cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

driver.c (50207B)


      1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
      2/*
      3 * Copyright(c) 2015-2020 Intel Corporation.
      4 * Copyright(c) 2021 Cornelis Networks.
      5 */
      6
      7#include <linux/spinlock.h>
      8#include <linux/pci.h>
      9#include <linux/io.h>
     10#include <linux/delay.h>
     11#include <linux/netdevice.h>
     12#include <linux/vmalloc.h>
     13#include <linux/module.h>
     14#include <linux/prefetch.h>
     15#include <rdma/ib_verbs.h>
     16#include <linux/etherdevice.h>
     17
     18#include "hfi.h"
     19#include "trace.h"
     20#include "qp.h"
     21#include "sdma.h"
     22#include "debugfs.h"
     23#include "vnic.h"
     24#include "fault.h"
     25
     26#include "ipoib.h"
     27#include "netdev.h"
     28
     29#undef pr_fmt
     30#define pr_fmt(fmt) DRIVER_NAME ": " fmt
     31
     32DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
     33
     34unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
     35module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
     36MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
     37		 HFI1_DEFAULT_MAX_MTU));
     38
     39unsigned int hfi1_cu = 1;
     40module_param_named(cu, hfi1_cu, uint, S_IRUGO);
     41MODULE_PARM_DESC(cu, "Credit return units");
     42
     43unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
     44static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
     45static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
     46static const struct kernel_param_ops cap_ops = {
     47	.set = hfi1_caps_set,
     48	.get = hfi1_caps_get
     49};
     50module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
     51MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
     52
     53MODULE_LICENSE("Dual BSD/GPL");
     54MODULE_DESCRIPTION("Cornelis Omni-Path Express driver");
     55
     56/*
     57 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
     58 */
     59#define MAX_PKT_RECV 64
     60/*
     61 * MAX_PKT_THREAD_RCV is the max # of packets processed before
     62 * the qp_wait_list queue is flushed.
     63 */
     64#define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
     65#define EGR_HEAD_UPDATE_THRESHOLD 16
     66
     67struct hfi1_ib_stats hfi1_stats;
     68
     69static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
     70{
     71	int ret = 0;
     72	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
     73		cap_mask = *cap_mask_ptr, value, diff,
     74		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
     75			      HFI1_CAP_WRITABLE_MASK);
     76
     77	ret = kstrtoul(val, 0, &value);
     78	if (ret) {
     79		pr_warn("Invalid module parameter value for 'cap_mask'\n");
     80		goto done;
     81	}
     82	/* Get the changed bits (except the locked bit) */
     83	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
     84
     85	/* Remove any bits that are not allowed to change after driver load */
     86	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
     87		pr_warn("Ignoring non-writable capability bits %#lx\n",
     88			diff & ~write_mask);
     89		diff &= write_mask;
     90	}
     91
     92	/* Mask off any reserved bits */
     93	diff &= ~HFI1_CAP_RESERVED_MASK;
     94	/* Clear any previously set and changing bits */
     95	cap_mask &= ~diff;
     96	/* Update the bits with the new capability */
     97	cap_mask |= (value & diff);
     98	/* Check for any kernel/user restrictions */
     99	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
    100		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
    101	cap_mask &= ~diff;
    102	/* Set the bitmask to the final set */
    103	*cap_mask_ptr = cap_mask;
    104done:
    105	return ret;
    106}
    107
    108static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
    109{
    110	unsigned long cap_mask = *(unsigned long *)kp->arg;
    111
    112	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
    113	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
    114
    115	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
    116}
    117
    118struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
    119{
    120	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
    121	struct hfi1_devdata *dd = container_of(ibdev,
    122					       struct hfi1_devdata, verbs_dev);
    123	return dd->pcidev;
    124}
    125
    126/*
    127 * Return count of units with at least one port ACTIVE.
    128 */
    129int hfi1_count_active_units(void)
    130{
    131	struct hfi1_devdata *dd;
    132	struct hfi1_pportdata *ppd;
    133	unsigned long index, flags;
    134	int pidx, nunits_active = 0;
    135
    136	xa_lock_irqsave(&hfi1_dev_table, flags);
    137	xa_for_each(&hfi1_dev_table, index, dd) {
    138		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
    139			continue;
    140		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
    141			ppd = dd->pport + pidx;
    142			if (ppd->lid && ppd->linkup) {
    143				nunits_active++;
    144				break;
    145			}
    146		}
    147	}
    148	xa_unlock_irqrestore(&hfi1_dev_table, flags);
    149	return nunits_active;
    150}
    151
    152/*
    153 * Get address of eager buffer from it's index (allocated in chunks, not
    154 * contiguous).
    155 */
    156static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
    157			       u8 *update)
    158{
    159	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
    160
    161	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
    162	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
    163			(offset * RCV_BUF_BLOCK_SIZE));
    164}
    165
    166static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
    167				    __le32 *rhf_addr)
    168{
    169	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
    170
    171	return (void *)(rhf_addr - rcd->rhf_offset + offset);
    172}
    173
    174static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
    175						   __le32 *rhf_addr)
    176{
    177	return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
    178}
    179
    180static inline struct hfi1_16b_header
    181		*hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
    182				     __le32 *rhf_addr)
    183{
    184	return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
    185}
    186
    187/*
    188 * Validate and encode the a given RcvArray Buffer size.
    189 * The function will check whether the given size falls within
    190 * allowed size ranges for the respective type and, optionally,
    191 * return the proper encoding.
    192 */
    193int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
    194{
    195	if (unlikely(!PAGE_ALIGNED(size)))
    196		return 0;
    197	if (unlikely(size < MIN_EAGER_BUFFER))
    198		return 0;
    199	if (size >
    200	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
    201		return 0;
    202	if (encoded)
    203		*encoded = ilog2(size / PAGE_SIZE) + 1;
    204	return 1;
    205}
    206
    207static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
    208		       struct hfi1_packet *packet)
    209{
    210	struct ib_header *rhdr = packet->hdr;
    211	u32 rte = rhf_rcv_type_err(packet->rhf);
    212	u32 mlid_base;
    213	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
    214	struct hfi1_devdata *dd = ppd->dd;
    215	struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
    216	struct rvt_dev_info *rdi = &verbs_dev->rdi;
    217
    218	if ((packet->rhf & RHF_DC_ERR) &&
    219	    hfi1_dbg_fault_suppress_err(verbs_dev))
    220		return;
    221
    222	if (packet->rhf & RHF_ICRC_ERR)
    223		return;
    224
    225	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
    226		goto drop;
    227	} else {
    228		u8 lnh = ib_get_lnh(rhdr);
    229
    230		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
    231		if (lnh == HFI1_LRH_BTH) {
    232			packet->ohdr = &rhdr->u.oth;
    233		} else if (lnh == HFI1_LRH_GRH) {
    234			packet->ohdr = &rhdr->u.l.oth;
    235			packet->grh = &rhdr->u.l.grh;
    236		} else {
    237			goto drop;
    238		}
    239	}
    240
    241	if (packet->rhf & RHF_TID_ERR) {
    242		/* For TIDERR and RC QPs preemptively schedule a NAK */
    243		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
    244		u32 dlid = ib_get_dlid(rhdr);
    245		u32 qp_num;
    246
    247		/* Sanity check packet */
    248		if (tlen < 24)
    249			goto drop;
    250
    251		/* Check for GRH */
    252		if (packet->grh) {
    253			u32 vtf;
    254			struct ib_grh *grh = packet->grh;
    255
    256			if (grh->next_hdr != IB_GRH_NEXT_HDR)
    257				goto drop;
    258			vtf = be32_to_cpu(grh->version_tclass_flow);
    259			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
    260				goto drop;
    261		}
    262
    263		/* Get the destination QP number. */
    264		qp_num = ib_bth_get_qpn(packet->ohdr);
    265		if (dlid < mlid_base) {
    266			struct rvt_qp *qp;
    267			unsigned long flags;
    268
    269			rcu_read_lock();
    270			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
    271			if (!qp) {
    272				rcu_read_unlock();
    273				goto drop;
    274			}
    275
    276			/*
    277			 * Handle only RC QPs - for other QP types drop error
    278			 * packet.
    279			 */
    280			spin_lock_irqsave(&qp->r_lock, flags);
    281
    282			/* Check for valid receive state. */
    283			if (!(ib_rvt_state_ops[qp->state] &
    284			      RVT_PROCESS_RECV_OK)) {
    285				ibp->rvp.n_pkt_drops++;
    286			}
    287
    288			switch (qp->ibqp.qp_type) {
    289			case IB_QPT_RC:
    290				hfi1_rc_hdrerr(rcd, packet, qp);
    291				break;
    292			default:
    293				/* For now don't handle any other QP types */
    294				break;
    295			}
    296
    297			spin_unlock_irqrestore(&qp->r_lock, flags);
    298			rcu_read_unlock();
    299		} /* Unicast QP */
    300	} /* Valid packet with TIDErr */
    301
    302	/* handle "RcvTypeErr" flags */
    303	switch (rte) {
    304	case RHF_RTE_ERROR_OP_CODE_ERR:
    305	{
    306		void *ebuf = NULL;
    307		u8 opcode;
    308
    309		if (rhf_use_egr_bfr(packet->rhf))
    310			ebuf = packet->ebuf;
    311
    312		if (!ebuf)
    313			goto drop; /* this should never happen */
    314
    315		opcode = ib_bth_get_opcode(packet->ohdr);
    316		if (opcode == IB_OPCODE_CNP) {
    317			/*
    318			 * Only in pre-B0 h/w is the CNP_OPCODE handled
    319			 * via this code path.
    320			 */
    321			struct rvt_qp *qp = NULL;
    322			u32 lqpn, rqpn;
    323			u16 rlid;
    324			u8 svc_type, sl, sc5;
    325
    326			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
    327			sl = ibp->sc_to_sl[sc5];
    328
    329			lqpn = ib_bth_get_qpn(packet->ohdr);
    330			rcu_read_lock();
    331			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
    332			if (!qp) {
    333				rcu_read_unlock();
    334				goto drop;
    335			}
    336
    337			switch (qp->ibqp.qp_type) {
    338			case IB_QPT_UD:
    339				rlid = 0;
    340				rqpn = 0;
    341				svc_type = IB_CC_SVCTYPE_UD;
    342				break;
    343			case IB_QPT_UC:
    344				rlid = ib_get_slid(rhdr);
    345				rqpn = qp->remote_qpn;
    346				svc_type = IB_CC_SVCTYPE_UC;
    347				break;
    348			default:
    349				rcu_read_unlock();
    350				goto drop;
    351			}
    352
    353			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
    354			rcu_read_unlock();
    355		}
    356
    357		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
    358		break;
    359	}
    360	default:
    361		break;
    362	}
    363
    364drop:
    365	return;
    366}
    367
    368static inline void init_packet(struct hfi1_ctxtdata *rcd,
    369			       struct hfi1_packet *packet)
    370{
    371	packet->rsize = get_hdrqentsize(rcd); /* words */
    372	packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
    373	packet->rcd = rcd;
    374	packet->updegr = 0;
    375	packet->etail = -1;
    376	packet->rhf_addr = get_rhf_addr(rcd);
    377	packet->rhf = rhf_to_cpu(packet->rhf_addr);
    378	packet->rhqoff = hfi1_rcd_head(rcd);
    379	packet->numpkt = 0;
    380}
    381
    382/* We support only two types - 9B and 16B for now */
    383static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
    384	[HFI1_PKT_TYPE_9B] = &return_cnp,
    385	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
    386};
    387
    388/**
    389 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
    390 * @qp: The packet's destination QP
    391 * @pkt: The packet itself.
    392 * @prescan: Is the caller the RXQ prescan
    393 *
    394 * Process the packet's FECN or BECN bits. By now, the packet
    395 * has already been evaluated whether processing of those bit should
    396 * be done.
    397 * The significance of the @prescan argument is that if the caller
    398 * is the RXQ prescan, a CNP will be send out instead of waiting for the
    399 * normal packet processing to send an ACK with BECN set (or a CNP).
    400 */
    401bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
    402			       bool prescan)
    403{
    404	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
    405	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
    406	struct ib_other_headers *ohdr = pkt->ohdr;
    407	struct ib_grh *grh = pkt->grh;
    408	u32 rqpn = 0;
    409	u16 pkey;
    410	u32 rlid, slid, dlid = 0;
    411	u8 hdr_type, sc, svc_type, opcode;
    412	bool is_mcast = false, ignore_fecn = false, do_cnp = false,
    413		fecn, becn;
    414
    415	/* can be called from prescan */
    416	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
    417		pkey = hfi1_16B_get_pkey(pkt->hdr);
    418		sc = hfi1_16B_get_sc(pkt->hdr);
    419		dlid = hfi1_16B_get_dlid(pkt->hdr);
    420		slid = hfi1_16B_get_slid(pkt->hdr);
    421		is_mcast = hfi1_is_16B_mcast(dlid);
    422		opcode = ib_bth_get_opcode(ohdr);
    423		hdr_type = HFI1_PKT_TYPE_16B;
    424		fecn = hfi1_16B_get_fecn(pkt->hdr);
    425		becn = hfi1_16B_get_becn(pkt->hdr);
    426	} else {
    427		pkey = ib_bth_get_pkey(ohdr);
    428		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
    429		dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
    430			ppd->lid;
    431		slid = ib_get_slid(pkt->hdr);
    432		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
    433			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
    434		opcode = ib_bth_get_opcode(ohdr);
    435		hdr_type = HFI1_PKT_TYPE_9B;
    436		fecn = ib_bth_get_fecn(ohdr);
    437		becn = ib_bth_get_becn(ohdr);
    438	}
    439
    440	switch (qp->ibqp.qp_type) {
    441	case IB_QPT_UD:
    442		rlid = slid;
    443		rqpn = ib_get_sqpn(pkt->ohdr);
    444		svc_type = IB_CC_SVCTYPE_UD;
    445		break;
    446	case IB_QPT_SMI:
    447	case IB_QPT_GSI:
    448		rlid = slid;
    449		rqpn = ib_get_sqpn(pkt->ohdr);
    450		svc_type = IB_CC_SVCTYPE_UD;
    451		break;
    452	case IB_QPT_UC:
    453		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
    454		rqpn = qp->remote_qpn;
    455		svc_type = IB_CC_SVCTYPE_UC;
    456		break;
    457	case IB_QPT_RC:
    458		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
    459		rqpn = qp->remote_qpn;
    460		svc_type = IB_CC_SVCTYPE_RC;
    461		break;
    462	default:
    463		return false;
    464	}
    465
    466	ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
    467		(opcode == IB_OPCODE_RC_ACKNOWLEDGE);
    468	/*
    469	 * ACKNOWLEDGE packets do not get a CNP but this will be
    470	 * guarded by ignore_fecn above.
    471	 */
    472	do_cnp = prescan ||
    473		(opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
    474		 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
    475		opcode == TID_OP(READ_RESP) ||
    476		opcode == TID_OP(ACK);
    477
    478	/* Call appropriate CNP handler */
    479	if (!ignore_fecn && do_cnp && fecn)
    480		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
    481					      dlid, rlid, sc, grh);
    482
    483	if (becn) {
    484		u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
    485		u8 sl = ibp->sc_to_sl[sc];
    486
    487		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
    488	}
    489	return !ignore_fecn && fecn;
    490}
    491
    492struct ps_mdata {
    493	struct hfi1_ctxtdata *rcd;
    494	u32 rsize;
    495	u32 maxcnt;
    496	u32 ps_head;
    497	u32 ps_tail;
    498	u32 ps_seq;
    499};
    500
    501static inline void init_ps_mdata(struct ps_mdata *mdata,
    502				 struct hfi1_packet *packet)
    503{
    504	struct hfi1_ctxtdata *rcd = packet->rcd;
    505
    506	mdata->rcd = rcd;
    507	mdata->rsize = packet->rsize;
    508	mdata->maxcnt = packet->maxcnt;
    509	mdata->ps_head = packet->rhqoff;
    510
    511	if (get_dma_rtail_setting(rcd)) {
    512		mdata->ps_tail = get_rcvhdrtail(rcd);
    513		if (rcd->ctxt == HFI1_CTRL_CTXT)
    514			mdata->ps_seq = hfi1_seq_cnt(rcd);
    515		else
    516			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
    517	} else {
    518		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
    519		mdata->ps_seq = hfi1_seq_cnt(rcd);
    520	}
    521}
    522
    523static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
    524			  struct hfi1_ctxtdata *rcd)
    525{
    526	if (get_dma_rtail_setting(rcd))
    527		return mdata->ps_head == mdata->ps_tail;
    528	return mdata->ps_seq != rhf_rcv_seq(rhf);
    529}
    530
    531static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
    532			  struct hfi1_ctxtdata *rcd)
    533{
    534	/*
    535	 * Control context can potentially receive an invalid rhf.
    536	 * Drop such packets.
    537	 */
    538	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
    539		return mdata->ps_seq != rhf_rcv_seq(rhf);
    540
    541	return 0;
    542}
    543
    544static inline void update_ps_mdata(struct ps_mdata *mdata,
    545				   struct hfi1_ctxtdata *rcd)
    546{
    547	mdata->ps_head += mdata->rsize;
    548	if (mdata->ps_head >= mdata->maxcnt)
    549		mdata->ps_head = 0;
    550
    551	/* Control context must do seq counting */
    552	if (!get_dma_rtail_setting(rcd) ||
    553	    rcd->ctxt == HFI1_CTRL_CTXT)
    554		mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
    555}
    556
    557/*
    558 * prescan_rxq - search through the receive queue looking for packets
    559 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
    560 * When an ECN is found, process the Congestion Notification, and toggle
    561 * it off.
    562 * This is declared as a macro to allow quick checking of the port to avoid
    563 * the overhead of a function call if not enabled.
    564 */
    565#define prescan_rxq(rcd, packet) \
    566	do { \
    567		if (rcd->ppd->cc_prescan) \
    568			__prescan_rxq(packet); \
    569	} while (0)
    570static void __prescan_rxq(struct hfi1_packet *packet)
    571{
    572	struct hfi1_ctxtdata *rcd = packet->rcd;
    573	struct ps_mdata mdata;
    574
    575	init_ps_mdata(&mdata, packet);
    576
    577	while (1) {
    578		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
    579		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
    580					 packet->rcd->rhf_offset;
    581		struct rvt_qp *qp;
    582		struct ib_header *hdr;
    583		struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
    584		u64 rhf = rhf_to_cpu(rhf_addr);
    585		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
    586		u8 lnh;
    587
    588		if (ps_done(&mdata, rhf, rcd))
    589			break;
    590
    591		if (ps_skip(&mdata, rhf, rcd))
    592			goto next;
    593
    594		if (etype != RHF_RCV_TYPE_IB)
    595			goto next;
    596
    597		packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
    598		hdr = packet->hdr;
    599		lnh = ib_get_lnh(hdr);
    600
    601		if (lnh == HFI1_LRH_BTH) {
    602			packet->ohdr = &hdr->u.oth;
    603			packet->grh = NULL;
    604		} else if (lnh == HFI1_LRH_GRH) {
    605			packet->ohdr = &hdr->u.l.oth;
    606			packet->grh = &hdr->u.l.grh;
    607		} else {
    608			goto next; /* just in case */
    609		}
    610
    611		if (!hfi1_may_ecn(packet))
    612			goto next;
    613
    614		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
    615		qpn = bth1 & RVT_QPN_MASK;
    616		rcu_read_lock();
    617		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
    618
    619		if (!qp) {
    620			rcu_read_unlock();
    621			goto next;
    622		}
    623
    624		hfi1_process_ecn_slowpath(qp, packet, true);
    625		rcu_read_unlock();
    626
    627		/* turn off BECN, FECN */
    628		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
    629		packet->ohdr->bth[1] = cpu_to_be32(bth1);
    630next:
    631		update_ps_mdata(&mdata, rcd);
    632	}
    633}
    634
    635static void process_rcv_qp_work(struct hfi1_packet *packet)
    636{
    637	struct rvt_qp *qp, *nqp;
    638	struct hfi1_ctxtdata *rcd = packet->rcd;
    639
    640	/*
    641	 * Iterate over all QPs waiting to respond.
    642	 * The list won't change since the IRQ is only run on one CPU.
    643	 */
    644	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
    645		list_del_init(&qp->rspwait);
    646		if (qp->r_flags & RVT_R_RSP_NAK) {
    647			qp->r_flags &= ~RVT_R_RSP_NAK;
    648			packet->qp = qp;
    649			hfi1_send_rc_ack(packet, 0);
    650		}
    651		if (qp->r_flags & RVT_R_RSP_SEND) {
    652			unsigned long flags;
    653
    654			qp->r_flags &= ~RVT_R_RSP_SEND;
    655			spin_lock_irqsave(&qp->s_lock, flags);
    656			if (ib_rvt_state_ops[qp->state] &
    657					RVT_PROCESS_OR_FLUSH_SEND)
    658				hfi1_schedule_send(qp);
    659			spin_unlock_irqrestore(&qp->s_lock, flags);
    660		}
    661		rvt_put_qp(qp);
    662	}
    663}
    664
    665static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
    666{
    667	if (thread) {
    668		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
    669			/* allow defered processing */
    670			process_rcv_qp_work(packet);
    671		cond_resched();
    672		return RCV_PKT_OK;
    673	} else {
    674		this_cpu_inc(*packet->rcd->dd->rcv_limit);
    675		return RCV_PKT_LIMIT;
    676	}
    677}
    678
    679static inline int check_max_packet(struct hfi1_packet *packet, int thread)
    680{
    681	int ret = RCV_PKT_OK;
    682
    683	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
    684		ret = max_packet_exceeded(packet, thread);
    685	return ret;
    686}
    687
    688static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
    689{
    690	int ret;
    691
    692	packet->rcd->dd->ctx0_seq_drop++;
    693	/* Set up for the next packet */
    694	packet->rhqoff += packet->rsize;
    695	if (packet->rhqoff >= packet->maxcnt)
    696		packet->rhqoff = 0;
    697
    698	packet->numpkt++;
    699	ret = check_max_packet(packet, thread);
    700
    701	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
    702				     packet->rcd->rhf_offset;
    703	packet->rhf = rhf_to_cpu(packet->rhf_addr);
    704
    705	return ret;
    706}
    707
    708static void process_rcv_packet_napi(struct hfi1_packet *packet)
    709{
    710	packet->etype = rhf_rcv_type(packet->rhf);
    711
    712	/* total length */
    713	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
    714	/* retrieve eager buffer details */
    715	packet->etail = rhf_egr_index(packet->rhf);
    716	packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
    717				  &packet->updegr);
    718	/*
    719	 * Prefetch the contents of the eager buffer.  It is
    720	 * OK to send a negative length to prefetch_range().
    721	 * The +2 is the size of the RHF.
    722	 */
    723	prefetch_range(packet->ebuf,
    724		       packet->tlen - ((packet->rcd->rcvhdrqentsize -
    725				       (rhf_hdrq_offset(packet->rhf)
    726					+ 2)) * 4));
    727
    728	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
    729	packet->numpkt++;
    730
    731	/* Set up for the next packet */
    732	packet->rhqoff += packet->rsize;
    733	if (packet->rhqoff >= packet->maxcnt)
    734		packet->rhqoff = 0;
    735
    736	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
    737				      packet->rcd->rhf_offset;
    738	packet->rhf = rhf_to_cpu(packet->rhf_addr);
    739}
    740
    741static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
    742{
    743	int ret;
    744
    745	packet->etype = rhf_rcv_type(packet->rhf);
    746
    747	/* total length */
    748	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
    749	/* retrieve eager buffer details */
    750	packet->ebuf = NULL;
    751	if (rhf_use_egr_bfr(packet->rhf)) {
    752		packet->etail = rhf_egr_index(packet->rhf);
    753		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
    754				 &packet->updegr);
    755		/*
    756		 * Prefetch the contents of the eager buffer.  It is
    757		 * OK to send a negative length to prefetch_range().
    758		 * The +2 is the size of the RHF.
    759		 */
    760		prefetch_range(packet->ebuf,
    761			       packet->tlen - ((get_hdrqentsize(packet->rcd) -
    762					       (rhf_hdrq_offset(packet->rhf)
    763						+ 2)) * 4));
    764	}
    765
    766	/*
    767	 * Call a type specific handler for the packet. We
    768	 * should be able to trust that etype won't be beyond
    769	 * the range of valid indexes. If so something is really
    770	 * wrong and we can probably just let things come
    771	 * crashing down. There is no need to eat another
    772	 * comparison in this performance critical code.
    773	 */
    774	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
    775	packet->numpkt++;
    776
    777	/* Set up for the next packet */
    778	packet->rhqoff += packet->rsize;
    779	if (packet->rhqoff >= packet->maxcnt)
    780		packet->rhqoff = 0;
    781
    782	ret = check_max_packet(packet, thread);
    783
    784	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
    785				      packet->rcd->rhf_offset;
    786	packet->rhf = rhf_to_cpu(packet->rhf_addr);
    787
    788	return ret;
    789}
    790
    791static inline void process_rcv_update(int last, struct hfi1_packet *packet)
    792{
    793	/*
    794	 * Update head regs etc., every 16 packets, if not last pkt,
    795	 * to help prevent rcvhdrq overflows, when many packets
    796	 * are processed and queue is nearly full.
    797	 * Don't request an interrupt for intermediate updates.
    798	 */
    799	if (!last && !(packet->numpkt & 0xf)) {
    800		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
    801			       packet->etail, 0, 0);
    802		packet->updegr = 0;
    803	}
    804	packet->grh = NULL;
    805}
    806
    807static inline void finish_packet(struct hfi1_packet *packet)
    808{
    809	/*
    810	 * Nothing we need to free for the packet.
    811	 *
    812	 * The only thing we need to do is a final update and call for an
    813	 * interrupt
    814	 */
    815	update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
    816		       packet->etail, rcv_intr_dynamic, packet->numpkt);
    817}
    818
    819/*
    820 * handle_receive_interrupt_napi_fp - receive a packet
    821 * @rcd: the context
    822 * @budget: polling budget
    823 *
    824 * Called from interrupt handler for receive interrupt.
    825 * This is the fast path interrupt handler
    826 * when executing napi soft irq environment.
    827 */
    828int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
    829{
    830	struct hfi1_packet packet;
    831
    832	init_packet(rcd, &packet);
    833	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
    834		goto bail;
    835
    836	while (packet.numpkt < budget) {
    837		process_rcv_packet_napi(&packet);
    838		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
    839			break;
    840
    841		process_rcv_update(0, &packet);
    842	}
    843	hfi1_set_rcd_head(rcd, packet.rhqoff);
    844bail:
    845	finish_packet(&packet);
    846	return packet.numpkt;
    847}
    848
    849/*
    850 * Handle receive interrupts when using the no dma rtail option.
    851 */
    852int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
    853{
    854	int last = RCV_PKT_OK;
    855	struct hfi1_packet packet;
    856
    857	init_packet(rcd, &packet);
    858	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
    859		last = RCV_PKT_DONE;
    860		goto bail;
    861	}
    862
    863	prescan_rxq(rcd, &packet);
    864
    865	while (last == RCV_PKT_OK) {
    866		last = process_rcv_packet(&packet, thread);
    867		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
    868			last = RCV_PKT_DONE;
    869		process_rcv_update(last, &packet);
    870	}
    871	process_rcv_qp_work(&packet);
    872	hfi1_set_rcd_head(rcd, packet.rhqoff);
    873bail:
    874	finish_packet(&packet);
    875	return last;
    876}
    877
    878int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
    879{
    880	u32 hdrqtail;
    881	int last = RCV_PKT_OK;
    882	struct hfi1_packet packet;
    883
    884	init_packet(rcd, &packet);
    885	hdrqtail = get_rcvhdrtail(rcd);
    886	if (packet.rhqoff == hdrqtail) {
    887		last = RCV_PKT_DONE;
    888		goto bail;
    889	}
    890	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
    891
    892	prescan_rxq(rcd, &packet);
    893
    894	while (last == RCV_PKT_OK) {
    895		last = process_rcv_packet(&packet, thread);
    896		if (packet.rhqoff == hdrqtail)
    897			last = RCV_PKT_DONE;
    898		process_rcv_update(last, &packet);
    899	}
    900	process_rcv_qp_work(&packet);
    901	hfi1_set_rcd_head(rcd, packet.rhqoff);
    902bail:
    903	finish_packet(&packet);
    904	return last;
    905}
    906
    907static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
    908{
    909	u16 i;
    910
    911	/*
    912	 * For dynamically allocated kernel contexts (like vnic) switch
    913	 * interrupt handler only for that context. Otherwise, switch
    914	 * interrupt handler for all statically allocated kernel contexts.
    915	 */
    916	if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
    917		hfi1_rcd_get(rcd);
    918		hfi1_set_fast(rcd);
    919		hfi1_rcd_put(rcd);
    920		return;
    921	}
    922
    923	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
    924		rcd = hfi1_rcd_get_by_index(dd, i);
    925		if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
    926			hfi1_set_fast(rcd);
    927		hfi1_rcd_put(rcd);
    928	}
    929}
    930
    931void set_all_slowpath(struct hfi1_devdata *dd)
    932{
    933	struct hfi1_ctxtdata *rcd;
    934	u16 i;
    935
    936	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
    937	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
    938		rcd = hfi1_rcd_get_by_index(dd, i);
    939		if (!rcd)
    940			continue;
    941		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
    942			rcd->do_interrupt = rcd->slow_handler;
    943
    944		hfi1_rcd_put(rcd);
    945	}
    946}
    947
    948static bool __set_armed_to_active(struct hfi1_packet *packet)
    949{
    950	u8 etype = rhf_rcv_type(packet->rhf);
    951	u8 sc = SC15_PACKET;
    952
    953	if (etype == RHF_RCV_TYPE_IB) {
    954		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
    955							   packet->rhf_addr);
    956		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
    957	} else if (etype == RHF_RCV_TYPE_BYPASS) {
    958		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
    959						packet->rcd,
    960						packet->rhf_addr);
    961		sc = hfi1_16B_get_sc(hdr);
    962	}
    963	if (sc != SC15_PACKET) {
    964		int hwstate = driver_lstate(packet->rcd->ppd);
    965		struct work_struct *lsaw =
    966				&packet->rcd->ppd->linkstate_active_work;
    967
    968		if (hwstate != IB_PORT_ACTIVE) {
    969			dd_dev_info(packet->rcd->dd,
    970				    "Unexpected link state %s\n",
    971				    opa_lstate_name(hwstate));
    972			return false;
    973		}
    974
    975		queue_work(packet->rcd->ppd->link_wq, lsaw);
    976		return true;
    977	}
    978	return false;
    979}
    980
    981/**
    982 * set_armed_to_active  - the fast path for armed to active
    983 * @packet: the packet structure
    984 *
    985 * Return true if packet processing needs to bail.
    986 */
    987static bool set_armed_to_active(struct hfi1_packet *packet)
    988{
    989	if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
    990		return false;
    991	return __set_armed_to_active(packet);
    992}
    993
    994/*
    995 * handle_receive_interrupt - receive a packet
    996 * @rcd: the context
    997 *
    998 * Called from interrupt handler for errors or receive interrupt.
    999 * This is the slow path interrupt handler.
   1000 */
   1001int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
   1002{
   1003	struct hfi1_devdata *dd = rcd->dd;
   1004	u32 hdrqtail;
   1005	int needset, last = RCV_PKT_OK;
   1006	struct hfi1_packet packet;
   1007	int skip_pkt = 0;
   1008
   1009	if (!rcd->rcvhdrq)
   1010		return RCV_PKT_OK;
   1011	/* Control context will always use the slow path interrupt handler */
   1012	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
   1013
   1014	init_packet(rcd, &packet);
   1015
   1016	if (!get_dma_rtail_setting(rcd)) {
   1017		if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
   1018			last = RCV_PKT_DONE;
   1019			goto bail;
   1020		}
   1021		hdrqtail = 0;
   1022	} else {
   1023		hdrqtail = get_rcvhdrtail(rcd);
   1024		if (packet.rhqoff == hdrqtail) {
   1025			last = RCV_PKT_DONE;
   1026			goto bail;
   1027		}
   1028		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
   1029
   1030		/*
   1031		 * Control context can potentially receive an invalid
   1032		 * rhf. Drop such packets.
   1033		 */
   1034		if (rcd->ctxt == HFI1_CTRL_CTXT)
   1035			if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
   1036				skip_pkt = 1;
   1037	}
   1038
   1039	prescan_rxq(rcd, &packet);
   1040
   1041	while (last == RCV_PKT_OK) {
   1042		if (hfi1_need_drop(dd)) {
   1043			/* On to the next packet */
   1044			packet.rhqoff += packet.rsize;
   1045			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
   1046					  packet.rhqoff +
   1047					  rcd->rhf_offset;
   1048			packet.rhf = rhf_to_cpu(packet.rhf_addr);
   1049
   1050		} else if (skip_pkt) {
   1051			last = skip_rcv_packet(&packet, thread);
   1052			skip_pkt = 0;
   1053		} else {
   1054			if (set_armed_to_active(&packet))
   1055				goto bail;
   1056			last = process_rcv_packet(&packet, thread);
   1057		}
   1058
   1059		if (!get_dma_rtail_setting(rcd)) {
   1060			if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
   1061				last = RCV_PKT_DONE;
   1062		} else {
   1063			if (packet.rhqoff == hdrqtail)
   1064				last = RCV_PKT_DONE;
   1065			/*
   1066			 * Control context can potentially receive an invalid
   1067			 * rhf. Drop such packets.
   1068			 */
   1069			if (rcd->ctxt == HFI1_CTRL_CTXT) {
   1070				bool lseq;
   1071
   1072				lseq = hfi1_seq_incr(rcd,
   1073						     rhf_rcv_seq(packet.rhf));
   1074				if (!last && lseq)
   1075					skip_pkt = 1;
   1076			}
   1077		}
   1078
   1079		if (needset) {
   1080			needset = false;
   1081			set_all_fastpath(dd, rcd);
   1082		}
   1083		process_rcv_update(last, &packet);
   1084	}
   1085
   1086	process_rcv_qp_work(&packet);
   1087	hfi1_set_rcd_head(rcd, packet.rhqoff);
   1088
   1089bail:
   1090	/*
   1091	 * Always write head at end, and setup rcv interrupt, even
   1092	 * if no packets were processed.
   1093	 */
   1094	finish_packet(&packet);
   1095	return last;
   1096}
   1097
   1098/*
   1099 * handle_receive_interrupt_napi_sp - receive a packet
   1100 * @rcd: the context
   1101 * @budget: polling budget
   1102 *
   1103 * Called from interrupt handler for errors or receive interrupt.
   1104 * This is the slow path interrupt handler
   1105 * when executing napi soft irq environment.
   1106 */
   1107int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
   1108{
   1109	struct hfi1_devdata *dd = rcd->dd;
   1110	int last = RCV_PKT_OK;
   1111	bool needset = true;
   1112	struct hfi1_packet packet;
   1113
   1114	init_packet(rcd, &packet);
   1115	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
   1116		goto bail;
   1117
   1118	while (last != RCV_PKT_DONE && packet.numpkt < budget) {
   1119		if (hfi1_need_drop(dd)) {
   1120			/* On to the next packet */
   1121			packet.rhqoff += packet.rsize;
   1122			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
   1123					  packet.rhqoff +
   1124					  rcd->rhf_offset;
   1125			packet.rhf = rhf_to_cpu(packet.rhf_addr);
   1126
   1127		} else {
   1128			if (set_armed_to_active(&packet))
   1129				goto bail;
   1130			process_rcv_packet_napi(&packet);
   1131		}
   1132
   1133		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
   1134			last = RCV_PKT_DONE;
   1135
   1136		if (needset) {
   1137			needset = false;
   1138			set_all_fastpath(dd, rcd);
   1139		}
   1140
   1141		process_rcv_update(last, &packet);
   1142	}
   1143
   1144	hfi1_set_rcd_head(rcd, packet.rhqoff);
   1145
   1146bail:
   1147	/*
   1148	 * Always write head at end, and setup rcv interrupt, even
   1149	 * if no packets were processed.
   1150	 */
   1151	finish_packet(&packet);
   1152	return packet.numpkt;
   1153}
   1154
   1155/*
   1156 * We may discover in the interrupt that the hardware link state has
   1157 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
   1158 * and we need to update the driver's notion of the link state.  We cannot
   1159 * run set_link_state from interrupt context, so we queue this function on
   1160 * a workqueue.
   1161 *
   1162 * We delay the regular interrupt processing until after the state changes
   1163 * so that the link will be in the correct state by the time any application
   1164 * we wake up attempts to send a reply to any message it received.
   1165 * (Subsequent receive interrupts may possibly force the wakeup before we
   1166 * update the link state.)
   1167 *
   1168 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
   1169 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
   1170 * so we're safe from use-after-free of the rcd.
   1171 */
   1172void receive_interrupt_work(struct work_struct *work)
   1173{
   1174	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
   1175						  linkstate_active_work);
   1176	struct hfi1_devdata *dd = ppd->dd;
   1177	struct hfi1_ctxtdata *rcd;
   1178	u16 i;
   1179
   1180	/* Received non-SC15 packet implies neighbor_normal */
   1181	ppd->neighbor_normal = 1;
   1182	set_link_state(ppd, HLS_UP_ACTIVE);
   1183
   1184	/*
   1185	 * Interrupt all statically allocated kernel contexts that could
   1186	 * have had an interrupt during auto activation.
   1187	 */
   1188	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
   1189		rcd = hfi1_rcd_get_by_index(dd, i);
   1190		if (rcd)
   1191			force_recv_intr(rcd);
   1192		hfi1_rcd_put(rcd);
   1193	}
   1194}
   1195
   1196/*
   1197 * Convert a given MTU size to the on-wire MAD packet enumeration.
   1198 * Return -1 if the size is invalid.
   1199 */
   1200int mtu_to_enum(u32 mtu, int default_if_bad)
   1201{
   1202	switch (mtu) {
   1203	case     0: return OPA_MTU_0;
   1204	case   256: return OPA_MTU_256;
   1205	case   512: return OPA_MTU_512;
   1206	case  1024: return OPA_MTU_1024;
   1207	case  2048: return OPA_MTU_2048;
   1208	case  4096: return OPA_MTU_4096;
   1209	case  8192: return OPA_MTU_8192;
   1210	case 10240: return OPA_MTU_10240;
   1211	}
   1212	return default_if_bad;
   1213}
   1214
   1215u16 enum_to_mtu(int mtu)
   1216{
   1217	switch (mtu) {
   1218	case OPA_MTU_0:     return 0;
   1219	case OPA_MTU_256:   return 256;
   1220	case OPA_MTU_512:   return 512;
   1221	case OPA_MTU_1024:  return 1024;
   1222	case OPA_MTU_2048:  return 2048;
   1223	case OPA_MTU_4096:  return 4096;
   1224	case OPA_MTU_8192:  return 8192;
   1225	case OPA_MTU_10240: return 10240;
   1226	default: return 0xffff;
   1227	}
   1228}
   1229
   1230/*
   1231 * set_mtu - set the MTU
   1232 * @ppd: the per port data
   1233 *
   1234 * We can handle "any" incoming size, the issue here is whether we
   1235 * need to restrict our outgoing size.  We do not deal with what happens
   1236 * to programs that are already running when the size changes.
   1237 */
   1238int set_mtu(struct hfi1_pportdata *ppd)
   1239{
   1240	struct hfi1_devdata *dd = ppd->dd;
   1241	int i, drain, ret = 0, is_up = 0;
   1242
   1243	ppd->ibmtu = 0;
   1244	for (i = 0; i < ppd->vls_supported; i++)
   1245		if (ppd->ibmtu < dd->vld[i].mtu)
   1246			ppd->ibmtu = dd->vld[i].mtu;
   1247	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
   1248
   1249	mutex_lock(&ppd->hls_lock);
   1250	if (ppd->host_link_state == HLS_UP_INIT ||
   1251	    ppd->host_link_state == HLS_UP_ARMED ||
   1252	    ppd->host_link_state == HLS_UP_ACTIVE)
   1253		is_up = 1;
   1254
   1255	drain = !is_ax(dd) && is_up;
   1256
   1257	if (drain)
   1258		/*
   1259		 * MTU is specified per-VL. To ensure that no packet gets
   1260		 * stuck (due, e.g., to the MTU for the packet's VL being
   1261		 * reduced), empty the per-VL FIFOs before adjusting MTU.
   1262		 */
   1263		ret = stop_drain_data_vls(dd);
   1264
   1265	if (ret) {
   1266		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
   1267			   __func__);
   1268		goto err;
   1269	}
   1270
   1271	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
   1272
   1273	if (drain)
   1274		open_fill_data_vls(dd); /* reopen all VLs */
   1275
   1276err:
   1277	mutex_unlock(&ppd->hls_lock);
   1278
   1279	return ret;
   1280}
   1281
   1282int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
   1283{
   1284	struct hfi1_devdata *dd = ppd->dd;
   1285
   1286	ppd->lid = lid;
   1287	ppd->lmc = lmc;
   1288	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
   1289
   1290	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
   1291
   1292	return 0;
   1293}
   1294
   1295void shutdown_led_override(struct hfi1_pportdata *ppd)
   1296{
   1297	struct hfi1_devdata *dd = ppd->dd;
   1298
   1299	/*
   1300	 * This pairs with the memory barrier in hfi1_start_led_override to
   1301	 * ensure that we read the correct state of LED beaconing represented
   1302	 * by led_override_timer_active
   1303	 */
   1304	smp_rmb();
   1305	if (atomic_read(&ppd->led_override_timer_active)) {
   1306		del_timer_sync(&ppd->led_override_timer);
   1307		atomic_set(&ppd->led_override_timer_active, 0);
   1308		/* Ensure the atomic_set is visible to all CPUs */
   1309		smp_wmb();
   1310	}
   1311
   1312	/* Hand control of the LED to the DC for normal operation */
   1313	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
   1314}
   1315
   1316static void run_led_override(struct timer_list *t)
   1317{
   1318	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
   1319	struct hfi1_devdata *dd = ppd->dd;
   1320	unsigned long timeout;
   1321	int phase_idx;
   1322
   1323	if (!(dd->flags & HFI1_INITTED))
   1324		return;
   1325
   1326	phase_idx = ppd->led_override_phase & 1;
   1327
   1328	setextled(dd, phase_idx);
   1329
   1330	timeout = ppd->led_override_vals[phase_idx];
   1331
   1332	/* Set up for next phase */
   1333	ppd->led_override_phase = !ppd->led_override_phase;
   1334
   1335	mod_timer(&ppd->led_override_timer, jiffies + timeout);
   1336}
   1337
   1338/*
   1339 * To have the LED blink in a particular pattern, provide timeon and timeoff
   1340 * in milliseconds.
   1341 * To turn off custom blinking and return to normal operation, use
   1342 * shutdown_led_override()
   1343 */
   1344void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
   1345			     unsigned int timeoff)
   1346{
   1347	if (!(ppd->dd->flags & HFI1_INITTED))
   1348		return;
   1349
   1350	/* Convert to jiffies for direct use in timer */
   1351	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
   1352	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
   1353
   1354	/* Arbitrarily start from LED on phase */
   1355	ppd->led_override_phase = 1;
   1356
   1357	/*
   1358	 * If the timer has not already been started, do so. Use a "quick"
   1359	 * timeout so the handler will be called soon to look at our request.
   1360	 */
   1361	if (!timer_pending(&ppd->led_override_timer)) {
   1362		timer_setup(&ppd->led_override_timer, run_led_override, 0);
   1363		ppd->led_override_timer.expires = jiffies + 1;
   1364		add_timer(&ppd->led_override_timer);
   1365		atomic_set(&ppd->led_override_timer_active, 1);
   1366		/* Ensure the atomic_set is visible to all CPUs */
   1367		smp_wmb();
   1368	}
   1369}
   1370
   1371/**
   1372 * hfi1_reset_device - reset the chip if possible
   1373 * @unit: the device to reset
   1374 *
   1375 * Whether or not reset is successful, we attempt to re-initialize the chip
   1376 * (that is, much like a driver unload/reload).  We clear the INITTED flag
   1377 * so that the various entry points will fail until we reinitialize.  For
   1378 * now, we only allow this if no user contexts are open that use chip resources
   1379 */
   1380int hfi1_reset_device(int unit)
   1381{
   1382	int ret;
   1383	struct hfi1_devdata *dd = hfi1_lookup(unit);
   1384	struct hfi1_pportdata *ppd;
   1385	int pidx;
   1386
   1387	if (!dd) {
   1388		ret = -ENODEV;
   1389		goto bail;
   1390	}
   1391
   1392	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
   1393
   1394	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
   1395		dd_dev_info(dd,
   1396			    "Invalid unit number %u or not initialized or not present\n",
   1397			    unit);
   1398		ret = -ENXIO;
   1399		goto bail;
   1400	}
   1401
   1402	/* If there are any user/vnic contexts, we cannot reset */
   1403	mutex_lock(&hfi1_mutex);
   1404	if (dd->rcd)
   1405		if (hfi1_stats.sps_ctxts) {
   1406			mutex_unlock(&hfi1_mutex);
   1407			ret = -EBUSY;
   1408			goto bail;
   1409		}
   1410	mutex_unlock(&hfi1_mutex);
   1411
   1412	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
   1413		ppd = dd->pport + pidx;
   1414
   1415		shutdown_led_override(ppd);
   1416	}
   1417	if (dd->flags & HFI1_HAS_SEND_DMA)
   1418		sdma_exit(dd);
   1419
   1420	hfi1_reset_cpu_counters(dd);
   1421
   1422	ret = hfi1_init(dd, 1);
   1423
   1424	if (ret)
   1425		dd_dev_err(dd,
   1426			   "Reinitialize unit %u after reset failed with %d\n",
   1427			   unit, ret);
   1428	else
   1429		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
   1430			    unit);
   1431
   1432bail:
   1433	return ret;
   1434}
   1435
   1436static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
   1437{
   1438	packet->hdr = (struct hfi1_ib_message_header *)
   1439			hfi1_get_msgheader(packet->rcd,
   1440					   packet->rhf_addr);
   1441	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
   1442}
   1443
   1444static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
   1445{
   1446	struct hfi1_pportdata *ppd = packet->rcd->ppd;
   1447
   1448	/* slid and dlid cannot be 0 */
   1449	if ((!packet->slid) || (!packet->dlid))
   1450		return -EINVAL;
   1451
   1452	/* Compare port lid with incoming packet dlid */
   1453	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
   1454	    (packet->dlid !=
   1455		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
   1456		if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
   1457			return -EINVAL;
   1458	}
   1459
   1460	/* No multicast packets with SC15 */
   1461	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
   1462		return -EINVAL;
   1463
   1464	/* Packets with permissive DLID always on SC15 */
   1465	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
   1466					 16B)) &&
   1467	    (packet->sc != 0xF))
   1468		return -EINVAL;
   1469
   1470	return 0;
   1471}
   1472
   1473static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
   1474{
   1475	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
   1476	struct ib_header *hdr;
   1477	u8 lnh;
   1478
   1479	hfi1_setup_ib_header(packet);
   1480	hdr = packet->hdr;
   1481
   1482	lnh = ib_get_lnh(hdr);
   1483	if (lnh == HFI1_LRH_BTH) {
   1484		packet->ohdr = &hdr->u.oth;
   1485		packet->grh = NULL;
   1486	} else if (lnh == HFI1_LRH_GRH) {
   1487		u32 vtf;
   1488
   1489		packet->ohdr = &hdr->u.l.oth;
   1490		packet->grh = &hdr->u.l.grh;
   1491		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
   1492			goto drop;
   1493		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
   1494		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
   1495			goto drop;
   1496	} else {
   1497		goto drop;
   1498	}
   1499
   1500	/* Query commonly used fields from packet header */
   1501	packet->payload = packet->ebuf;
   1502	packet->opcode = ib_bth_get_opcode(packet->ohdr);
   1503	packet->slid = ib_get_slid(hdr);
   1504	packet->dlid = ib_get_dlid(hdr);
   1505	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
   1506		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
   1507		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
   1508				be16_to_cpu(IB_MULTICAST_LID_BASE);
   1509	packet->sl = ib_get_sl(hdr);
   1510	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
   1511	packet->pad = ib_bth_get_pad(packet->ohdr);
   1512	packet->extra_byte = 0;
   1513	packet->pkey = ib_bth_get_pkey(packet->ohdr);
   1514	packet->migrated = ib_bth_is_migration(packet->ohdr);
   1515
   1516	return 0;
   1517drop:
   1518	ibp->rvp.n_pkt_drops++;
   1519	return -EINVAL;
   1520}
   1521
   1522static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
   1523{
   1524	/*
   1525	 * Bypass packets have a different header/payload split
   1526	 * compared to an IB packet.
   1527	 * Current split is set such that 16 bytes of the actual
   1528	 * header is in the header buffer and the remining is in
   1529	 * the eager buffer. We chose 16 since hfi1 driver only
   1530	 * supports 16B bypass packets and we will be able to
   1531	 * receive the entire LRH with such a split.
   1532	 */
   1533
   1534	struct hfi1_ctxtdata *rcd = packet->rcd;
   1535	struct hfi1_pportdata *ppd = rcd->ppd;
   1536	struct hfi1_ibport *ibp = &ppd->ibport_data;
   1537	u8 l4;
   1538
   1539	packet->hdr = (struct hfi1_16b_header *)
   1540			hfi1_get_16B_header(packet->rcd,
   1541					    packet->rhf_addr);
   1542	l4 = hfi1_16B_get_l4(packet->hdr);
   1543	if (l4 == OPA_16B_L4_IB_LOCAL) {
   1544		packet->ohdr = packet->ebuf;
   1545		packet->grh = NULL;
   1546		packet->opcode = ib_bth_get_opcode(packet->ohdr);
   1547		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
   1548		/* hdr_len_by_opcode already has an IB LRH factored in */
   1549		packet->hlen = hdr_len_by_opcode[packet->opcode] +
   1550			(LRH_16B_BYTES - LRH_9B_BYTES);
   1551		packet->migrated = opa_bth_is_migration(packet->ohdr);
   1552	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
   1553		u32 vtf;
   1554		u8 grh_len = sizeof(struct ib_grh);
   1555
   1556		packet->ohdr = packet->ebuf + grh_len;
   1557		packet->grh = packet->ebuf;
   1558		packet->opcode = ib_bth_get_opcode(packet->ohdr);
   1559		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
   1560		/* hdr_len_by_opcode already has an IB LRH factored in */
   1561		packet->hlen = hdr_len_by_opcode[packet->opcode] +
   1562			(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
   1563		packet->migrated = opa_bth_is_migration(packet->ohdr);
   1564
   1565		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
   1566			goto drop;
   1567		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
   1568		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
   1569			goto drop;
   1570	} else if (l4 == OPA_16B_L4_FM) {
   1571		packet->mgmt = packet->ebuf;
   1572		packet->ohdr = NULL;
   1573		packet->grh = NULL;
   1574		packet->opcode = IB_OPCODE_UD_SEND_ONLY;
   1575		packet->pad = OPA_16B_L4_FM_PAD;
   1576		packet->hlen = OPA_16B_L4_FM_HLEN;
   1577		packet->migrated = false;
   1578	} else {
   1579		goto drop;
   1580	}
   1581
   1582	/* Query commonly used fields from packet header */
   1583	packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
   1584	packet->slid = hfi1_16B_get_slid(packet->hdr);
   1585	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
   1586	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
   1587		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
   1588				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
   1589					    16B);
   1590	packet->sc = hfi1_16B_get_sc(packet->hdr);
   1591	packet->sl = ibp->sc_to_sl[packet->sc];
   1592	packet->extra_byte = SIZE_OF_LT;
   1593	packet->pkey = hfi1_16B_get_pkey(packet->hdr);
   1594
   1595	if (hfi1_bypass_ingress_pkt_check(packet))
   1596		goto drop;
   1597
   1598	return 0;
   1599drop:
   1600	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
   1601	ibp->rvp.n_pkt_drops++;
   1602	return -EINVAL;
   1603}
   1604
   1605static void show_eflags_errs(struct hfi1_packet *packet)
   1606{
   1607	struct hfi1_ctxtdata *rcd = packet->rcd;
   1608	u32 rte = rhf_rcv_type_err(packet->rhf);
   1609
   1610	dd_dev_err(rcd->dd,
   1611		   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
   1612		   rcd->ctxt, packet->rhf,
   1613		   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
   1614		   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
   1615		   packet->rhf & RHF_DC_ERR ? "dc " : "",
   1616		   packet->rhf & RHF_TID_ERR ? "tid " : "",
   1617		   packet->rhf & RHF_LEN_ERR ? "len " : "",
   1618		   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
   1619		   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
   1620		   rte);
   1621}
   1622
   1623void handle_eflags(struct hfi1_packet *packet)
   1624{
   1625	struct hfi1_ctxtdata *rcd = packet->rcd;
   1626
   1627	rcv_hdrerr(rcd, rcd->ppd, packet);
   1628	if (rhf_err_flags(packet->rhf))
   1629		show_eflags_errs(packet);
   1630}
   1631
   1632static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
   1633{
   1634	struct hfi1_ibport *ibp;
   1635	struct net_device *netdev;
   1636	struct hfi1_ctxtdata *rcd = packet->rcd;
   1637	struct napi_struct *napi = rcd->napi;
   1638	struct sk_buff *skb;
   1639	struct hfi1_netdev_rxq *rxq = container_of(napi,
   1640			struct hfi1_netdev_rxq, napi);
   1641	u32 extra_bytes;
   1642	u32 tlen, qpnum;
   1643	bool do_work, do_cnp;
   1644
   1645	trace_hfi1_rcvhdr(packet);
   1646
   1647	hfi1_setup_ib_header(packet);
   1648
   1649	packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
   1650	packet->grh = NULL;
   1651
   1652	if (unlikely(rhf_err_flags(packet->rhf))) {
   1653		handle_eflags(packet);
   1654		return;
   1655	}
   1656
   1657	qpnum = ib_bth_get_qpn(packet->ohdr);
   1658	netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
   1659	if (!netdev)
   1660		goto drop_no_nd;
   1661
   1662	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
   1663	trace_ctxt_rsm_hist(rcd->ctxt);
   1664
   1665	/* handle congestion notifications */
   1666	do_work = hfi1_may_ecn(packet);
   1667	if (unlikely(do_work)) {
   1668		do_cnp = (packet->opcode != IB_OPCODE_CNP);
   1669		(void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
   1670						 packet, do_cnp);
   1671	}
   1672
   1673	/*
   1674	 * We have split point after last byte of DETH
   1675	 * lets strip padding and CRC and ICRC.
   1676	 * tlen is whole packet len so we need to
   1677	 * subtract header size as well.
   1678	 */
   1679	tlen = packet->tlen;
   1680	extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
   1681			packet->hlen;
   1682	if (unlikely(tlen < extra_bytes))
   1683		goto drop;
   1684
   1685	tlen -= extra_bytes;
   1686
   1687	skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
   1688	if (unlikely(!skb))
   1689		goto drop;
   1690
   1691	dev_sw_netstats_rx_add(netdev, skb->len);
   1692
   1693	skb->dev = netdev;
   1694	skb->pkt_type = PACKET_HOST;
   1695	netif_receive_skb(skb);
   1696
   1697	return;
   1698
   1699drop:
   1700	++netdev->stats.rx_dropped;
   1701drop_no_nd:
   1702	ibp = rcd_to_iport(packet->rcd);
   1703	++ibp->rvp.n_pkt_drops;
   1704}
   1705
   1706/*
   1707 * The following functions are called by the interrupt handler. They are type
   1708 * specific handlers for each packet type.
   1709 */
   1710static void process_receive_ib(struct hfi1_packet *packet)
   1711{
   1712	if (hfi1_setup_9B_packet(packet))
   1713		return;
   1714
   1715	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
   1716		return;
   1717
   1718	trace_hfi1_rcvhdr(packet);
   1719
   1720	if (unlikely(rhf_err_flags(packet->rhf))) {
   1721		handle_eflags(packet);
   1722		return;
   1723	}
   1724
   1725	hfi1_ib_rcv(packet);
   1726}
   1727
   1728static void process_receive_bypass(struct hfi1_packet *packet)
   1729{
   1730	struct hfi1_devdata *dd = packet->rcd->dd;
   1731
   1732	if (hfi1_setup_bypass_packet(packet))
   1733		return;
   1734
   1735	trace_hfi1_rcvhdr(packet);
   1736
   1737	if (unlikely(rhf_err_flags(packet->rhf))) {
   1738		handle_eflags(packet);
   1739		return;
   1740	}
   1741
   1742	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
   1743		hfi1_16B_rcv(packet);
   1744	} else {
   1745		dd_dev_err(dd,
   1746			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
   1747		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
   1748		if (!(dd->err_info_rcvport.status_and_code &
   1749		      OPA_EI_STATUS_SMASK)) {
   1750			u64 *flits = packet->ebuf;
   1751
   1752			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
   1753				dd->err_info_rcvport.packet_flit1 = flits[0];
   1754				dd->err_info_rcvport.packet_flit2 =
   1755					packet->tlen > sizeof(flits[0]) ?
   1756					flits[1] : 0;
   1757			}
   1758			dd->err_info_rcvport.status_and_code |=
   1759				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
   1760		}
   1761	}
   1762}
   1763
   1764static void process_receive_error(struct hfi1_packet *packet)
   1765{
   1766	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
   1767	if (unlikely(
   1768		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
   1769		 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
   1770		  packet->rhf & RHF_DC_ERR)))
   1771		return;
   1772
   1773	hfi1_setup_ib_header(packet);
   1774	handle_eflags(packet);
   1775
   1776	if (unlikely(rhf_err_flags(packet->rhf)))
   1777		dd_dev_err(packet->rcd->dd,
   1778			   "Unhandled error packet received. Dropping.\n");
   1779}
   1780
   1781static void kdeth_process_expected(struct hfi1_packet *packet)
   1782{
   1783	hfi1_setup_9B_packet(packet);
   1784	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
   1785		return;
   1786
   1787	if (unlikely(rhf_err_flags(packet->rhf))) {
   1788		struct hfi1_ctxtdata *rcd = packet->rcd;
   1789
   1790		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
   1791			return;
   1792	}
   1793
   1794	hfi1_kdeth_expected_rcv(packet);
   1795}
   1796
   1797static void kdeth_process_eager(struct hfi1_packet *packet)
   1798{
   1799	hfi1_setup_9B_packet(packet);
   1800	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
   1801		return;
   1802
   1803	trace_hfi1_rcvhdr(packet);
   1804	if (unlikely(rhf_err_flags(packet->rhf))) {
   1805		struct hfi1_ctxtdata *rcd = packet->rcd;
   1806
   1807		show_eflags_errs(packet);
   1808		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
   1809			return;
   1810	}
   1811
   1812	hfi1_kdeth_eager_rcv(packet);
   1813}
   1814
   1815static void process_receive_invalid(struct hfi1_packet *packet)
   1816{
   1817	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
   1818		   rhf_rcv_type(packet->rhf));
   1819}
   1820
   1821#define HFI1_RCVHDR_DUMP_MAX	5
   1822
   1823void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
   1824{
   1825	struct hfi1_packet packet;
   1826	struct ps_mdata mdata;
   1827	int i;
   1828
   1829	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu  sw head %u\n",
   1830		   rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
   1831		   get_dma_rtail_setting(rcd) ?
   1832		   "dma_rtail" : "nodma_rtail",
   1833		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
   1834		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
   1835		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
   1836		   RCV_HDR_HEAD_HEAD_MASK,
   1837		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
   1838		   rcd->head);
   1839
   1840	init_packet(rcd, &packet);
   1841	init_ps_mdata(&mdata, &packet);
   1842
   1843	for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
   1844		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
   1845					 rcd->rhf_offset;
   1846		struct ib_header *hdr;
   1847		u64 rhf = rhf_to_cpu(rhf_addr);
   1848		u32 etype = rhf_rcv_type(rhf), qpn;
   1849		u8 opcode;
   1850		u32 psn;
   1851		u8 lnh;
   1852
   1853		if (ps_done(&mdata, rhf, rcd))
   1854			break;
   1855
   1856		if (ps_skip(&mdata, rhf, rcd))
   1857			goto next;
   1858
   1859		if (etype > RHF_RCV_TYPE_IB)
   1860			goto next;
   1861
   1862		packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
   1863		hdr = packet.hdr;
   1864
   1865		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
   1866
   1867		if (lnh == HFI1_LRH_BTH)
   1868			packet.ohdr = &hdr->u.oth;
   1869		else if (lnh == HFI1_LRH_GRH)
   1870			packet.ohdr = &hdr->u.l.oth;
   1871		else
   1872			goto next; /* just in case */
   1873
   1874		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
   1875		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
   1876		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
   1877
   1878		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
   1879			   mdata.ps_head, opcode, qpn, psn);
   1880next:
   1881		update_ps_mdata(&mdata, rcd);
   1882	}
   1883}
   1884
   1885const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
   1886	[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
   1887	[RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
   1888	[RHF_RCV_TYPE_IB] = process_receive_ib,
   1889	[RHF_RCV_TYPE_ERROR] = process_receive_error,
   1890	[RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
   1891	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
   1892	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
   1893	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
   1894};
   1895
   1896const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
   1897	[RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
   1898	[RHF_RCV_TYPE_EAGER] = process_receive_invalid,
   1899	[RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
   1900	[RHF_RCV_TYPE_ERROR] = process_receive_error,
   1901	[RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
   1902	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
   1903	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
   1904	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
   1905};