is not guaranteed.
   2885 */
   2886void ib_drain_qp(struct ib_qp *qp)
   2887{
   2888	ib_drain_sq(qp);
   2889	if (!qp->srq)
   2890		ib_drain_rq(qp);
   2891}
   2892EXPORT_SYMBOL(ib_drain_qp);
   2893
   2894struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
   2895				     enum rdma_netdev_t type, const char *name,
   2896				     unsigned char name_assign_type,
   2897				     void (*setup)(struct net_device *))
   2898{
   2899	struct rdma_netdev_alloc_params params;
   2900	struct net_device *netdev;
   2901	int rc;
   2902
   2903	if (!device->ops.rdma_netdev_get_params)
   2904		return ERR_PTR(-EOPNOTSUPP);
   2905
   2906	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
   2907						&params);
   2908	if (rc)
   2909		return ERR_PTR(rc);
   2910
   2911	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
   2912				  setup, params.txqs, params.rxqs);
   2913	if (!netdev)
   2914		return ERR_PTR(-ENOMEM);
   2915
   2916	return netdev;
   2917}
   2918EXPORT_SYMBOL(rdma_alloc_netdev);
   2919
   2920int rdma_init_netdev(struct ib_device *device, u32 port_num,
   2921		     enum rdma_netdev_t type, const char *name,
   2922		     unsigned char name_assign_type,
   2923		     void (*setup)(struct net_device *),
   2924		     struct net_device *netdev)
   2925{
   2926	struct rdma_netdev_alloc_params params;
   2927	int rc;
   2928
   2929	if (!device->ops.rdma_netdev_get_params)
   2930		return -EOPNOTSUPP;
   2931
   2932	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
   2933						&params);
   2934	if (rc)
   2935		return rc;
   2936
   2937	return params.initialize_rdma_netdev(device, port_num,
   2938					     netdev, params.param);
   2939}
   2940EXPORT_SYMBOL(rdma_init_netdev);
   2941
   2942void __rdma_block_iter_start(struct ib_block_iter *biter,
   2943			     struct scatterlist *sglist, unsigned int nents,
   2944			     unsigned long pgsz)
   2945{
   2946	memset(biter, 0, sizeof(struct ib_block_iter));
   2947	biter->__sg = sglist;
   2948	biter->__sg_nents = nents;
   2949
   2950	/* Driver provides best block size to use */
   2951	biter->__pg_bit = __fls(pgsz);
   2952}
   2953EXPORT_SYMBOL(__rdma_block_iter_start);
   2954
   2955bool __rdma_block_iter_next(struct ib_block_iter *biter)
   2956{
   2957	unsigned int block_offset;
   2958
   2959	if (!biter->__sg_nents || !biter->__sg)
   2960		return false;
   2961
   2962	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
   2963	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
   2964	biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
   2965
   2966	if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
   2967		biter->__sg_advance = 0;
   2968		biter->__sg = sg_next(biter->__sg);
   2969		biter->__sg_nents--;
   2970	}
   2971
   2972	return true;
   2973}
   2974EXPORT_SYMBOL(__rdma_block_iter_next);
   2975
   2976/**
   2977 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
   2978 *   for the drivers.
   2979 * @descs: array of static descriptors
   2980 * @num_counters: number of elements in array
   2981 * @lifespan: milliseconds between updates
   2982 */
   2983struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
   2984	const struct rdma_stat_desc *descs, int num_counters,
   2985	unsigned long lifespan)
   2986{
   2987	struct rdma_hw_stats *stats;
   2988
   2989	stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
   2990	if (!stats)
   2991		return NULL;
   2992
   2993	stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
   2994				     sizeof(*stats->is_disabled), GFP_KERNEL);
   2995	if (!stats->is_disabled)
   2996		goto err;
   2997
   2998	stats->descs = descs;
   2999	stats->num_counters = num_counters;
   3000	stats->lifespan = msecs_to_jiffies(lifespan);
   3001	mutex_init(&stats->lock);
   3002
   3003	return stats;
   3004
   3005err:
   3006	kfree(stats);
   3007	return NULL;
   3008}
   3009EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
   3010
   3011/**
   3012 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
   3013 * @stats: statistics to release
   3014 */
   3015void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
   3016{
   3017	if (!stats)
   3018		return;
   3019
   3020	kfree(stats->is_disabled);
   3021	kfree(stats);
   3022}
   3023EXPORT_SYMBOL(rdma_free_hw_stats_struct);