exynos-iommu.c (39294B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 */ 6 7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG 8#define DEBUG 9#endif 10 11#include <linux/clk.h> 12#include <linux/dma-mapping.h> 13#include <linux/err.h> 14#include <linux/io.h> 15#include <linux/iommu.h> 16#include <linux/interrupt.h> 17#include <linux/kmemleak.h> 18#include <linux/list.h> 19#include <linux/of.h> 20#include <linux/of_platform.h> 21#include <linux/platform_device.h> 22#include <linux/pm_runtime.h> 23#include <linux/slab.h> 24 25typedef u32 sysmmu_iova_t; 26typedef u32 sysmmu_pte_t; 27 28/* We do not consider super section mapping (16MB) */ 29#define SECT_ORDER 20 30#define LPAGE_ORDER 16 31#define SPAGE_ORDER 12 32 33#define SECT_SIZE (1 << SECT_ORDER) 34#define LPAGE_SIZE (1 << LPAGE_ORDER) 35#define SPAGE_SIZE (1 << SPAGE_ORDER) 36 37#define SECT_MASK (~(SECT_SIZE - 1)) 38#define LPAGE_MASK (~(LPAGE_SIZE - 1)) 39#define SPAGE_MASK (~(SPAGE_SIZE - 1)) 40 41#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \ 42 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3)) 43#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK) 44#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1) 45#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \ 46 ((*(sent) & 3) == 1)) 47#define lv1ent_section(sent) ((*(sent) & 3) == 2) 48 49#define lv2ent_fault(pent) ((*(pent) & 3) == 0) 50#define lv2ent_small(pent) ((*(pent) & 2) == 2) 51#define lv2ent_large(pent) ((*(pent) & 3) == 1) 52 53/* 54 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces 55 * v5.0 introduced support for 36bit physical address space by shifting 56 * all page entry values by 4 bits. 57 * All SYSMMU controllers in the system support the address spaces of the same 58 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper 59 * value (0 or 4). 60 */ 61static short PG_ENT_SHIFT = -1; 62#define SYSMMU_PG_ENT_SHIFT 0 63#define SYSMMU_V5_PG_ENT_SHIFT 4 64 65static const sysmmu_pte_t *LV1_PROT; 66static const sysmmu_pte_t SYSMMU_LV1_PROT[] = { 67 ((0 << 15) | (0 << 10)), /* no access */ 68 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */ 69 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */ 70 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */ 71}; 72static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = { 73 (0 << 4), /* no access */ 74 (1 << 4), /* IOMMU_READ only */ 75 (2 << 4), /* IOMMU_WRITE only */ 76 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */ 77}; 78 79static const sysmmu_pte_t *LV2_PROT; 80static const sysmmu_pte_t SYSMMU_LV2_PROT[] = { 81 ((0 << 9) | (0 << 4)), /* no access */ 82 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */ 83 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */ 84 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */ 85}; 86static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = { 87 (0 << 2), /* no access */ 88 (1 << 2), /* IOMMU_READ only */ 89 (2 << 2), /* IOMMU_WRITE only */ 90 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */ 91}; 92 93#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE) 94 95#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT) 96#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK) 97#define section_offs(iova) (iova & (SECT_SIZE - 1)) 98#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK) 99#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1)) 100#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK) 101#define spage_offs(iova) (iova & (SPAGE_SIZE - 1)) 102 103#define NUM_LV1ENTRIES 4096 104#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE) 105 106static u32 lv1ent_offset(sysmmu_iova_t iova) 107{ 108 return iova >> SECT_ORDER; 109} 110 111static u32 lv2ent_offset(sysmmu_iova_t iova) 112{ 113 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1); 114} 115 116#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t)) 117#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t)) 118 119#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE) 120#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0)) 121 122#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2) 123#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1) 124#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1) 125#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2) 126 127#define CTRL_ENABLE 0x5 128#define CTRL_BLOCK 0x7 129#define CTRL_DISABLE 0x0 130 131#define CFG_LRU 0x1 132#define CFG_EAP (1 << 2) 133#define CFG_QOS(n) ((n & 0xF) << 7) 134#define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */ 135#define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */ 136#define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */ 137 138/* common registers */ 139#define REG_MMU_CTRL 0x000 140#define REG_MMU_CFG 0x004 141#define REG_MMU_STATUS 0x008 142#define REG_MMU_VERSION 0x034 143 144#define MMU_MAJ_VER(val) ((val) >> 7) 145#define MMU_MIN_VER(val) ((val) & 0x7F) 146#define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */ 147 148#define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F)) 149 150/* v1.x - v3.x registers */ 151#define REG_MMU_FLUSH 0x00C 152#define REG_MMU_FLUSH_ENTRY 0x010 153#define REG_PT_BASE_ADDR 0x014 154#define REG_INT_STATUS 0x018 155#define REG_INT_CLEAR 0x01C 156 157#define REG_PAGE_FAULT_ADDR 0x024 158#define REG_AW_FAULT_ADDR 0x028 159#define REG_AR_FAULT_ADDR 0x02C 160#define REG_DEFAULT_SLAVE_ADDR 0x030 161 162/* v5.x registers */ 163#define REG_V5_PT_BASE_PFN 0x00C 164#define REG_V5_MMU_FLUSH_ALL 0x010 165#define REG_V5_MMU_FLUSH_ENTRY 0x014 166#define REG_V5_MMU_FLUSH_RANGE 0x018 167#define REG_V5_MMU_FLUSH_START 0x020 168#define REG_V5_MMU_FLUSH_END 0x024 169#define REG_V5_INT_STATUS 0x060 170#define REG_V5_INT_CLEAR 0x064 171#define REG_V5_FAULT_AR_VA 0x070 172#define REG_V5_FAULT_AW_VA 0x080 173 174#define has_sysmmu(dev) (dev_iommu_priv_get(dev) != NULL) 175 176static struct device *dma_dev; 177static struct kmem_cache *lv2table_kmem_cache; 178static sysmmu_pte_t *zero_lv2_table; 179#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table)) 180 181static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova) 182{ 183 return pgtable + lv1ent_offset(iova); 184} 185 186static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova) 187{ 188 return (sysmmu_pte_t *)phys_to_virt( 189 lv2table_base(sent)) + lv2ent_offset(iova); 190} 191 192/* 193 * IOMMU fault information register 194 */ 195struct sysmmu_fault_info { 196 unsigned int bit; /* bit number in STATUS register */ 197 unsigned short addr_reg; /* register to read VA fault address */ 198 const char *name; /* human readable fault name */ 199 unsigned int type; /* fault type for report_iommu_fault */ 200}; 201 202static const struct sysmmu_fault_info sysmmu_faults[] = { 203 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ }, 204 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ }, 205 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE }, 206 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ }, 207 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ }, 208 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ }, 209 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE }, 210 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE }, 211}; 212 213static const struct sysmmu_fault_info sysmmu_v5_faults[] = { 214 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ }, 215 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ }, 216 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ }, 217 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ }, 218 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ }, 219 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE }, 220 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE }, 221 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE }, 222 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE }, 223 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE }, 224}; 225 226/* 227 * This structure is attached to dev->iommu->priv of the master device 228 * on device add, contains a list of SYSMMU controllers defined by device tree, 229 * which are bound to given master device. It is usually referenced by 'owner' 230 * pointer. 231*/ 232struct exynos_iommu_owner { 233 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */ 234 struct iommu_domain *domain; /* domain this device is attached */ 235 struct mutex rpm_lock; /* for runtime pm of all sysmmus */ 236}; 237 238/* 239 * This structure exynos specific generalization of struct iommu_domain. 240 * It contains list of SYSMMU controllers from all master devices, which has 241 * been attached to this domain and page tables of IO address space defined by 242 * it. It is usually referenced by 'domain' pointer. 243 */ 244struct exynos_iommu_domain { 245 struct list_head clients; /* list of sysmmu_drvdata.domain_node */ 246 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */ 247 short *lv2entcnt; /* free lv2 entry counter for each section */ 248 spinlock_t lock; /* lock for modyfying list of clients */ 249 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */ 250 struct iommu_domain domain; /* generic domain data structure */ 251}; 252 253/* 254 * This structure hold all data of a single SYSMMU controller, this includes 255 * hw resources like registers and clocks, pointers and list nodes to connect 256 * it to all other structures, internal state and parameters read from device 257 * tree. It is usually referenced by 'data' pointer. 258 */ 259struct sysmmu_drvdata { 260 struct device *sysmmu; /* SYSMMU controller device */ 261 struct device *master; /* master device (owner) */ 262 struct device_link *link; /* runtime PM link to master */ 263 void __iomem *sfrbase; /* our registers */ 264 struct clk *clk; /* SYSMMU's clock */ 265 struct clk *aclk; /* SYSMMU's aclk clock */ 266 struct clk *pclk; /* SYSMMU's pclk clock */ 267 struct clk *clk_master; /* master's device clock */ 268 spinlock_t lock; /* lock for modyfying state */ 269 bool active; /* current status */ 270 struct exynos_iommu_domain *domain; /* domain we belong to */ 271 struct list_head domain_node; /* node for domain clients list */ 272 struct list_head owner_node; /* node for owner controllers list */ 273 phys_addr_t pgtable; /* assigned page table structure */ 274 unsigned int version; /* our version */ 275 276 struct iommu_device iommu; /* IOMMU core handle */ 277}; 278 279static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom) 280{ 281 return container_of(dom, struct exynos_iommu_domain, domain); 282} 283 284static void sysmmu_unblock(struct sysmmu_drvdata *data) 285{ 286 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); 287} 288 289static bool sysmmu_block(struct sysmmu_drvdata *data) 290{ 291 int i = 120; 292 293 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL); 294 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1)) 295 --i; 296 297 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) { 298 sysmmu_unblock(data); 299 return false; 300 } 301 302 return true; 303} 304 305static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data) 306{ 307 if (MMU_MAJ_VER(data->version) < 5) 308 writel(0x1, data->sfrbase + REG_MMU_FLUSH); 309 else 310 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL); 311} 312 313static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data, 314 sysmmu_iova_t iova, unsigned int num_inv) 315{ 316 unsigned int i; 317 318 if (MMU_MAJ_VER(data->version) < 5) { 319 for (i = 0; i < num_inv; i++) { 320 writel((iova & SPAGE_MASK) | 1, 321 data->sfrbase + REG_MMU_FLUSH_ENTRY); 322 iova += SPAGE_SIZE; 323 } 324 } else { 325 if (num_inv == 1) { 326 writel((iova & SPAGE_MASK) | 1, 327 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY); 328 } else { 329 writel((iova & SPAGE_MASK), 330 data->sfrbase + REG_V5_MMU_FLUSH_START); 331 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE, 332 data->sfrbase + REG_V5_MMU_FLUSH_END); 333 writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE); 334 } 335 } 336} 337 338static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd) 339{ 340 if (MMU_MAJ_VER(data->version) < 5) 341 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR); 342 else 343 writel(pgd >> PAGE_SHIFT, 344 data->sfrbase + REG_V5_PT_BASE_PFN); 345 346 __sysmmu_tlb_invalidate(data); 347} 348 349static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data) 350{ 351 BUG_ON(clk_prepare_enable(data->clk_master)); 352 BUG_ON(clk_prepare_enable(data->clk)); 353 BUG_ON(clk_prepare_enable(data->pclk)); 354 BUG_ON(clk_prepare_enable(data->aclk)); 355} 356 357static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data) 358{ 359 clk_disable_unprepare(data->aclk); 360 clk_disable_unprepare(data->pclk); 361 clk_disable_unprepare(data->clk); 362 clk_disable_unprepare(data->clk_master); 363} 364 365static void __sysmmu_get_version(struct sysmmu_drvdata *data) 366{ 367 u32 ver; 368 369 __sysmmu_enable_clocks(data); 370 371 ver = readl(data->sfrbase + REG_MMU_VERSION); 372 373 /* controllers on some SoCs don't report proper version */ 374 if (ver == 0x80000001u) 375 data->version = MAKE_MMU_VER(1, 0); 376 else 377 data->version = MMU_RAW_VER(ver); 378 379 dev_dbg(data->sysmmu, "hardware version: %d.%d\n", 380 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version)); 381 382 __sysmmu_disable_clocks(data); 383} 384 385static void show_fault_information(struct sysmmu_drvdata *data, 386 const struct sysmmu_fault_info *finfo, 387 sysmmu_iova_t fault_addr) 388{ 389 sysmmu_pte_t *ent; 390 391 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n", 392 dev_name(data->master), finfo->name, fault_addr); 393 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable); 394 ent = section_entry(phys_to_virt(data->pgtable), fault_addr); 395 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent); 396 if (lv1ent_page(ent)) { 397 ent = page_entry(ent, fault_addr); 398 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent); 399 } 400} 401 402static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id) 403{ 404 /* SYSMMU is in blocked state when interrupt occurred. */ 405 struct sysmmu_drvdata *data = dev_id; 406 const struct sysmmu_fault_info *finfo; 407 unsigned int i, n, itype; 408 sysmmu_iova_t fault_addr; 409 unsigned short reg_status, reg_clear; 410 int ret = -ENOSYS; 411 412 WARN_ON(!data->active); 413 414 if (MMU_MAJ_VER(data->version) < 5) { 415 reg_status = REG_INT_STATUS; 416 reg_clear = REG_INT_CLEAR; 417 finfo = sysmmu_faults; 418 n = ARRAY_SIZE(sysmmu_faults); 419 } else { 420 reg_status = REG_V5_INT_STATUS; 421 reg_clear = REG_V5_INT_CLEAR; 422 finfo = sysmmu_v5_faults; 423 n = ARRAY_SIZE(sysmmu_v5_faults); 424 } 425 426 spin_lock(&data->lock); 427 428 clk_enable(data->clk_master); 429 430 itype = __ffs(readl(data->sfrbase + reg_status)); 431 for (i = 0; i < n; i++, finfo++) 432 if (finfo->bit == itype) 433 break; 434 /* unknown/unsupported fault */ 435 BUG_ON(i == n); 436 437 /* print debug message */ 438 fault_addr = readl(data->sfrbase + finfo->addr_reg); 439 show_fault_information(data, finfo, fault_addr); 440 441 if (data->domain) 442 ret = report_iommu_fault(&data->domain->domain, 443 data->master, fault_addr, finfo->type); 444 /* fault is not recovered by fault handler */ 445 BUG_ON(ret != 0); 446 447 writel(1 << itype, data->sfrbase + reg_clear); 448 449 sysmmu_unblock(data); 450 451 clk_disable(data->clk_master); 452 453 spin_unlock(&data->lock); 454 455 return IRQ_HANDLED; 456} 457 458static void __sysmmu_disable(struct sysmmu_drvdata *data) 459{ 460 unsigned long flags; 461 462 clk_enable(data->clk_master); 463 464 spin_lock_irqsave(&data->lock, flags); 465 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL); 466 writel(0, data->sfrbase + REG_MMU_CFG); 467 data->active = false; 468 spin_unlock_irqrestore(&data->lock, flags); 469 470 __sysmmu_disable_clocks(data); 471} 472 473static void __sysmmu_init_config(struct sysmmu_drvdata *data) 474{ 475 unsigned int cfg; 476 477 if (data->version <= MAKE_MMU_VER(3, 1)) 478 cfg = CFG_LRU | CFG_QOS(15); 479 else if (data->version <= MAKE_MMU_VER(3, 2)) 480 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL; 481 else 482 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN; 483 484 cfg |= CFG_EAP; /* enable access protection bits check */ 485 486 writel(cfg, data->sfrbase + REG_MMU_CFG); 487} 488 489static void __sysmmu_enable(struct sysmmu_drvdata *data) 490{ 491 unsigned long flags; 492 493 __sysmmu_enable_clocks(data); 494 495 spin_lock_irqsave(&data->lock, flags); 496 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL); 497 __sysmmu_init_config(data); 498 __sysmmu_set_ptbase(data, data->pgtable); 499 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); 500 data->active = true; 501 spin_unlock_irqrestore(&data->lock, flags); 502 503 /* 504 * SYSMMU driver keeps master's clock enabled only for the short 505 * time, while accessing the registers. For performing address 506 * translation during DMA transaction it relies on the client 507 * driver to enable it. 508 */ 509 clk_disable(data->clk_master); 510} 511 512static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data, 513 sysmmu_iova_t iova) 514{ 515 unsigned long flags; 516 517 spin_lock_irqsave(&data->lock, flags); 518 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) { 519 clk_enable(data->clk_master); 520 if (sysmmu_block(data)) { 521 if (data->version >= MAKE_MMU_VER(5, 0)) 522 __sysmmu_tlb_invalidate(data); 523 else 524 __sysmmu_tlb_invalidate_entry(data, iova, 1); 525 sysmmu_unblock(data); 526 } 527 clk_disable(data->clk_master); 528 } 529 spin_unlock_irqrestore(&data->lock, flags); 530} 531 532static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data, 533 sysmmu_iova_t iova, size_t size) 534{ 535 unsigned long flags; 536 537 spin_lock_irqsave(&data->lock, flags); 538 if (data->active) { 539 unsigned int num_inv = 1; 540 541 clk_enable(data->clk_master); 542 543 /* 544 * L2TLB invalidation required 545 * 4KB page: 1 invalidation 546 * 64KB page: 16 invalidations 547 * 1MB page: 64 invalidations 548 * because it is set-associative TLB 549 * with 8-way and 64 sets. 550 * 1MB page can be cached in one of all sets. 551 * 64KB page can be one of 16 consecutive sets. 552 */ 553 if (MMU_MAJ_VER(data->version) == 2) 554 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64); 555 556 if (sysmmu_block(data)) { 557 __sysmmu_tlb_invalidate_entry(data, iova, num_inv); 558 sysmmu_unblock(data); 559 } 560 clk_disable(data->clk_master); 561 } 562 spin_unlock_irqrestore(&data->lock, flags); 563} 564 565static const struct iommu_ops exynos_iommu_ops; 566 567static int exynos_sysmmu_probe(struct platform_device *pdev) 568{ 569 int irq, ret; 570 struct device *dev = &pdev->dev; 571 struct sysmmu_drvdata *data; 572 struct resource *res; 573 574 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 575 if (!data) 576 return -ENOMEM; 577 578 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 579 data->sfrbase = devm_ioremap_resource(dev, res); 580 if (IS_ERR(data->sfrbase)) 581 return PTR_ERR(data->sfrbase); 582 583 irq = platform_get_irq(pdev, 0); 584 if (irq <= 0) 585 return irq; 586 587 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0, 588 dev_name(dev), data); 589 if (ret) { 590 dev_err(dev, "Unabled to register handler of irq %d\n", irq); 591 return ret; 592 } 593 594 data->clk = devm_clk_get(dev, "sysmmu"); 595 if (PTR_ERR(data->clk) == -ENOENT) 596 data->clk = NULL; 597 else if (IS_ERR(data->clk)) 598 return PTR_ERR(data->clk); 599 600 data->aclk = devm_clk_get(dev, "aclk"); 601 if (PTR_ERR(data->aclk) == -ENOENT) 602 data->aclk = NULL; 603 else if (IS_ERR(data->aclk)) 604 return PTR_ERR(data->aclk); 605 606 data->pclk = devm_clk_get(dev, "pclk"); 607 if (PTR_ERR(data->pclk) == -ENOENT) 608 data->pclk = NULL; 609 else if (IS_ERR(data->pclk)) 610 return PTR_ERR(data->pclk); 611 612 if (!data->clk && (!data->aclk || !data->pclk)) { 613 dev_err(dev, "Failed to get device clock(s)!\n"); 614 return -ENOSYS; 615 } 616 617 data->clk_master = devm_clk_get(dev, "master"); 618 if (PTR_ERR(data->clk_master) == -ENOENT) 619 data->clk_master = NULL; 620 else if (IS_ERR(data->clk_master)) 621 return PTR_ERR(data->clk_master); 622 623 data->sysmmu = dev; 624 spin_lock_init(&data->lock); 625 626 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL, 627 dev_name(data->sysmmu)); 628 if (ret) 629 return ret; 630 631 ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev); 632 if (ret) 633 return ret; 634 635 platform_set_drvdata(pdev, data); 636 637 __sysmmu_get_version(data); 638 if (PG_ENT_SHIFT < 0) { 639 if (MMU_MAJ_VER(data->version) < 5) { 640 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT; 641 LV1_PROT = SYSMMU_LV1_PROT; 642 LV2_PROT = SYSMMU_LV2_PROT; 643 } else { 644 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT; 645 LV1_PROT = SYSMMU_V5_LV1_PROT; 646 LV2_PROT = SYSMMU_V5_LV2_PROT; 647 } 648 } 649 650 /* 651 * use the first registered sysmmu device for performing 652 * dma mapping operations on iommu page tables (cpu cache flush) 653 */ 654 if (!dma_dev) 655 dma_dev = &pdev->dev; 656 657 pm_runtime_enable(dev); 658 659 return 0; 660} 661 662static int __maybe_unused exynos_sysmmu_suspend(struct device *dev) 663{ 664 struct sysmmu_drvdata *data = dev_get_drvdata(dev); 665 struct device *master = data->master; 666 667 if (master) { 668 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master); 669 670 mutex_lock(&owner->rpm_lock); 671 if (data->domain) { 672 dev_dbg(data->sysmmu, "saving state\n"); 673 __sysmmu_disable(data); 674 } 675 mutex_unlock(&owner->rpm_lock); 676 } 677 return 0; 678} 679 680static int __maybe_unused exynos_sysmmu_resume(struct device *dev) 681{ 682 struct sysmmu_drvdata *data = dev_get_drvdata(dev); 683 struct device *master = data->master; 684 685 if (master) { 686 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master); 687 688 mutex_lock(&owner->rpm_lock); 689 if (data->domain) { 690 dev_dbg(data->sysmmu, "restoring state\n"); 691 __sysmmu_enable(data); 692 } 693 mutex_unlock(&owner->rpm_lock); 694 } 695 return 0; 696} 697 698static const struct dev_pm_ops sysmmu_pm_ops = { 699 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL) 700 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 701 pm_runtime_force_resume) 702}; 703 704static const struct of_device_id sysmmu_of_match[] = { 705 { .compatible = "samsung,exynos-sysmmu", }, 706 { }, 707}; 708 709static struct platform_driver exynos_sysmmu_driver __refdata = { 710 .probe = exynos_sysmmu_probe, 711 .driver = { 712 .name = "exynos-sysmmu", 713 .of_match_table = sysmmu_of_match, 714 .pm = &sysmmu_pm_ops, 715 .suppress_bind_attrs = true, 716 } 717}; 718 719static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val) 720{ 721 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent), 722 DMA_TO_DEVICE); 723 *ent = cpu_to_le32(val); 724 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent), 725 DMA_TO_DEVICE); 726} 727 728static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type) 729{ 730 struct exynos_iommu_domain *domain; 731 dma_addr_t handle; 732 int i; 733 734 /* Check if correct PTE offsets are initialized */ 735 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev); 736 737 if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED) 738 return NULL; 739 740 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 741 if (!domain) 742 return NULL; 743 744 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2); 745 if (!domain->pgtable) 746 goto err_pgtable; 747 748 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1); 749 if (!domain->lv2entcnt) 750 goto err_counter; 751 752 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */ 753 for (i = 0; i < NUM_LV1ENTRIES; i++) 754 domain->pgtable[i] = ZERO_LV2LINK; 755 756 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE, 757 DMA_TO_DEVICE); 758 /* For mapping page table entries we rely on dma == phys */ 759 BUG_ON(handle != virt_to_phys(domain->pgtable)); 760 if (dma_mapping_error(dma_dev, handle)) 761 goto err_lv2ent; 762 763 spin_lock_init(&domain->lock); 764 spin_lock_init(&domain->pgtablelock); 765 INIT_LIST_HEAD(&domain->clients); 766 767 domain->domain.geometry.aperture_start = 0; 768 domain->domain.geometry.aperture_end = ~0UL; 769 domain->domain.geometry.force_aperture = true; 770 771 return &domain->domain; 772 773err_lv2ent: 774 free_pages((unsigned long)domain->lv2entcnt, 1); 775err_counter: 776 free_pages((unsigned long)domain->pgtable, 2); 777err_pgtable: 778 kfree(domain); 779 return NULL; 780} 781 782static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain) 783{ 784 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 785 struct sysmmu_drvdata *data, *next; 786 unsigned long flags; 787 int i; 788 789 WARN_ON(!list_empty(&domain->clients)); 790 791 spin_lock_irqsave(&domain->lock, flags); 792 793 list_for_each_entry_safe(data, next, &domain->clients, domain_node) { 794 spin_lock(&data->lock); 795 __sysmmu_disable(data); 796 data->pgtable = 0; 797 data->domain = NULL; 798 list_del_init(&data->domain_node); 799 spin_unlock(&data->lock); 800 } 801 802 spin_unlock_irqrestore(&domain->lock, flags); 803 804 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE, 805 DMA_TO_DEVICE); 806 807 for (i = 0; i < NUM_LV1ENTRIES; i++) 808 if (lv1ent_page(domain->pgtable + i)) { 809 phys_addr_t base = lv2table_base(domain->pgtable + i); 810 811 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE, 812 DMA_TO_DEVICE); 813 kmem_cache_free(lv2table_kmem_cache, 814 phys_to_virt(base)); 815 } 816 817 free_pages((unsigned long)domain->pgtable, 2); 818 free_pages((unsigned long)domain->lv2entcnt, 1); 819 kfree(domain); 820} 821 822static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain, 823 struct device *dev) 824{ 825 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 826 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev); 827 phys_addr_t pagetable = virt_to_phys(domain->pgtable); 828 struct sysmmu_drvdata *data, *next; 829 unsigned long flags; 830 831 if (!has_sysmmu(dev) || owner->domain != iommu_domain) 832 return; 833 834 mutex_lock(&owner->rpm_lock); 835 836 list_for_each_entry(data, &owner->controllers, owner_node) { 837 pm_runtime_get_noresume(data->sysmmu); 838 if (pm_runtime_active(data->sysmmu)) 839 __sysmmu_disable(data); 840 pm_runtime_put(data->sysmmu); 841 } 842 843 spin_lock_irqsave(&domain->lock, flags); 844 list_for_each_entry_safe(data, next, &domain->clients, domain_node) { 845 spin_lock(&data->lock); 846 data->pgtable = 0; 847 data->domain = NULL; 848 list_del_init(&data->domain_node); 849 spin_unlock(&data->lock); 850 } 851 owner->domain = NULL; 852 spin_unlock_irqrestore(&domain->lock, flags); 853 854 mutex_unlock(&owner->rpm_lock); 855 856 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__, 857 &pagetable); 858} 859 860static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain, 861 struct device *dev) 862{ 863 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 864 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev); 865 struct sysmmu_drvdata *data; 866 phys_addr_t pagetable = virt_to_phys(domain->pgtable); 867 unsigned long flags; 868 869 if (!has_sysmmu(dev)) 870 return -ENODEV; 871 872 if (owner->domain) 873 exynos_iommu_detach_device(owner->domain, dev); 874 875 mutex_lock(&owner->rpm_lock); 876 877 spin_lock_irqsave(&domain->lock, flags); 878 list_for_each_entry(data, &owner->controllers, owner_node) { 879 spin_lock(&data->lock); 880 data->pgtable = pagetable; 881 data->domain = domain; 882 list_add_tail(&data->domain_node, &domain->clients); 883 spin_unlock(&data->lock); 884 } 885 owner->domain = iommu_domain; 886 spin_unlock_irqrestore(&domain->lock, flags); 887 888 list_for_each_entry(data, &owner->controllers, owner_node) { 889 pm_runtime_get_noresume(data->sysmmu); 890 if (pm_runtime_active(data->sysmmu)) 891 __sysmmu_enable(data); 892 pm_runtime_put(data->sysmmu); 893 } 894 895 mutex_unlock(&owner->rpm_lock); 896 897 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__, 898 &pagetable); 899 900 return 0; 901} 902 903static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain, 904 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter) 905{ 906 if (lv1ent_section(sent)) { 907 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova); 908 return ERR_PTR(-EADDRINUSE); 909 } 910 911 if (lv1ent_fault(sent)) { 912 dma_addr_t handle; 913 sysmmu_pte_t *pent; 914 bool need_flush_flpd_cache = lv1ent_zero(sent); 915 916 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC); 917 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1)); 918 if (!pent) 919 return ERR_PTR(-ENOMEM); 920 921 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent))); 922 kmemleak_ignore(pent); 923 *pgcounter = NUM_LV2ENTRIES; 924 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE, 925 DMA_TO_DEVICE); 926 if (dma_mapping_error(dma_dev, handle)) { 927 kmem_cache_free(lv2table_kmem_cache, pent); 928 return ERR_PTR(-EADDRINUSE); 929 } 930 931 /* 932 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table, 933 * FLPD cache may cache the address of zero_l2_table. This 934 * function replaces the zero_l2_table with new L2 page table 935 * to write valid mappings. 936 * Accessing the valid area may cause page fault since FLPD 937 * cache may still cache zero_l2_table for the valid area 938 * instead of new L2 page table that has the mapping 939 * information of the valid area. 940 * Thus any replacement of zero_l2_table with other valid L2 941 * page table must involve FLPD cache invalidation for System 942 * MMU v3.3. 943 * FLPD cache invalidation is performed with TLB invalidation 944 * by VPN without blocking. It is safe to invalidate TLB without 945 * blocking because the target address of TLB invalidation is 946 * not currently mapped. 947 */ 948 if (need_flush_flpd_cache) { 949 struct sysmmu_drvdata *data; 950 951 spin_lock(&domain->lock); 952 list_for_each_entry(data, &domain->clients, domain_node) 953 sysmmu_tlb_invalidate_flpdcache(data, iova); 954 spin_unlock(&domain->lock); 955 } 956 } 957 958 return page_entry(sent, iova); 959} 960 961static int lv1set_section(struct exynos_iommu_domain *domain, 962 sysmmu_pte_t *sent, sysmmu_iova_t iova, 963 phys_addr_t paddr, int prot, short *pgcnt) 964{ 965 if (lv1ent_section(sent)) { 966 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped", 967 iova); 968 return -EADDRINUSE; 969 } 970 971 if (lv1ent_page(sent)) { 972 if (*pgcnt != NUM_LV2ENTRIES) { 973 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped", 974 iova); 975 return -EADDRINUSE; 976 } 977 978 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0)); 979 *pgcnt = 0; 980 } 981 982 exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot)); 983 984 spin_lock(&domain->lock); 985 if (lv1ent_page_zero(sent)) { 986 struct sysmmu_drvdata *data; 987 /* 988 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD 989 * entry by speculative prefetch of SLPD which has no mapping. 990 */ 991 list_for_each_entry(data, &domain->clients, domain_node) 992 sysmmu_tlb_invalidate_flpdcache(data, iova); 993 } 994 spin_unlock(&domain->lock); 995 996 return 0; 997} 998 999static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size, 1000 int prot, short *pgcnt) 1001{ 1002 if (size == SPAGE_SIZE) { 1003 if (WARN_ON(!lv2ent_fault(pent))) 1004 return -EADDRINUSE; 1005 1006 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot)); 1007 *pgcnt -= 1; 1008 } else { /* size == LPAGE_SIZE */ 1009 int i; 1010 dma_addr_t pent_base = virt_to_phys(pent); 1011 1012 dma_sync_single_for_cpu(dma_dev, pent_base, 1013 sizeof(*pent) * SPAGES_PER_LPAGE, 1014 DMA_TO_DEVICE); 1015 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) { 1016 if (WARN_ON(!lv2ent_fault(pent))) { 1017 if (i > 0) 1018 memset(pent - i, 0, sizeof(*pent) * i); 1019 return -EADDRINUSE; 1020 } 1021 1022 *pent = mk_lv2ent_lpage(paddr, prot); 1023 } 1024 dma_sync_single_for_device(dma_dev, pent_base, 1025 sizeof(*pent) * SPAGES_PER_LPAGE, 1026 DMA_TO_DEVICE); 1027 *pgcnt -= SPAGES_PER_LPAGE; 1028 } 1029 1030 return 0; 1031} 1032 1033/* 1034 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu: 1035 * 1036 * System MMU v3.x has advanced logic to improve address translation 1037 * performance with caching more page table entries by a page table walk. 1038 * However, the logic has a bug that while caching faulty page table entries, 1039 * System MMU reports page fault if the cached fault entry is hit even though 1040 * the fault entry is updated to a valid entry after the entry is cached. 1041 * To prevent caching faulty page table entries which may be updated to valid 1042 * entries later, the virtual memory manager should care about the workaround 1043 * for the problem. The following describes the workaround. 1044 * 1045 * Any two consecutive I/O virtual address regions must have a hole of 128KiB 1046 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug). 1047 * 1048 * Precisely, any start address of I/O virtual region must be aligned with 1049 * the following sizes for System MMU v3.1 and v3.2. 1050 * System MMU v3.1: 128KiB 1051 * System MMU v3.2: 256KiB 1052 * 1053 * Because System MMU v3.3 caches page table entries more aggressively, it needs 1054 * more workarounds. 1055 * - Any two consecutive I/O virtual regions must have a hole of size larger 1056 * than or equal to 128KiB. 1057 * - Start address of an I/O virtual region must be aligned by 128KiB. 1058 */ 1059static int exynos_iommu_map(struct iommu_domain *iommu_domain, 1060 unsigned long l_iova, phys_addr_t paddr, size_t size, 1061 int prot, gfp_t gfp) 1062{ 1063 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1064 sysmmu_pte_t *entry; 1065 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova; 1066 unsigned long flags; 1067 int ret = -ENOMEM; 1068 1069 BUG_ON(domain->pgtable == NULL); 1070 prot &= SYSMMU_SUPPORTED_PROT_BITS; 1071 1072 spin_lock_irqsave(&domain->pgtablelock, flags); 1073 1074 entry = section_entry(domain->pgtable, iova); 1075 1076 if (size == SECT_SIZE) { 1077 ret = lv1set_section(domain, entry, iova, paddr, prot, 1078 &domain->lv2entcnt[lv1ent_offset(iova)]); 1079 } else { 1080 sysmmu_pte_t *pent; 1081 1082 pent = alloc_lv2entry(domain, entry, iova, 1083 &domain->lv2entcnt[lv1ent_offset(iova)]); 1084 1085 if (IS_ERR(pent)) 1086 ret = PTR_ERR(pent); 1087 else 1088 ret = lv2set_page(pent, paddr, size, prot, 1089 &domain->lv2entcnt[lv1ent_offset(iova)]); 1090 } 1091 1092 if (ret) 1093 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n", 1094 __func__, ret, size, iova); 1095 1096 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1097 1098 return ret; 1099} 1100 1101static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain, 1102 sysmmu_iova_t iova, size_t size) 1103{ 1104 struct sysmmu_drvdata *data; 1105 unsigned long flags; 1106 1107 spin_lock_irqsave(&domain->lock, flags); 1108 1109 list_for_each_entry(data, &domain->clients, domain_node) 1110 sysmmu_tlb_invalidate_entry(data, iova, size); 1111 1112 spin_unlock_irqrestore(&domain->lock, flags); 1113} 1114 1115static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain, 1116 unsigned long l_iova, size_t size, 1117 struct iommu_iotlb_gather *gather) 1118{ 1119 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1120 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova; 1121 sysmmu_pte_t *ent; 1122 size_t err_pgsize; 1123 unsigned long flags; 1124 1125 BUG_ON(domain->pgtable == NULL); 1126 1127 spin_lock_irqsave(&domain->pgtablelock, flags); 1128 1129 ent = section_entry(domain->pgtable, iova); 1130 1131 if (lv1ent_section(ent)) { 1132 if (WARN_ON(size < SECT_SIZE)) { 1133 err_pgsize = SECT_SIZE; 1134 goto err; 1135 } 1136 1137 /* workaround for h/w bug in System MMU v3.3 */ 1138 exynos_iommu_set_pte(ent, ZERO_LV2LINK); 1139 size = SECT_SIZE; 1140 goto done; 1141 } 1142 1143 if (unlikely(lv1ent_fault(ent))) { 1144 if (size > SECT_SIZE) 1145 size = SECT_SIZE; 1146 goto done; 1147 } 1148 1149 /* lv1ent_page(sent) == true here */ 1150 1151 ent = page_entry(ent, iova); 1152 1153 if (unlikely(lv2ent_fault(ent))) { 1154 size = SPAGE_SIZE; 1155 goto done; 1156 } 1157 1158 if (lv2ent_small(ent)) { 1159 exynos_iommu_set_pte(ent, 0); 1160 size = SPAGE_SIZE; 1161 domain->lv2entcnt[lv1ent_offset(iova)] += 1; 1162 goto done; 1163 } 1164 1165 /* lv1ent_large(ent) == true here */ 1166 if (WARN_ON(size < LPAGE_SIZE)) { 1167 err_pgsize = LPAGE_SIZE; 1168 goto err; 1169 } 1170 1171 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), 1172 sizeof(*ent) * SPAGES_PER_LPAGE, 1173 DMA_TO_DEVICE); 1174 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE); 1175 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), 1176 sizeof(*ent) * SPAGES_PER_LPAGE, 1177 DMA_TO_DEVICE); 1178 size = LPAGE_SIZE; 1179 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE; 1180done: 1181 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1182 1183 exynos_iommu_tlb_invalidate_entry(domain, iova, size); 1184 1185 return size; 1186err: 1187 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1188 1189 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n", 1190 __func__, size, iova, err_pgsize); 1191 1192 return 0; 1193} 1194 1195static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain, 1196 dma_addr_t iova) 1197{ 1198 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1199 sysmmu_pte_t *entry; 1200 unsigned long flags; 1201 phys_addr_t phys = 0; 1202 1203 spin_lock_irqsave(&domain->pgtablelock, flags); 1204 1205 entry = section_entry(domain->pgtable, iova); 1206 1207 if (lv1ent_section(entry)) { 1208 phys = section_phys(entry) + section_offs(iova); 1209 } else if (lv1ent_page(entry)) { 1210 entry = page_entry(entry, iova); 1211 1212 if (lv2ent_large(entry)) 1213 phys = lpage_phys(entry) + lpage_offs(iova); 1214 else if (lv2ent_small(entry)) 1215 phys = spage_phys(entry) + spage_offs(iova); 1216 } 1217 1218 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1219 1220 return phys; 1221} 1222 1223static struct iommu_device *exynos_iommu_probe_device(struct device *dev) 1224{ 1225 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev); 1226 struct sysmmu_drvdata *data; 1227 1228 if (!has_sysmmu(dev)) 1229 return ERR_PTR(-ENODEV); 1230 1231 list_for_each_entry(data, &owner->controllers, owner_node) { 1232 /* 1233 * SYSMMU will be runtime activated via device link 1234 * (dependency) to its master device, so there are no 1235 * direct calls to pm_runtime_get/put in this driver. 1236 */ 1237 data->link = device_link_add(dev, data->sysmmu, 1238 DL_FLAG_STATELESS | 1239 DL_FLAG_PM_RUNTIME); 1240 } 1241 1242 /* There is always at least one entry, see exynos_iommu_of_xlate() */ 1243 data = list_first_entry(&owner->controllers, 1244 struct sysmmu_drvdata, owner_node); 1245 1246 return &data->iommu; 1247} 1248 1249static void exynos_iommu_release_device(struct device *dev) 1250{ 1251 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev); 1252 struct sysmmu_drvdata *data; 1253 1254 if (!has_sysmmu(dev)) 1255 return; 1256 1257 if (owner->domain) { 1258 struct iommu_group *group = iommu_group_get(dev); 1259 1260 if (group) { 1261 WARN_ON(owner->domain != 1262 iommu_group_default_domain(group)); 1263 exynos_iommu_detach_device(owner->domain, dev); 1264 iommu_group_put(group); 1265 } 1266 } 1267 1268 list_for_each_entry(data, &owner->controllers, owner_node) 1269 device_link_del(data->link); 1270} 1271 1272static int exynos_iommu_of_xlate(struct device *dev, 1273 struct of_phandle_args *spec) 1274{ 1275 struct platform_device *sysmmu = of_find_device_by_node(spec->np); 1276 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev); 1277 struct sysmmu_drvdata *data, *entry; 1278 1279 if (!sysmmu) 1280 return -ENODEV; 1281 1282 data = platform_get_drvdata(sysmmu); 1283 if (!data) { 1284 put_device(&sysmmu->dev); 1285 return -ENODEV; 1286 } 1287 1288 if (!owner) { 1289 owner = kzalloc(sizeof(*owner), GFP_KERNEL); 1290 if (!owner) { 1291 put_device(&sysmmu->dev); 1292 return -ENOMEM; 1293 } 1294 1295 INIT_LIST_HEAD(&owner->controllers); 1296 mutex_init(&owner->rpm_lock); 1297 dev_iommu_priv_set(dev, owner); 1298 } 1299 1300 list_for_each_entry(entry, &owner->controllers, owner_node) 1301 if (entry == data) 1302 return 0; 1303 1304 list_add_tail(&data->owner_node, &owner->controllers); 1305 data->master = dev; 1306 1307 return 0; 1308} 1309 1310static const struct iommu_ops exynos_iommu_ops = { 1311 .domain_alloc = exynos_iommu_domain_alloc, 1312 .device_group = generic_device_group, 1313 .probe_device = exynos_iommu_probe_device, 1314 .release_device = exynos_iommu_release_device, 1315 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE, 1316 .of_xlate = exynos_iommu_of_xlate, 1317 .default_domain_ops = &(const struct iommu_domain_ops) { 1318 .attach_dev = exynos_iommu_attach_device, 1319 .detach_dev = exynos_iommu_detach_device, 1320 .map = exynos_iommu_map, 1321 .unmap = exynos_iommu_unmap, 1322 .iova_to_phys = exynos_iommu_iova_to_phys, 1323 .free = exynos_iommu_domain_free, 1324 } 1325}; 1326 1327static int __init exynos_iommu_init(void) 1328{ 1329 struct device_node *np; 1330 int ret; 1331 1332 np = of_find_matching_node(NULL, sysmmu_of_match); 1333 if (!np) 1334 return 0; 1335 1336 of_node_put(np); 1337 1338 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table", 1339 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL); 1340 if (!lv2table_kmem_cache) { 1341 pr_err("%s: Failed to create kmem cache\n", __func__); 1342 return -ENOMEM; 1343 } 1344 1345 ret = platform_driver_register(&exynos_sysmmu_driver); 1346 if (ret) { 1347 pr_err("%s: Failed to register driver\n", __func__); 1348 goto err_reg_driver; 1349 } 1350 1351 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL); 1352 if (zero_lv2_table == NULL) { 1353 pr_err("%s: Failed to allocate zero level2 page table\n", 1354 __func__); 1355 ret = -ENOMEM; 1356 goto err_zero_lv2; 1357 } 1358 1359 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops); 1360 if (ret) { 1361 pr_err("%s: Failed to register exynos-iommu driver.\n", 1362 __func__); 1363 goto err_set_iommu; 1364 } 1365 1366 return 0; 1367err_set_iommu: 1368 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table); 1369err_zero_lv2: 1370 platform_driver_unregister(&exynos_sysmmu_driver); 1371err_reg_driver: 1372 kmem_cache_destroy(lv2table_kmem_cache); 1373 return ret; 1374} 1375core_initcall(exynos_iommu_init);