cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

affinity.c (31249B)


      1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
      2/*
      3 * Copyright(c) 2015 - 2020 Intel Corporation.
      4 */
      5
      6#include <linux/topology.h>
      7#include <linux/cpumask.h>
      8#include <linux/interrupt.h>
      9#include <linux/numa.h>
     10
     11#include "hfi.h"
     12#include "affinity.h"
     13#include "sdma.h"
     14#include "trace.h"
     15
     16struct hfi1_affinity_node_list node_affinity = {
     17	.list = LIST_HEAD_INIT(node_affinity.list),
     18	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
     19};
     20
     21/* Name of IRQ types, indexed by enum irq_type */
     22static const char * const irq_type_names[] = {
     23	"SDMA",
     24	"RCVCTXT",
     25	"NETDEVCTXT",
     26	"GENERAL",
     27	"OTHER",
     28};
     29
     30/* Per NUMA node count of HFI devices */
     31static unsigned int *hfi1_per_node_cntr;
     32
     33static inline void init_cpu_mask_set(struct cpu_mask_set *set)
     34{
     35	cpumask_clear(&set->mask);
     36	cpumask_clear(&set->used);
     37	set->gen = 0;
     38}
     39
     40/* Increment generation of CPU set if needed */
     41static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
     42{
     43	if (cpumask_equal(&set->mask, &set->used)) {
     44		/*
     45		 * We've used up all the CPUs, bump up the generation
     46		 * and reset the 'used' map
     47		 */
     48		set->gen++;
     49		cpumask_clear(&set->used);
     50	}
     51}
     52
     53static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
     54{
     55	if (cpumask_empty(&set->used) && set->gen) {
     56		set->gen--;
     57		cpumask_copy(&set->used, &set->mask);
     58	}
     59}
     60
     61/* Get the first CPU from the list of unused CPUs in a CPU set data structure */
     62static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
     63{
     64	int cpu;
     65
     66	if (!diff || !set)
     67		return -EINVAL;
     68
     69	_cpu_mask_set_gen_inc(set);
     70
     71	/* Find out CPUs left in CPU mask */
     72	cpumask_andnot(diff, &set->mask, &set->used);
     73
     74	cpu = cpumask_first(diff);
     75	if (cpu >= nr_cpu_ids) /* empty */
     76		cpu = -EINVAL;
     77	else
     78		cpumask_set_cpu(cpu, &set->used);
     79
     80	return cpu;
     81}
     82
     83static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
     84{
     85	if (!set)
     86		return;
     87
     88	cpumask_clear_cpu(cpu, &set->used);
     89	_cpu_mask_set_gen_dec(set);
     90}
     91
     92/* Initialize non-HT cpu cores mask */
     93void init_real_cpu_mask(void)
     94{
     95	int possible, curr_cpu, i, ht;
     96
     97	cpumask_clear(&node_affinity.real_cpu_mask);
     98
     99	/* Start with cpu online mask as the real cpu mask */
    100	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
    101
    102	/*
    103	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
    104	 */
    105	possible = cpumask_weight(&node_affinity.real_cpu_mask);
    106	ht = cpumask_weight(topology_sibling_cpumask(
    107				cpumask_first(&node_affinity.real_cpu_mask)));
    108	/*
    109	 * Step 1.  Skip over the first N HT siblings and use them as the
    110	 * "real" cores.  Assumes that HT cores are not enumerated in
    111	 * succession (except in the single core case).
    112	 */
    113	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
    114	for (i = 0; i < possible / ht; i++)
    115		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
    116	/*
    117	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
    118	 * skip any gaps.
    119	 */
    120	for (; i < possible; i++) {
    121		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
    122		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
    123	}
    124}
    125
    126int node_affinity_init(void)
    127{
    128	int node;
    129	struct pci_dev *dev = NULL;
    130	const struct pci_device_id *ids = hfi1_pci_tbl;
    131
    132	cpumask_clear(&node_affinity.proc.used);
    133	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
    134
    135	node_affinity.proc.gen = 0;
    136	node_affinity.num_core_siblings =
    137				cpumask_weight(topology_sibling_cpumask(
    138					cpumask_first(&node_affinity.proc.mask)
    139					));
    140	node_affinity.num_possible_nodes = num_possible_nodes();
    141	node_affinity.num_online_nodes = num_online_nodes();
    142	node_affinity.num_online_cpus = num_online_cpus();
    143
    144	/*
    145	 * The real cpu mask is part of the affinity struct but it has to be
    146	 * initialized early. It is needed to calculate the number of user
    147	 * contexts in set_up_context_variables().
    148	 */
    149	init_real_cpu_mask();
    150
    151	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
    152				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
    153	if (!hfi1_per_node_cntr)
    154		return -ENOMEM;
    155
    156	while (ids->vendor) {
    157		dev = NULL;
    158		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
    159			node = pcibus_to_node(dev->bus);
    160			if (node < 0)
    161				goto out;
    162
    163			hfi1_per_node_cntr[node]++;
    164		}
    165		ids++;
    166	}
    167
    168	return 0;
    169
    170out:
    171	/*
    172	 * Invalid PCI NUMA node information found, note it, and populate
    173	 * our database 1:1.
    174	 */
    175	pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
    176	pr_err("HFI: System BIOS may need to be upgraded\n");
    177	for (node = 0; node < node_affinity.num_possible_nodes; node++)
    178		hfi1_per_node_cntr[node] = 1;
    179
    180	return 0;
    181}
    182
    183static void node_affinity_destroy(struct hfi1_affinity_node *entry)
    184{
    185	free_percpu(entry->comp_vect_affinity);
    186	kfree(entry);
    187}
    188
    189void node_affinity_destroy_all(void)
    190{
    191	struct list_head *pos, *q;
    192	struct hfi1_affinity_node *entry;
    193
    194	mutex_lock(&node_affinity.lock);
    195	list_for_each_safe(pos, q, &node_affinity.list) {
    196		entry = list_entry(pos, struct hfi1_affinity_node,
    197				   list);
    198		list_del(pos);
    199		node_affinity_destroy(entry);
    200	}
    201	mutex_unlock(&node_affinity.lock);
    202	kfree(hfi1_per_node_cntr);
    203}
    204
    205static struct hfi1_affinity_node *node_affinity_allocate(int node)
    206{
    207	struct hfi1_affinity_node *entry;
    208
    209	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
    210	if (!entry)
    211		return NULL;
    212	entry->node = node;
    213	entry->comp_vect_affinity = alloc_percpu(u16);
    214	INIT_LIST_HEAD(&entry->list);
    215
    216	return entry;
    217}
    218
    219/*
    220 * It appends an entry to the list.
    221 * It *must* be called with node_affinity.lock held.
    222 */
    223static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
    224{
    225	list_add_tail(&entry->list, &node_affinity.list);
    226}
    227
    228/* It must be called with node_affinity.lock held */
    229static struct hfi1_affinity_node *node_affinity_lookup(int node)
    230{
    231	struct list_head *pos;
    232	struct hfi1_affinity_node *entry;
    233
    234	list_for_each(pos, &node_affinity.list) {
    235		entry = list_entry(pos, struct hfi1_affinity_node, list);
    236		if (entry->node == node)
    237			return entry;
    238	}
    239
    240	return NULL;
    241}
    242
    243static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
    244				u16 __percpu *comp_vect_affinity)
    245{
    246	int curr_cpu;
    247	u16 cntr;
    248	u16 prev_cntr;
    249	int ret_cpu;
    250
    251	if (!possible_cpumask) {
    252		ret_cpu = -EINVAL;
    253		goto fail;
    254	}
    255
    256	if (!comp_vect_affinity) {
    257		ret_cpu = -EINVAL;
    258		goto fail;
    259	}
    260
    261	ret_cpu = cpumask_first(possible_cpumask);
    262	if (ret_cpu >= nr_cpu_ids) {
    263		ret_cpu = -EINVAL;
    264		goto fail;
    265	}
    266
    267	prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
    268	for_each_cpu(curr_cpu, possible_cpumask) {
    269		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
    270
    271		if (cntr < prev_cntr) {
    272			ret_cpu = curr_cpu;
    273			prev_cntr = cntr;
    274		}
    275	}
    276
    277	*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
    278
    279fail:
    280	return ret_cpu;
    281}
    282
    283static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
    284				    u16 __percpu *comp_vect_affinity)
    285{
    286	int curr_cpu;
    287	int max_cpu;
    288	u16 cntr;
    289	u16 prev_cntr;
    290
    291	if (!possible_cpumask)
    292		return -EINVAL;
    293
    294	if (!comp_vect_affinity)
    295		return -EINVAL;
    296
    297	max_cpu = cpumask_first(possible_cpumask);
    298	if (max_cpu >= nr_cpu_ids)
    299		return -EINVAL;
    300
    301	prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
    302	for_each_cpu(curr_cpu, possible_cpumask) {
    303		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
    304
    305		if (cntr > prev_cntr) {
    306			max_cpu = curr_cpu;
    307			prev_cntr = cntr;
    308		}
    309	}
    310
    311	*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
    312
    313	return max_cpu;
    314}
    315
    316/*
    317 * Non-interrupt CPUs are used first, then interrupt CPUs.
    318 * Two already allocated cpu masks must be passed.
    319 */
    320static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
    321				  struct hfi1_affinity_node *entry,
    322				  cpumask_var_t non_intr_cpus,
    323				  cpumask_var_t available_cpus)
    324	__must_hold(&node_affinity.lock)
    325{
    326	int cpu;
    327	struct cpu_mask_set *set = dd->comp_vect;
    328
    329	lockdep_assert_held(&node_affinity.lock);
    330	if (!non_intr_cpus) {
    331		cpu = -1;
    332		goto fail;
    333	}
    334
    335	if (!available_cpus) {
    336		cpu = -1;
    337		goto fail;
    338	}
    339
    340	/* Available CPUs for pinning completion vectors */
    341	_cpu_mask_set_gen_inc(set);
    342	cpumask_andnot(available_cpus, &set->mask, &set->used);
    343
    344	/* Available CPUs without SDMA engine interrupts */
    345	cpumask_andnot(non_intr_cpus, available_cpus,
    346		       &entry->def_intr.used);
    347
    348	/* If there are non-interrupt CPUs available, use them first */
    349	if (!cpumask_empty(non_intr_cpus))
    350		cpu = cpumask_first(non_intr_cpus);
    351	else /* Otherwise, use interrupt CPUs */
    352		cpu = cpumask_first(available_cpus);
    353
    354	if (cpu >= nr_cpu_ids) { /* empty */
    355		cpu = -1;
    356		goto fail;
    357	}
    358	cpumask_set_cpu(cpu, &set->used);
    359
    360fail:
    361	return cpu;
    362}
    363
    364static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
    365{
    366	struct cpu_mask_set *set = dd->comp_vect;
    367
    368	if (cpu < 0)
    369		return;
    370
    371	cpu_mask_set_put(set, cpu);
    372}
    373
    374/* _dev_comp_vect_mappings_destroy() is reentrant */
    375static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
    376{
    377	int i, cpu;
    378
    379	if (!dd->comp_vect_mappings)
    380		return;
    381
    382	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
    383		cpu = dd->comp_vect_mappings[i];
    384		_dev_comp_vect_cpu_put(dd, cpu);
    385		dd->comp_vect_mappings[i] = -1;
    386		hfi1_cdbg(AFFINITY,
    387			  "[%s] Release CPU %d from completion vector %d",
    388			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
    389	}
    390
    391	kfree(dd->comp_vect_mappings);
    392	dd->comp_vect_mappings = NULL;
    393}
    394
    395/*
    396 * This function creates the table for looking up CPUs for completion vectors.
    397 * num_comp_vectors needs to have been initilized before calling this function.
    398 */
    399static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
    400					  struct hfi1_affinity_node *entry)
    401	__must_hold(&node_affinity.lock)
    402{
    403	int i, cpu, ret;
    404	cpumask_var_t non_intr_cpus;
    405	cpumask_var_t available_cpus;
    406
    407	lockdep_assert_held(&node_affinity.lock);
    408
    409	if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
    410		return -ENOMEM;
    411
    412	if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
    413		free_cpumask_var(non_intr_cpus);
    414		return -ENOMEM;
    415	}
    416
    417	dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
    418					 sizeof(*dd->comp_vect_mappings),
    419					 GFP_KERNEL);
    420	if (!dd->comp_vect_mappings) {
    421		ret = -ENOMEM;
    422		goto fail;
    423	}
    424	for (i = 0; i < dd->comp_vect_possible_cpus; i++)
    425		dd->comp_vect_mappings[i] = -1;
    426
    427	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
    428		cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
    429					     available_cpus);
    430		if (cpu < 0) {
    431			ret = -EINVAL;
    432			goto fail;
    433		}
    434
    435		dd->comp_vect_mappings[i] = cpu;
    436		hfi1_cdbg(AFFINITY,
    437			  "[%s] Completion Vector %d -> CPU %d",
    438			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
    439	}
    440
    441	free_cpumask_var(available_cpus);
    442	free_cpumask_var(non_intr_cpus);
    443	return 0;
    444
    445fail:
    446	free_cpumask_var(available_cpus);
    447	free_cpumask_var(non_intr_cpus);
    448	_dev_comp_vect_mappings_destroy(dd);
    449
    450	return ret;
    451}
    452
    453int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
    454{
    455	int ret;
    456	struct hfi1_affinity_node *entry;
    457
    458	mutex_lock(&node_affinity.lock);
    459	entry = node_affinity_lookup(dd->node);
    460	if (!entry) {
    461		ret = -EINVAL;
    462		goto unlock;
    463	}
    464	ret = _dev_comp_vect_mappings_create(dd, entry);
    465unlock:
    466	mutex_unlock(&node_affinity.lock);
    467
    468	return ret;
    469}
    470
    471void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
    472{
    473	_dev_comp_vect_mappings_destroy(dd);
    474}
    475
    476int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
    477{
    478	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
    479	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
    480
    481	if (!dd->comp_vect_mappings)
    482		return -EINVAL;
    483	if (comp_vect >= dd->comp_vect_possible_cpus)
    484		return -EINVAL;
    485
    486	return dd->comp_vect_mappings[comp_vect];
    487}
    488
    489/*
    490 * It assumes dd->comp_vect_possible_cpus is available.
    491 */
    492static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
    493					struct hfi1_affinity_node *entry,
    494					bool first_dev_init)
    495	__must_hold(&node_affinity.lock)
    496{
    497	int i, j, curr_cpu;
    498	int possible_cpus_comp_vect = 0;
    499	struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
    500
    501	lockdep_assert_held(&node_affinity.lock);
    502	/*
    503	 * If there's only one CPU available for completion vectors, then
    504	 * there will only be one completion vector available. Othewise,
    505	 * the number of completion vector available will be the number of
    506	 * available CPUs divide it by the number of devices in the
    507	 * local NUMA node.
    508	 */
    509	if (cpumask_weight(&entry->comp_vect_mask) == 1) {
    510		possible_cpus_comp_vect = 1;
    511		dd_dev_warn(dd,
    512			    "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
    513	} else {
    514		possible_cpus_comp_vect +=
    515			cpumask_weight(&entry->comp_vect_mask) /
    516				       hfi1_per_node_cntr[dd->node];
    517
    518		/*
    519		 * If the completion vector CPUs available doesn't divide
    520		 * evenly among devices, then the first device device to be
    521		 * initialized gets an extra CPU.
    522		 */
    523		if (first_dev_init &&
    524		    cpumask_weight(&entry->comp_vect_mask) %
    525		    hfi1_per_node_cntr[dd->node] != 0)
    526			possible_cpus_comp_vect++;
    527	}
    528
    529	dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
    530
    531	/* Reserving CPUs for device completion vector */
    532	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
    533		curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
    534						entry->comp_vect_affinity);
    535		if (curr_cpu < 0)
    536			goto fail;
    537
    538		cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
    539	}
    540
    541	hfi1_cdbg(AFFINITY,
    542		  "[%s] Completion vector affinity CPU set(s) %*pbl",
    543		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
    544		  cpumask_pr_args(dev_comp_vect_mask));
    545
    546	return 0;
    547
    548fail:
    549	for (j = 0; j < i; j++)
    550		per_cpu_affinity_put_max(&entry->comp_vect_mask,
    551					 entry->comp_vect_affinity);
    552
    553	return curr_cpu;
    554}
    555
    556/*
    557 * It assumes dd->comp_vect_possible_cpus is available.
    558 */
    559static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
    560					     struct hfi1_affinity_node *entry)
    561	__must_hold(&node_affinity.lock)
    562{
    563	int i, cpu;
    564
    565	lockdep_assert_held(&node_affinity.lock);
    566	if (!dd->comp_vect_possible_cpus)
    567		return;
    568
    569	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
    570		cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
    571					       entry->comp_vect_affinity);
    572		/* Clearing CPU in device completion vector cpu mask */
    573		if (cpu >= 0)
    574			cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
    575	}
    576
    577	dd->comp_vect_possible_cpus = 0;
    578}
    579
    580/*
    581 * Interrupt affinity.
    582 *
    583 * non-rcv avail gets a default mask that
    584 * starts as possible cpus with threads reset
    585 * and each rcv avail reset.
    586 *
    587 * rcv avail gets node relative 1 wrapping back
    588 * to the node relative 1 as necessary.
    589 *
    590 */
    591int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
    592{
    593	struct hfi1_affinity_node *entry;
    594	const struct cpumask *local_mask;
    595	int curr_cpu, possible, i, ret;
    596	bool new_entry = false;
    597
    598	local_mask = cpumask_of_node(dd->node);
    599	if (cpumask_first(local_mask) >= nr_cpu_ids)
    600		local_mask = topology_core_cpumask(0);
    601
    602	mutex_lock(&node_affinity.lock);
    603	entry = node_affinity_lookup(dd->node);
    604
    605	/*
    606	 * If this is the first time this NUMA node's affinity is used,
    607	 * create an entry in the global affinity structure and initialize it.
    608	 */
    609	if (!entry) {
    610		entry = node_affinity_allocate(dd->node);
    611		if (!entry) {
    612			dd_dev_err(dd,
    613				   "Unable to allocate global affinity node\n");
    614			ret = -ENOMEM;
    615			goto fail;
    616		}
    617		new_entry = true;
    618
    619		init_cpu_mask_set(&entry->def_intr);
    620		init_cpu_mask_set(&entry->rcv_intr);
    621		cpumask_clear(&entry->comp_vect_mask);
    622		cpumask_clear(&entry->general_intr_mask);
    623		/* Use the "real" cpu mask of this node as the default */
    624		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
    625			    local_mask);
    626
    627		/* fill in the receive list */
    628		possible = cpumask_weight(&entry->def_intr.mask);
    629		curr_cpu = cpumask_first(&entry->def_intr.mask);
    630
    631		if (possible == 1) {
    632			/* only one CPU, everyone will use it */
    633			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
    634			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
    635		} else {
    636			/*
    637			 * The general/control context will be the first CPU in
    638			 * the default list, so it is removed from the default
    639			 * list and added to the general interrupt list.
    640			 */
    641			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
    642			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
    643			curr_cpu = cpumask_next(curr_cpu,
    644						&entry->def_intr.mask);
    645
    646			/*
    647			 * Remove the remaining kernel receive queues from
    648			 * the default list and add them to the receive list.
    649			 */
    650			for (i = 0;
    651			     i < (dd->n_krcv_queues - 1) *
    652				  hfi1_per_node_cntr[dd->node];
    653			     i++) {
    654				cpumask_clear_cpu(curr_cpu,
    655						  &entry->def_intr.mask);
    656				cpumask_set_cpu(curr_cpu,
    657						&entry->rcv_intr.mask);
    658				curr_cpu = cpumask_next(curr_cpu,
    659							&entry->def_intr.mask);
    660				if (curr_cpu >= nr_cpu_ids)
    661					break;
    662			}
    663
    664			/*
    665			 * If there ends up being 0 CPU cores leftover for SDMA
    666			 * engines, use the same CPU cores as general/control
    667			 * context.
    668			 */
    669			if (cpumask_empty(&entry->def_intr.mask))
    670				cpumask_copy(&entry->def_intr.mask,
    671					     &entry->general_intr_mask);
    672		}
    673
    674		/* Determine completion vector CPUs for the entire node */
    675		cpumask_and(&entry->comp_vect_mask,
    676			    &node_affinity.real_cpu_mask, local_mask);
    677		cpumask_andnot(&entry->comp_vect_mask,
    678			       &entry->comp_vect_mask,
    679			       &entry->rcv_intr.mask);
    680		cpumask_andnot(&entry->comp_vect_mask,
    681			       &entry->comp_vect_mask,
    682			       &entry->general_intr_mask);
    683
    684		/*
    685		 * If there ends up being 0 CPU cores leftover for completion
    686		 * vectors, use the same CPU core as the general/control
    687		 * context.
    688		 */
    689		if (cpumask_empty(&entry->comp_vect_mask))
    690			cpumask_copy(&entry->comp_vect_mask,
    691				     &entry->general_intr_mask);
    692	}
    693
    694	ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
    695	if (ret < 0)
    696		goto fail;
    697
    698	if (new_entry)
    699		node_affinity_add_tail(entry);
    700
    701	dd->affinity_entry = entry;
    702	mutex_unlock(&node_affinity.lock);
    703
    704	return 0;
    705
    706fail:
    707	if (new_entry)
    708		node_affinity_destroy(entry);
    709	mutex_unlock(&node_affinity.lock);
    710	return ret;
    711}
    712
    713void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
    714{
    715	struct hfi1_affinity_node *entry;
    716
    717	mutex_lock(&node_affinity.lock);
    718	if (!dd->affinity_entry)
    719		goto unlock;
    720	entry = node_affinity_lookup(dd->node);
    721	if (!entry)
    722		goto unlock;
    723
    724	/*
    725	 * Free device completion vector CPUs to be used by future
    726	 * completion vectors
    727	 */
    728	_dev_comp_vect_cpu_mask_clean_up(dd, entry);
    729unlock:
    730	dd->affinity_entry = NULL;
    731	mutex_unlock(&node_affinity.lock);
    732}
    733
    734/*
    735 * Function updates the irq affinity hint for msix after it has been changed
    736 * by the user using the /proc/irq interface. This function only accepts
    737 * one cpu in the mask.
    738 */
    739static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
    740{
    741	struct sdma_engine *sde = msix->arg;
    742	struct hfi1_devdata *dd = sde->dd;
    743	struct hfi1_affinity_node *entry;
    744	struct cpu_mask_set *set;
    745	int i, old_cpu;
    746
    747	if (cpu > num_online_cpus() || cpu == sde->cpu)
    748		return;
    749
    750	mutex_lock(&node_affinity.lock);
    751	entry = node_affinity_lookup(dd->node);
    752	if (!entry)
    753		goto unlock;
    754
    755	old_cpu = sde->cpu;
    756	sde->cpu = cpu;
    757	cpumask_clear(&msix->mask);
    758	cpumask_set_cpu(cpu, &msix->mask);
    759	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
    760		   msix->irq, irq_type_names[msix->type],
    761		   sde->this_idx, cpu);
    762	irq_set_affinity_hint(msix->irq, &msix->mask);
    763
    764	/*
    765	 * Set the new cpu in the hfi1_affinity_node and clean
    766	 * the old cpu if it is not used by any other IRQ
    767	 */
    768	set = &entry->def_intr;
    769	cpumask_set_cpu(cpu, &set->mask);
    770	cpumask_set_cpu(cpu, &set->used);
    771	for (i = 0; i < dd->msix_info.max_requested; i++) {
    772		struct hfi1_msix_entry *other_msix;
    773
    774		other_msix = &dd->msix_info.msix_entries[i];
    775		if (other_msix->type != IRQ_SDMA || other_msix == msix)
    776			continue;
    777
    778		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
    779			goto unlock;
    780	}
    781	cpumask_clear_cpu(old_cpu, &set->mask);
    782	cpumask_clear_cpu(old_cpu, &set->used);
    783unlock:
    784	mutex_unlock(&node_affinity.lock);
    785}
    786
    787static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
    788				     const cpumask_t *mask)
    789{
    790	int cpu = cpumask_first(mask);
    791	struct hfi1_msix_entry *msix = container_of(notify,
    792						    struct hfi1_msix_entry,
    793						    notify);
    794
    795	/* Only one CPU configuration supported currently */
    796	hfi1_update_sdma_affinity(msix, cpu);
    797}
    798
    799static void hfi1_irq_notifier_release(struct kref *ref)
    800{
    801	/*
    802	 * This is required by affinity notifier. We don't have anything to
    803	 * free here.
    804	 */
    805}
    806
    807static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
    808{
    809	struct irq_affinity_notify *notify = &msix->notify;
    810
    811	notify->irq = msix->irq;
    812	notify->notify = hfi1_irq_notifier_notify;
    813	notify->release = hfi1_irq_notifier_release;
    814
    815	if (irq_set_affinity_notifier(notify->irq, notify))
    816		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
    817		       notify->irq);
    818}
    819
    820static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
    821{
    822	struct irq_affinity_notify *notify = &msix->notify;
    823
    824	if (irq_set_affinity_notifier(notify->irq, NULL))
    825		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
    826		       notify->irq);
    827}
    828
    829/*
    830 * Function sets the irq affinity for msix.
    831 * It *must* be called with node_affinity.lock held.
    832 */
    833static int get_irq_affinity(struct hfi1_devdata *dd,
    834			    struct hfi1_msix_entry *msix)
    835{
    836	cpumask_var_t diff;
    837	struct hfi1_affinity_node *entry;
    838	struct cpu_mask_set *set = NULL;
    839	struct sdma_engine *sde = NULL;
    840	struct hfi1_ctxtdata *rcd = NULL;
    841	char extra[64];
    842	int cpu = -1;
    843
    844	extra[0] = '\0';
    845	cpumask_clear(&msix->mask);
    846
    847	entry = node_affinity_lookup(dd->node);
    848
    849	switch (msix->type) {
    850	case IRQ_SDMA:
    851		sde = (struct sdma_engine *)msix->arg;
    852		scnprintf(extra, 64, "engine %u", sde->this_idx);
    853		set = &entry->def_intr;
    854		break;
    855	case IRQ_GENERAL:
    856		cpu = cpumask_first(&entry->general_intr_mask);
    857		break;
    858	case IRQ_RCVCTXT:
    859		rcd = (struct hfi1_ctxtdata *)msix->arg;
    860		if (rcd->ctxt == HFI1_CTRL_CTXT)
    861			cpu = cpumask_first(&entry->general_intr_mask);
    862		else
    863			set = &entry->rcv_intr;
    864		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
    865		break;
    866	case IRQ_NETDEVCTXT:
    867		rcd = (struct hfi1_ctxtdata *)msix->arg;
    868		set = &entry->def_intr;
    869		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
    870		break;
    871	default:
    872		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
    873		return -EINVAL;
    874	}
    875
    876	/*
    877	 * The general and control contexts are placed on a particular
    878	 * CPU, which is set above. Skip accounting for it. Everything else
    879	 * finds its CPU here.
    880	 */
    881	if (cpu == -1 && set) {
    882		if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
    883			return -ENOMEM;
    884
    885		cpu = cpu_mask_set_get_first(set, diff);
    886		if (cpu < 0) {
    887			free_cpumask_var(diff);
    888			dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
    889			return cpu;
    890		}
    891
    892		free_cpumask_var(diff);
    893	}
    894
    895	cpumask_set_cpu(cpu, &msix->mask);
    896	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
    897		    msix->irq, irq_type_names[msix->type],
    898		    extra, cpu);
    899	irq_set_affinity_hint(msix->irq, &msix->mask);
    900
    901	if (msix->type == IRQ_SDMA) {
    902		sde->cpu = cpu;
    903		hfi1_setup_sdma_notifier(msix);
    904	}
    905
    906	return 0;
    907}
    908
    909int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
    910{
    911	int ret;
    912
    913	mutex_lock(&node_affinity.lock);
    914	ret = get_irq_affinity(dd, msix);
    915	mutex_unlock(&node_affinity.lock);
    916	return ret;
    917}
    918
    919void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
    920			   struct hfi1_msix_entry *msix)
    921{
    922	struct cpu_mask_set *set = NULL;
    923	struct hfi1_affinity_node *entry;
    924
    925	mutex_lock(&node_affinity.lock);
    926	entry = node_affinity_lookup(dd->node);
    927
    928	switch (msix->type) {
    929	case IRQ_SDMA:
    930		set = &entry->def_intr;
    931		hfi1_cleanup_sdma_notifier(msix);
    932		break;
    933	case IRQ_GENERAL:
    934		/* Don't do accounting for general contexts */
    935		break;
    936	case IRQ_RCVCTXT: {
    937		struct hfi1_ctxtdata *rcd = msix->arg;
    938
    939		/* Don't do accounting for control contexts */
    940		if (rcd->ctxt != HFI1_CTRL_CTXT)
    941			set = &entry->rcv_intr;
    942		break;
    943	}
    944	case IRQ_NETDEVCTXT:
    945		set = &entry->def_intr;
    946		break;
    947	default:
    948		mutex_unlock(&node_affinity.lock);
    949		return;
    950	}
    951
    952	if (set) {
    953		cpumask_andnot(&set->used, &set->used, &msix->mask);
    954		_cpu_mask_set_gen_dec(set);
    955	}
    956
    957	irq_set_affinity_hint(msix->irq, NULL);
    958	cpumask_clear(&msix->mask);
    959	mutex_unlock(&node_affinity.lock);
    960}
    961
    962/* This should be called with node_affinity.lock held */
    963static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
    964				struct hfi1_affinity_node_list *affinity)
    965{
    966	int possible, curr_cpu, i;
    967	uint num_cores_per_socket = node_affinity.num_online_cpus /
    968					affinity->num_core_siblings /
    969						node_affinity.num_online_nodes;
    970
    971	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
    972	if (affinity->num_core_siblings > 0) {
    973		/* Removing other siblings not needed for now */
    974		possible = cpumask_weight(hw_thread_mask);
    975		curr_cpu = cpumask_first(hw_thread_mask);
    976		for (i = 0;
    977		     i < num_cores_per_socket * node_affinity.num_online_nodes;
    978		     i++)
    979			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
    980
    981		for (; i < possible; i++) {
    982			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
    983			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
    984		}
    985
    986		/* Identifying correct HW threads within physical cores */
    987		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
    988				   num_cores_per_socket *
    989				   node_affinity.num_online_nodes *
    990				   hw_thread_no);
    991	}
    992}
    993
    994int hfi1_get_proc_affinity(int node)
    995{
    996	int cpu = -1, ret, i;
    997	struct hfi1_affinity_node *entry;
    998	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
    999	const struct cpumask *node_mask,
   1000		*proc_mask = current->cpus_ptr;
   1001	struct hfi1_affinity_node_list *affinity = &node_affinity;
   1002	struct cpu_mask_set *set = &affinity->proc;
   1003
   1004	/*
   1005	 * check whether process/context affinity has already
   1006	 * been set
   1007	 */
   1008	if (current->nr_cpus_allowed == 1) {
   1009		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
   1010			  current->pid, current->comm,
   1011			  cpumask_pr_args(proc_mask));
   1012		/*
   1013		 * Mark the pre-set CPU as used. This is atomic so we don't
   1014		 * need the lock
   1015		 */
   1016		cpu = cpumask_first(proc_mask);
   1017		cpumask_set_cpu(cpu, &set->used);
   1018		goto done;
   1019	} else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
   1020		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
   1021			  current->pid, current->comm,
   1022			  cpumask_pr_args(proc_mask));
   1023		goto done;
   1024	}
   1025
   1026	/*
   1027	 * The process does not have a preset CPU affinity so find one to
   1028	 * recommend using the following algorithm:
   1029	 *
   1030	 * For each user process that is opening a context on HFI Y:
   1031	 *  a) If all cores are filled, reinitialize the bitmask
   1032	 *  b) Fill real cores first, then HT cores (First set of HT
   1033	 *     cores on all physical cores, then second set of HT core,
   1034	 *     and, so on) in the following order:
   1035	 *
   1036	 *     1. Same NUMA node as HFI Y and not running an IRQ
   1037	 *        handler
   1038	 *     2. Same NUMA node as HFI Y and running an IRQ handler
   1039	 *     3. Different NUMA node to HFI Y and not running an IRQ
   1040	 *        handler
   1041	 *     4. Different NUMA node to HFI Y and running an IRQ
   1042	 *        handler
   1043	 *  c) Mark core as filled in the bitmask. As user processes are
   1044	 *     done, clear cores from the bitmask.
   1045	 */
   1046
   1047	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
   1048	if (!ret)
   1049		goto done;
   1050	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
   1051	if (!ret)
   1052		goto free_diff;
   1053	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
   1054	if (!ret)
   1055		goto free_hw_thread_mask;
   1056	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
   1057	if (!ret)
   1058		goto free_available_mask;
   1059
   1060	mutex_lock(&affinity->lock);
   1061	/*
   1062	 * If we've used all available HW threads, clear the mask and start
   1063	 * overloading.
   1064	 */
   1065	_cpu_mask_set_gen_inc(set);
   1066
   1067	/*
   1068	 * If NUMA node has CPUs used by interrupt handlers, include them in the
   1069	 * interrupt handler mask.
   1070	 */
   1071	entry = node_affinity_lookup(node);
   1072	if (entry) {
   1073		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
   1074					  &entry->def_intr.mask :
   1075					  &entry->def_intr.used));
   1076		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
   1077						    &entry->rcv_intr.mask :
   1078						    &entry->rcv_intr.used));
   1079		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
   1080	}
   1081	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
   1082		  cpumask_pr_args(intrs_mask));
   1083
   1084	cpumask_copy(hw_thread_mask, &set->mask);
   1085
   1086	/*
   1087	 * If HT cores are enabled, identify which HW threads within the
   1088	 * physical cores should be used.
   1089	 */
   1090	if (affinity->num_core_siblings > 0) {
   1091		for (i = 0; i < affinity->num_core_siblings; i++) {
   1092			find_hw_thread_mask(i, hw_thread_mask, affinity);
   1093
   1094			/*
   1095			 * If there's at least one available core for this HW
   1096			 * thread number, stop looking for a core.
   1097			 *
   1098			 * diff will always be not empty at least once in this
   1099			 * loop as the used mask gets reset when
   1100			 * (set->mask == set->used) before this loop.
   1101			 */
   1102			cpumask_andnot(diff, hw_thread_mask, &set->used);
   1103			if (!cpumask_empty(diff))
   1104				break;
   1105		}
   1106	}
   1107	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
   1108		  cpumask_pr_args(hw_thread_mask));
   1109
   1110	node_mask = cpumask_of_node(node);
   1111	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
   1112		  cpumask_pr_args(node_mask));
   1113
   1114	/* Get cpumask of available CPUs on preferred NUMA */
   1115	cpumask_and(available_mask, hw_thread_mask, node_mask);
   1116	cpumask_andnot(available_mask, available_mask, &set->used);
   1117	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
   1118		  cpumask_pr_args(available_mask));
   1119
   1120	/*
   1121	 * At first, we don't want to place processes on the same
   1122	 * CPUs as interrupt handlers. Then, CPUs running interrupt
   1123	 * handlers are used.
   1124	 *
   1125	 * 1) If diff is not empty, then there are CPUs not running
   1126	 *    non-interrupt handlers available, so diff gets copied
   1127	 *    over to available_mask.
   1128	 * 2) If diff is empty, then all CPUs not running interrupt
   1129	 *    handlers are taken, so available_mask contains all
   1130	 *    available CPUs running interrupt handlers.
   1131	 * 3) If available_mask is empty, then all CPUs on the
   1132	 *    preferred NUMA node are taken, so other NUMA nodes are
   1133	 *    used for process assignments using the same method as
   1134	 *    the preferred NUMA node.
   1135	 */
   1136	cpumask_andnot(diff, available_mask, intrs_mask);
   1137	if (!cpumask_empty(diff))
   1138		cpumask_copy(available_mask, diff);
   1139
   1140	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
   1141	if (cpumask_empty(available_mask)) {
   1142		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
   1143		/* Excluding preferred NUMA cores */
   1144		cpumask_andnot(available_mask, available_mask, node_mask);
   1145		hfi1_cdbg(PROC,
   1146			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
   1147			  cpumask_pr_args(available_mask));
   1148
   1149		/*
   1150		 * At first, we don't want to place processes on the same
   1151		 * CPUs as interrupt handlers.
   1152		 */
   1153		cpumask_andnot(diff, available_mask, intrs_mask);
   1154		if (!cpumask_empty(diff))
   1155			cpumask_copy(available_mask, diff);
   1156	}
   1157	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
   1158		  cpumask_pr_args(available_mask));
   1159
   1160	cpu = cpumask_first(available_mask);
   1161	if (cpu >= nr_cpu_ids) /* empty */
   1162		cpu = -1;
   1163	else
   1164		cpumask_set_cpu(cpu, &set->used);
   1165
   1166	mutex_unlock(&affinity->lock);
   1167	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
   1168
   1169	free_cpumask_var(intrs_mask);
   1170free_available_mask:
   1171	free_cpumask_var(available_mask);
   1172free_hw_thread_mask:
   1173	free_cpumask_var(hw_thread_mask);
   1174free_diff:
   1175	free_cpumask_var(diff);
   1176done:
   1177	return cpu;
   1178}
   1179
   1180void hfi1_put_proc_affinity(int cpu)
   1181{
   1182	struct hfi1_affinity_node_list *affinity = &node_affinity;
   1183	struct cpu_mask_set *set = &affinity->proc;
   1184
   1185	if (cpu < 0)
   1186		return;
   1187
   1188	mutex_lock(&affinity->lock);
   1189	cpu_mask_set_put(set, cpu);
   1190	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
   1191	mutex_unlock(&affinity->lock);
   1192}