cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

exynos-iommu.c (39294B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
      4 *		http://www.samsung.com
      5 */
      6
      7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
      8#define DEBUG
      9#endif
     10
     11#include <linux/clk.h>
     12#include <linux/dma-mapping.h>
     13#include <linux/err.h>
     14#include <linux/io.h>
     15#include <linux/iommu.h>
     16#include <linux/interrupt.h>
     17#include <linux/kmemleak.h>
     18#include <linux/list.h>
     19#include <linux/of.h>
     20#include <linux/of_platform.h>
     21#include <linux/platform_device.h>
     22#include <linux/pm_runtime.h>
     23#include <linux/slab.h>
     24
     25typedef u32 sysmmu_iova_t;
     26typedef u32 sysmmu_pte_t;
     27
     28/* We do not consider super section mapping (16MB) */
     29#define SECT_ORDER 20
     30#define LPAGE_ORDER 16
     31#define SPAGE_ORDER 12
     32
     33#define SECT_SIZE (1 << SECT_ORDER)
     34#define LPAGE_SIZE (1 << LPAGE_ORDER)
     35#define SPAGE_SIZE (1 << SPAGE_ORDER)
     36
     37#define SECT_MASK (~(SECT_SIZE - 1))
     38#define LPAGE_MASK (~(LPAGE_SIZE - 1))
     39#define SPAGE_MASK (~(SPAGE_SIZE - 1))
     40
     41#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
     42			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
     43#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
     44#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
     45#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
     46			  ((*(sent) & 3) == 1))
     47#define lv1ent_section(sent) ((*(sent) & 3) == 2)
     48
     49#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
     50#define lv2ent_small(pent) ((*(pent) & 2) == 2)
     51#define lv2ent_large(pent) ((*(pent) & 3) == 1)
     52
     53/*
     54 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
     55 * v5.0 introduced support for 36bit physical address space by shifting
     56 * all page entry values by 4 bits.
     57 * All SYSMMU controllers in the system support the address spaces of the same
     58 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
     59 * value (0 or 4).
     60 */
     61static short PG_ENT_SHIFT = -1;
     62#define SYSMMU_PG_ENT_SHIFT 0
     63#define SYSMMU_V5_PG_ENT_SHIFT 4
     64
     65static const sysmmu_pte_t *LV1_PROT;
     66static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
     67	((0 << 15) | (0 << 10)), /* no access */
     68	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
     69	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
     70	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
     71};
     72static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
     73	(0 << 4), /* no access */
     74	(1 << 4), /* IOMMU_READ only */
     75	(2 << 4), /* IOMMU_WRITE only */
     76	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
     77};
     78
     79static const sysmmu_pte_t *LV2_PROT;
     80static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
     81	((0 << 9) | (0 << 4)), /* no access */
     82	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
     83	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
     84	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
     85};
     86static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
     87	(0 << 2), /* no access */
     88	(1 << 2), /* IOMMU_READ only */
     89	(2 << 2), /* IOMMU_WRITE only */
     90	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
     91};
     92
     93#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
     94
     95#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
     96#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
     97#define section_offs(iova) (iova & (SECT_SIZE - 1))
     98#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
     99#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
    100#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
    101#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
    102
    103#define NUM_LV1ENTRIES 4096
    104#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
    105
    106static u32 lv1ent_offset(sysmmu_iova_t iova)
    107{
    108	return iova >> SECT_ORDER;
    109}
    110
    111static u32 lv2ent_offset(sysmmu_iova_t iova)
    112{
    113	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
    114}
    115
    116#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
    117#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
    118
    119#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
    120#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
    121
    122#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
    123#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
    124#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
    125#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
    126
    127#define CTRL_ENABLE	0x5
    128#define CTRL_BLOCK	0x7
    129#define CTRL_DISABLE	0x0
    130
    131#define CFG_LRU		0x1
    132#define CFG_EAP		(1 << 2)
    133#define CFG_QOS(n)	((n & 0xF) << 7)
    134#define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
    135#define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
    136#define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
    137
    138/* common registers */
    139#define REG_MMU_CTRL		0x000
    140#define REG_MMU_CFG		0x004
    141#define REG_MMU_STATUS		0x008
    142#define REG_MMU_VERSION		0x034
    143
    144#define MMU_MAJ_VER(val)	((val) >> 7)
    145#define MMU_MIN_VER(val)	((val) & 0x7F)
    146#define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
    147
    148#define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
    149
    150/* v1.x - v3.x registers */
    151#define REG_MMU_FLUSH		0x00C
    152#define REG_MMU_FLUSH_ENTRY	0x010
    153#define REG_PT_BASE_ADDR	0x014
    154#define REG_INT_STATUS		0x018
    155#define REG_INT_CLEAR		0x01C
    156
    157#define REG_PAGE_FAULT_ADDR	0x024
    158#define REG_AW_FAULT_ADDR	0x028
    159#define REG_AR_FAULT_ADDR	0x02C
    160#define REG_DEFAULT_SLAVE_ADDR	0x030
    161
    162/* v5.x registers */
    163#define REG_V5_PT_BASE_PFN	0x00C
    164#define REG_V5_MMU_FLUSH_ALL	0x010
    165#define REG_V5_MMU_FLUSH_ENTRY	0x014
    166#define REG_V5_MMU_FLUSH_RANGE	0x018
    167#define REG_V5_MMU_FLUSH_START	0x020
    168#define REG_V5_MMU_FLUSH_END	0x024
    169#define REG_V5_INT_STATUS	0x060
    170#define REG_V5_INT_CLEAR	0x064
    171#define REG_V5_FAULT_AR_VA	0x070
    172#define REG_V5_FAULT_AW_VA	0x080
    173
    174#define has_sysmmu(dev)		(dev_iommu_priv_get(dev) != NULL)
    175
    176static struct device *dma_dev;
    177static struct kmem_cache *lv2table_kmem_cache;
    178static sysmmu_pte_t *zero_lv2_table;
    179#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
    180
    181static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
    182{
    183	return pgtable + lv1ent_offset(iova);
    184}
    185
    186static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
    187{
    188	return (sysmmu_pte_t *)phys_to_virt(
    189				lv2table_base(sent)) + lv2ent_offset(iova);
    190}
    191
    192/*
    193 * IOMMU fault information register
    194 */
    195struct sysmmu_fault_info {
    196	unsigned int bit;	/* bit number in STATUS register */
    197	unsigned short addr_reg; /* register to read VA fault address */
    198	const char *name;	/* human readable fault name */
    199	unsigned int type;	/* fault type for report_iommu_fault */
    200};
    201
    202static const struct sysmmu_fault_info sysmmu_faults[] = {
    203	{ 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
    204	{ 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
    205	{ 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
    206	{ 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
    207	{ 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
    208	{ 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
    209	{ 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
    210	{ 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
    211};
    212
    213static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
    214	{ 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
    215	{ 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
    216	{ 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
    217	{ 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
    218	{ 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
    219	{ 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
    220	{ 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
    221	{ 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
    222	{ 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
    223	{ 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
    224};
    225
    226/*
    227 * This structure is attached to dev->iommu->priv of the master device
    228 * on device add, contains a list of SYSMMU controllers defined by device tree,
    229 * which are bound to given master device. It is usually referenced by 'owner'
    230 * pointer.
    231*/
    232struct exynos_iommu_owner {
    233	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
    234	struct iommu_domain *domain;	/* domain this device is attached */
    235	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
    236};
    237
    238/*
    239 * This structure exynos specific generalization of struct iommu_domain.
    240 * It contains list of SYSMMU controllers from all master devices, which has
    241 * been attached to this domain and page tables of IO address space defined by
    242 * it. It is usually referenced by 'domain' pointer.
    243 */
    244struct exynos_iommu_domain {
    245	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
    246	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
    247	short *lv2entcnt;	/* free lv2 entry counter for each section */
    248	spinlock_t lock;	/* lock for modyfying list of clients */
    249	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
    250	struct iommu_domain domain; /* generic domain data structure */
    251};
    252
    253/*
    254 * This structure hold all data of a single SYSMMU controller, this includes
    255 * hw resources like registers and clocks, pointers and list nodes to connect
    256 * it to all other structures, internal state and parameters read from device
    257 * tree. It is usually referenced by 'data' pointer.
    258 */
    259struct sysmmu_drvdata {
    260	struct device *sysmmu;		/* SYSMMU controller device */
    261	struct device *master;		/* master device (owner) */
    262	struct device_link *link;	/* runtime PM link to master */
    263	void __iomem *sfrbase;		/* our registers */
    264	struct clk *clk;		/* SYSMMU's clock */
    265	struct clk *aclk;		/* SYSMMU's aclk clock */
    266	struct clk *pclk;		/* SYSMMU's pclk clock */
    267	struct clk *clk_master;		/* master's device clock */
    268	spinlock_t lock;		/* lock for modyfying state */
    269	bool active;			/* current status */
    270	struct exynos_iommu_domain *domain; /* domain we belong to */
    271	struct list_head domain_node;	/* node for domain clients list */
    272	struct list_head owner_node;	/* node for owner controllers list */
    273	phys_addr_t pgtable;		/* assigned page table structure */
    274	unsigned int version;		/* our version */
    275
    276	struct iommu_device iommu;	/* IOMMU core handle */
    277};
    278
    279static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
    280{
    281	return container_of(dom, struct exynos_iommu_domain, domain);
    282}
    283
    284static void sysmmu_unblock(struct sysmmu_drvdata *data)
    285{
    286	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
    287}
    288
    289static bool sysmmu_block(struct sysmmu_drvdata *data)
    290{
    291	int i = 120;
    292
    293	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
    294	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
    295		--i;
    296
    297	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
    298		sysmmu_unblock(data);
    299		return false;
    300	}
    301
    302	return true;
    303}
    304
    305static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
    306{
    307	if (MMU_MAJ_VER(data->version) < 5)
    308		writel(0x1, data->sfrbase + REG_MMU_FLUSH);
    309	else
    310		writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
    311}
    312
    313static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
    314				sysmmu_iova_t iova, unsigned int num_inv)
    315{
    316	unsigned int i;
    317
    318	if (MMU_MAJ_VER(data->version) < 5) {
    319		for (i = 0; i < num_inv; i++) {
    320			writel((iova & SPAGE_MASK) | 1,
    321				     data->sfrbase + REG_MMU_FLUSH_ENTRY);
    322			iova += SPAGE_SIZE;
    323		}
    324	} else {
    325		if (num_inv == 1) {
    326			writel((iova & SPAGE_MASK) | 1,
    327				     data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
    328		} else {
    329			writel((iova & SPAGE_MASK),
    330				     data->sfrbase + REG_V5_MMU_FLUSH_START);
    331			writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
    332				     data->sfrbase + REG_V5_MMU_FLUSH_END);
    333			writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
    334		}
    335	}
    336}
    337
    338static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
    339{
    340	if (MMU_MAJ_VER(data->version) < 5)
    341		writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
    342	else
    343		writel(pgd >> PAGE_SHIFT,
    344			     data->sfrbase + REG_V5_PT_BASE_PFN);
    345
    346	__sysmmu_tlb_invalidate(data);
    347}
    348
    349static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
    350{
    351	BUG_ON(clk_prepare_enable(data->clk_master));
    352	BUG_ON(clk_prepare_enable(data->clk));
    353	BUG_ON(clk_prepare_enable(data->pclk));
    354	BUG_ON(clk_prepare_enable(data->aclk));
    355}
    356
    357static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
    358{
    359	clk_disable_unprepare(data->aclk);
    360	clk_disable_unprepare(data->pclk);
    361	clk_disable_unprepare(data->clk);
    362	clk_disable_unprepare(data->clk_master);
    363}
    364
    365static void __sysmmu_get_version(struct sysmmu_drvdata *data)
    366{
    367	u32 ver;
    368
    369	__sysmmu_enable_clocks(data);
    370
    371	ver = readl(data->sfrbase + REG_MMU_VERSION);
    372
    373	/* controllers on some SoCs don't report proper version */
    374	if (ver == 0x80000001u)
    375		data->version = MAKE_MMU_VER(1, 0);
    376	else
    377		data->version = MMU_RAW_VER(ver);
    378
    379	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
    380		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
    381
    382	__sysmmu_disable_clocks(data);
    383}
    384
    385static void show_fault_information(struct sysmmu_drvdata *data,
    386				   const struct sysmmu_fault_info *finfo,
    387				   sysmmu_iova_t fault_addr)
    388{
    389	sysmmu_pte_t *ent;
    390
    391	dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
    392		dev_name(data->master), finfo->name, fault_addr);
    393	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
    394	ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
    395	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
    396	if (lv1ent_page(ent)) {
    397		ent = page_entry(ent, fault_addr);
    398		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
    399	}
    400}
    401
    402static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
    403{
    404	/* SYSMMU is in blocked state when interrupt occurred. */
    405	struct sysmmu_drvdata *data = dev_id;
    406	const struct sysmmu_fault_info *finfo;
    407	unsigned int i, n, itype;
    408	sysmmu_iova_t fault_addr;
    409	unsigned short reg_status, reg_clear;
    410	int ret = -ENOSYS;
    411
    412	WARN_ON(!data->active);
    413
    414	if (MMU_MAJ_VER(data->version) < 5) {
    415		reg_status = REG_INT_STATUS;
    416		reg_clear = REG_INT_CLEAR;
    417		finfo = sysmmu_faults;
    418		n = ARRAY_SIZE(sysmmu_faults);
    419	} else {
    420		reg_status = REG_V5_INT_STATUS;
    421		reg_clear = REG_V5_INT_CLEAR;
    422		finfo = sysmmu_v5_faults;
    423		n = ARRAY_SIZE(sysmmu_v5_faults);
    424	}
    425
    426	spin_lock(&data->lock);
    427
    428	clk_enable(data->clk_master);
    429
    430	itype = __ffs(readl(data->sfrbase + reg_status));
    431	for (i = 0; i < n; i++, finfo++)
    432		if (finfo->bit == itype)
    433			break;
    434	/* unknown/unsupported fault */
    435	BUG_ON(i == n);
    436
    437	/* print debug message */
    438	fault_addr = readl(data->sfrbase + finfo->addr_reg);
    439	show_fault_information(data, finfo, fault_addr);
    440
    441	if (data->domain)
    442		ret = report_iommu_fault(&data->domain->domain,
    443					data->master, fault_addr, finfo->type);
    444	/* fault is not recovered by fault handler */
    445	BUG_ON(ret != 0);
    446
    447	writel(1 << itype, data->sfrbase + reg_clear);
    448
    449	sysmmu_unblock(data);
    450
    451	clk_disable(data->clk_master);
    452
    453	spin_unlock(&data->lock);
    454
    455	return IRQ_HANDLED;
    456}
    457
    458static void __sysmmu_disable(struct sysmmu_drvdata *data)
    459{
    460	unsigned long flags;
    461
    462	clk_enable(data->clk_master);
    463
    464	spin_lock_irqsave(&data->lock, flags);
    465	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
    466	writel(0, data->sfrbase + REG_MMU_CFG);
    467	data->active = false;
    468	spin_unlock_irqrestore(&data->lock, flags);
    469
    470	__sysmmu_disable_clocks(data);
    471}
    472
    473static void __sysmmu_init_config(struct sysmmu_drvdata *data)
    474{
    475	unsigned int cfg;
    476
    477	if (data->version <= MAKE_MMU_VER(3, 1))
    478		cfg = CFG_LRU | CFG_QOS(15);
    479	else if (data->version <= MAKE_MMU_VER(3, 2))
    480		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
    481	else
    482		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
    483
    484	cfg |= CFG_EAP; /* enable access protection bits check */
    485
    486	writel(cfg, data->sfrbase + REG_MMU_CFG);
    487}
    488
    489static void __sysmmu_enable(struct sysmmu_drvdata *data)
    490{
    491	unsigned long flags;
    492
    493	__sysmmu_enable_clocks(data);
    494
    495	spin_lock_irqsave(&data->lock, flags);
    496	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
    497	__sysmmu_init_config(data);
    498	__sysmmu_set_ptbase(data, data->pgtable);
    499	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
    500	data->active = true;
    501	spin_unlock_irqrestore(&data->lock, flags);
    502
    503	/*
    504	 * SYSMMU driver keeps master's clock enabled only for the short
    505	 * time, while accessing the registers. For performing address
    506	 * translation during DMA transaction it relies on the client
    507	 * driver to enable it.
    508	 */
    509	clk_disable(data->clk_master);
    510}
    511
    512static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
    513					    sysmmu_iova_t iova)
    514{
    515	unsigned long flags;
    516
    517	spin_lock_irqsave(&data->lock, flags);
    518	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
    519		clk_enable(data->clk_master);
    520		if (sysmmu_block(data)) {
    521			if (data->version >= MAKE_MMU_VER(5, 0))
    522				__sysmmu_tlb_invalidate(data);
    523			else
    524				__sysmmu_tlb_invalidate_entry(data, iova, 1);
    525			sysmmu_unblock(data);
    526		}
    527		clk_disable(data->clk_master);
    528	}
    529	spin_unlock_irqrestore(&data->lock, flags);
    530}
    531
    532static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
    533					sysmmu_iova_t iova, size_t size)
    534{
    535	unsigned long flags;
    536
    537	spin_lock_irqsave(&data->lock, flags);
    538	if (data->active) {
    539		unsigned int num_inv = 1;
    540
    541		clk_enable(data->clk_master);
    542
    543		/*
    544		 * L2TLB invalidation required
    545		 * 4KB page: 1 invalidation
    546		 * 64KB page: 16 invalidations
    547		 * 1MB page: 64 invalidations
    548		 * because it is set-associative TLB
    549		 * with 8-way and 64 sets.
    550		 * 1MB page can be cached in one of all sets.
    551		 * 64KB page can be one of 16 consecutive sets.
    552		 */
    553		if (MMU_MAJ_VER(data->version) == 2)
    554			num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
    555
    556		if (sysmmu_block(data)) {
    557			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
    558			sysmmu_unblock(data);
    559		}
    560		clk_disable(data->clk_master);
    561	}
    562	spin_unlock_irqrestore(&data->lock, flags);
    563}
    564
    565static const struct iommu_ops exynos_iommu_ops;
    566
    567static int exynos_sysmmu_probe(struct platform_device *pdev)
    568{
    569	int irq, ret;
    570	struct device *dev = &pdev->dev;
    571	struct sysmmu_drvdata *data;
    572	struct resource *res;
    573
    574	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
    575	if (!data)
    576		return -ENOMEM;
    577
    578	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    579	data->sfrbase = devm_ioremap_resource(dev, res);
    580	if (IS_ERR(data->sfrbase))
    581		return PTR_ERR(data->sfrbase);
    582
    583	irq = platform_get_irq(pdev, 0);
    584	if (irq <= 0)
    585		return irq;
    586
    587	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
    588				dev_name(dev), data);
    589	if (ret) {
    590		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
    591		return ret;
    592	}
    593
    594	data->clk = devm_clk_get(dev, "sysmmu");
    595	if (PTR_ERR(data->clk) == -ENOENT)
    596		data->clk = NULL;
    597	else if (IS_ERR(data->clk))
    598		return PTR_ERR(data->clk);
    599
    600	data->aclk = devm_clk_get(dev, "aclk");
    601	if (PTR_ERR(data->aclk) == -ENOENT)
    602		data->aclk = NULL;
    603	else if (IS_ERR(data->aclk))
    604		return PTR_ERR(data->aclk);
    605
    606	data->pclk = devm_clk_get(dev, "pclk");
    607	if (PTR_ERR(data->pclk) == -ENOENT)
    608		data->pclk = NULL;
    609	else if (IS_ERR(data->pclk))
    610		return PTR_ERR(data->pclk);
    611
    612	if (!data->clk && (!data->aclk || !data->pclk)) {
    613		dev_err(dev, "Failed to get device clock(s)!\n");
    614		return -ENOSYS;
    615	}
    616
    617	data->clk_master = devm_clk_get(dev, "master");
    618	if (PTR_ERR(data->clk_master) == -ENOENT)
    619		data->clk_master = NULL;
    620	else if (IS_ERR(data->clk_master))
    621		return PTR_ERR(data->clk_master);
    622
    623	data->sysmmu = dev;
    624	spin_lock_init(&data->lock);
    625
    626	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
    627				     dev_name(data->sysmmu));
    628	if (ret)
    629		return ret;
    630
    631	ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
    632	if (ret)
    633		return ret;
    634
    635	platform_set_drvdata(pdev, data);
    636
    637	__sysmmu_get_version(data);
    638	if (PG_ENT_SHIFT < 0) {
    639		if (MMU_MAJ_VER(data->version) < 5) {
    640			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
    641			LV1_PROT = SYSMMU_LV1_PROT;
    642			LV2_PROT = SYSMMU_LV2_PROT;
    643		} else {
    644			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
    645			LV1_PROT = SYSMMU_V5_LV1_PROT;
    646			LV2_PROT = SYSMMU_V5_LV2_PROT;
    647		}
    648	}
    649
    650	/*
    651	 * use the first registered sysmmu device for performing
    652	 * dma mapping operations on iommu page tables (cpu cache flush)
    653	 */
    654	if (!dma_dev)
    655		dma_dev = &pdev->dev;
    656
    657	pm_runtime_enable(dev);
    658
    659	return 0;
    660}
    661
    662static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
    663{
    664	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
    665	struct device *master = data->master;
    666
    667	if (master) {
    668		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
    669
    670		mutex_lock(&owner->rpm_lock);
    671		if (data->domain) {
    672			dev_dbg(data->sysmmu, "saving state\n");
    673			__sysmmu_disable(data);
    674		}
    675		mutex_unlock(&owner->rpm_lock);
    676	}
    677	return 0;
    678}
    679
    680static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
    681{
    682	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
    683	struct device *master = data->master;
    684
    685	if (master) {
    686		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
    687
    688		mutex_lock(&owner->rpm_lock);
    689		if (data->domain) {
    690			dev_dbg(data->sysmmu, "restoring state\n");
    691			__sysmmu_enable(data);
    692		}
    693		mutex_unlock(&owner->rpm_lock);
    694	}
    695	return 0;
    696}
    697
    698static const struct dev_pm_ops sysmmu_pm_ops = {
    699	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
    700	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
    701				pm_runtime_force_resume)
    702};
    703
    704static const struct of_device_id sysmmu_of_match[] = {
    705	{ .compatible	= "samsung,exynos-sysmmu", },
    706	{ },
    707};
    708
    709static struct platform_driver exynos_sysmmu_driver __refdata = {
    710	.probe	= exynos_sysmmu_probe,
    711	.driver	= {
    712		.name		= "exynos-sysmmu",
    713		.of_match_table	= sysmmu_of_match,
    714		.pm		= &sysmmu_pm_ops,
    715		.suppress_bind_attrs = true,
    716	}
    717};
    718
    719static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
    720{
    721	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
    722				DMA_TO_DEVICE);
    723	*ent = cpu_to_le32(val);
    724	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
    725				   DMA_TO_DEVICE);
    726}
    727
    728static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
    729{
    730	struct exynos_iommu_domain *domain;
    731	dma_addr_t handle;
    732	int i;
    733
    734	/* Check if correct PTE offsets are initialized */
    735	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
    736
    737	if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED)
    738		return NULL;
    739
    740	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
    741	if (!domain)
    742		return NULL;
    743
    744	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
    745	if (!domain->pgtable)
    746		goto err_pgtable;
    747
    748	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
    749	if (!domain->lv2entcnt)
    750		goto err_counter;
    751
    752	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
    753	for (i = 0; i < NUM_LV1ENTRIES; i++)
    754		domain->pgtable[i] = ZERO_LV2LINK;
    755
    756	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
    757				DMA_TO_DEVICE);
    758	/* For mapping page table entries we rely on dma == phys */
    759	BUG_ON(handle != virt_to_phys(domain->pgtable));
    760	if (dma_mapping_error(dma_dev, handle))
    761		goto err_lv2ent;
    762
    763	spin_lock_init(&domain->lock);
    764	spin_lock_init(&domain->pgtablelock);
    765	INIT_LIST_HEAD(&domain->clients);
    766
    767	domain->domain.geometry.aperture_start = 0;
    768	domain->domain.geometry.aperture_end   = ~0UL;
    769	domain->domain.geometry.force_aperture = true;
    770
    771	return &domain->domain;
    772
    773err_lv2ent:
    774	free_pages((unsigned long)domain->lv2entcnt, 1);
    775err_counter:
    776	free_pages((unsigned long)domain->pgtable, 2);
    777err_pgtable:
    778	kfree(domain);
    779	return NULL;
    780}
    781
    782static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
    783{
    784	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
    785	struct sysmmu_drvdata *data, *next;
    786	unsigned long flags;
    787	int i;
    788
    789	WARN_ON(!list_empty(&domain->clients));
    790
    791	spin_lock_irqsave(&domain->lock, flags);
    792
    793	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
    794		spin_lock(&data->lock);
    795		__sysmmu_disable(data);
    796		data->pgtable = 0;
    797		data->domain = NULL;
    798		list_del_init(&data->domain_node);
    799		spin_unlock(&data->lock);
    800	}
    801
    802	spin_unlock_irqrestore(&domain->lock, flags);
    803
    804	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
    805			 DMA_TO_DEVICE);
    806
    807	for (i = 0; i < NUM_LV1ENTRIES; i++)
    808		if (lv1ent_page(domain->pgtable + i)) {
    809			phys_addr_t base = lv2table_base(domain->pgtable + i);
    810
    811			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
    812					 DMA_TO_DEVICE);
    813			kmem_cache_free(lv2table_kmem_cache,
    814					phys_to_virt(base));
    815		}
    816
    817	free_pages((unsigned long)domain->pgtable, 2);
    818	free_pages((unsigned long)domain->lv2entcnt, 1);
    819	kfree(domain);
    820}
    821
    822static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
    823				    struct device *dev)
    824{
    825	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
    826	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
    827	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
    828	struct sysmmu_drvdata *data, *next;
    829	unsigned long flags;
    830
    831	if (!has_sysmmu(dev) || owner->domain != iommu_domain)
    832		return;
    833
    834	mutex_lock(&owner->rpm_lock);
    835
    836	list_for_each_entry(data, &owner->controllers, owner_node) {
    837		pm_runtime_get_noresume(data->sysmmu);
    838		if (pm_runtime_active(data->sysmmu))
    839			__sysmmu_disable(data);
    840		pm_runtime_put(data->sysmmu);
    841	}
    842
    843	spin_lock_irqsave(&domain->lock, flags);
    844	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
    845		spin_lock(&data->lock);
    846		data->pgtable = 0;
    847		data->domain = NULL;
    848		list_del_init(&data->domain_node);
    849		spin_unlock(&data->lock);
    850	}
    851	owner->domain = NULL;
    852	spin_unlock_irqrestore(&domain->lock, flags);
    853
    854	mutex_unlock(&owner->rpm_lock);
    855
    856	dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
    857		&pagetable);
    858}
    859
    860static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
    861				   struct device *dev)
    862{
    863	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
    864	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
    865	struct sysmmu_drvdata *data;
    866	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
    867	unsigned long flags;
    868
    869	if (!has_sysmmu(dev))
    870		return -ENODEV;
    871
    872	if (owner->domain)
    873		exynos_iommu_detach_device(owner->domain, dev);
    874
    875	mutex_lock(&owner->rpm_lock);
    876
    877	spin_lock_irqsave(&domain->lock, flags);
    878	list_for_each_entry(data, &owner->controllers, owner_node) {
    879		spin_lock(&data->lock);
    880		data->pgtable = pagetable;
    881		data->domain = domain;
    882		list_add_tail(&data->domain_node, &domain->clients);
    883		spin_unlock(&data->lock);
    884	}
    885	owner->domain = iommu_domain;
    886	spin_unlock_irqrestore(&domain->lock, flags);
    887
    888	list_for_each_entry(data, &owner->controllers, owner_node) {
    889		pm_runtime_get_noresume(data->sysmmu);
    890		if (pm_runtime_active(data->sysmmu))
    891			__sysmmu_enable(data);
    892		pm_runtime_put(data->sysmmu);
    893	}
    894
    895	mutex_unlock(&owner->rpm_lock);
    896
    897	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
    898		&pagetable);
    899
    900	return 0;
    901}
    902
    903static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
    904		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
    905{
    906	if (lv1ent_section(sent)) {
    907		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
    908		return ERR_PTR(-EADDRINUSE);
    909	}
    910
    911	if (lv1ent_fault(sent)) {
    912		dma_addr_t handle;
    913		sysmmu_pte_t *pent;
    914		bool need_flush_flpd_cache = lv1ent_zero(sent);
    915
    916		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
    917		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
    918		if (!pent)
    919			return ERR_PTR(-ENOMEM);
    920
    921		exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
    922		kmemleak_ignore(pent);
    923		*pgcounter = NUM_LV2ENTRIES;
    924		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
    925					DMA_TO_DEVICE);
    926		if (dma_mapping_error(dma_dev, handle)) {
    927			kmem_cache_free(lv2table_kmem_cache, pent);
    928			return ERR_PTR(-EADDRINUSE);
    929		}
    930
    931		/*
    932		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
    933		 * FLPD cache may cache the address of zero_l2_table. This
    934		 * function replaces the zero_l2_table with new L2 page table
    935		 * to write valid mappings.
    936		 * Accessing the valid area may cause page fault since FLPD
    937		 * cache may still cache zero_l2_table for the valid area
    938		 * instead of new L2 page table that has the mapping
    939		 * information of the valid area.
    940		 * Thus any replacement of zero_l2_table with other valid L2
    941		 * page table must involve FLPD cache invalidation for System
    942		 * MMU v3.3.
    943		 * FLPD cache invalidation is performed with TLB invalidation
    944		 * by VPN without blocking. It is safe to invalidate TLB without
    945		 * blocking because the target address of TLB invalidation is
    946		 * not currently mapped.
    947		 */
    948		if (need_flush_flpd_cache) {
    949			struct sysmmu_drvdata *data;
    950
    951			spin_lock(&domain->lock);
    952			list_for_each_entry(data, &domain->clients, domain_node)
    953				sysmmu_tlb_invalidate_flpdcache(data, iova);
    954			spin_unlock(&domain->lock);
    955		}
    956	}
    957
    958	return page_entry(sent, iova);
    959}
    960
    961static int lv1set_section(struct exynos_iommu_domain *domain,
    962			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
    963			  phys_addr_t paddr, int prot, short *pgcnt)
    964{
    965	if (lv1ent_section(sent)) {
    966		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
    967			iova);
    968		return -EADDRINUSE;
    969	}
    970
    971	if (lv1ent_page(sent)) {
    972		if (*pgcnt != NUM_LV2ENTRIES) {
    973			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
    974				iova);
    975			return -EADDRINUSE;
    976		}
    977
    978		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
    979		*pgcnt = 0;
    980	}
    981
    982	exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
    983
    984	spin_lock(&domain->lock);
    985	if (lv1ent_page_zero(sent)) {
    986		struct sysmmu_drvdata *data;
    987		/*
    988		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
    989		 * entry by speculative prefetch of SLPD which has no mapping.
    990		 */
    991		list_for_each_entry(data, &domain->clients, domain_node)
    992			sysmmu_tlb_invalidate_flpdcache(data, iova);
    993	}
    994	spin_unlock(&domain->lock);
    995
    996	return 0;
    997}
    998
    999static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
   1000		       int prot, short *pgcnt)
   1001{
   1002	if (size == SPAGE_SIZE) {
   1003		if (WARN_ON(!lv2ent_fault(pent)))
   1004			return -EADDRINUSE;
   1005
   1006		exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
   1007		*pgcnt -= 1;
   1008	} else { /* size == LPAGE_SIZE */
   1009		int i;
   1010		dma_addr_t pent_base = virt_to_phys(pent);
   1011
   1012		dma_sync_single_for_cpu(dma_dev, pent_base,
   1013					sizeof(*pent) * SPAGES_PER_LPAGE,
   1014					DMA_TO_DEVICE);
   1015		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
   1016			if (WARN_ON(!lv2ent_fault(pent))) {
   1017				if (i > 0)
   1018					memset(pent - i, 0, sizeof(*pent) * i);
   1019				return -EADDRINUSE;
   1020			}
   1021
   1022			*pent = mk_lv2ent_lpage(paddr, prot);
   1023		}
   1024		dma_sync_single_for_device(dma_dev, pent_base,
   1025					   sizeof(*pent) * SPAGES_PER_LPAGE,
   1026					   DMA_TO_DEVICE);
   1027		*pgcnt -= SPAGES_PER_LPAGE;
   1028	}
   1029
   1030	return 0;
   1031}
   1032
   1033/*
   1034 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
   1035 *
   1036 * System MMU v3.x has advanced logic to improve address translation
   1037 * performance with caching more page table entries by a page table walk.
   1038 * However, the logic has a bug that while caching faulty page table entries,
   1039 * System MMU reports page fault if the cached fault entry is hit even though
   1040 * the fault entry is updated to a valid entry after the entry is cached.
   1041 * To prevent caching faulty page table entries which may be updated to valid
   1042 * entries later, the virtual memory manager should care about the workaround
   1043 * for the problem. The following describes the workaround.
   1044 *
   1045 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
   1046 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
   1047 *
   1048 * Precisely, any start address of I/O virtual region must be aligned with
   1049 * the following sizes for System MMU v3.1 and v3.2.
   1050 * System MMU v3.1: 128KiB
   1051 * System MMU v3.2: 256KiB
   1052 *
   1053 * Because System MMU v3.3 caches page table entries more aggressively, it needs
   1054 * more workarounds.
   1055 * - Any two consecutive I/O virtual regions must have a hole of size larger
   1056 *   than or equal to 128KiB.
   1057 * - Start address of an I/O virtual region must be aligned by 128KiB.
   1058 */
   1059static int exynos_iommu_map(struct iommu_domain *iommu_domain,
   1060			    unsigned long l_iova, phys_addr_t paddr, size_t size,
   1061			    int prot, gfp_t gfp)
   1062{
   1063	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
   1064	sysmmu_pte_t *entry;
   1065	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
   1066	unsigned long flags;
   1067	int ret = -ENOMEM;
   1068
   1069	BUG_ON(domain->pgtable == NULL);
   1070	prot &= SYSMMU_SUPPORTED_PROT_BITS;
   1071
   1072	spin_lock_irqsave(&domain->pgtablelock, flags);
   1073
   1074	entry = section_entry(domain->pgtable, iova);
   1075
   1076	if (size == SECT_SIZE) {
   1077		ret = lv1set_section(domain, entry, iova, paddr, prot,
   1078				     &domain->lv2entcnt[lv1ent_offset(iova)]);
   1079	} else {
   1080		sysmmu_pte_t *pent;
   1081
   1082		pent = alloc_lv2entry(domain, entry, iova,
   1083				      &domain->lv2entcnt[lv1ent_offset(iova)]);
   1084
   1085		if (IS_ERR(pent))
   1086			ret = PTR_ERR(pent);
   1087		else
   1088			ret = lv2set_page(pent, paddr, size, prot,
   1089				       &domain->lv2entcnt[lv1ent_offset(iova)]);
   1090	}
   1091
   1092	if (ret)
   1093		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
   1094			__func__, ret, size, iova);
   1095
   1096	spin_unlock_irqrestore(&domain->pgtablelock, flags);
   1097
   1098	return ret;
   1099}
   1100
   1101static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
   1102					      sysmmu_iova_t iova, size_t size)
   1103{
   1104	struct sysmmu_drvdata *data;
   1105	unsigned long flags;
   1106
   1107	spin_lock_irqsave(&domain->lock, flags);
   1108
   1109	list_for_each_entry(data, &domain->clients, domain_node)
   1110		sysmmu_tlb_invalidate_entry(data, iova, size);
   1111
   1112	spin_unlock_irqrestore(&domain->lock, flags);
   1113}
   1114
   1115static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
   1116				 unsigned long l_iova, size_t size,
   1117				 struct iommu_iotlb_gather *gather)
   1118{
   1119	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
   1120	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
   1121	sysmmu_pte_t *ent;
   1122	size_t err_pgsize;
   1123	unsigned long flags;
   1124
   1125	BUG_ON(domain->pgtable == NULL);
   1126
   1127	spin_lock_irqsave(&domain->pgtablelock, flags);
   1128
   1129	ent = section_entry(domain->pgtable, iova);
   1130
   1131	if (lv1ent_section(ent)) {
   1132		if (WARN_ON(size < SECT_SIZE)) {
   1133			err_pgsize = SECT_SIZE;
   1134			goto err;
   1135		}
   1136
   1137		/* workaround for h/w bug in System MMU v3.3 */
   1138		exynos_iommu_set_pte(ent, ZERO_LV2LINK);
   1139		size = SECT_SIZE;
   1140		goto done;
   1141	}
   1142
   1143	if (unlikely(lv1ent_fault(ent))) {
   1144		if (size > SECT_SIZE)
   1145			size = SECT_SIZE;
   1146		goto done;
   1147	}
   1148
   1149	/* lv1ent_page(sent) == true here */
   1150
   1151	ent = page_entry(ent, iova);
   1152
   1153	if (unlikely(lv2ent_fault(ent))) {
   1154		size = SPAGE_SIZE;
   1155		goto done;
   1156	}
   1157
   1158	if (lv2ent_small(ent)) {
   1159		exynos_iommu_set_pte(ent, 0);
   1160		size = SPAGE_SIZE;
   1161		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
   1162		goto done;
   1163	}
   1164
   1165	/* lv1ent_large(ent) == true here */
   1166	if (WARN_ON(size < LPAGE_SIZE)) {
   1167		err_pgsize = LPAGE_SIZE;
   1168		goto err;
   1169	}
   1170
   1171	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
   1172				sizeof(*ent) * SPAGES_PER_LPAGE,
   1173				DMA_TO_DEVICE);
   1174	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
   1175	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
   1176				   sizeof(*ent) * SPAGES_PER_LPAGE,
   1177				   DMA_TO_DEVICE);
   1178	size = LPAGE_SIZE;
   1179	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
   1180done:
   1181	spin_unlock_irqrestore(&domain->pgtablelock, flags);
   1182
   1183	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
   1184
   1185	return size;
   1186err:
   1187	spin_unlock_irqrestore(&domain->pgtablelock, flags);
   1188
   1189	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
   1190		__func__, size, iova, err_pgsize);
   1191
   1192	return 0;
   1193}
   1194
   1195static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
   1196					  dma_addr_t iova)
   1197{
   1198	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
   1199	sysmmu_pte_t *entry;
   1200	unsigned long flags;
   1201	phys_addr_t phys = 0;
   1202
   1203	spin_lock_irqsave(&domain->pgtablelock, flags);
   1204
   1205	entry = section_entry(domain->pgtable, iova);
   1206
   1207	if (lv1ent_section(entry)) {
   1208		phys = section_phys(entry) + section_offs(iova);
   1209	} else if (lv1ent_page(entry)) {
   1210		entry = page_entry(entry, iova);
   1211
   1212		if (lv2ent_large(entry))
   1213			phys = lpage_phys(entry) + lpage_offs(iova);
   1214		else if (lv2ent_small(entry))
   1215			phys = spage_phys(entry) + spage_offs(iova);
   1216	}
   1217
   1218	spin_unlock_irqrestore(&domain->pgtablelock, flags);
   1219
   1220	return phys;
   1221}
   1222
   1223static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
   1224{
   1225	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
   1226	struct sysmmu_drvdata *data;
   1227
   1228	if (!has_sysmmu(dev))
   1229		return ERR_PTR(-ENODEV);
   1230
   1231	list_for_each_entry(data, &owner->controllers, owner_node) {
   1232		/*
   1233		 * SYSMMU will be runtime activated via device link
   1234		 * (dependency) to its master device, so there are no
   1235		 * direct calls to pm_runtime_get/put in this driver.
   1236		 */
   1237		data->link = device_link_add(dev, data->sysmmu,
   1238					     DL_FLAG_STATELESS |
   1239					     DL_FLAG_PM_RUNTIME);
   1240	}
   1241
   1242	/* There is always at least one entry, see exynos_iommu_of_xlate() */
   1243	data = list_first_entry(&owner->controllers,
   1244				struct sysmmu_drvdata, owner_node);
   1245
   1246	return &data->iommu;
   1247}
   1248
   1249static void exynos_iommu_release_device(struct device *dev)
   1250{
   1251	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
   1252	struct sysmmu_drvdata *data;
   1253
   1254	if (!has_sysmmu(dev))
   1255		return;
   1256
   1257	if (owner->domain) {
   1258		struct iommu_group *group = iommu_group_get(dev);
   1259
   1260		if (group) {
   1261			WARN_ON(owner->domain !=
   1262				iommu_group_default_domain(group));
   1263			exynos_iommu_detach_device(owner->domain, dev);
   1264			iommu_group_put(group);
   1265		}
   1266	}
   1267
   1268	list_for_each_entry(data, &owner->controllers, owner_node)
   1269		device_link_del(data->link);
   1270}
   1271
   1272static int exynos_iommu_of_xlate(struct device *dev,
   1273				 struct of_phandle_args *spec)
   1274{
   1275	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
   1276	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
   1277	struct sysmmu_drvdata *data, *entry;
   1278
   1279	if (!sysmmu)
   1280		return -ENODEV;
   1281
   1282	data = platform_get_drvdata(sysmmu);
   1283	if (!data) {
   1284		put_device(&sysmmu->dev);
   1285		return -ENODEV;
   1286	}
   1287
   1288	if (!owner) {
   1289		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
   1290		if (!owner) {
   1291			put_device(&sysmmu->dev);
   1292			return -ENOMEM;
   1293		}
   1294
   1295		INIT_LIST_HEAD(&owner->controllers);
   1296		mutex_init(&owner->rpm_lock);
   1297		dev_iommu_priv_set(dev, owner);
   1298	}
   1299
   1300	list_for_each_entry(entry, &owner->controllers, owner_node)
   1301		if (entry == data)
   1302			return 0;
   1303
   1304	list_add_tail(&data->owner_node, &owner->controllers);
   1305	data->master = dev;
   1306
   1307	return 0;
   1308}
   1309
   1310static const struct iommu_ops exynos_iommu_ops = {
   1311	.domain_alloc = exynos_iommu_domain_alloc,
   1312	.device_group = generic_device_group,
   1313	.probe_device = exynos_iommu_probe_device,
   1314	.release_device = exynos_iommu_release_device,
   1315	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
   1316	.of_xlate = exynos_iommu_of_xlate,
   1317	.default_domain_ops = &(const struct iommu_domain_ops) {
   1318		.attach_dev	= exynos_iommu_attach_device,
   1319		.detach_dev	= exynos_iommu_detach_device,
   1320		.map		= exynos_iommu_map,
   1321		.unmap		= exynos_iommu_unmap,
   1322		.iova_to_phys	= exynos_iommu_iova_to_phys,
   1323		.free		= exynos_iommu_domain_free,
   1324	}
   1325};
   1326
   1327static int __init exynos_iommu_init(void)
   1328{
   1329	struct device_node *np;
   1330	int ret;
   1331
   1332	np = of_find_matching_node(NULL, sysmmu_of_match);
   1333	if (!np)
   1334		return 0;
   1335
   1336	of_node_put(np);
   1337
   1338	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
   1339				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
   1340	if (!lv2table_kmem_cache) {
   1341		pr_err("%s: Failed to create kmem cache\n", __func__);
   1342		return -ENOMEM;
   1343	}
   1344
   1345	ret = platform_driver_register(&exynos_sysmmu_driver);
   1346	if (ret) {
   1347		pr_err("%s: Failed to register driver\n", __func__);
   1348		goto err_reg_driver;
   1349	}
   1350
   1351	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
   1352	if (zero_lv2_table == NULL) {
   1353		pr_err("%s: Failed to allocate zero level2 page table\n",
   1354			__func__);
   1355		ret = -ENOMEM;
   1356		goto err_zero_lv2;
   1357	}
   1358
   1359	ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
   1360	if (ret) {
   1361		pr_err("%s: Failed to register exynos-iommu driver.\n",
   1362								__func__);
   1363		goto err_set_iommu;
   1364	}
   1365
   1366	return 0;
   1367err_set_iommu:
   1368	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
   1369err_zero_lv2:
   1370	platform_driver_unregister(&exynos_sysmmu_driver);
   1371err_reg_driver:
   1372	kmem_cache_destroy(lv2table_kmem_cache);
   1373	return ret;
   1374}
   1375core_initcall(exynos_iommu_init);