file_ops.c (43207B)
1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2/* 3 * Copyright(c) 2020 Cornelis Networks, Inc. 4 * Copyright(c) 2015-2020 Intel Corporation. 5 */ 6 7#include <linux/poll.h> 8#include <linux/cdev.h> 9#include <linux/vmalloc.h> 10#include <linux/io.h> 11#include <linux/sched/mm.h> 12#include <linux/bitmap.h> 13 14#include <rdma/ib.h> 15 16#include "hfi.h" 17#include "pio.h" 18#include "device.h" 19#include "common.h" 20#include "trace.h" 21#include "mmu_rb.h" 22#include "user_sdma.h" 23#include "user_exp_rcv.h" 24#include "aspm.h" 25 26#undef pr_fmt 27#define pr_fmt(fmt) DRIVER_NAME ": " fmt 28 29#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 30 31/* 32 * File operation functions 33 */ 34static int hfi1_file_open(struct inode *inode, struct file *fp); 35static int hfi1_file_close(struct inode *inode, struct file *fp); 36static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from); 37static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt); 38static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma); 39 40static u64 kvirt_to_phys(void *addr); 41static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len); 42static void init_subctxts(struct hfi1_ctxtdata *uctxt, 43 const struct hfi1_user_info *uinfo); 44static int init_user_ctxt(struct hfi1_filedata *fd, 45 struct hfi1_ctxtdata *uctxt); 46static void user_init(struct hfi1_ctxtdata *uctxt); 47static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 48static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 49static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 50 u32 len); 51static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 52 u32 len); 53static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 54 u32 len); 55static int setup_base_ctxt(struct hfi1_filedata *fd, 56 struct hfi1_ctxtdata *uctxt); 57static int setup_subctxt(struct hfi1_ctxtdata *uctxt); 58 59static int find_sub_ctxt(struct hfi1_filedata *fd, 60 const struct hfi1_user_info *uinfo); 61static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 62 struct hfi1_user_info *uinfo, 63 struct hfi1_ctxtdata **cd); 64static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt); 65static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt); 66static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt); 67static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 68 unsigned long arg); 69static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg); 70static int ctxt_reset(struct hfi1_ctxtdata *uctxt); 71static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 72 unsigned long arg); 73static vm_fault_t vma_fault(struct vm_fault *vmf); 74static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 75 unsigned long arg); 76 77static const struct file_operations hfi1_file_ops = { 78 .owner = THIS_MODULE, 79 .write_iter = hfi1_write_iter, 80 .open = hfi1_file_open, 81 .release = hfi1_file_close, 82 .unlocked_ioctl = hfi1_file_ioctl, 83 .poll = hfi1_poll, 84 .mmap = hfi1_file_mmap, 85 .llseek = noop_llseek, 86}; 87 88static const struct vm_operations_struct vm_ops = { 89 .fault = vma_fault, 90}; 91 92/* 93 * Types of memories mapped into user processes' space 94 */ 95enum mmap_types { 96 PIO_BUFS = 1, 97 PIO_BUFS_SOP, 98 PIO_CRED, 99 RCV_HDRQ, 100 RCV_EGRBUF, 101 UREGS, 102 EVENTS, 103 STATUS, 104 RTAIL, 105 SUBCTXT_UREGS, 106 SUBCTXT_RCV_HDRQ, 107 SUBCTXT_EGRBUF, 108 SDMA_COMP 109}; 110 111/* 112 * Masks and offsets defining the mmap tokens 113 */ 114#define HFI1_MMAP_OFFSET_MASK 0xfffULL 115#define HFI1_MMAP_OFFSET_SHIFT 0 116#define HFI1_MMAP_SUBCTXT_MASK 0xfULL 117#define HFI1_MMAP_SUBCTXT_SHIFT 12 118#define HFI1_MMAP_CTXT_MASK 0xffULL 119#define HFI1_MMAP_CTXT_SHIFT 16 120#define HFI1_MMAP_TYPE_MASK 0xfULL 121#define HFI1_MMAP_TYPE_SHIFT 24 122#define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 123#define HFI1_MMAP_MAGIC_SHIFT 32 124 125#define HFI1_MMAP_MAGIC 0xdabbad00 126 127#define HFI1_MMAP_TOKEN_SET(field, val) \ 128 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 129#define HFI1_MMAP_TOKEN_GET(field, token) \ 130 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 131#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 132 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 133 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 134 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 135 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 136 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 137 138#define dbg(fmt, ...) \ 139 pr_info(fmt, ##__VA_ARGS__) 140 141static inline int is_valid_mmap(u64 token) 142{ 143 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 144} 145 146static int hfi1_file_open(struct inode *inode, struct file *fp) 147{ 148 struct hfi1_filedata *fd; 149 struct hfi1_devdata *dd = container_of(inode->i_cdev, 150 struct hfi1_devdata, 151 user_cdev); 152 153 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1)) 154 return -EINVAL; 155 156 if (!refcount_inc_not_zero(&dd->user_refcount)) 157 return -ENXIO; 158 159 /* The real work is performed later in assign_ctxt() */ 160 161 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 162 163 if (!fd || init_srcu_struct(&fd->pq_srcu)) 164 goto nomem; 165 spin_lock_init(&fd->pq_rcu_lock); 166 spin_lock_init(&fd->tid_lock); 167 spin_lock_init(&fd->invalid_lock); 168 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 169 fd->dd = dd; 170 fp->private_data = fd; 171 return 0; 172nomem: 173 kfree(fd); 174 fp->private_data = NULL; 175 if (refcount_dec_and_test(&dd->user_refcount)) 176 complete(&dd->user_comp); 177 return -ENOMEM; 178} 179 180static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 181 unsigned long arg) 182{ 183 struct hfi1_filedata *fd = fp->private_data; 184 struct hfi1_ctxtdata *uctxt = fd->uctxt; 185 int ret = 0; 186 int uval = 0; 187 188 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 189 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 190 cmd != HFI1_IOCTL_GET_VERS && 191 !uctxt) 192 return -EINVAL; 193 194 switch (cmd) { 195 case HFI1_IOCTL_ASSIGN_CTXT: 196 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd)); 197 break; 198 199 case HFI1_IOCTL_CTXT_INFO: 200 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd)); 201 break; 202 203 case HFI1_IOCTL_USER_INFO: 204 ret = get_base_info(fd, arg, _IOC_SIZE(cmd)); 205 break; 206 207 case HFI1_IOCTL_CREDIT_UPD: 208 if (uctxt) 209 sc_return_credits(uctxt->sc); 210 break; 211 212 case HFI1_IOCTL_TID_UPDATE: 213 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd)); 214 break; 215 216 case HFI1_IOCTL_TID_FREE: 217 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd)); 218 break; 219 220 case HFI1_IOCTL_TID_INVAL_READ: 221 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd)); 222 break; 223 224 case HFI1_IOCTL_RECV_CTRL: 225 ret = manage_rcvq(uctxt, fd->subctxt, arg); 226 break; 227 228 case HFI1_IOCTL_POLL_TYPE: 229 if (get_user(uval, (int __user *)arg)) 230 return -EFAULT; 231 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 232 break; 233 234 case HFI1_IOCTL_ACK_EVENT: 235 ret = user_event_ack(uctxt, fd->subctxt, arg); 236 break; 237 238 case HFI1_IOCTL_SET_PKEY: 239 ret = set_ctxt_pkey(uctxt, arg); 240 break; 241 242 case HFI1_IOCTL_CTXT_RESET: 243 ret = ctxt_reset(uctxt); 244 break; 245 246 case HFI1_IOCTL_GET_VERS: 247 uval = HFI1_USER_SWVERSION; 248 if (put_user(uval, (int __user *)arg)) 249 return -EFAULT; 250 break; 251 252 default: 253 return -EINVAL; 254 } 255 256 return ret; 257} 258 259static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 260{ 261 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 262 struct hfi1_user_sdma_pkt_q *pq; 263 struct hfi1_user_sdma_comp_q *cq = fd->cq; 264 int done = 0, reqs = 0; 265 unsigned long dim = from->nr_segs; 266 int idx; 267 268 if (!HFI1_CAP_IS_KSET(SDMA)) 269 return -EINVAL; 270 idx = srcu_read_lock(&fd->pq_srcu); 271 pq = srcu_dereference(fd->pq, &fd->pq_srcu); 272 if (!cq || !pq) { 273 srcu_read_unlock(&fd->pq_srcu, idx); 274 return -EIO; 275 } 276 277 if (!iter_is_iovec(from) || !dim) { 278 srcu_read_unlock(&fd->pq_srcu, idx); 279 return -EINVAL; 280 } 281 282 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim); 283 284 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) { 285 srcu_read_unlock(&fd->pq_srcu, idx); 286 return -ENOSPC; 287 } 288 289 while (dim) { 290 int ret; 291 unsigned long count = 0; 292 293 ret = hfi1_user_sdma_process_request( 294 fd, (struct iovec *)(from->iov + done), 295 dim, &count); 296 if (ret) { 297 reqs = ret; 298 break; 299 } 300 dim -= count; 301 done += count; 302 reqs++; 303 } 304 305 srcu_read_unlock(&fd->pq_srcu, idx); 306 return reqs; 307} 308 309static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 310{ 311 struct hfi1_filedata *fd = fp->private_data; 312 struct hfi1_ctxtdata *uctxt = fd->uctxt; 313 struct hfi1_devdata *dd; 314 unsigned long flags; 315 u64 token = vma->vm_pgoff << PAGE_SHIFT, 316 memaddr = 0; 317 void *memvirt = NULL; 318 u8 subctxt, mapio = 0, vmf = 0, type; 319 ssize_t memlen = 0; 320 int ret = 0; 321 u16 ctxt; 322 323 if (!is_valid_mmap(token) || !uctxt || 324 !(vma->vm_flags & VM_SHARED)) { 325 ret = -EINVAL; 326 goto done; 327 } 328 dd = uctxt->dd; 329 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 330 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 331 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 332 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 333 ret = -EINVAL; 334 goto done; 335 } 336 337 flags = vma->vm_flags; 338 339 switch (type) { 340 case PIO_BUFS: 341 case PIO_BUFS_SOP: 342 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 343 /* chip pio base */ 344 (uctxt->sc->hw_context * BIT(16))) + 345 /* 64K PIO space / ctxt */ 346 (type == PIO_BUFS_SOP ? 347 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 348 /* 349 * Map only the amount allocated to the context, not the 350 * entire available context's PIO space. 351 */ 352 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 353 flags &= ~VM_MAYREAD; 354 flags |= VM_DONTCOPY | VM_DONTEXPAND; 355 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 356 mapio = 1; 357 break; 358 case PIO_CRED: 359 if (flags & VM_WRITE) { 360 ret = -EPERM; 361 goto done; 362 } 363 /* 364 * The credit return location for this context could be on the 365 * second or third page allocated for credit returns (if number 366 * of enabled contexts > 64 and 128 respectively). 367 */ 368 memvirt = dd->cr_base[uctxt->numa_id].va; 369 memaddr = virt_to_phys(memvirt) + 370 (((u64)uctxt->sc->hw_free - 371 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 372 memlen = PAGE_SIZE; 373 flags &= ~VM_MAYWRITE; 374 flags |= VM_DONTCOPY | VM_DONTEXPAND; 375 /* 376 * The driver has already allocated memory for credit 377 * returns and programmed it into the chip. Has that 378 * memory been flagged as non-cached? 379 */ 380 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 381 mapio = 1; 382 break; 383 case RCV_HDRQ: 384 memlen = rcvhdrq_size(uctxt); 385 memvirt = uctxt->rcvhdrq; 386 break; 387 case RCV_EGRBUF: { 388 unsigned long addr; 389 int i; 390 /* 391 * The RcvEgr buffer need to be handled differently 392 * as multiple non-contiguous pages need to be mapped 393 * into the user process. 394 */ 395 memlen = uctxt->egrbufs.size; 396 if ((vma->vm_end - vma->vm_start) != memlen) { 397 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 398 (vma->vm_end - vma->vm_start), memlen); 399 ret = -EINVAL; 400 goto done; 401 } 402 if (vma->vm_flags & VM_WRITE) { 403 ret = -EPERM; 404 goto done; 405 } 406 vma->vm_flags &= ~VM_MAYWRITE; 407 addr = vma->vm_start; 408 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 409 memlen = uctxt->egrbufs.buffers[i].len; 410 memvirt = uctxt->egrbufs.buffers[i].addr; 411 ret = remap_pfn_range( 412 vma, addr, 413 /* 414 * virt_to_pfn() does the same, but 415 * it's not available on x86_64 416 * when CONFIG_MMU is enabled. 417 */ 418 PFN_DOWN(__pa(memvirt)), 419 memlen, 420 vma->vm_page_prot); 421 if (ret < 0) 422 goto done; 423 addr += memlen; 424 } 425 ret = 0; 426 goto done; 427 } 428 case UREGS: 429 /* 430 * Map only the page that contains this context's user 431 * registers. 432 */ 433 memaddr = (unsigned long) 434 (dd->physaddr + RXE_PER_CONTEXT_USER) 435 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 436 /* 437 * TidFlow table is on the same page as the rest of the 438 * user registers. 439 */ 440 memlen = PAGE_SIZE; 441 flags |= VM_DONTCOPY | VM_DONTEXPAND; 442 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 443 mapio = 1; 444 break; 445 case EVENTS: 446 /* 447 * Use the page where this context's flags are. User level 448 * knows where it's own bitmap is within the page. 449 */ 450 memaddr = (unsigned long) 451 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK; 452 memlen = PAGE_SIZE; 453 /* 454 * v3.7 removes VM_RESERVED but the effect is kept by 455 * using VM_IO. 456 */ 457 flags |= VM_IO | VM_DONTEXPAND; 458 vmf = 1; 459 break; 460 case STATUS: 461 if (flags & VM_WRITE) { 462 ret = -EPERM; 463 goto done; 464 } 465 memaddr = kvirt_to_phys((void *)dd->status); 466 memlen = PAGE_SIZE; 467 flags |= VM_IO | VM_DONTEXPAND; 468 break; 469 case RTAIL: 470 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 471 /* 472 * If the memory allocation failed, the context alloc 473 * also would have failed, so we would never get here 474 */ 475 ret = -EINVAL; 476 goto done; 477 } 478 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) { 479 ret = -EPERM; 480 goto done; 481 } 482 memlen = PAGE_SIZE; 483 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt); 484 flags &= ~VM_MAYWRITE; 485 break; 486 case SUBCTXT_UREGS: 487 memaddr = (u64)uctxt->subctxt_uregbase; 488 memlen = PAGE_SIZE; 489 flags |= VM_IO | VM_DONTEXPAND; 490 vmf = 1; 491 break; 492 case SUBCTXT_RCV_HDRQ: 493 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 494 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt; 495 flags |= VM_IO | VM_DONTEXPAND; 496 vmf = 1; 497 break; 498 case SUBCTXT_EGRBUF: 499 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 500 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 501 flags |= VM_IO | VM_DONTEXPAND; 502 flags &= ~VM_MAYWRITE; 503 vmf = 1; 504 break; 505 case SDMA_COMP: { 506 struct hfi1_user_sdma_comp_q *cq = fd->cq; 507 508 if (!cq) { 509 ret = -EFAULT; 510 goto done; 511 } 512 memaddr = (u64)cq->comps; 513 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 514 flags |= VM_IO | VM_DONTEXPAND; 515 vmf = 1; 516 break; 517 } 518 default: 519 ret = -EINVAL; 520 break; 521 } 522 523 if ((vma->vm_end - vma->vm_start) != memlen) { 524 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 525 uctxt->ctxt, fd->subctxt, 526 (vma->vm_end - vma->vm_start), memlen); 527 ret = -EINVAL; 528 goto done; 529 } 530 531 vma->vm_flags = flags; 532 hfi1_cdbg(PROC, 533 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 534 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 535 vma->vm_end - vma->vm_start, vma->vm_flags); 536 if (vmf) { 537 vma->vm_pgoff = PFN_DOWN(memaddr); 538 vma->vm_ops = &vm_ops; 539 ret = 0; 540 } else if (mapio) { 541 ret = io_remap_pfn_range(vma, vma->vm_start, 542 PFN_DOWN(memaddr), 543 memlen, 544 vma->vm_page_prot); 545 } else if (memvirt) { 546 ret = remap_pfn_range(vma, vma->vm_start, 547 PFN_DOWN(__pa(memvirt)), 548 memlen, 549 vma->vm_page_prot); 550 } else { 551 ret = remap_pfn_range(vma, vma->vm_start, 552 PFN_DOWN(memaddr), 553 memlen, 554 vma->vm_page_prot); 555 } 556done: 557 return ret; 558} 559 560/* 561 * Local (non-chip) user memory is not mapped right away but as it is 562 * accessed by the user-level code. 563 */ 564static vm_fault_t vma_fault(struct vm_fault *vmf) 565{ 566 struct page *page; 567 568 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 569 if (!page) 570 return VM_FAULT_SIGBUS; 571 572 get_page(page); 573 vmf->page = page; 574 575 return 0; 576} 577 578static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt) 579{ 580 struct hfi1_ctxtdata *uctxt; 581 __poll_t pollflag; 582 583 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 584 if (!uctxt) 585 pollflag = EPOLLERR; 586 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 587 pollflag = poll_urgent(fp, pt); 588 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 589 pollflag = poll_next(fp, pt); 590 else /* invalid */ 591 pollflag = EPOLLERR; 592 593 return pollflag; 594} 595 596static int hfi1_file_close(struct inode *inode, struct file *fp) 597{ 598 struct hfi1_filedata *fdata = fp->private_data; 599 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 600 struct hfi1_devdata *dd = container_of(inode->i_cdev, 601 struct hfi1_devdata, 602 user_cdev); 603 unsigned long flags, *ev; 604 605 fp->private_data = NULL; 606 607 if (!uctxt) 608 goto done; 609 610 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 611 612 flush_wc(); 613 /* drain user sdma queue */ 614 hfi1_user_sdma_free_queues(fdata, uctxt); 615 616 /* release the cpu */ 617 hfi1_put_proc_affinity(fdata->rec_cpu_num); 618 619 /* clean up rcv side */ 620 hfi1_user_exp_rcv_free(fdata); 621 622 /* 623 * fdata->uctxt is used in the above cleanup. It is not ready to be 624 * removed until here. 625 */ 626 fdata->uctxt = NULL; 627 hfi1_rcd_put(uctxt); 628 629 /* 630 * Clear any left over, unhandled events so the next process that 631 * gets this context doesn't get confused. 632 */ 633 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt; 634 *ev = 0; 635 636 spin_lock_irqsave(&dd->uctxt_lock, flags); 637 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts); 638 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 639 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 640 goto done; 641 } 642 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 643 644 /* 645 * Disable receive context and interrupt available, reset all 646 * RcvCtxtCtrl bits to default values. 647 */ 648 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 649 HFI1_RCVCTRL_TIDFLOW_DIS | 650 HFI1_RCVCTRL_INTRAVAIL_DIS | 651 HFI1_RCVCTRL_TAILUPD_DIS | 652 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 653 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 654 HFI1_RCVCTRL_NO_EGR_DROP_DIS | 655 HFI1_RCVCTRL_URGENT_DIS, uctxt); 656 /* Clear the context's J_KEY */ 657 hfi1_clear_ctxt_jkey(dd, uctxt); 658 /* 659 * If a send context is allocated, reset context integrity 660 * checks to default and disable the send context. 661 */ 662 if (uctxt->sc) { 663 sc_disable(uctxt->sc); 664 set_pio_integrity(uctxt->sc); 665 } 666 667 hfi1_free_ctxt_rcv_groups(uctxt); 668 hfi1_clear_ctxt_pkey(dd, uctxt); 669 670 uctxt->event_flags = 0; 671 672 deallocate_ctxt(uctxt); 673done: 674 675 if (refcount_dec_and_test(&dd->user_refcount)) 676 complete(&dd->user_comp); 677 678 cleanup_srcu_struct(&fdata->pq_srcu); 679 kfree(fdata); 680 return 0; 681} 682 683/* 684 * Convert kernel *virtual* addresses to physical addresses. 685 * This is used to vmalloc'ed addresses. 686 */ 687static u64 kvirt_to_phys(void *addr) 688{ 689 struct page *page; 690 u64 paddr = 0; 691 692 page = vmalloc_to_page(addr); 693 if (page) 694 paddr = page_to_pfn(page) << PAGE_SHIFT; 695 696 return paddr; 697} 698 699/** 700 * complete_subctxt - complete sub-context info 701 * @fd: valid filedata pointer 702 * 703 * Sub-context info can only be set up after the base context 704 * has been completed. This is indicated by the clearing of the 705 * HFI1_CTXT_BASE_UINIT bit. 706 * 707 * Wait for the bit to be cleared, and then complete the subcontext 708 * initialization. 709 * 710 */ 711static int complete_subctxt(struct hfi1_filedata *fd) 712{ 713 int ret; 714 unsigned long flags; 715 716 /* 717 * sub-context info can only be set up after the base context 718 * has been completed. 719 */ 720 ret = wait_event_interruptible( 721 fd->uctxt->wait, 722 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags)); 723 724 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags)) 725 ret = -ENOMEM; 726 727 /* Finish the sub-context init */ 728 if (!ret) { 729 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id); 730 ret = init_user_ctxt(fd, fd->uctxt); 731 } 732 733 if (ret) { 734 spin_lock_irqsave(&fd->dd->uctxt_lock, flags); 735 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts); 736 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags); 737 hfi1_rcd_put(fd->uctxt); 738 fd->uctxt = NULL; 739 } 740 741 return ret; 742} 743 744static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len) 745{ 746 int ret; 747 unsigned int swmajor; 748 struct hfi1_ctxtdata *uctxt = NULL; 749 struct hfi1_user_info uinfo; 750 751 if (fd->uctxt) 752 return -EINVAL; 753 754 if (sizeof(uinfo) != len) 755 return -EINVAL; 756 757 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo))) 758 return -EFAULT; 759 760 swmajor = uinfo.userversion >> 16; 761 if (swmajor != HFI1_USER_SWMAJOR) 762 return -ENODEV; 763 764 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS) 765 return -EINVAL; 766 767 /* 768 * Acquire the mutex to protect against multiple creations of what 769 * could be a shared base context. 770 */ 771 mutex_lock(&hfi1_mutex); 772 /* 773 * Get a sub context if available (fd->uctxt will be set). 774 * ret < 0 error, 0 no context, 1 sub-context found 775 */ 776 ret = find_sub_ctxt(fd, &uinfo); 777 778 /* 779 * Allocate a base context if context sharing is not required or a 780 * sub context wasn't found. 781 */ 782 if (!ret) 783 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt); 784 785 mutex_unlock(&hfi1_mutex); 786 787 /* Depending on the context type, finish the appropriate init */ 788 switch (ret) { 789 case 0: 790 ret = setup_base_ctxt(fd, uctxt); 791 if (ret) 792 deallocate_ctxt(uctxt); 793 break; 794 case 1: 795 ret = complete_subctxt(fd); 796 break; 797 default: 798 break; 799 } 800 801 return ret; 802} 803 804/** 805 * match_ctxt - match context 806 * @fd: valid filedata pointer 807 * @uinfo: user info to compare base context with 808 * @uctxt: context to compare uinfo to. 809 * 810 * Compare the given context with the given information to see if it 811 * can be used for a sub context. 812 */ 813static int match_ctxt(struct hfi1_filedata *fd, 814 const struct hfi1_user_info *uinfo, 815 struct hfi1_ctxtdata *uctxt) 816{ 817 struct hfi1_devdata *dd = fd->dd; 818 unsigned long flags; 819 u16 subctxt; 820 821 /* Skip dynamically allocated kernel contexts */ 822 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) 823 return 0; 824 825 /* Skip ctxt if it doesn't match the requested one */ 826 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || 827 uctxt->jkey != generate_jkey(current_uid()) || 828 uctxt->subctxt_id != uinfo->subctxt_id || 829 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 830 return 0; 831 832 /* Verify the sharing process matches the base */ 833 if (uctxt->userversion != uinfo->userversion) 834 return -EINVAL; 835 836 /* Find an unused sub context */ 837 spin_lock_irqsave(&dd->uctxt_lock, flags); 838 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 839 /* context is being closed, do not use */ 840 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 841 return 0; 842 } 843 844 subctxt = find_first_zero_bit(uctxt->in_use_ctxts, 845 HFI1_MAX_SHARED_CTXTS); 846 if (subctxt >= uctxt->subctxt_cnt) { 847 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 848 return -EBUSY; 849 } 850 851 fd->subctxt = subctxt; 852 __set_bit(fd->subctxt, uctxt->in_use_ctxts); 853 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 854 855 fd->uctxt = uctxt; 856 hfi1_rcd_get(uctxt); 857 858 return 1; 859} 860 861/** 862 * find_sub_ctxt - fund sub-context 863 * @fd: valid filedata pointer 864 * @uinfo: matching info to use to find a possible context to share. 865 * 866 * The hfi1_mutex must be held when this function is called. It is 867 * necessary to ensure serialized creation of shared contexts. 868 * 869 * Return: 870 * 0 No sub-context found 871 * 1 Subcontext found and allocated 872 * errno EINVAL (incorrect parameters) 873 * EBUSY (all sub contexts in use) 874 */ 875static int find_sub_ctxt(struct hfi1_filedata *fd, 876 const struct hfi1_user_info *uinfo) 877{ 878 struct hfi1_ctxtdata *uctxt; 879 struct hfi1_devdata *dd = fd->dd; 880 u16 i; 881 int ret; 882 883 if (!uinfo->subctxt_cnt) 884 return 0; 885 886 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { 887 uctxt = hfi1_rcd_get_by_index(dd, i); 888 if (uctxt) { 889 ret = match_ctxt(fd, uinfo, uctxt); 890 hfi1_rcd_put(uctxt); 891 /* value of != 0 will return */ 892 if (ret) 893 return ret; 894 } 895 } 896 897 return 0; 898} 899 900static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 901 struct hfi1_user_info *uinfo, 902 struct hfi1_ctxtdata **rcd) 903{ 904 struct hfi1_ctxtdata *uctxt; 905 int ret, numa; 906 907 if (dd->flags & HFI1_FROZEN) { 908 /* 909 * Pick an error that is unique from all other errors 910 * that are returned so the user process knows that 911 * it tried to allocate while the SPC was frozen. It 912 * it should be able to retry with success in a short 913 * while. 914 */ 915 return -EIO; 916 } 917 918 if (!dd->freectxts) 919 return -EBUSY; 920 921 /* 922 * If we don't have a NUMA node requested, preference is towards 923 * device NUMA node. 924 */ 925 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 926 if (fd->rec_cpu_num != -1) 927 numa = cpu_to_node(fd->rec_cpu_num); 928 else 929 numa = numa_node_id(); 930 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt); 931 if (ret < 0) { 932 dd_dev_err(dd, "user ctxtdata allocation failed\n"); 933 return ret; 934 } 935 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 936 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 937 uctxt->numa_id); 938 939 /* 940 * Allocate and enable a PIO send context. 941 */ 942 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node); 943 if (!uctxt->sc) { 944 ret = -ENOMEM; 945 goto ctxdata_free; 946 } 947 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 948 uctxt->sc->hw_context); 949 ret = sc_enable(uctxt->sc); 950 if (ret) 951 goto ctxdata_free; 952 953 /* 954 * Setup sub context information if the user-level has requested 955 * sub contexts. 956 * This has to be done here so the rest of the sub-contexts find the 957 * proper base context. 958 * NOTE: _set_bit() can be used here because the context creation is 959 * protected by the mutex (rather than the spin_lock), and will be the 960 * very first instance of this context. 961 */ 962 __set_bit(0, uctxt->in_use_ctxts); 963 if (uinfo->subctxt_cnt) 964 init_subctxts(uctxt, uinfo); 965 uctxt->userversion = uinfo->userversion; 966 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 967 init_waitqueue_head(&uctxt->wait); 968 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 969 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 970 uctxt->jkey = generate_jkey(current_uid()); 971 hfi1_stats.sps_ctxts++; 972 /* 973 * Disable ASPM when there are open user/PSM contexts to avoid 974 * issues with ASPM L1 exit latency 975 */ 976 if (dd->freectxts-- == dd->num_user_contexts) 977 aspm_disable_all(dd); 978 979 *rcd = uctxt; 980 981 return 0; 982 983ctxdata_free: 984 hfi1_free_ctxt(uctxt); 985 return ret; 986} 987 988static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt) 989{ 990 mutex_lock(&hfi1_mutex); 991 hfi1_stats.sps_ctxts--; 992 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts) 993 aspm_enable_all(uctxt->dd); 994 mutex_unlock(&hfi1_mutex); 995 996 hfi1_free_ctxt(uctxt); 997} 998 999static void init_subctxts(struct hfi1_ctxtdata *uctxt, 1000 const struct hfi1_user_info *uinfo) 1001{ 1002 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1003 uctxt->subctxt_id = uinfo->subctxt_id; 1004 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1005} 1006 1007static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1008{ 1009 int ret = 0; 1010 u16 num_subctxts = uctxt->subctxt_cnt; 1011 1012 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1013 if (!uctxt->subctxt_uregbase) 1014 return -ENOMEM; 1015 1016 /* We can take the size of the RcvHdr Queue from the master */ 1017 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) * 1018 num_subctxts); 1019 if (!uctxt->subctxt_rcvhdr_base) { 1020 ret = -ENOMEM; 1021 goto bail_ureg; 1022 } 1023 1024 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1025 num_subctxts); 1026 if (!uctxt->subctxt_rcvegrbuf) { 1027 ret = -ENOMEM; 1028 goto bail_rhdr; 1029 } 1030 1031 return 0; 1032 1033bail_rhdr: 1034 vfree(uctxt->subctxt_rcvhdr_base); 1035 uctxt->subctxt_rcvhdr_base = NULL; 1036bail_ureg: 1037 vfree(uctxt->subctxt_uregbase); 1038 uctxt->subctxt_uregbase = NULL; 1039 1040 return ret; 1041} 1042 1043static void user_init(struct hfi1_ctxtdata *uctxt) 1044{ 1045 unsigned int rcvctrl_ops = 0; 1046 1047 /* initialize poll variables... */ 1048 uctxt->urgent = 0; 1049 uctxt->urgent_poll = 0; 1050 1051 /* 1052 * Now enable the ctxt for receive. 1053 * For chips that are set to DMA the tail register to memory 1054 * when they change (and when the update bit transitions from 1055 * 0 to 1. So for those chips, we turn it off and then back on. 1056 * This will (very briefly) affect any other open ctxts, but the 1057 * duration is very short, and therefore isn't an issue. We 1058 * explicitly set the in-memory tail copy to 0 beforehand, so we 1059 * don't have to wait to be sure the DMA update has happened 1060 * (chip resets head/tail to 0 on transition to enable). 1061 */ 1062 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1063 clear_rcvhdrtail(uctxt); 1064 1065 /* Setup J_KEY before enabling the context */ 1066 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey); 1067 1068 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1069 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB; 1070 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1071 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1072 /* 1073 * Ignore the bit in the flags for now until proper 1074 * support for multiple packet per rcv array entry is 1075 * added. 1076 */ 1077 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1078 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1079 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1080 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1081 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1082 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1083 /* 1084 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1085 * We can't rely on the correct value to be set from prior 1086 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1087 * for both cases. 1088 */ 1089 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1090 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1091 else 1092 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1093 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt); 1094} 1095 1096static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1097{ 1098 struct hfi1_ctxt_info cinfo; 1099 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1100 1101 if (sizeof(cinfo) != len) 1102 return -EINVAL; 1103 1104 memset(&cinfo, 0, sizeof(cinfo)); 1105 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1106 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1107 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1108 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1109 /* adjust flag if this fd is not able to cache */ 1110 if (!fd->use_mn) 1111 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1112 1113 cinfo.num_active = hfi1_count_active_units(); 1114 cinfo.unit = uctxt->dd->unit; 1115 cinfo.ctxt = uctxt->ctxt; 1116 cinfo.subctxt = fd->subctxt; 1117 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1118 uctxt->dd->rcv_entries.group_size) + 1119 uctxt->expected_count; 1120 cinfo.credits = uctxt->sc->credits; 1121 cinfo.numa_node = uctxt->numa_id; 1122 cinfo.rec_cpu = fd->rec_cpu_num; 1123 cinfo.send_ctxt = uctxt->sc->hw_context; 1124 1125 cinfo.egrtids = uctxt->egrbufs.alloced; 1126 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt); 1127 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2; 1128 cinfo.sdma_ring_size = fd->cq->nentries; 1129 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1130 1131 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo); 1132 if (copy_to_user((void __user *)arg, &cinfo, len)) 1133 return -EFAULT; 1134 1135 return 0; 1136} 1137 1138static int init_user_ctxt(struct hfi1_filedata *fd, 1139 struct hfi1_ctxtdata *uctxt) 1140{ 1141 int ret; 1142 1143 ret = hfi1_user_sdma_alloc_queues(uctxt, fd); 1144 if (ret) 1145 return ret; 1146 1147 ret = hfi1_user_exp_rcv_init(fd, uctxt); 1148 if (ret) 1149 hfi1_user_sdma_free_queues(fd, uctxt); 1150 1151 return ret; 1152} 1153 1154static int setup_base_ctxt(struct hfi1_filedata *fd, 1155 struct hfi1_ctxtdata *uctxt) 1156{ 1157 struct hfi1_devdata *dd = uctxt->dd; 1158 int ret = 0; 1159 1160 hfi1_init_ctxt(uctxt->sc); 1161 1162 /* Now allocate the RcvHdr queue and eager buffers. */ 1163 ret = hfi1_create_rcvhdrq(dd, uctxt); 1164 if (ret) 1165 goto done; 1166 1167 ret = hfi1_setup_eagerbufs(uctxt); 1168 if (ret) 1169 goto done; 1170 1171 /* If sub-contexts are enabled, do the appropriate setup */ 1172 if (uctxt->subctxt_cnt) 1173 ret = setup_subctxt(uctxt); 1174 if (ret) 1175 goto done; 1176 1177 ret = hfi1_alloc_ctxt_rcv_groups(uctxt); 1178 if (ret) 1179 goto done; 1180 1181 ret = init_user_ctxt(fd, uctxt); 1182 if (ret) 1183 goto done; 1184 1185 user_init(uctxt); 1186 1187 /* Now that the context is set up, the fd can get a reference. */ 1188 fd->uctxt = uctxt; 1189 hfi1_rcd_get(uctxt); 1190 1191done: 1192 if (uctxt->subctxt_cnt) { 1193 /* 1194 * On error, set the failed bit so sub-contexts will clean up 1195 * correctly. 1196 */ 1197 if (ret) 1198 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags); 1199 1200 /* 1201 * Base context is done (successfully or not), notify anybody 1202 * using a sub-context that is waiting for this completion. 1203 */ 1204 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1205 wake_up(&uctxt->wait); 1206 } 1207 1208 return ret; 1209} 1210 1211static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1212{ 1213 struct hfi1_base_info binfo; 1214 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1215 struct hfi1_devdata *dd = uctxt->dd; 1216 unsigned offset; 1217 1218 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt); 1219 1220 if (sizeof(binfo) != len) 1221 return -EINVAL; 1222 1223 memset(&binfo, 0, sizeof(binfo)); 1224 binfo.hw_version = dd->revision; 1225 binfo.sw_version = HFI1_USER_SWVERSION; 1226 binfo.bthqp = RVT_KDETH_QP_PREFIX; 1227 binfo.jkey = uctxt->jkey; 1228 /* 1229 * If more than 64 contexts are enabled the allocated credit 1230 * return will span two or three contiguous pages. Since we only 1231 * map the page containing the context's credit return address, 1232 * we need to calculate the offset in the proper page. 1233 */ 1234 offset = ((u64)uctxt->sc->hw_free - 1235 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1236 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1237 fd->subctxt, offset); 1238 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1239 fd->subctxt, 1240 uctxt->sc->base_addr); 1241 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1242 uctxt->ctxt, 1243 fd->subctxt, 1244 uctxt->sc->base_addr); 1245 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1246 fd->subctxt, 1247 uctxt->rcvhdrq); 1248 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1249 fd->subctxt, 1250 uctxt->egrbufs.rcvtids[0].dma); 1251 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1252 fd->subctxt, 0); 1253 /* 1254 * user regs are at 1255 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1256 */ 1257 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1258 fd->subctxt, 0); 1259 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) * 1260 sizeof(*dd->events)); 1261 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1262 fd->subctxt, 1263 offset); 1264 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1265 fd->subctxt, 1266 dd->status); 1267 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1268 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1269 fd->subctxt, 0); 1270 if (uctxt->subctxt_cnt) { 1271 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1272 uctxt->ctxt, 1273 fd->subctxt, 0); 1274 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1275 uctxt->ctxt, 1276 fd->subctxt, 0); 1277 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1278 uctxt->ctxt, 1279 fd->subctxt, 0); 1280 } 1281 1282 if (copy_to_user((void __user *)arg, &binfo, len)) 1283 return -EFAULT; 1284 1285 return 0; 1286} 1287 1288/** 1289 * user_exp_rcv_setup - Set up the given tid rcv list 1290 * @fd: file data of the current driver instance 1291 * @arg: ioctl argumnent for user space information 1292 * @len: length of data structure associated with ioctl command 1293 * 1294 * Wrapper to validate ioctl information before doing _rcv_setup. 1295 * 1296 */ 1297static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 1298 u32 len) 1299{ 1300 int ret; 1301 unsigned long addr; 1302 struct hfi1_tid_info tinfo; 1303 1304 if (sizeof(tinfo) != len) 1305 return -EINVAL; 1306 1307 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1308 return -EFAULT; 1309 1310 ret = hfi1_user_exp_rcv_setup(fd, &tinfo); 1311 if (!ret) { 1312 /* 1313 * Copy the number of tidlist entries we used 1314 * and the length of the buffer we registered. 1315 */ 1316 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1317 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1318 sizeof(tinfo.tidcnt))) 1319 return -EFAULT; 1320 1321 addr = arg + offsetof(struct hfi1_tid_info, length); 1322 if (copy_to_user((void __user *)addr, &tinfo.length, 1323 sizeof(tinfo.length))) 1324 ret = -EFAULT; 1325 } 1326 1327 return ret; 1328} 1329 1330/** 1331 * user_exp_rcv_clear - Clear the given tid rcv list 1332 * @fd: file data of the current driver instance 1333 * @arg: ioctl argumnent for user space information 1334 * @len: length of data structure associated with ioctl command 1335 * 1336 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because 1337 * of this, we need to use this wrapper to copy the user space information 1338 * before doing the clear. 1339 */ 1340static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 1341 u32 len) 1342{ 1343 int ret; 1344 unsigned long addr; 1345 struct hfi1_tid_info tinfo; 1346 1347 if (sizeof(tinfo) != len) 1348 return -EINVAL; 1349 1350 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1351 return -EFAULT; 1352 1353 ret = hfi1_user_exp_rcv_clear(fd, &tinfo); 1354 if (!ret) { 1355 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1356 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1357 sizeof(tinfo.tidcnt))) 1358 return -EFAULT; 1359 } 1360 1361 return ret; 1362} 1363 1364/** 1365 * user_exp_rcv_invalid - Invalidate the given tid rcv list 1366 * @fd: file data of the current driver instance 1367 * @arg: ioctl argumnent for user space information 1368 * @len: length of data structure associated with ioctl command 1369 * 1370 * Wrapper to validate ioctl information before doing _rcv_invalid. 1371 * 1372 */ 1373static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 1374 u32 len) 1375{ 1376 int ret; 1377 unsigned long addr; 1378 struct hfi1_tid_info tinfo; 1379 1380 if (sizeof(tinfo) != len) 1381 return -EINVAL; 1382 1383 if (!fd->invalid_tids) 1384 return -EINVAL; 1385 1386 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1387 return -EFAULT; 1388 1389 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo); 1390 if (ret) 1391 return ret; 1392 1393 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1394 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1395 sizeof(tinfo.tidcnt))) 1396 ret = -EFAULT; 1397 1398 return ret; 1399} 1400 1401static __poll_t poll_urgent(struct file *fp, 1402 struct poll_table_struct *pt) 1403{ 1404 struct hfi1_filedata *fd = fp->private_data; 1405 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1406 struct hfi1_devdata *dd = uctxt->dd; 1407 __poll_t pollflag; 1408 1409 poll_wait(fp, &uctxt->wait, pt); 1410 1411 spin_lock_irq(&dd->uctxt_lock); 1412 if (uctxt->urgent != uctxt->urgent_poll) { 1413 pollflag = EPOLLIN | EPOLLRDNORM; 1414 uctxt->urgent_poll = uctxt->urgent; 1415 } else { 1416 pollflag = 0; 1417 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1418 } 1419 spin_unlock_irq(&dd->uctxt_lock); 1420 1421 return pollflag; 1422} 1423 1424static __poll_t poll_next(struct file *fp, 1425 struct poll_table_struct *pt) 1426{ 1427 struct hfi1_filedata *fd = fp->private_data; 1428 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1429 struct hfi1_devdata *dd = uctxt->dd; 1430 __poll_t pollflag; 1431 1432 poll_wait(fp, &uctxt->wait, pt); 1433 1434 spin_lock_irq(&dd->uctxt_lock); 1435 if (hdrqempty(uctxt)) { 1436 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1437 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt); 1438 pollflag = 0; 1439 } else { 1440 pollflag = EPOLLIN | EPOLLRDNORM; 1441 } 1442 spin_unlock_irq(&dd->uctxt_lock); 1443 1444 return pollflag; 1445} 1446 1447/* 1448 * Find all user contexts in use, and set the specified bit in their 1449 * event mask. 1450 * See also find_ctxt() for a similar use, that is specific to send buffers. 1451 */ 1452int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1453{ 1454 struct hfi1_ctxtdata *uctxt; 1455 struct hfi1_devdata *dd = ppd->dd; 1456 u16 ctxt; 1457 1458 if (!dd->events) 1459 return -EINVAL; 1460 1461 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; 1462 ctxt++) { 1463 uctxt = hfi1_rcd_get_by_index(dd, ctxt); 1464 if (uctxt) { 1465 unsigned long *evs; 1466 int i; 1467 /* 1468 * subctxt_cnt is 0 if not shared, so do base 1469 * separately, first, then remaining subctxt, if any 1470 */ 1471 evs = dd->events + uctxt_offset(uctxt); 1472 set_bit(evtbit, evs); 1473 for (i = 1; i < uctxt->subctxt_cnt; i++) 1474 set_bit(evtbit, evs + i); 1475 hfi1_rcd_put(uctxt); 1476 } 1477 } 1478 1479 return 0; 1480} 1481 1482/** 1483 * manage_rcvq - manage a context's receive queue 1484 * @uctxt: the context 1485 * @subctxt: the sub-context 1486 * @arg: start/stop action to carry out 1487 * 1488 * start_stop == 0 disables receive on the context, for use in queue 1489 * overflow conditions. start_stop==1 re-enables, to be used to 1490 * re-init the software copy of the head register 1491 */ 1492static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1493 unsigned long arg) 1494{ 1495 struct hfi1_devdata *dd = uctxt->dd; 1496 unsigned int rcvctrl_op; 1497 int start_stop; 1498 1499 if (subctxt) 1500 return 0; 1501 1502 if (get_user(start_stop, (int __user *)arg)) 1503 return -EFAULT; 1504 1505 /* atomically clear receive enable ctxt. */ 1506 if (start_stop) { 1507 /* 1508 * On enable, force in-memory copy of the tail register to 1509 * 0, so that protocol code doesn't have to worry about 1510 * whether or not the chip has yet updated the in-memory 1511 * copy or not on return from the system call. The chip 1512 * always resets it's tail register back to 0 on a 1513 * transition from disabled to enabled. 1514 */ 1515 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1516 clear_rcvhdrtail(uctxt); 1517 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1518 } else { 1519 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1520 } 1521 hfi1_rcvctrl(dd, rcvctrl_op, uctxt); 1522 /* always; new head should be equal to new tail; see above */ 1523 1524 return 0; 1525} 1526 1527/* 1528 * clear the event notifier events for this context. 1529 * User process then performs actions appropriate to bit having been 1530 * set, if desired, and checks again in future. 1531 */ 1532static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1533 unsigned long arg) 1534{ 1535 int i; 1536 struct hfi1_devdata *dd = uctxt->dd; 1537 unsigned long *evs; 1538 unsigned long events; 1539 1540 if (!dd->events) 1541 return 0; 1542 1543 if (get_user(events, (unsigned long __user *)arg)) 1544 return -EFAULT; 1545 1546 evs = dd->events + uctxt_offset(uctxt) + subctxt; 1547 1548 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1549 if (!test_bit(i, &events)) 1550 continue; 1551 clear_bit(i, evs); 1552 } 1553 return 0; 1554} 1555 1556static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg) 1557{ 1558 int i; 1559 struct hfi1_pportdata *ppd = uctxt->ppd; 1560 struct hfi1_devdata *dd = uctxt->dd; 1561 u16 pkey; 1562 1563 if (!HFI1_CAP_IS_USET(PKEY_CHECK)) 1564 return -EPERM; 1565 1566 if (get_user(pkey, (u16 __user *)arg)) 1567 return -EFAULT; 1568 1569 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 1570 return -EINVAL; 1571 1572 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1573 if (pkey == ppd->pkeys[i]) 1574 return hfi1_set_ctxt_pkey(dd, uctxt, pkey); 1575 1576 return -ENOENT; 1577} 1578 1579/** 1580 * ctxt_reset - Reset the user context 1581 * @uctxt: valid user context 1582 */ 1583static int ctxt_reset(struct hfi1_ctxtdata *uctxt) 1584{ 1585 struct send_context *sc; 1586 struct hfi1_devdata *dd; 1587 int ret = 0; 1588 1589 if (!uctxt || !uctxt->dd || !uctxt->sc) 1590 return -EINVAL; 1591 1592 /* 1593 * There is no protection here. User level has to guarantee that 1594 * no one will be writing to the send context while it is being 1595 * re-initialized. If user level breaks that guarantee, it will 1596 * break it's own context and no one else's. 1597 */ 1598 dd = uctxt->dd; 1599 sc = uctxt->sc; 1600 1601 /* 1602 * Wait until the interrupt handler has marked the context as 1603 * halted or frozen. Report error if we time out. 1604 */ 1605 wait_event_interruptible_timeout( 1606 sc->halt_wait, (sc->flags & SCF_HALTED), 1607 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1608 if (!(sc->flags & SCF_HALTED)) 1609 return -ENOLCK; 1610 1611 /* 1612 * If the send context was halted due to a Freeze, wait until the 1613 * device has been "unfrozen" before resetting the context. 1614 */ 1615 if (sc->flags & SCF_FROZEN) { 1616 wait_event_interruptible_timeout( 1617 dd->event_queue, 1618 !(READ_ONCE(dd->flags) & HFI1_FROZEN), 1619 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1620 if (dd->flags & HFI1_FROZEN) 1621 return -ENOLCK; 1622 1623 if (dd->flags & HFI1_FORCED_FREEZE) 1624 /* 1625 * Don't allow context reset if we are into 1626 * forced freeze 1627 */ 1628 return -ENODEV; 1629 1630 sc_disable(sc); 1631 ret = sc_enable(sc); 1632 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt); 1633 } else { 1634 ret = sc_restart(sc); 1635 } 1636 if (!ret) 1637 sc_return_credits(sc); 1638 1639 return ret; 1640} 1641 1642static void user_remove(struct hfi1_devdata *dd) 1643{ 1644 1645 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1646} 1647 1648static int user_add(struct hfi1_devdata *dd) 1649{ 1650 char name[10]; 1651 int ret; 1652 1653 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1654 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1655 &dd->user_cdev, &dd->user_device, 1656 true, &dd->verbs_dev.rdi.ibdev.dev.kobj); 1657 if (ret) 1658 user_remove(dd); 1659 1660 return ret; 1661} 1662 1663/* 1664 * Create per-unit files in /dev 1665 */ 1666int hfi1_device_create(struct hfi1_devdata *dd) 1667{ 1668 return user_add(dd); 1669} 1670 1671/* 1672 * Remove per-unit files in /dev 1673 * void, core kernel returns no errors for this stuff 1674 */ 1675void hfi1_device_remove(struct hfi1_devdata *dd) 1676{ 1677 user_remove(dd); 1678}