cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

firmware.c (63600B)


      1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
      2/*
      3 * Copyright(c) 2015 - 2017 Intel Corporation.
      4 */
      5
      6#include <linux/firmware.h>
      7#include <linux/mutex.h>
      8#include <linux/delay.h>
      9#include <linux/crc32.h>
     10
     11#include "hfi.h"
     12#include "trace.h"
     13
     14/*
     15 * Make it easy to toggle firmware file name and if it gets loaded by
     16 * editing the following. This may be something we do while in development
     17 * but not necessarily something a user would ever need to use.
     18 */
     19#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
     20#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
     21#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
     22#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
     23#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
     24#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
     25#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
     26#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
     27#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
     28
     29MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
     30MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
     31MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
     32MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
     33
     34static uint fw_8051_load = 1;
     35static uint fw_fabric_serdes_load = 1;
     36static uint fw_pcie_serdes_load = 1;
     37static uint fw_sbus_load = 1;
     38
     39/* Firmware file names get set in hfi1_firmware_init() based on the above */
     40static char *fw_8051_name;
     41static char *fw_fabric_serdes_name;
     42static char *fw_sbus_name;
     43static char *fw_pcie_serdes_name;
     44
     45#define SBUS_MAX_POLL_COUNT 100
     46#define SBUS_COUNTER(reg, name) \
     47	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
     48	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
     49
     50/*
     51 * Firmware security header.
     52 */
     53struct css_header {
     54	u32 module_type;
     55	u32 header_len;
     56	u32 header_version;
     57	u32 module_id;
     58	u32 module_vendor;
     59	u32 date;		/* BCD yyyymmdd */
     60	u32 size;		/* in DWORDs */
     61	u32 key_size;		/* in DWORDs */
     62	u32 modulus_size;	/* in DWORDs */
     63	u32 exponent_size;	/* in DWORDs */
     64	u32 reserved[22];
     65};
     66
     67/* expected field values */
     68#define CSS_MODULE_TYPE	   0x00000006
     69#define CSS_HEADER_LEN	   0x000000a1
     70#define CSS_HEADER_VERSION 0x00010000
     71#define CSS_MODULE_VENDOR  0x00008086
     72
     73#define KEY_SIZE      256
     74#define MU_SIZE		8
     75#define EXPONENT_SIZE	4
     76
     77/* size of platform configuration partition */
     78#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
     79
     80/* size of file of plaform configuration encoded in format version 4 */
     81#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
     82
     83/* the file itself */
     84struct firmware_file {
     85	struct css_header css_header;
     86	u8 modulus[KEY_SIZE];
     87	u8 exponent[EXPONENT_SIZE];
     88	u8 signature[KEY_SIZE];
     89	u8 firmware[];
     90};
     91
     92struct augmented_firmware_file {
     93	struct css_header css_header;
     94	u8 modulus[KEY_SIZE];
     95	u8 exponent[EXPONENT_SIZE];
     96	u8 signature[KEY_SIZE];
     97	u8 r2[KEY_SIZE];
     98	u8 mu[MU_SIZE];
     99	u8 firmware[];
    100};
    101
    102/* augmented file size difference */
    103#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
    104						sizeof(struct firmware_file))
    105
    106struct firmware_details {
    107	/* Linux core piece */
    108	const struct firmware *fw;
    109
    110	struct css_header *css_header;
    111	u8 *firmware_ptr;		/* pointer to binary data */
    112	u32 firmware_len;		/* length in bytes */
    113	u8 *modulus;			/* pointer to the modulus */
    114	u8 *exponent;			/* pointer to the exponent */
    115	u8 *signature;			/* pointer to the signature */
    116	u8 *r2;				/* pointer to r2 */
    117	u8 *mu;				/* pointer to mu */
    118	struct augmented_firmware_file dummy_header;
    119};
    120
    121/*
    122 * The mutex protects fw_state, fw_err, and all of the firmware_details
    123 * variables.
    124 */
    125static DEFINE_MUTEX(fw_mutex);
    126enum fw_state {
    127	FW_EMPTY,
    128	FW_TRY,
    129	FW_FINAL,
    130	FW_ERR
    131};
    132
    133static enum fw_state fw_state = FW_EMPTY;
    134static int fw_err;
    135static struct firmware_details fw_8051;
    136static struct firmware_details fw_fabric;
    137static struct firmware_details fw_pcie;
    138static struct firmware_details fw_sbus;
    139
    140/* flags for turn_off_spicos() */
    141#define SPICO_SBUS   0x1
    142#define SPICO_FABRIC 0x2
    143#define ENABLE_SPICO_SMASK 0x1
    144
    145/* security block commands */
    146#define RSA_CMD_INIT  0x1
    147#define RSA_CMD_START 0x2
    148
    149/* security block status */
    150#define RSA_STATUS_IDLE   0x0
    151#define RSA_STATUS_ACTIVE 0x1
    152#define RSA_STATUS_DONE   0x2
    153#define RSA_STATUS_FAILED 0x3
    154
    155/* RSA engine timeout, in ms */
    156#define RSA_ENGINE_TIMEOUT 100 /* ms */
    157
    158/* hardware mutex timeout, in ms */
    159#define HM_TIMEOUT 10 /* ms */
    160
    161/* 8051 memory access timeout, in us */
    162#define DC8051_ACCESS_TIMEOUT 100 /* us */
    163
    164/* the number of fabric SerDes on the SBus */
    165#define NUM_FABRIC_SERDES 4
    166
    167/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
    168#define SBUS_READ_COMPLETE 0x4
    169
    170/* SBus fabric SerDes addresses, one set per HFI */
    171static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
    172	{ 0x01, 0x02, 0x03, 0x04 },
    173	{ 0x28, 0x29, 0x2a, 0x2b }
    174};
    175
    176/* SBus PCIe SerDes addresses, one set per HFI */
    177static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
    178	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
    179	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
    180	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
    181	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
    182};
    183
    184/* SBus PCIe PCS addresses, one set per HFI */
    185const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
    186	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
    187	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
    188	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
    189	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
    190};
    191
    192/* SBus fabric SerDes broadcast addresses, one per HFI */
    193static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
    194static const u8 all_fabric_serdes_broadcast = 0xe1;
    195
    196/* SBus PCIe SerDes broadcast addresses, one per HFI */
    197const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
    198static const u8 all_pcie_serdes_broadcast = 0xe0;
    199
    200static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
    201	0,
    202	SYSTEM_TABLE_MAX,
    203	PORT_TABLE_MAX,
    204	RX_PRESET_TABLE_MAX,
    205	TX_PRESET_TABLE_MAX,
    206	QSFP_ATTEN_TABLE_MAX,
    207	VARIABLE_SETTINGS_TABLE_MAX
    208};
    209
    210/* forwards */
    211static void dispose_one_firmware(struct firmware_details *fdet);
    212static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
    213				       struct firmware_details *fdet);
    214static void dump_fw_version(struct hfi1_devdata *dd);
    215
    216/*
    217 * Read a single 64-bit value from 8051 data memory.
    218 *
    219 * Expects:
    220 * o caller to have already set up data read, no auto increment
    221 * o caller to turn off read enable when finished
    222 *
    223 * The address argument is a byte offset.  Bits 0:2 in the address are
    224 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
    225 * the lower bits are zero.
    226 *
    227 * Return 0 on success, -ENXIO on a read error (timeout).
    228 */
    229static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
    230{
    231	u64 reg;
    232	int count;
    233
    234	/* step 1: set the address, clear enable */
    235	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
    236			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
    237	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
    238	/* step 2: enable */
    239	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
    240		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
    241
    242	/* wait until ACCESS_COMPLETED is set */
    243	count = 0;
    244	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
    245		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
    246		    == 0) {
    247		count++;
    248		if (count > DC8051_ACCESS_TIMEOUT) {
    249			dd_dev_err(dd, "timeout reading 8051 data\n");
    250			return -ENXIO;
    251		}
    252		ndelay(10);
    253	}
    254
    255	/* gather the data */
    256	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
    257
    258	return 0;
    259}
    260
    261/*
    262 * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
    263 * Return 0 on success, -errno on error.
    264 */
    265int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
    266{
    267	unsigned long flags;
    268	u32 done;
    269	int ret = 0;
    270
    271	spin_lock_irqsave(&dd->dc8051_memlock, flags);
    272
    273	/* data read set-up, no auto-increment */
    274	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
    275
    276	for (done = 0; done < len; addr += 8, done += 8, result++) {
    277		ret = __read_8051_data(dd, addr, result);
    278		if (ret)
    279			break;
    280	}
    281
    282	/* turn off read enable */
    283	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
    284
    285	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
    286
    287	return ret;
    288}
    289
    290/*
    291 * Write data or code to the 8051 code or data RAM.
    292 */
    293static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
    294		      const u8 *data, u32 len)
    295{
    296	u64 reg;
    297	u32 offset;
    298	int aligned, count;
    299
    300	/* check alignment */
    301	aligned = ((unsigned long)data & 0x7) == 0;
    302
    303	/* write set-up */
    304	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
    305		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
    306	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
    307
    308	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
    309			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
    310		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
    311	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
    312
    313	/* write */
    314	for (offset = 0; offset < len; offset += 8) {
    315		int bytes = len - offset;
    316
    317		if (bytes < 8) {
    318			reg = 0;
    319			memcpy(&reg, &data[offset], bytes);
    320		} else if (aligned) {
    321			reg = *(u64 *)&data[offset];
    322		} else {
    323			memcpy(&reg, &data[offset], 8);
    324		}
    325		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
    326
    327		/* wait until ACCESS_COMPLETED is set */
    328		count = 0;
    329		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
    330		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
    331		    == 0) {
    332			count++;
    333			if (count > DC8051_ACCESS_TIMEOUT) {
    334				dd_dev_err(dd, "timeout writing 8051 data\n");
    335				return -ENXIO;
    336			}
    337			udelay(1);
    338		}
    339	}
    340
    341	/* turn off write access, auto increment (also sets to data access) */
    342	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
    343	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
    344
    345	return 0;
    346}
    347
    348/* return 0 if values match, non-zero and complain otherwise */
    349static int invalid_header(struct hfi1_devdata *dd, const char *what,
    350			  u32 actual, u32 expected)
    351{
    352	if (actual == expected)
    353		return 0;
    354
    355	dd_dev_err(dd,
    356		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
    357		   what, expected, actual);
    358	return 1;
    359}
    360
    361/*
    362 * Verify that the static fields in the CSS header match.
    363 */
    364static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
    365{
    366	/* verify CSS header fields (most sizes are in DW, so add /4) */
    367	if (invalid_header(dd, "module_type", css->module_type,
    368			   CSS_MODULE_TYPE) ||
    369	    invalid_header(dd, "header_len", css->header_len,
    370			   (sizeof(struct firmware_file) / 4)) ||
    371	    invalid_header(dd, "header_version", css->header_version,
    372			   CSS_HEADER_VERSION) ||
    373	    invalid_header(dd, "module_vendor", css->module_vendor,
    374			   CSS_MODULE_VENDOR) ||
    375	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
    376	    invalid_header(dd, "modulus_size", css->modulus_size,
    377			   KEY_SIZE / 4) ||
    378	    invalid_header(dd, "exponent_size", css->exponent_size,
    379			   EXPONENT_SIZE / 4)) {
    380		return -EINVAL;
    381	}
    382	return 0;
    383}
    384
    385/*
    386 * Make sure there are at least some bytes after the prefix.
    387 */
    388static int payload_check(struct hfi1_devdata *dd, const char *name,
    389			 long file_size, long prefix_size)
    390{
    391	/* make sure we have some payload */
    392	if (prefix_size >= file_size) {
    393		dd_dev_err(dd,
    394			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
    395			   name, file_size, prefix_size);
    396		return -EINVAL;
    397	}
    398
    399	return 0;
    400}
    401
    402/*
    403 * Request the firmware from the system.  Extract the pieces and fill in
    404 * fdet.  If successful, the caller will need to call dispose_one_firmware().
    405 * Returns 0 on success, -ERRNO on error.
    406 */
    407static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
    408			       struct firmware_details *fdet)
    409{
    410	struct css_header *css;
    411	int ret;
    412
    413	memset(fdet, 0, sizeof(*fdet));
    414
    415	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
    416	if (ret) {
    417		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
    418			    name, ret);
    419		return ret;
    420	}
    421
    422	/* verify the firmware */
    423	if (fdet->fw->size < sizeof(struct css_header)) {
    424		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
    425		ret = -EINVAL;
    426		goto done;
    427	}
    428	css = (struct css_header *)fdet->fw->data;
    429
    430	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
    431	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
    432	hfi1_cdbg(FIRMWARE, "CSS structure:");
    433	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
    434	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
    435		  css->header_len, 4 * css->header_len);
    436	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
    437	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
    438	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
    439	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
    440	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
    441		  css->size, 4 * css->size);
    442	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
    443		  css->key_size, 4 * css->key_size);
    444	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
    445		  css->modulus_size, 4 * css->modulus_size);
    446	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
    447		  css->exponent_size, 4 * css->exponent_size);
    448	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
    449		  fdet->fw->size - sizeof(struct firmware_file));
    450
    451	/*
    452	 * If the file does not have a valid CSS header, fail.
    453	 * Otherwise, check the CSS size field for an expected size.
    454	 * The augmented file has r2 and mu inserted after the header
    455	 * was generated, so there will be a known difference between
    456	 * the CSS header size and the actual file size.  Use this
    457	 * difference to identify an augmented file.
    458	 *
    459	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
    460	 */
    461	ret = verify_css_header(dd, css);
    462	if (ret) {
    463		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
    464	} else if ((css->size * 4) == fdet->fw->size) {
    465		/* non-augmented firmware file */
    466		struct firmware_file *ff = (struct firmware_file *)
    467							fdet->fw->data;
    468
    469		/* make sure there are bytes in the payload */
    470		ret = payload_check(dd, name, fdet->fw->size,
    471				    sizeof(struct firmware_file));
    472		if (ret == 0) {
    473			fdet->css_header = css;
    474			fdet->modulus = ff->modulus;
    475			fdet->exponent = ff->exponent;
    476			fdet->signature = ff->signature;
    477			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
    478			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
    479			fdet->firmware_ptr = ff->firmware;
    480			fdet->firmware_len = fdet->fw->size -
    481						sizeof(struct firmware_file);
    482			/*
    483			 * Header does not include r2 and mu - generate here.
    484			 * For now, fail.
    485			 */
    486			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
    487			ret = -EINVAL;
    488		}
    489	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
    490		/* augmented firmware file */
    491		struct augmented_firmware_file *aff =
    492			(struct augmented_firmware_file *)fdet->fw->data;
    493
    494		/* make sure there are bytes in the payload */
    495		ret = payload_check(dd, name, fdet->fw->size,
    496				    sizeof(struct augmented_firmware_file));
    497		if (ret == 0) {
    498			fdet->css_header = css;
    499			fdet->modulus = aff->modulus;
    500			fdet->exponent = aff->exponent;
    501			fdet->signature = aff->signature;
    502			fdet->r2 = aff->r2;
    503			fdet->mu = aff->mu;
    504			fdet->firmware_ptr = aff->firmware;
    505			fdet->firmware_len = fdet->fw->size -
    506					sizeof(struct augmented_firmware_file);
    507		}
    508	} else {
    509		/* css->size check failed */
    510		dd_dev_err(dd,
    511			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
    512			   fdet->fw->size / 4,
    513			   (fdet->fw->size - AUGMENT_SIZE) / 4,
    514			   css->size);
    515
    516		ret = -EINVAL;
    517	}
    518
    519done:
    520	/* if returning an error, clean up after ourselves */
    521	if (ret)
    522		dispose_one_firmware(fdet);
    523	return ret;
    524}
    525
    526static void dispose_one_firmware(struct firmware_details *fdet)
    527{
    528	release_firmware(fdet->fw);
    529	/* erase all previous information */
    530	memset(fdet, 0, sizeof(*fdet));
    531}
    532
    533/*
    534 * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
    535 * at all.  If called with the firmware state in FW_TRY, use alternate names.
    536 * On exit, this routine will have set the firmware state to one of FW_TRY,
    537 * FW_FINAL, or FW_ERR.
    538 *
    539 * Must be holding fw_mutex.
    540 */
    541static void __obtain_firmware(struct hfi1_devdata *dd)
    542{
    543	int err = 0;
    544
    545	if (fw_state == FW_FINAL)	/* nothing more to obtain */
    546		return;
    547	if (fw_state == FW_ERR)		/* already in error */
    548		return;
    549
    550	/* fw_state is FW_EMPTY or FW_TRY */
    551retry:
    552	if (fw_state == FW_TRY) {
    553		/*
    554		 * We tried the original and it failed.  Move to the
    555		 * alternate.
    556		 */
    557		dd_dev_warn(dd, "using alternate firmware names\n");
    558		/*
    559		 * Let others run.  Some systems, when missing firmware, does
    560		 * something that holds for 30 seconds.  If we do that twice
    561		 * in a row it triggers task blocked warning.
    562		 */
    563		cond_resched();
    564		if (fw_8051_load)
    565			dispose_one_firmware(&fw_8051);
    566		if (fw_fabric_serdes_load)
    567			dispose_one_firmware(&fw_fabric);
    568		if (fw_sbus_load)
    569			dispose_one_firmware(&fw_sbus);
    570		if (fw_pcie_serdes_load)
    571			dispose_one_firmware(&fw_pcie);
    572		fw_8051_name = ALT_FW_8051_NAME_ASIC;
    573		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
    574		fw_sbus_name = ALT_FW_SBUS_NAME;
    575		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
    576
    577		/*
    578		 * Add a delay before obtaining and loading debug firmware.
    579		 * Authorization will fail if the delay between firmware
    580		 * authorization events is shorter than 50us. Add 100us to
    581		 * make a delay time safe.
    582		 */
    583		usleep_range(100, 120);
    584	}
    585
    586	if (fw_sbus_load) {
    587		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
    588		if (err)
    589			goto done;
    590	}
    591
    592	if (fw_pcie_serdes_load) {
    593		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
    594		if (err)
    595			goto done;
    596	}
    597
    598	if (fw_fabric_serdes_load) {
    599		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
    600					  &fw_fabric);
    601		if (err)
    602			goto done;
    603	}
    604
    605	if (fw_8051_load) {
    606		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
    607		if (err)
    608			goto done;
    609	}
    610
    611done:
    612	if (err) {
    613		/* oops, had problems obtaining a firmware */
    614		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
    615			/* retry with alternate (RTL only) */
    616			fw_state = FW_TRY;
    617			goto retry;
    618		}
    619		dd_dev_err(dd, "unable to obtain working firmware\n");
    620		fw_state = FW_ERR;
    621		fw_err = -ENOENT;
    622	} else {
    623		/* success */
    624		if (fw_state == FW_EMPTY &&
    625		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
    626			fw_state = FW_TRY;	/* may retry later */
    627		else
    628			fw_state = FW_FINAL;	/* cannot try again */
    629	}
    630}
    631
    632/*
    633 * Called by all HFIs when loading their firmware - i.e. device probe time.
    634 * The first one will do the actual firmware load.  Use a mutex to resolve
    635 * any possible race condition.
    636 *
    637 * The call to this routine cannot be moved to driver load because the kernel
    638 * call request_firmware() requires a device which is only available after
    639 * the first device probe.
    640 */
    641static int obtain_firmware(struct hfi1_devdata *dd)
    642{
    643	unsigned long timeout;
    644
    645	mutex_lock(&fw_mutex);
    646
    647	/* 40s delay due to long delay on missing firmware on some systems */
    648	timeout = jiffies + msecs_to_jiffies(40000);
    649	while (fw_state == FW_TRY) {
    650		/*
    651		 * Another device is trying the firmware.  Wait until it
    652		 * decides what works (or not).
    653		 */
    654		if (time_after(jiffies, timeout)) {
    655			/* waited too long */
    656			dd_dev_err(dd, "Timeout waiting for firmware try");
    657			fw_state = FW_ERR;
    658			fw_err = -ETIMEDOUT;
    659			break;
    660		}
    661		mutex_unlock(&fw_mutex);
    662		msleep(20);	/* arbitrary delay */
    663		mutex_lock(&fw_mutex);
    664	}
    665	/* not in FW_TRY state */
    666
    667	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
    668	if (fw_state == FW_EMPTY)
    669		__obtain_firmware(dd);
    670
    671	mutex_unlock(&fw_mutex);
    672	return fw_err;
    673}
    674
    675/*
    676 * Called when the driver unloads.  The timing is asymmetric with its
    677 * counterpart, obtain_firmware().  If called at device remove time,
    678 * then it is conceivable that another device could probe while the
    679 * firmware is being disposed.  The mutexes can be moved to do that
    680 * safely, but then the firmware would be requested from the OS multiple
    681 * times.
    682 *
    683 * No mutex is needed as the driver is unloading and there cannot be any
    684 * other callers.
    685 */
    686void dispose_firmware(void)
    687{
    688	dispose_one_firmware(&fw_8051);
    689	dispose_one_firmware(&fw_fabric);
    690	dispose_one_firmware(&fw_pcie);
    691	dispose_one_firmware(&fw_sbus);
    692
    693	/* retain the error state, otherwise revert to empty */
    694	if (fw_state != FW_ERR)
    695		fw_state = FW_EMPTY;
    696}
    697
    698/*
    699 * Called with the result of a firmware download.
    700 *
    701 * Return 1 to retry loading the firmware, 0 to stop.
    702 */
    703static int retry_firmware(struct hfi1_devdata *dd, int load_result)
    704{
    705	int retry;
    706
    707	mutex_lock(&fw_mutex);
    708
    709	if (load_result == 0) {
    710		/*
    711		 * The load succeeded, so expect all others to do the same.
    712		 * Do not retry again.
    713		 */
    714		if (fw_state == FW_TRY)
    715			fw_state = FW_FINAL;
    716		retry = 0;	/* do NOT retry */
    717	} else if (fw_state == FW_TRY) {
    718		/* load failed, obtain alternate firmware */
    719		__obtain_firmware(dd);
    720		retry = (fw_state == FW_FINAL);
    721	} else {
    722		/* else in FW_FINAL or FW_ERR, no retry in either case */
    723		retry = 0;
    724	}
    725
    726	mutex_unlock(&fw_mutex);
    727	return retry;
    728}
    729
    730/*
    731 * Write a block of data to a given array CSR.  All calls will be in
    732 * multiples of 8 bytes.
    733 */
    734static void write_rsa_data(struct hfi1_devdata *dd, int what,
    735			   const u8 *data, int nbytes)
    736{
    737	int qw_size = nbytes / 8;
    738	int i;
    739
    740	if (((unsigned long)data & 0x7) == 0) {
    741		/* aligned */
    742		u64 *ptr = (u64 *)data;
    743
    744		for (i = 0; i < qw_size; i++, ptr++)
    745			write_csr(dd, what + (8 * i), *ptr);
    746	} else {
    747		/* not aligned */
    748		for (i = 0; i < qw_size; i++, data += 8) {
    749			u64 value;
    750
    751			memcpy(&value, data, 8);
    752			write_csr(dd, what + (8 * i), value);
    753		}
    754	}
    755}
    756
    757/*
    758 * Write a block of data to a given CSR as a stream of writes.  All calls will
    759 * be in multiples of 8 bytes.
    760 */
    761static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
    762				    const u8 *data, int nbytes)
    763{
    764	u64 *ptr = (u64 *)data;
    765	int qw_size = nbytes / 8;
    766
    767	for (; qw_size > 0; qw_size--, ptr++)
    768		write_csr(dd, what, *ptr);
    769}
    770
    771/*
    772 * Download the signature and start the RSA mechanism.  Wait for
    773 * RSA_ENGINE_TIMEOUT before giving up.
    774 */
    775static int run_rsa(struct hfi1_devdata *dd, const char *who,
    776		   const u8 *signature)
    777{
    778	unsigned long timeout;
    779	u64 reg;
    780	u32 status;
    781	int ret = 0;
    782
    783	/* write the signature */
    784	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
    785
    786	/* initialize RSA */
    787	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
    788
    789	/*
    790	 * Make sure the engine is idle and insert a delay between the two
    791	 * writes to MISC_CFG_RSA_CMD.
    792	 */
    793	status = (read_csr(dd, MISC_CFG_FW_CTRL)
    794			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
    795			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
    796	if (status != RSA_STATUS_IDLE) {
    797		dd_dev_err(dd, "%s security engine not idle - giving up\n",
    798			   who);
    799		return -EBUSY;
    800	}
    801
    802	/* start RSA */
    803	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
    804
    805	/*
    806	 * Look for the result.
    807	 *
    808	 * The RSA engine is hooked up to two MISC errors.  The driver
    809	 * masks these errors as they do not respond to the standard
    810	 * error "clear down" mechanism.  Look for these errors here and
    811	 * clear them when possible.  This routine will exit with the
    812	 * errors of the current run still set.
    813	 *
    814	 * MISC_FW_AUTH_FAILED_ERR
    815	 *	Firmware authorization failed.  This can be cleared by
    816	 *	re-initializing the RSA engine, then clearing the status bit.
    817	 *	Do not re-init the RSA angine immediately after a successful
    818	 *	run - this will reset the current authorization.
    819	 *
    820	 * MISC_KEY_MISMATCH_ERR
    821	 *	Key does not match.  The only way to clear this is to load
    822	 *	a matching key then clear the status bit.  If this error
    823	 *	is raised, it will persist outside of this routine until a
    824	 *	matching key is loaded.
    825	 */
    826	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
    827	while (1) {
    828		status = (read_csr(dd, MISC_CFG_FW_CTRL)
    829			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
    830			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
    831
    832		if (status == RSA_STATUS_IDLE) {
    833			/* should not happen */
    834			dd_dev_err(dd, "%s firmware security bad idle state\n",
    835				   who);
    836			ret = -EINVAL;
    837			break;
    838		} else if (status == RSA_STATUS_DONE) {
    839			/* finished successfully */
    840			break;
    841		} else if (status == RSA_STATUS_FAILED) {
    842			/* finished unsuccessfully */
    843			ret = -EINVAL;
    844			break;
    845		}
    846		/* else still active */
    847
    848		if (time_after(jiffies, timeout)) {
    849			/*
    850			 * Timed out while active.  We can't reset the engine
    851			 * if it is stuck active, but run through the
    852			 * error code to see what error bits are set.
    853			 */
    854			dd_dev_err(dd, "%s firmware security time out\n", who);
    855			ret = -ETIMEDOUT;
    856			break;
    857		}
    858
    859		msleep(20);
    860	}
    861
    862	/*
    863	 * Arrive here on success or failure.  Clear all RSA engine
    864	 * errors.  All current errors will stick - the RSA logic is keeping
    865	 * error high.  All previous errors will clear - the RSA logic
    866	 * is not keeping the error high.
    867	 */
    868	write_csr(dd, MISC_ERR_CLEAR,
    869		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
    870		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
    871	/*
    872	 * All that is left are the current errors.  Print warnings on
    873	 * authorization failure details, if any.  Firmware authorization
    874	 * can be retried, so these are only warnings.
    875	 */
    876	reg = read_csr(dd, MISC_ERR_STATUS);
    877	if (ret) {
    878		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
    879			dd_dev_warn(dd, "%s firmware authorization failed\n",
    880				    who);
    881		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
    882			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
    883	}
    884
    885	return ret;
    886}
    887
    888static void load_security_variables(struct hfi1_devdata *dd,
    889				    struct firmware_details *fdet)
    890{
    891	/* Security variables a.  Write the modulus */
    892	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
    893	/* Security variables b.  Write the r2 */
    894	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
    895	/* Security variables c.  Write the mu */
    896	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
    897	/* Security variables d.  Write the header */
    898	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
    899				(u8 *)fdet->css_header,
    900				sizeof(struct css_header));
    901}
    902
    903/* return the 8051 firmware state */
    904static inline u32 get_firmware_state(struct hfi1_devdata *dd)
    905{
    906	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
    907
    908	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
    909				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
    910}
    911
    912/*
    913 * Wait until the firmware is up and ready to take host requests.
    914 * Return 0 on success, -ETIMEDOUT on timeout.
    915 */
    916int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
    917{
    918	unsigned long timeout;
    919
    920	/* in the simulator, the fake 8051 is always ready */
    921	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
    922		return 0;
    923
    924	timeout = msecs_to_jiffies(mstimeout) + jiffies;
    925	while (1) {
    926		if (get_firmware_state(dd) == 0xa0)	/* ready */
    927			return 0;
    928		if (time_after(jiffies, timeout))	/* timed out */
    929			return -ETIMEDOUT;
    930		usleep_range(1950, 2050); /* sleep 2ms-ish */
    931	}
    932}
    933
    934/*
    935 * Load the 8051 firmware.
    936 */
    937static int load_8051_firmware(struct hfi1_devdata *dd,
    938			      struct firmware_details *fdet)
    939{
    940	u64 reg;
    941	int ret;
    942	u8 ver_major;
    943	u8 ver_minor;
    944	u8 ver_patch;
    945
    946	/*
    947	 * DC Reset sequence
    948	 * Load DC 8051 firmware
    949	 */
    950	/*
    951	 * DC reset step 1: Reset DC8051
    952	 */
    953	reg = DC_DC8051_CFG_RST_M8051W_SMASK
    954		| DC_DC8051_CFG_RST_CRAM_SMASK
    955		| DC_DC8051_CFG_RST_DRAM_SMASK
    956		| DC_DC8051_CFG_RST_IRAM_SMASK
    957		| DC_DC8051_CFG_RST_SFR_SMASK;
    958	write_csr(dd, DC_DC8051_CFG_RST, reg);
    959
    960	/*
    961	 * DC reset step 2 (optional): Load 8051 data memory with link
    962	 * configuration
    963	 */
    964
    965	/*
    966	 * DC reset step 3: Load DC8051 firmware
    967	 */
    968	/* release all but the core reset */
    969	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
    970	write_csr(dd, DC_DC8051_CFG_RST, reg);
    971
    972	/* Firmware load step 1 */
    973	load_security_variables(dd, fdet);
    974
    975	/*
    976	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
    977	 */
    978	write_csr(dd, MISC_CFG_FW_CTRL, 0);
    979
    980	/* Firmware load steps 3-5 */
    981	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
    982			 fdet->firmware_len);
    983	if (ret)
    984		return ret;
    985
    986	/*
    987	 * DC reset step 4. Host starts the DC8051 firmware
    988	 */
    989	/*
    990	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
    991	 */
    992	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
    993
    994	/* Firmware load steps 7-10 */
    995	ret = run_rsa(dd, "8051", fdet->signature);
    996	if (ret)
    997		return ret;
    998
    999	/* clear all reset bits, releasing the 8051 */
   1000	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
   1001
   1002	/*
   1003	 * DC reset step 5. Wait for firmware to be ready to accept host
   1004	 * requests.
   1005	 */
   1006	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
   1007	if (ret) { /* timed out */
   1008		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
   1009			   get_firmware_state(dd));
   1010		return -ETIMEDOUT;
   1011	}
   1012
   1013	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
   1014	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
   1015		    (int)ver_major, (int)ver_minor, (int)ver_patch);
   1016	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
   1017	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
   1018	if (ret != HCMD_SUCCESS) {
   1019		dd_dev_err(dd,
   1020			   "Failed to set host interface version, return 0x%x\n",
   1021			   ret);
   1022		return -EIO;
   1023	}
   1024
   1025	return 0;
   1026}
   1027
   1028/*
   1029 * Write the SBus request register
   1030 *
   1031 * No need for masking - the arguments are sized exactly.
   1032 */
   1033void sbus_request(struct hfi1_devdata *dd,
   1034		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
   1035{
   1036	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
   1037		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
   1038		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
   1039		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
   1040		  ((u64)receiver_addr <<
   1041		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
   1042}
   1043
   1044/*
   1045 * Read a value from the SBus.
   1046 *
   1047 * Requires the caller to be in fast mode
   1048 */
   1049static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
   1050		     u32 data_in)
   1051{
   1052	u64 reg;
   1053	int retries;
   1054	int success = 0;
   1055	u32 result = 0;
   1056	u32 result_code = 0;
   1057
   1058	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
   1059
   1060	for (retries = 0; retries < 100; retries++) {
   1061		usleep_range(1000, 1200); /* arbitrary */
   1062		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
   1063		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
   1064				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
   1065		if (result_code != SBUS_READ_COMPLETE)
   1066			continue;
   1067
   1068		success = 1;
   1069		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
   1070			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
   1071		break;
   1072	}
   1073
   1074	if (!success) {
   1075		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
   1076			   result_code);
   1077	}
   1078
   1079	return result;
   1080}
   1081
   1082/*
   1083 * Turn off the SBus and fabric serdes spicos.
   1084 *
   1085 * + Must be called with Sbus fast mode turned on.
   1086 * + Must be called after fabric serdes broadcast is set up.
   1087 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
   1088 *   when using MISC_CFG_FW_CTRL.
   1089 */
   1090static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
   1091{
   1092	/* only needed on A0 */
   1093	if (!is_ax(dd))
   1094		return;
   1095
   1096	dd_dev_info(dd, "Turning off spicos:%s%s\n",
   1097		    flags & SPICO_SBUS ? " SBus" : "",
   1098		    flags & SPICO_FABRIC ? " fabric" : "");
   1099
   1100	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
   1101	/* disable SBus spico */
   1102	if (flags & SPICO_SBUS)
   1103		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
   1104			     WRITE_SBUS_RECEIVER, 0x00000040);
   1105
   1106	/* disable the fabric serdes spicos */
   1107	if (flags & SPICO_FABRIC)
   1108		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
   1109			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
   1110	write_csr(dd, MISC_CFG_FW_CTRL, 0);
   1111}
   1112
   1113/*
   1114 * Reset all of the fabric serdes for this HFI in preparation to take the
   1115 * link to Polling.
   1116 *
   1117 * To do a reset, we need to write to to the serdes registers.  Unfortunately,
   1118 * the fabric serdes download to the other HFI on the ASIC will have turned
   1119 * off the firmware validation on this HFI.  This means we can't write to the
   1120 * registers to reset the serdes.  Work around this by performing a complete
   1121 * re-download and validation of the fabric serdes firmware.  This, as a
   1122 * by-product, will reset the serdes.  NOTE: the re-download requires that
   1123 * the 8051 be in the Offline state.  I.e. not actively trying to use the
   1124 * serdes.  This routine is called at the point where the link is Offline and
   1125 * is getting ready to go to Polling.
   1126 */
   1127void fabric_serdes_reset(struct hfi1_devdata *dd)
   1128{
   1129	int ret;
   1130
   1131	if (!fw_fabric_serdes_load)
   1132		return;
   1133
   1134	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
   1135	if (ret) {
   1136		dd_dev_err(dd,
   1137			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
   1138		return;
   1139	}
   1140	set_sbus_fast_mode(dd);
   1141
   1142	if (is_ax(dd)) {
   1143		/* A0 serdes do not work with a re-download */
   1144		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
   1145
   1146		/* place SerDes in reset and disable SPICO */
   1147		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
   1148		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
   1149		udelay(1);
   1150		/* remove SerDes reset */
   1151		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
   1152		/* turn SPICO enable on */
   1153		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
   1154	} else {
   1155		turn_off_spicos(dd, SPICO_FABRIC);
   1156		/*
   1157		 * No need for firmware retry - what to download has already
   1158		 * been decided.
   1159		 * No need to pay attention to the load return - the only
   1160		 * failure is a validation failure, which has already been
   1161		 * checked by the initial download.
   1162		 */
   1163		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
   1164	}
   1165
   1166	clear_sbus_fast_mode(dd);
   1167	release_chip_resource(dd, CR_SBUS);
   1168}
   1169
   1170/* Access to the SBus in this routine should probably be serialized */
   1171int sbus_request_slow(struct hfi1_devdata *dd,
   1172		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
   1173{
   1174	u64 reg, count = 0;
   1175
   1176	/* make sure fast mode is clear */
   1177	clear_sbus_fast_mode(dd);
   1178
   1179	sbus_request(dd, receiver_addr, data_addr, command, data_in);
   1180	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
   1181		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
   1182	/* Wait for both DONE and RCV_DATA_VALID to go high */
   1183	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
   1184	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
   1185		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
   1186		if (count++ >= SBUS_MAX_POLL_COUNT) {
   1187			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
   1188			/*
   1189			 * If the loop has timed out, we are OK if DONE bit
   1190			 * is set and RCV_DATA_VALID and EXECUTE counters
   1191			 * are the same. If not, we cannot proceed.
   1192			 */
   1193			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
   1194			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
   1195			     SBUS_COUNTER(counts, EXECUTE)))
   1196				break;
   1197			return -ETIMEDOUT;
   1198		}
   1199		udelay(1);
   1200		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
   1201	}
   1202	count = 0;
   1203	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
   1204	/* Wait for DONE to clear after EXECUTE is cleared */
   1205	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
   1206	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
   1207		if (count++ >= SBUS_MAX_POLL_COUNT)
   1208			return -ETIME;
   1209		udelay(1);
   1210		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
   1211	}
   1212	return 0;
   1213}
   1214
   1215static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
   1216				       struct firmware_details *fdet)
   1217{
   1218	int i, err;
   1219	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
   1220
   1221	dd_dev_info(dd, "Downloading fabric firmware\n");
   1222
   1223	/* step 1: load security variables */
   1224	load_security_variables(dd, fdet);
   1225	/* step 2: place SerDes in reset and disable SPICO */
   1226	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
   1227	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
   1228	udelay(1);
   1229	/* step 3:  remove SerDes reset */
   1230	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
   1231	/* step 4: assert IMEM override */
   1232	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
   1233	/* step 5: download SerDes machine code */
   1234	for (i = 0; i < fdet->firmware_len; i += 4) {
   1235		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
   1236			     *(u32 *)&fdet->firmware_ptr[i]);
   1237	}
   1238	/* step 6: IMEM override off */
   1239	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
   1240	/* step 7: turn ECC on */
   1241	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
   1242
   1243	/* steps 8-11: run the RSA engine */
   1244	err = run_rsa(dd, "fabric serdes", fdet->signature);
   1245	if (err)
   1246		return err;
   1247
   1248	/* step 12: turn SPICO enable on */
   1249	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
   1250	/* step 13: enable core hardware interrupts */
   1251	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
   1252
   1253	return 0;
   1254}
   1255
   1256static int load_sbus_firmware(struct hfi1_devdata *dd,
   1257			      struct firmware_details *fdet)
   1258{
   1259	int i, err;
   1260	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
   1261
   1262	dd_dev_info(dd, "Downloading SBus firmware\n");
   1263
   1264	/* step 1: load security variables */
   1265	load_security_variables(dd, fdet);
   1266	/* step 2: place SPICO into reset and enable off */
   1267	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
   1268	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
   1269	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
   1270	/* step 4: set starting IMEM address for burst download */
   1271	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
   1272	/* step 5: download the SBus Master machine code */
   1273	for (i = 0; i < fdet->firmware_len; i += 4) {
   1274		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
   1275			     *(u32 *)&fdet->firmware_ptr[i]);
   1276	}
   1277	/* step 6: set IMEM_CNTL_EN off */
   1278	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
   1279	/* step 7: turn ECC on */
   1280	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
   1281
   1282	/* steps 8-11: run the RSA engine */
   1283	err = run_rsa(dd, "SBus", fdet->signature);
   1284	if (err)
   1285		return err;
   1286
   1287	/* step 12: set SPICO_ENABLE on */
   1288	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
   1289
   1290	return 0;
   1291}
   1292
   1293static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
   1294				     struct firmware_details *fdet)
   1295{
   1296	int i;
   1297	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
   1298
   1299	dd_dev_info(dd, "Downloading PCIe firmware\n");
   1300
   1301	/* step 1: load security variables */
   1302	load_security_variables(dd, fdet);
   1303	/* step 2: assert single step (halts the SBus Master spico) */
   1304	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
   1305	/* step 3: enable XDMEM access */
   1306	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
   1307	/* step 4: load firmware into SBus Master XDMEM */
   1308	/*
   1309	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
   1310	 * we only need to pick up the bytes and write them
   1311	 */
   1312	for (i = 0; i < fdet->firmware_len; i += 4) {
   1313		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
   1314			     *(u32 *)&fdet->firmware_ptr[i]);
   1315	}
   1316	/* step 5: disable XDMEM access */
   1317	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
   1318	/* step 6: allow SBus Spico to run */
   1319	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
   1320
   1321	/*
   1322	 * steps 7-11: run RSA, if it succeeds, firmware is available to
   1323	 * be swapped
   1324	 */
   1325	return run_rsa(dd, "PCIe serdes", fdet->signature);
   1326}
   1327
   1328/*
   1329 * Set the given broadcast values on the given list of devices.
   1330 */
   1331static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
   1332				 const u8 *addrs, int count)
   1333{
   1334	while (--count >= 0) {
   1335		/*
   1336		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
   1337		 * defaults for everything else.  Do not read-modify-write,
   1338		 * per instruction from the manufacturer.
   1339		 *
   1340		 * Register 0xfd:
   1341		 *	bits    what
   1342		 *	-----	---------------------------------
   1343		 *	  0	IGNORE_BROADCAST  (default 0)
   1344		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
   1345		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
   1346		 */
   1347		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
   1348			     (u32)bg1 << 4 | (u32)bg2 << 16);
   1349	}
   1350}
   1351
   1352int acquire_hw_mutex(struct hfi1_devdata *dd)
   1353{
   1354	unsigned long timeout;
   1355	int try = 0;
   1356	u8 mask = 1 << dd->hfi1_id;
   1357	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
   1358
   1359	if (user == mask) {
   1360		dd_dev_info(dd,
   1361			    "Hardware mutex already acquired, mutex mask %u\n",
   1362			    (u32)mask);
   1363		return 0;
   1364	}
   1365
   1366retry:
   1367	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
   1368	while (1) {
   1369		write_csr(dd, ASIC_CFG_MUTEX, mask);
   1370		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
   1371		if (user == mask)
   1372			return 0; /* success */
   1373		if (time_after(jiffies, timeout))
   1374			break; /* timed out */
   1375		msleep(20);
   1376	}
   1377
   1378	/* timed out */
   1379	dd_dev_err(dd,
   1380		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
   1381		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
   1382
   1383	if (try == 0) {
   1384		/* break mutex and retry */
   1385		write_csr(dd, ASIC_CFG_MUTEX, 0);
   1386		try++;
   1387		goto retry;
   1388	}
   1389
   1390	return -EBUSY;
   1391}
   1392
   1393void release_hw_mutex(struct hfi1_devdata *dd)
   1394{
   1395	u8 mask = 1 << dd->hfi1_id;
   1396	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
   1397
   1398	if (user != mask)
   1399		dd_dev_warn(dd,
   1400			    "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
   1401			    (u32)user, (u32)mask);
   1402	else
   1403		write_csr(dd, ASIC_CFG_MUTEX, 0);
   1404}
   1405
   1406/* return the given resource bit(s) as a mask for the given HFI */
   1407static inline u64 resource_mask(u32 hfi1_id, u32 resource)
   1408{
   1409	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
   1410}
   1411
   1412static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
   1413				       const char *func)
   1414{
   1415	dd_dev_err(dd,
   1416		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
   1417		   func);
   1418}
   1419
   1420/*
   1421 * Acquire access to a chip resource.
   1422 *
   1423 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
   1424 */
   1425static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
   1426{
   1427	u64 scratch0, all_bits, my_bit;
   1428	int ret;
   1429
   1430	if (resource & CR_DYN_MASK) {
   1431		/* a dynamic resource is in use if either HFI has set the bit */
   1432		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
   1433		    (resource & (CR_I2C1 | CR_I2C2))) {
   1434			/* discrete devices must serialize across both chains */
   1435			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
   1436					resource_mask(1, CR_I2C1 | CR_I2C2);
   1437		} else {
   1438			all_bits = resource_mask(0, resource) |
   1439						resource_mask(1, resource);
   1440		}
   1441		my_bit = resource_mask(dd->hfi1_id, resource);
   1442	} else {
   1443		/* non-dynamic resources are not split between HFIs */
   1444		all_bits = resource;
   1445		my_bit = resource;
   1446	}
   1447
   1448	/* lock against other callers within the driver wanting a resource */
   1449	mutex_lock(&dd->asic_data->asic_resource_mutex);
   1450
   1451	ret = acquire_hw_mutex(dd);
   1452	if (ret) {
   1453		fail_mutex_acquire_message(dd, __func__);
   1454		ret = -EIO;
   1455		goto done;
   1456	}
   1457
   1458	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
   1459	if (scratch0 & all_bits) {
   1460		ret = -EBUSY;
   1461	} else {
   1462		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
   1463		/* force write to be visible to other HFI on another OS */
   1464		(void)read_csr(dd, ASIC_CFG_SCRATCH);
   1465	}
   1466
   1467	release_hw_mutex(dd);
   1468
   1469done:
   1470	mutex_unlock(&dd->asic_data->asic_resource_mutex);
   1471	return ret;
   1472}
   1473
   1474/*
   1475 * Acquire access to a chip resource, wait up to mswait milliseconds for
   1476 * the resource to become available.
   1477 *
   1478 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
   1479 * acquire failed.
   1480 */
   1481int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
   1482{
   1483	unsigned long timeout;
   1484	int ret;
   1485
   1486	timeout = jiffies + msecs_to_jiffies(mswait);
   1487	while (1) {
   1488		ret = __acquire_chip_resource(dd, resource);
   1489		if (ret != -EBUSY)
   1490			return ret;
   1491		/* resource is busy, check our timeout */
   1492		if (time_after_eq(jiffies, timeout))
   1493			return -EBUSY;
   1494		usleep_range(80, 120);	/* arbitrary delay */
   1495	}
   1496}
   1497
   1498/*
   1499 * Release access to a chip resource
   1500 */
   1501void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
   1502{
   1503	u64 scratch0, bit;
   1504
   1505	/* only dynamic resources should ever be cleared */
   1506	if (!(resource & CR_DYN_MASK)) {
   1507		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
   1508			   resource);
   1509		return;
   1510	}
   1511	bit = resource_mask(dd->hfi1_id, resource);
   1512
   1513	/* lock against other callers within the driver wanting a resource */
   1514	mutex_lock(&dd->asic_data->asic_resource_mutex);
   1515
   1516	if (acquire_hw_mutex(dd)) {
   1517		fail_mutex_acquire_message(dd, __func__);
   1518		goto done;
   1519	}
   1520
   1521	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
   1522	if ((scratch0 & bit) != 0) {
   1523		scratch0 &= ~bit;
   1524		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
   1525		/* force write to be visible to other HFI on another OS */
   1526		(void)read_csr(dd, ASIC_CFG_SCRATCH);
   1527	} else {
   1528		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
   1529			    __func__, dd->hfi1_id, resource);
   1530	}
   1531
   1532	release_hw_mutex(dd);
   1533
   1534done:
   1535	mutex_unlock(&dd->asic_data->asic_resource_mutex);
   1536}
   1537
   1538/*
   1539 * Return true if resource is set, false otherwise.  Print a warning
   1540 * if not set and a function is supplied.
   1541 */
   1542bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
   1543			 const char *func)
   1544{
   1545	u64 scratch0, bit;
   1546
   1547	if (resource & CR_DYN_MASK)
   1548		bit = resource_mask(dd->hfi1_id, resource);
   1549	else
   1550		bit = resource;
   1551
   1552	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
   1553	if ((scratch0 & bit) == 0) {
   1554		if (func)
   1555			dd_dev_warn(dd,
   1556				    "%s: id %d, resource 0x%x, not acquired!\n",
   1557				    func, dd->hfi1_id, resource);
   1558		return false;
   1559	}
   1560	return true;
   1561}
   1562
   1563static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
   1564{
   1565	u64 scratch0;
   1566
   1567	/* lock against other callers within the driver wanting a resource */
   1568	mutex_lock(&dd->asic_data->asic_resource_mutex);
   1569
   1570	if (acquire_hw_mutex(dd)) {
   1571		fail_mutex_acquire_message(dd, func);
   1572		goto done;
   1573	}
   1574
   1575	/* clear all dynamic access bits for this HFI */
   1576	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
   1577	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
   1578	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
   1579	/* force write to be visible to other HFI on another OS */
   1580	(void)read_csr(dd, ASIC_CFG_SCRATCH);
   1581
   1582	release_hw_mutex(dd);
   1583
   1584done:
   1585	mutex_unlock(&dd->asic_data->asic_resource_mutex);
   1586}
   1587
   1588void init_chip_resources(struct hfi1_devdata *dd)
   1589{
   1590	/* clear any holds left by us */
   1591	clear_chip_resources(dd, __func__);
   1592}
   1593
   1594void finish_chip_resources(struct hfi1_devdata *dd)
   1595{
   1596	/* clear any holds left by us */
   1597	clear_chip_resources(dd, __func__);
   1598}
   1599
   1600void set_sbus_fast_mode(struct hfi1_devdata *dd)
   1601{
   1602	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
   1603		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
   1604}
   1605
   1606void clear_sbus_fast_mode(struct hfi1_devdata *dd)
   1607{
   1608	u64 reg, count = 0;
   1609
   1610	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
   1611	while (SBUS_COUNTER(reg, EXECUTE) !=
   1612	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
   1613		if (count++ >= SBUS_MAX_POLL_COUNT)
   1614			break;
   1615		udelay(1);
   1616		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
   1617	}
   1618	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
   1619}
   1620
   1621int load_firmware(struct hfi1_devdata *dd)
   1622{
   1623	int ret;
   1624
   1625	if (fw_fabric_serdes_load) {
   1626		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
   1627		if (ret)
   1628			return ret;
   1629
   1630		set_sbus_fast_mode(dd);
   1631
   1632		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
   1633				     fabric_serdes_broadcast[dd->hfi1_id],
   1634				     fabric_serdes_addrs[dd->hfi1_id],
   1635				     NUM_FABRIC_SERDES);
   1636		turn_off_spicos(dd, SPICO_FABRIC);
   1637		do {
   1638			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
   1639		} while (retry_firmware(dd, ret));
   1640
   1641		clear_sbus_fast_mode(dd);
   1642		release_chip_resource(dd, CR_SBUS);
   1643		if (ret)
   1644			return ret;
   1645	}
   1646
   1647	if (fw_8051_load) {
   1648		do {
   1649			ret = load_8051_firmware(dd, &fw_8051);
   1650		} while (retry_firmware(dd, ret));
   1651		if (ret)
   1652			return ret;
   1653	}
   1654
   1655	dump_fw_version(dd);
   1656	return 0;
   1657}
   1658
   1659int hfi1_firmware_init(struct hfi1_devdata *dd)
   1660{
   1661	/* only RTL can use these */
   1662	if (dd->icode != ICODE_RTL_SILICON) {
   1663		fw_fabric_serdes_load = 0;
   1664		fw_pcie_serdes_load = 0;
   1665		fw_sbus_load = 0;
   1666	}
   1667
   1668	/* no 8051 or QSFP on simulator */
   1669	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
   1670		fw_8051_load = 0;
   1671
   1672	if (!fw_8051_name) {
   1673		if (dd->icode == ICODE_RTL_SILICON)
   1674			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
   1675		else
   1676			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
   1677	}
   1678	if (!fw_fabric_serdes_name)
   1679		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
   1680	if (!fw_sbus_name)
   1681		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
   1682	if (!fw_pcie_serdes_name)
   1683		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
   1684
   1685	return obtain_firmware(dd);
   1686}
   1687
   1688/*
   1689 * This function is a helper function for parse_platform_config(...) and
   1690 * does not check for validity of the platform configuration cache
   1691 * (because we know it is invalid as we are building up the cache).
   1692 * As such, this should not be called from anywhere other than
   1693 * parse_platform_config
   1694 */
   1695static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
   1696{
   1697	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
   1698	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
   1699
   1700	if (!system_table)
   1701		return -EINVAL;
   1702
   1703	meta_ver_meta =
   1704	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
   1705	+ SYSTEM_TABLE_META_VERSION);
   1706
   1707	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
   1708	ver_start = meta_ver_meta & mask;
   1709
   1710	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
   1711
   1712	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
   1713	ver_len = meta_ver_meta & mask;
   1714
   1715	ver_start /= 8;
   1716	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
   1717
   1718	if (meta_ver < 4) {
   1719		dd_dev_info(
   1720			dd, "%s:Please update platform config\n", __func__);
   1721		return -EINVAL;
   1722	}
   1723	return 0;
   1724}
   1725
   1726int parse_platform_config(struct hfi1_devdata *dd)
   1727{
   1728	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
   1729	struct hfi1_pportdata *ppd = dd->pport;
   1730	u32 *ptr = NULL;
   1731	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
   1732	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
   1733	int ret = -EINVAL; /* assume failure */
   1734
   1735	/*
   1736	 * For integrated devices that did not fall back to the default file,
   1737	 * the SI tuning information for active channels is acquired from the
   1738	 * scratch register bitmap, thus there is no platform config to parse.
   1739	 * Skip parsing in these situations.
   1740	 */
   1741	if (ppd->config_from_scratch)
   1742		return 0;
   1743
   1744	if (!dd->platform_config.data) {
   1745		dd_dev_err(dd, "%s: Missing config file\n", __func__);
   1746		goto bail;
   1747	}
   1748	ptr = (u32 *)dd->platform_config.data;
   1749
   1750	magic_num = *ptr;
   1751	ptr++;
   1752	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
   1753		dd_dev_err(dd, "%s: Bad config file\n", __func__);
   1754		goto bail;
   1755	}
   1756
   1757	/* Field is file size in DWORDs */
   1758	file_length = (*ptr) * 4;
   1759
   1760	/*
   1761	 * Length can't be larger than partition size. Assume platform
   1762	 * config format version 4 is being used. Interpret the file size
   1763	 * field as header instead by not moving the pointer.
   1764	 */
   1765	if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
   1766		dd_dev_info(dd,
   1767			    "%s:File length out of bounds, using alternative format\n",
   1768			    __func__);
   1769		file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
   1770	} else {
   1771		ptr++;
   1772	}
   1773
   1774	if (file_length > dd->platform_config.size) {
   1775		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
   1776			    __func__);
   1777		goto bail;
   1778	} else if (file_length < dd->platform_config.size) {
   1779		dd_dev_info(dd,
   1780			    "%s:File claims to be smaller than read size, continuing\n",
   1781			    __func__);
   1782	}
   1783	/* exactly equal, perfection */
   1784
   1785	/*
   1786	 * In both cases where we proceed, using the self-reported file length
   1787	 * is the safer option. In case of old format a predefined value is
   1788	 * being used.
   1789	 */
   1790	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
   1791		header1 = *ptr;
   1792		header2 = *(ptr + 1);
   1793		if (header1 != ~header2) {
   1794			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
   1795				   __func__, (ptr - (u32 *)
   1796					      dd->platform_config.data));
   1797			goto bail;
   1798		}
   1799
   1800		record_idx = *ptr &
   1801			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
   1802
   1803		table_length_dwords = (*ptr >>
   1804				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
   1805		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
   1806
   1807		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
   1808			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
   1809
   1810		/* Done with this set of headers */
   1811		ptr += 2;
   1812
   1813		if (record_idx) {
   1814			/* data table */
   1815			switch (table_type) {
   1816			case PLATFORM_CONFIG_SYSTEM_TABLE:
   1817				pcfgcache->config_tables[table_type].num_table =
   1818									1;
   1819				ret = check_meta_version(dd, ptr);
   1820				if (ret)
   1821					goto bail;
   1822				break;
   1823			case PLATFORM_CONFIG_PORT_TABLE:
   1824				pcfgcache->config_tables[table_type].num_table =
   1825									2;
   1826				break;
   1827			case PLATFORM_CONFIG_RX_PRESET_TABLE:
   1828			case PLATFORM_CONFIG_TX_PRESET_TABLE:
   1829			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
   1830			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
   1831				pcfgcache->config_tables[table_type].num_table =
   1832							table_length_dwords;
   1833				break;
   1834			default:
   1835				dd_dev_err(dd,
   1836					   "%s: Unknown data table %d, offset %ld\n",
   1837					   __func__, table_type,
   1838					   (ptr - (u32 *)
   1839					    dd->platform_config.data));
   1840				goto bail; /* We don't trust this file now */
   1841			}
   1842			pcfgcache->config_tables[table_type].table = ptr;
   1843		} else {
   1844			/* metadata table */
   1845			switch (table_type) {
   1846			case PLATFORM_CONFIG_SYSTEM_TABLE:
   1847			case PLATFORM_CONFIG_PORT_TABLE:
   1848			case PLATFORM_CONFIG_RX_PRESET_TABLE:
   1849			case PLATFORM_CONFIG_TX_PRESET_TABLE:
   1850			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
   1851			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
   1852				break;
   1853			default:
   1854				dd_dev_err(dd,
   1855					   "%s: Unknown meta table %d, offset %ld\n",
   1856					   __func__, table_type,
   1857					   (ptr -
   1858					    (u32 *)dd->platform_config.data));
   1859				goto bail; /* We don't trust this file now */
   1860			}
   1861			pcfgcache->config_tables[table_type].table_metadata =
   1862									ptr;
   1863		}
   1864
   1865		/* Calculate and check table crc */
   1866		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
   1867			       (table_length_dwords * 4));
   1868		crc ^= ~(u32)0;
   1869
   1870		/* Jump the table */
   1871		ptr += table_length_dwords;
   1872		if (crc != *ptr) {
   1873			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
   1874				   __func__, (ptr -
   1875				   (u32 *)dd->platform_config.data));
   1876			ret = -EINVAL;
   1877			goto bail;
   1878		}
   1879		/* Jump the CRC DWORD */
   1880		ptr++;
   1881	}
   1882
   1883	pcfgcache->cache_valid = 1;
   1884	return 0;
   1885bail:
   1886	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
   1887	return ret;
   1888}
   1889
   1890static void get_integrated_platform_config_field(
   1891		struct hfi1_devdata *dd,
   1892		enum platform_config_table_type_encoding table_type,
   1893		int field_index, u32 *data)
   1894{
   1895	struct hfi1_pportdata *ppd = dd->pport;
   1896	u8 *cache = ppd->qsfp_info.cache;
   1897	u32 tx_preset = 0;
   1898
   1899	switch (table_type) {
   1900	case PLATFORM_CONFIG_SYSTEM_TABLE:
   1901		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
   1902			*data = ppd->max_power_class;
   1903		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
   1904			*data = ppd->default_atten;
   1905		break;
   1906	case PLATFORM_CONFIG_PORT_TABLE:
   1907		if (field_index == PORT_TABLE_PORT_TYPE)
   1908			*data = ppd->port_type;
   1909		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
   1910			*data = ppd->local_atten;
   1911		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
   1912			*data = ppd->remote_atten;
   1913		break;
   1914	case PLATFORM_CONFIG_RX_PRESET_TABLE:
   1915		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
   1916			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
   1917				QSFP_RX_CDR_APPLY_SHIFT;
   1918		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
   1919			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
   1920				QSFP_RX_EMP_APPLY_SHIFT;
   1921		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
   1922			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
   1923				QSFP_RX_AMP_APPLY_SHIFT;
   1924		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
   1925			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
   1926				QSFP_RX_CDR_SHIFT;
   1927		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
   1928			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
   1929				QSFP_RX_EMP_SHIFT;
   1930		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
   1931			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
   1932				QSFP_RX_AMP_SHIFT;
   1933		break;
   1934	case PLATFORM_CONFIG_TX_PRESET_TABLE:
   1935		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
   1936			tx_preset = ppd->tx_preset_eq;
   1937		else
   1938			tx_preset = ppd->tx_preset_noeq;
   1939		if (field_index == TX_PRESET_TABLE_PRECUR)
   1940			*data = (tx_preset & TX_PRECUR_SMASK) >>
   1941				TX_PRECUR_SHIFT;
   1942		else if (field_index == TX_PRESET_TABLE_ATTN)
   1943			*data = (tx_preset & TX_ATTN_SMASK) >>
   1944				TX_ATTN_SHIFT;
   1945		else if (field_index == TX_PRESET_TABLE_POSTCUR)
   1946			*data = (tx_preset & TX_POSTCUR_SMASK) >>
   1947				TX_POSTCUR_SHIFT;
   1948		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
   1949			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
   1950				QSFP_TX_CDR_APPLY_SHIFT;
   1951		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
   1952			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
   1953				QSFP_TX_EQ_APPLY_SHIFT;
   1954		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
   1955			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
   1956				QSFP_TX_CDR_SHIFT;
   1957		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
   1958			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
   1959				QSFP_TX_EQ_SHIFT;
   1960		break;
   1961	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
   1962	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
   1963	default:
   1964		break;
   1965	}
   1966}
   1967
   1968static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
   1969					  int field, u32 *field_len_bits,
   1970					  u32 *field_start_bits)
   1971{
   1972	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
   1973	u32 *src_ptr = NULL;
   1974
   1975	if (!pcfgcache->cache_valid)
   1976		return -EINVAL;
   1977
   1978	switch (table) {
   1979	case PLATFORM_CONFIG_SYSTEM_TABLE:
   1980	case PLATFORM_CONFIG_PORT_TABLE:
   1981	case PLATFORM_CONFIG_RX_PRESET_TABLE:
   1982	case PLATFORM_CONFIG_TX_PRESET_TABLE:
   1983	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
   1984	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
   1985		if (field && field < platform_config_table_limits[table])
   1986			src_ptr =
   1987			pcfgcache->config_tables[table].table_metadata + field;
   1988		break;
   1989	default:
   1990		dd_dev_info(dd, "%s: Unknown table\n", __func__);
   1991		break;
   1992	}
   1993
   1994	if (!src_ptr)
   1995		return -EINVAL;
   1996
   1997	if (field_start_bits)
   1998		*field_start_bits = *src_ptr &
   1999		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
   2000
   2001	if (field_len_bits)
   2002		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
   2003		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
   2004
   2005	return 0;
   2006}
   2007
   2008/* This is the central interface to getting data out of the platform config
   2009 * file. It depends on parse_platform_config() having populated the
   2010 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
   2011 * validate the sanity of the cache.
   2012 *
   2013 * The non-obvious parameters:
   2014 * @table_index: Acts as a look up key into which instance of the tables the
   2015 * relevant field is fetched from.
   2016 *
   2017 * This applies to the data tables that have multiple instances. The port table
   2018 * is an exception to this rule as each HFI only has one port and thus the
   2019 * relevant table can be distinguished by hfi_id.
   2020 *
   2021 * @data: pointer to memory that will be populated with the field requested.
   2022 * @len: length of memory pointed by @data in bytes.
   2023 */
   2024int get_platform_config_field(struct hfi1_devdata *dd,
   2025			      enum platform_config_table_type_encoding
   2026			      table_type, int table_index, int field_index,
   2027			      u32 *data, u32 len)
   2028{
   2029	int ret = 0, wlen = 0, seek = 0;
   2030	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
   2031	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
   2032	struct hfi1_pportdata *ppd = dd->pport;
   2033
   2034	if (data)
   2035		memset(data, 0, len);
   2036	else
   2037		return -EINVAL;
   2038
   2039	if (ppd->config_from_scratch) {
   2040		/*
   2041		 * Use saved configuration from ppd for integrated platforms
   2042		 */
   2043		get_integrated_platform_config_field(dd, table_type,
   2044						     field_index, data);
   2045		return 0;
   2046	}
   2047
   2048	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
   2049					     &field_len_bits,
   2050					     &field_start_bits);
   2051	if (ret)
   2052		return -EINVAL;
   2053
   2054	/* Convert length to bits */
   2055	len *= 8;
   2056
   2057	/* Our metadata function checked cache_valid and field_index for us */
   2058	switch (table_type) {
   2059	case PLATFORM_CONFIG_SYSTEM_TABLE:
   2060		src_ptr = pcfgcache->config_tables[table_type].table;
   2061
   2062		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
   2063			if (len < field_len_bits)
   2064				return -EINVAL;
   2065
   2066			seek = field_start_bits / 8;
   2067			wlen = field_len_bits / 8;
   2068
   2069			src_ptr = (u32 *)((u8 *)src_ptr + seek);
   2070
   2071			/*
   2072			 * We expect the field to be byte aligned and whole byte
   2073			 * lengths if we are here
   2074			 */
   2075			memcpy(data, src_ptr, wlen);
   2076			return 0;
   2077		}
   2078		break;
   2079	case PLATFORM_CONFIG_PORT_TABLE:
   2080		/* Port table is 4 DWORDS */
   2081		src_ptr = dd->hfi1_id ?
   2082			pcfgcache->config_tables[table_type].table + 4 :
   2083			pcfgcache->config_tables[table_type].table;
   2084		break;
   2085	case PLATFORM_CONFIG_RX_PRESET_TABLE:
   2086	case PLATFORM_CONFIG_TX_PRESET_TABLE:
   2087	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
   2088	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
   2089		src_ptr = pcfgcache->config_tables[table_type].table;
   2090
   2091		if (table_index <
   2092			pcfgcache->config_tables[table_type].num_table)
   2093			src_ptr += table_index;
   2094		else
   2095			src_ptr = NULL;
   2096		break;
   2097	default:
   2098		dd_dev_info(dd, "%s: Unknown table\n", __func__);
   2099		break;
   2100	}
   2101
   2102	if (!src_ptr || len < field_len_bits)
   2103		return -EINVAL;
   2104
   2105	src_ptr += (field_start_bits / 32);
   2106	*data = (*src_ptr >> (field_start_bits % 32)) &
   2107			((1 << field_len_bits) - 1);
   2108
   2109	return 0;
   2110}
   2111
   2112/*
   2113 * Download the firmware needed for the Gen3 PCIe SerDes.  An update
   2114 * to the SBus firmware is needed before updating the PCIe firmware.
   2115 *
   2116 * Note: caller must be holding the SBus resource.
   2117 */
   2118int load_pcie_firmware(struct hfi1_devdata *dd)
   2119{
   2120	int ret = 0;
   2121
   2122	/* both firmware loads below use the SBus */
   2123	set_sbus_fast_mode(dd);
   2124
   2125	if (fw_sbus_load) {
   2126		turn_off_spicos(dd, SPICO_SBUS);
   2127		do {
   2128			ret = load_sbus_firmware(dd, &fw_sbus);
   2129		} while (retry_firmware(dd, ret));
   2130		if (ret)
   2131			goto done;
   2132	}
   2133
   2134	if (fw_pcie_serdes_load) {
   2135		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
   2136		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
   2137				     pcie_serdes_broadcast[dd->hfi1_id],
   2138				     pcie_serdes_addrs[dd->hfi1_id],
   2139				     NUM_PCIE_SERDES);
   2140		do {
   2141			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
   2142		} while (retry_firmware(dd, ret));
   2143		if (ret)
   2144			goto done;
   2145	}
   2146
   2147done:
   2148	clear_sbus_fast_mode(dd);
   2149
   2150	return ret;
   2151}
   2152
   2153/*
   2154 * Read the GUID from the hardware, store it in dd.
   2155 */
   2156void read_guid(struct hfi1_devdata *dd)
   2157{
   2158	/* Take the DC out of reset to get a valid GUID value */
   2159	write_csr(dd, CCE_DC_CTRL, 0);
   2160	(void)read_csr(dd, CCE_DC_CTRL);
   2161
   2162	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
   2163	dd_dev_info(dd, "GUID %llx",
   2164		    (unsigned long long)dd->base_guid);
   2165}
   2166
   2167/* read and display firmware version info */
   2168static void dump_fw_version(struct hfi1_devdata *dd)
   2169{
   2170	u32 pcie_vers[NUM_PCIE_SERDES];
   2171	u32 fabric_vers[NUM_FABRIC_SERDES];
   2172	u32 sbus_vers;
   2173	int i;
   2174	int all_same;
   2175	int ret;
   2176	u8 rcv_addr;
   2177
   2178	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
   2179	if (ret) {
   2180		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
   2181		return;
   2182	}
   2183
   2184	/* set fast mode */
   2185	set_sbus_fast_mode(dd);
   2186
   2187	/* read version for SBus Master */
   2188	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
   2189	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
   2190	/* wait for interrupt to be processed */
   2191	usleep_range(10000, 11000);
   2192	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
   2193	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
   2194
   2195	/* read version for PCIe SerDes */
   2196	all_same = 1;
   2197	pcie_vers[0] = 0;
   2198	for (i = 0; i < NUM_PCIE_SERDES; i++) {
   2199		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
   2200		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
   2201		/* wait for interrupt to be processed */
   2202		usleep_range(10000, 11000);
   2203		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
   2204		if (i > 0 && pcie_vers[0] != pcie_vers[i])
   2205			all_same = 0;
   2206	}
   2207
   2208	if (all_same) {
   2209		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
   2210			    pcie_vers[0]);
   2211	} else {
   2212		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
   2213		for (i = 0; i < NUM_PCIE_SERDES; i++) {
   2214			dd_dev_info(dd,
   2215				    "PCIe SerDes lane %d firmware version 0x%x\n",
   2216				    i, pcie_vers[i]);
   2217		}
   2218	}
   2219
   2220	/* read version for fabric SerDes */
   2221	all_same = 1;
   2222	fabric_vers[0] = 0;
   2223	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
   2224		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
   2225		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
   2226		/* wait for interrupt to be processed */
   2227		usleep_range(10000, 11000);
   2228		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
   2229		if (i > 0 && fabric_vers[0] != fabric_vers[i])
   2230			all_same = 0;
   2231	}
   2232
   2233	if (all_same) {
   2234		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
   2235			    fabric_vers[0]);
   2236	} else {
   2237		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
   2238		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
   2239			dd_dev_info(dd,
   2240				    "Fabric SerDes lane %d firmware version 0x%x\n",
   2241				    i, fabric_vers[i]);
   2242		}
   2243	}
   2244
   2245	clear_sbus_fast_mode(dd);
   2246	release_chip_resource(dd, CR_SBUS);
   2247}