cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

t4.h (21318B)


      1/*
      2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
      3 *
      4 * This software is available to you under a choice of one of two
      5 * licenses.  You may choose to be licensed under the terms of the GNU
      6 * General Public License (GPL) Version 2, available from the file
      7 * COPYING in the main directory of this source tree, or the
      8 * OpenIB.org BSD license below:
      9 *
     10 *     Redistribution and use in source and binary forms, with or
     11 *     without modification, are permitted provided that the following
     12 *     conditions are met:
     13 *
     14 *      - Redistributions of source code must retain the above
     15 *        copyright notice, this list of conditions and the following
     16 *        disclaimer.
     17 *      - Redistributions in binary form must reproduce the above
     18 *        copyright notice, this list of conditions and the following
     19 *        disclaimer in the documentation and/or other materials
     20 *        provided with the distribution.
     21 *
     22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     29 * SOFTWARE.
     30 */
     31#ifndef __T4_H__
     32#define __T4_H__
     33
     34#include "t4_hw.h"
     35#include "t4_regs.h"
     36#include "t4_values.h"
     37#include "t4_msg.h"
     38#include "t4_tcb.h"
     39#include "t4fw_ri_api.h"
     40
     41#define T4_MAX_NUM_PD 65536
     42#define T4_MAX_MR_SIZE (~0ULL)
     43#define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
     44#define T4_STAG_UNSET 0xffffffff
     45#define T4_FW_MAJ 0
     46#define PCIE_MA_SYNC_A 0x30b4
     47
     48struct t4_status_page {
     49	__be32 rsvd1;	/* flit 0 - hw owns */
     50	__be16 rsvd2;
     51	__be16 qid;
     52	__be16 cidx;
     53	__be16 pidx;
     54	u8 qp_err;	/* flit 1 - sw owns */
     55	u8 db_off;
     56	u8 pad[2];
     57	u16 host_wq_pidx;
     58	u16 host_cidx;
     59	u16 host_pidx;
     60	u16 pad2;
     61	u32 srqidx;
     62};
     63
     64#define T4_RQT_ENTRY_SHIFT 6
     65#define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
     66#define T4_EQ_ENTRY_SIZE 64
     67
     68#define T4_SQ_NUM_SLOTS 5
     69#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
     70#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
     71			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
     72#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
     73			sizeof(struct fw_ri_immd)))
     74#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
     75			sizeof(struct fw_ri_rdma_write_wr) - \
     76			sizeof(struct fw_ri_immd)))
     77#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
     78			sizeof(struct fw_ri_rdma_write_wr) - \
     79			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
     80#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
     81			sizeof(struct fw_ri_immd)) & ~31UL)
     82#define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
     83#define T4_MAX_FR_DSGL 1024
     84#define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
     85
     86static inline int t4_max_fr_depth(int use_dsgl)
     87{
     88	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
     89}
     90
     91#define T4_RQ_NUM_SLOTS 2
     92#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
     93#define T4_MAX_RECV_SGE 4
     94
     95#define T4_WRITE_CMPL_MAX_SGL 4
     96#define T4_WRITE_CMPL_MAX_CQE 16
     97
     98union t4_wr {
     99	struct fw_ri_res_wr res;
    100	struct fw_ri_wr ri;
    101	struct fw_ri_rdma_write_wr write;
    102	struct fw_ri_send_wr send;
    103	struct fw_ri_rdma_read_wr read;
    104	struct fw_ri_bind_mw_wr bind;
    105	struct fw_ri_fr_nsmr_wr fr;
    106	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
    107	struct fw_ri_inv_lstag_wr inv;
    108	struct fw_ri_rdma_write_cmpl_wr write_cmpl;
    109	struct t4_status_page status;
    110	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
    111};
    112
    113union t4_recv_wr {
    114	struct fw_ri_recv_wr recv;
    115	struct t4_status_page status;
    116	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
    117};
    118
    119static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
    120			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
    121{
    122	wqe->send.opcode = (u8)opcode;
    123	wqe->send.flags = flags;
    124	wqe->send.wrid = wrid;
    125	wqe->send.r1[0] = 0;
    126	wqe->send.r1[1] = 0;
    127	wqe->send.r1[2] = 0;
    128	wqe->send.len16 = len16;
    129}
    130
    131/* CQE/AE status codes */
    132#define T4_ERR_SUCCESS                     0x0
    133#define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
    134						/* STAG is offlimt, being 0, */
    135						/* or STAG_key mismatch */
    136#define T4_ERR_PDID                        0x2	/* PDID mismatch */
    137#define T4_ERR_QPID                        0x3	/* QPID mismatch */
    138#define T4_ERR_ACCESS                      0x4	/* Invalid access right */
    139#define T4_ERR_WRAP                        0x5	/* Wrap error */
    140#define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
    141#define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
    142						/* shared memory region */
    143#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
    144						/* shared memory region */
    145#define T4_ERR_ECC                         0x9	/* ECC error detected */
    146#define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
    147						/* reading PSTAG for a MW  */
    148						/* Invalidate */
    149#define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
    150						/* software error */
    151#define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
    152#define T4_ERR_CRC                         0x10 /* CRC error */
    153#define T4_ERR_MARKER                      0x11 /* Marker error */
    154#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
    155#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
    156#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
    157#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
    158#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
    159#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
    160#define T4_ERR_MSN                         0x18 /* MSN error */
    161#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
    162#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
    163						/* or READ_REQ */
    164#define T4_ERR_MSN_GAP                     0x1B
    165#define T4_ERR_MSN_RANGE                   0x1C
    166#define T4_ERR_IRD_OVERFLOW                0x1D
    167#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
    168						/* software error */
    169#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
    170						/* mismatch) */
    171/*
    172 * CQE defs
    173 */
    174struct t4_cqe {
    175	__be32 header;
    176	__be32 len;
    177	union {
    178		struct {
    179			__be32 stag;
    180			__be32 msn;
    181		} rcqe;
    182		struct {
    183			__be32 stag;
    184			u16 nada2;
    185			u16 cidx;
    186		} scqe;
    187		struct {
    188			__be32 wrid_hi;
    189			__be32 wrid_low;
    190		} gen;
    191		struct {
    192			__be32 stag;
    193			__be32 msn;
    194			__be32 reserved;
    195			__be32 abs_rqe_idx;
    196		} srcqe;
    197		struct {
    198			__be32 mo;
    199			__be32 msn;
    200			/*
    201			 * Use union for immediate data to be consistent with
    202			 * stack's 32 bit data and iWARP spec's 64 bit data.
    203			 */
    204			union {
    205				struct {
    206					__be32 imm_data32;
    207					u32 reserved;
    208				} ib_imm_data;
    209				__be64 imm_data64;
    210			} iw_imm_data;
    211		} imm_data_rcqe;
    212
    213		u64 drain_cookie;
    214		__be64 flits[3];
    215	} u;
    216	__be64 reserved[3];
    217	__be64 bits_type_ts;
    218};
    219
    220/* macros for flit 0 of the cqe */
    221
    222#define CQE_QPID_S        12
    223#define CQE_QPID_M        0xFFFFF
    224#define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
    225#define CQE_QPID_V(x)	  ((x)<<CQE_QPID_S)
    226
    227#define CQE_SWCQE_S       11
    228#define CQE_SWCQE_M       0x1
    229#define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
    230#define CQE_SWCQE_V(x)	  ((x)<<CQE_SWCQE_S)
    231
    232#define CQE_DRAIN_S       10
    233#define CQE_DRAIN_M       0x1
    234#define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
    235#define CQE_DRAIN_V(x)	  ((x)<<CQE_DRAIN_S)
    236
    237#define CQE_STATUS_S      5
    238#define CQE_STATUS_M      0x1F
    239#define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
    240#define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
    241
    242#define CQE_TYPE_S        4
    243#define CQE_TYPE_M        0x1
    244#define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
    245#define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
    246
    247#define CQE_OPCODE_S      0
    248#define CQE_OPCODE_M      0xF
    249#define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
    250#define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
    251
    252#define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
    253#define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
    254#define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
    255#define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
    256#define SQ_TYPE(x)	  (CQE_TYPE((x)))
    257#define RQ_TYPE(x)	  (!CQE_TYPE((x)))
    258#define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
    259#define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
    260
    261#define CQE_SEND_OPCODE(x)( \
    262	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
    263	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
    264	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
    265	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
    266
    267#define CQE_LEN(x)        (be32_to_cpu((x)->len))
    268
    269/* used for RQ completion processing */
    270#define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
    271#define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
    272#define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
    273#define CQE_IMM_DATA(x)( \
    274	(x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
    275
    276/* used for SQ completion processing */
    277#define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
    278#define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
    279
    280/* generic accessor macros */
    281#define CQE_WRID_HI(x)		(be32_to_cpu((x)->u.gen.wrid_hi))
    282#define CQE_WRID_LOW(x)		(be32_to_cpu((x)->u.gen.wrid_low))
    283#define CQE_DRAIN_COOKIE(x)	((x)->u.drain_cookie)
    284
    285/* macros for flit 3 of the cqe */
    286#define CQE_GENBIT_S	63
    287#define CQE_GENBIT_M	0x1
    288#define CQE_GENBIT_G(x)	(((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
    289#define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
    290
    291#define CQE_OVFBIT_S	62
    292#define CQE_OVFBIT_M	0x1
    293#define CQE_OVFBIT_G(x)	((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
    294
    295#define CQE_IQTYPE_S	60
    296#define CQE_IQTYPE_M	0x3
    297#define CQE_IQTYPE_G(x)	((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
    298
    299#define CQE_TS_M	0x0fffffffffffffffULL
    300#define CQE_TS_G(x)	((x) & CQE_TS_M)
    301
    302#define CQE_OVFBIT(x)	((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
    303#define CQE_GENBIT(x)	((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
    304#define CQE_TS(x)	(CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
    305
    306struct t4_swsqe {
    307	u64			wr_id;
    308	struct t4_cqe		cqe;
    309	int			read_len;
    310	int			opcode;
    311	int			complete;
    312	int			signaled;
    313	u16			idx;
    314	int                     flushed;
    315	ktime_t			host_time;
    316	u64                     sge_ts;
    317};
    318
    319static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
    320{
    321#if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
    322	return pgprot_writecombine(prot);
    323#else
    324	return pgprot_noncached(prot);
    325#endif
    326}
    327
    328enum {
    329	T4_SQ_ONCHIP = (1<<0),
    330};
    331
    332struct t4_sq {
    333	union t4_wr *queue;
    334	dma_addr_t dma_addr;
    335	DEFINE_DMA_UNMAP_ADDR(mapping);
    336	unsigned long phys_addr;
    337	struct t4_swsqe *sw_sq;
    338	struct t4_swsqe *oldest_read;
    339	void __iomem *bar2_va;
    340	u64 bar2_pa;
    341	size_t memsize;
    342	u32 bar2_qid;
    343	u32 qid;
    344	u16 in_use;
    345	u16 size;
    346	u16 cidx;
    347	u16 pidx;
    348	u16 wq_pidx;
    349	u16 wq_pidx_inc;
    350	u16 flags;
    351	short flush_cidx;
    352};
    353
    354struct t4_swrqe {
    355	u64 wr_id;
    356	ktime_t	host_time;
    357	u64 sge_ts;
    358	int valid;
    359};
    360
    361struct t4_rq {
    362	union  t4_recv_wr *queue;
    363	dma_addr_t dma_addr;
    364	DEFINE_DMA_UNMAP_ADDR(mapping);
    365	struct t4_swrqe *sw_rq;
    366	void __iomem *bar2_va;
    367	u64 bar2_pa;
    368	size_t memsize;
    369	u32 bar2_qid;
    370	u32 qid;
    371	u32 msn;
    372	u32 rqt_hwaddr;
    373	u16 rqt_size;
    374	u16 in_use;
    375	u16 size;
    376	u16 cidx;
    377	u16 pidx;
    378	u16 wq_pidx;
    379	u16 wq_pidx_inc;
    380};
    381
    382struct t4_wq {
    383	struct t4_sq sq;
    384	struct t4_rq rq;
    385	void __iomem *db;
    386	struct c4iw_rdev *rdev;
    387	int flushed;
    388	u8 *qp_errp;
    389	u32 *srqidxp;
    390};
    391
    392struct t4_srq_pending_wr {
    393	u64 wr_id;
    394	union t4_recv_wr wqe;
    395	u8 len16;
    396};
    397
    398struct t4_srq {
    399	union t4_recv_wr *queue;
    400	dma_addr_t dma_addr;
    401	DEFINE_DMA_UNMAP_ADDR(mapping);
    402	struct t4_swrqe *sw_rq;
    403	void __iomem *bar2_va;
    404	u64 bar2_pa;
    405	size_t memsize;
    406	u32 bar2_qid;
    407	u32 qid;
    408	u32 msn;
    409	u32 rqt_hwaddr;
    410	u32 rqt_abs_idx;
    411	u16 rqt_size;
    412	u16 size;
    413	u16 cidx;
    414	u16 pidx;
    415	u16 wq_pidx;
    416	u16 wq_pidx_inc;
    417	u16 in_use;
    418	struct t4_srq_pending_wr *pending_wrs;
    419	u16 pending_cidx;
    420	u16 pending_pidx;
    421	u16 pending_in_use;
    422	u16 ooo_count;
    423};
    424
    425static inline u32 t4_srq_avail(struct t4_srq *srq)
    426{
    427	return srq->size - 1 - srq->in_use;
    428}
    429
    430static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
    431{
    432	srq->in_use++;
    433	if (++srq->pidx == srq->size)
    434		srq->pidx = 0;
    435	srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
    436	if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
    437		srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
    438	srq->queue[srq->size].status.host_pidx = srq->pidx;
    439}
    440
    441static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
    442{
    443	srq->pending_in_use++;
    444	srq->in_use++;
    445	if (++srq->pending_pidx == srq->size)
    446		srq->pending_pidx = 0;
    447}
    448
    449static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
    450{
    451	srq->pending_in_use--;
    452	srq->in_use--;
    453	if (++srq->pending_cidx == srq->size)
    454		srq->pending_cidx = 0;
    455}
    456
    457static inline void t4_srq_produce_ooo(struct t4_srq *srq)
    458{
    459	srq->in_use--;
    460	srq->ooo_count++;
    461}
    462
    463static inline void t4_srq_consume_ooo(struct t4_srq *srq)
    464{
    465	srq->cidx++;
    466	if (srq->cidx == srq->size)
    467		srq->cidx  = 0;
    468	srq->queue[srq->size].status.host_cidx = srq->cidx;
    469	srq->ooo_count--;
    470}
    471
    472static inline void t4_srq_consume(struct t4_srq *srq)
    473{
    474	srq->in_use--;
    475	if (++srq->cidx == srq->size)
    476		srq->cidx = 0;
    477	srq->queue[srq->size].status.host_cidx = srq->cidx;
    478}
    479
    480static inline int t4_rqes_posted(struct t4_wq *wq)
    481{
    482	return wq->rq.in_use;
    483}
    484
    485static inline int t4_rq_empty(struct t4_wq *wq)
    486{
    487	return wq->rq.in_use == 0;
    488}
    489
    490static inline u32 t4_rq_avail(struct t4_wq *wq)
    491{
    492	return wq->rq.size - 1 - wq->rq.in_use;
    493}
    494
    495static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
    496{
    497	wq->rq.in_use++;
    498	if (++wq->rq.pidx == wq->rq.size)
    499		wq->rq.pidx = 0;
    500	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
    501	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
    502		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
    503}
    504
    505static inline void t4_rq_consume(struct t4_wq *wq)
    506{
    507	wq->rq.in_use--;
    508	if (++wq->rq.cidx == wq->rq.size)
    509		wq->rq.cidx = 0;
    510}
    511
    512static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
    513{
    514	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
    515}
    516
    517static inline u16 t4_rq_wq_size(struct t4_wq *wq)
    518{
    519		return wq->rq.size * T4_RQ_NUM_SLOTS;
    520}
    521
    522static inline int t4_sq_onchip(struct t4_sq *sq)
    523{
    524	return sq->flags & T4_SQ_ONCHIP;
    525}
    526
    527static inline int t4_sq_empty(struct t4_wq *wq)
    528{
    529	return wq->sq.in_use == 0;
    530}
    531
    532static inline u32 t4_sq_avail(struct t4_wq *wq)
    533{
    534	return wq->sq.size - 1 - wq->sq.in_use;
    535}
    536
    537static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
    538{
    539	wq->sq.in_use++;
    540	if (++wq->sq.pidx == wq->sq.size)
    541		wq->sq.pidx = 0;
    542	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
    543	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
    544		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
    545}
    546
    547static inline void t4_sq_consume(struct t4_wq *wq)
    548{
    549	if (wq->sq.cidx == wq->sq.flush_cidx)
    550		wq->sq.flush_cidx = -1;
    551	wq->sq.in_use--;
    552	if (++wq->sq.cidx == wq->sq.size)
    553		wq->sq.cidx = 0;
    554}
    555
    556static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
    557{
    558	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
    559}
    560
    561static inline u16 t4_sq_wq_size(struct t4_wq *wq)
    562{
    563		return wq->sq.size * T4_SQ_NUM_SLOTS;
    564}
    565
    566/* This function copies 64 byte coalesced work request to memory
    567 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
    568 * from the FIFO instead of from Host.
    569 */
    570static inline void pio_copy(u64 __iomem *dst, u64 *src)
    571{
    572	int count = 8;
    573
    574	while (count) {
    575		writeq(*src, dst);
    576		src++;
    577		dst++;
    578		count--;
    579	}
    580}
    581
    582static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
    583				  union t4_recv_wr *wqe)
    584{
    585	/* Flush host queue memory writes. */
    586	wmb();
    587	if (inc == 1 && srq->bar2_qid == 0 && wqe) {
    588		pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
    589			 __func__, srq->pidx, len16);
    590		pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
    591	} else {
    592		pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
    593			 __func__, srq->pidx, len16);
    594		writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
    595		       srq->bar2_va + SGE_UDB_KDOORBELL);
    596	}
    597	/* Flush user doorbell area writes. */
    598	wmb();
    599}
    600
    601static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
    602{
    603
    604	/* Flush host queue memory writes. */
    605	wmb();
    606	if (wq->sq.bar2_va) {
    607		if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
    608			pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
    609			pio_copy((u64 __iomem *)
    610				 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
    611				 (u64 *)wqe);
    612		} else {
    613			pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
    614			writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
    615			       wq->sq.bar2_va + SGE_UDB_KDOORBELL);
    616		}
    617
    618		/* Flush user doorbell area writes. */
    619		wmb();
    620		return;
    621	}
    622	writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
    623}
    624
    625static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
    626				 union t4_recv_wr *wqe)
    627{
    628
    629	/* Flush host queue memory writes. */
    630	wmb();
    631	if (wq->rq.bar2_va) {
    632		if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
    633			pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
    634			pio_copy((u64 __iomem *)
    635				 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
    636				 (void *)wqe);
    637		} else {
    638			pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
    639			writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
    640			       wq->rq.bar2_va + SGE_UDB_KDOORBELL);
    641		}
    642
    643		/* Flush user doorbell area writes. */
    644		wmb();
    645		return;
    646	}
    647	writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
    648}
    649
    650static inline int t4_wq_in_error(struct t4_wq *wq)
    651{
    652	return *wq->qp_errp;
    653}
    654
    655static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
    656{
    657	if (srqidx)
    658		*wq->srqidxp = srqidx;
    659	*wq->qp_errp = 1;
    660}
    661
    662static inline void t4_disable_wq_db(struct t4_wq *wq)
    663{
    664	wq->rq.queue[wq->rq.size].status.db_off = 1;
    665}
    666
    667static inline void t4_enable_wq_db(struct t4_wq *wq)
    668{
    669	wq->rq.queue[wq->rq.size].status.db_off = 0;
    670}
    671
    672enum t4_cq_flags {
    673	CQ_ARMED	= 1,
    674};
    675
    676struct t4_cq {
    677	struct t4_cqe *queue;
    678	dma_addr_t dma_addr;
    679	DEFINE_DMA_UNMAP_ADDR(mapping);
    680	struct t4_cqe *sw_queue;
    681	void __iomem *gts;
    682	void __iomem *bar2_va;
    683	u64 bar2_pa;
    684	u32 bar2_qid;
    685	struct c4iw_rdev *rdev;
    686	size_t memsize;
    687	__be64 bits_type_ts;
    688	u32 cqid;
    689	u32 qid_mask;
    690	int vector;
    691	u16 size; /* including status page */
    692	u16 cidx;
    693	u16 sw_pidx;
    694	u16 sw_cidx;
    695	u16 sw_in_use;
    696	u16 cidx_inc;
    697	u8 gen;
    698	u8 error;
    699	u8 *qp_errp;
    700	unsigned long flags;
    701};
    702
    703static inline void write_gts(struct t4_cq *cq, u32 val)
    704{
    705	if (cq->bar2_va)
    706		writel(val | INGRESSQID_V(cq->bar2_qid),
    707		       cq->bar2_va + SGE_UDB_GTS);
    708	else
    709		writel(val | INGRESSQID_V(cq->cqid), cq->gts);
    710}
    711
    712static inline int t4_clear_cq_armed(struct t4_cq *cq)
    713{
    714	return test_and_clear_bit(CQ_ARMED, &cq->flags);
    715}
    716
    717static inline int t4_arm_cq(struct t4_cq *cq, int se)
    718{
    719	u32 val;
    720
    721	set_bit(CQ_ARMED, &cq->flags);
    722	while (cq->cidx_inc > CIDXINC_M) {
    723		val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
    724		write_gts(cq, val);
    725		cq->cidx_inc -= CIDXINC_M;
    726	}
    727	val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
    728	write_gts(cq, val);
    729	cq->cidx_inc = 0;
    730	return 0;
    731}
    732
    733static inline void t4_swcq_produce(struct t4_cq *cq)
    734{
    735	cq->sw_in_use++;
    736	if (cq->sw_in_use == cq->size) {
    737		pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
    738			__func__, cq->cqid);
    739		cq->error = 1;
    740		cq->sw_in_use--;
    741		return;
    742	}
    743	if (++cq->sw_pidx == cq->size)
    744		cq->sw_pidx = 0;
    745}
    746
    747static inline void t4_swcq_consume(struct t4_cq *cq)
    748{
    749	cq->sw_in_use--;
    750	if (++cq->sw_cidx == cq->size)
    751		cq->sw_cidx = 0;
    752}
    753
    754static inline void t4_hwcq_consume(struct t4_cq *cq)
    755{
    756	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
    757	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
    758		u32 val;
    759
    760		val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
    761		write_gts(cq, val);
    762		cq->cidx_inc = 0;
    763	}
    764	if (++cq->cidx == cq->size) {
    765		cq->cidx = 0;
    766		cq->gen ^= 1;
    767	}
    768}
    769
    770static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
    771{
    772	return (CQE_GENBIT(cqe) == cq->gen);
    773}
    774
    775static inline int t4_cq_notempty(struct t4_cq *cq)
    776{
    777	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
    778}
    779
    780static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
    781{
    782	int ret;
    783	u16 prev_cidx;
    784
    785	if (cq->cidx == 0)
    786		prev_cidx = cq->size - 1;
    787	else
    788		prev_cidx = cq->cidx - 1;
    789
    790	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
    791		ret = -EOVERFLOW;
    792		cq->error = 1;
    793		pr_err("cq overflow cqid %u\n", cq->cqid);
    794	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
    795
    796		/* Ensure CQE is flushed to memory */
    797		rmb();
    798		*cqe = &cq->queue[cq->cidx];
    799		ret = 0;
    800	} else
    801		ret = -ENODATA;
    802	return ret;
    803}
    804
    805static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
    806{
    807	int ret = 0;
    808
    809	if (cq->error)
    810		ret = -ENODATA;
    811	else if (cq->sw_in_use)
    812		*cqe = &cq->sw_queue[cq->sw_cidx];
    813	else
    814		ret = t4_next_hw_cqe(cq, cqe);
    815	return ret;
    816}
    817
    818static inline void t4_set_cq_in_error(struct t4_cq *cq)
    819{
    820	*cq->qp_errp = 1;
    821}
    822#endif
    823
    824struct t4_dev_status_page {
    825	u8 db_off;
    826	u8 write_cmpl_supported;
    827	u16 pad2;
    828	u32 pad3;
    829	u64 qp_start;
    830	u64 qp_size;
    831	u64 cq_start;
    832	u64 cq_size;
    833};