cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

irq-apple-aic.c (31970B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright The Asahi Linux Contributors
      4 *
      5 * Based on irq-lpc32xx:
      6 *   Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
      7 * Based on irq-bcm2836:
      8 *   Copyright 2015 Broadcom
      9 */
     10
     11/*
     12 * AIC is a fairly simple interrupt controller with the following features:
     13 *
     14 * - 896 level-triggered hardware IRQs
     15 *   - Single mask bit per IRQ
     16 *   - Per-IRQ affinity setting
     17 *   - Automatic masking on event delivery (auto-ack)
     18 *   - Software triggering (ORed with hw line)
     19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are
     20 *   interchangeable if not symmetric)
     21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
     22 *   higher priority)
     23 * - Automatic masking on ack
     24 * - Default "this CPU" register view and explicit per-CPU views
     25 *
     26 * In addition, this driver also handles FIQs, as these are routed to the same
     27 * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
     28 * performance counters (TODO).
     29 *
     30 * Implementation notes:
     31 *
     32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
     33 *   and one for IPIs.
     34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
     35 *   and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
     36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
     37 * - DT bindings use 3-cell form (like GIC):
     38 *   - <0 nr flags> - hwirq #nr
     39 *   - <1 nr flags> - FIQ #nr
     40 *     - nr=0  Physical HV timer
     41 *     - nr=1  Virtual HV timer
     42 *     - nr=2  Physical guest timer
     43 *     - nr=3  Virtual guest timer
     44 */
     45
     46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     47
     48#include <linux/bits.h>
     49#include <linux/bitfield.h>
     50#include <linux/cpuhotplug.h>
     51#include <linux/io.h>
     52#include <linux/irqchip.h>
     53#include <linux/irqchip/arm-vgic-info.h>
     54#include <linux/irqdomain.h>
     55#include <linux/jump_label.h>
     56#include <linux/limits.h>
     57#include <linux/of_address.h>
     58#include <linux/slab.h>
     59#include <asm/apple_m1_pmu.h>
     60#include <asm/cputype.h>
     61#include <asm/exception.h>
     62#include <asm/sysreg.h>
     63#include <asm/virt.h>
     64
     65#include <dt-bindings/interrupt-controller/apple-aic.h>
     66
     67/*
     68 * AIC v1 registers (MMIO)
     69 */
     70
     71#define AIC_INFO		0x0004
     72#define AIC_INFO_NR_IRQ		GENMASK(15, 0)
     73
     74#define AIC_CONFIG		0x0010
     75
     76#define AIC_WHOAMI		0x2000
     77#define AIC_EVENT		0x2004
     78#define AIC_EVENT_DIE		GENMASK(31, 24)
     79#define AIC_EVENT_TYPE		GENMASK(23, 16)
     80#define AIC_EVENT_NUM		GENMASK(15, 0)
     81
     82#define AIC_EVENT_TYPE_FIQ	0 /* Software use */
     83#define AIC_EVENT_TYPE_IRQ	1
     84#define AIC_EVENT_TYPE_IPI	4
     85#define AIC_EVENT_IPI_OTHER	1
     86#define AIC_EVENT_IPI_SELF	2
     87
     88#define AIC_IPI_SEND		0x2008
     89#define AIC_IPI_ACK		0x200c
     90#define AIC_IPI_MASK_SET	0x2024
     91#define AIC_IPI_MASK_CLR	0x2028
     92
     93#define AIC_IPI_SEND_CPU(cpu)	BIT(cpu)
     94
     95#define AIC_IPI_OTHER		BIT(0)
     96#define AIC_IPI_SELF		BIT(31)
     97
     98#define AIC_TARGET_CPU		0x3000
     99
    100#define AIC_CPU_IPI_SET(cpu)	(0x5008 + ((cpu) << 7))
    101#define AIC_CPU_IPI_CLR(cpu)	(0x500c + ((cpu) << 7))
    102#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
    103#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
    104
    105#define AIC_MAX_IRQ		0x400
    106
    107/*
    108 * AIC v2 registers (MMIO)
    109 */
    110
    111#define AIC2_VERSION		0x0000
    112#define AIC2_VERSION_VER	GENMASK(7, 0)
    113
    114#define AIC2_INFO1		0x0004
    115#define AIC2_INFO1_NR_IRQ	GENMASK(15, 0)
    116#define AIC2_INFO1_LAST_DIE	GENMASK(27, 24)
    117
    118#define AIC2_INFO2		0x0008
    119
    120#define AIC2_INFO3		0x000c
    121#define AIC2_INFO3_MAX_IRQ	GENMASK(15, 0)
    122#define AIC2_INFO3_MAX_DIE	GENMASK(27, 24)
    123
    124#define AIC2_RESET		0x0010
    125#define AIC2_RESET_RESET	BIT(0)
    126
    127#define AIC2_CONFIG		0x0014
    128#define AIC2_CONFIG_ENABLE	BIT(0)
    129#define AIC2_CONFIG_PREFER_PCPU	BIT(28)
    130
    131#define AIC2_TIMEOUT		0x0028
    132#define AIC2_CLUSTER_PRIO	0x0030
    133#define AIC2_DELAY_GROUPS	0x0100
    134
    135#define AIC2_IRQ_CFG		0x2000
    136
    137/*
    138 * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
    139 *
    140 * Repeat for each die:
    141 *   IRQ_CFG: u32 * MAX_IRQS
    142 *   SW_SET: u32 * (MAX_IRQS / 32)
    143 *   SW_CLR: u32 * (MAX_IRQS / 32)
    144 *   MASK_SET: u32 * (MAX_IRQS / 32)
    145 *   MASK_CLR: u32 * (MAX_IRQS / 32)
    146 *   HW_STATE: u32 * (MAX_IRQS / 32)
    147 *
    148 * This is followed by a set of event registers, each 16K page aligned.
    149 * The first one is the AP event register we will use. Unfortunately,
    150 * the actual implemented die count is not specified anywhere in the
    151 * capability registers, so we have to explicitly specify the event
    152 * register as a second reg entry in the device tree to remain
    153 * forward-compatible.
    154 */
    155
    156#define AIC2_IRQ_CFG_TARGET	GENMASK(3, 0)
    157#define AIC2_IRQ_CFG_DELAY_IDX	GENMASK(7, 5)
    158
    159#define MASK_REG(x)		(4 * ((x) >> 5))
    160#define MASK_BIT(x)		BIT((x) & GENMASK(4, 0))
    161
    162/*
    163 * IMP-DEF sysregs that control FIQ sources
    164 */
    165
    166/* IPI request registers */
    167#define SYS_IMP_APL_IPI_RR_LOCAL_EL1	sys_reg(3, 5, 15, 0, 0)
    168#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1	sys_reg(3, 5, 15, 0, 1)
    169#define IPI_RR_CPU			GENMASK(7, 0)
    170/* Cluster only used for the GLOBAL register */
    171#define IPI_RR_CLUSTER			GENMASK(23, 16)
    172#define IPI_RR_TYPE			GENMASK(29, 28)
    173#define IPI_RR_IMMEDIATE		0
    174#define IPI_RR_RETRACT			1
    175#define IPI_RR_DEFERRED			2
    176#define IPI_RR_NOWAKE			3
    177
    178/* IPI status register */
    179#define SYS_IMP_APL_IPI_SR_EL1		sys_reg(3, 5, 15, 1, 1)
    180#define IPI_SR_PENDING			BIT(0)
    181
    182/* Guest timer FIQ enable register */
    183#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2	sys_reg(3, 5, 15, 1, 3)
    184#define VM_TMR_FIQ_ENABLE_V		BIT(0)
    185#define VM_TMR_FIQ_ENABLE_P		BIT(1)
    186
    187/* Deferred IPI countdown register */
    188#define SYS_IMP_APL_IPI_CR_EL1		sys_reg(3, 5, 15, 3, 1)
    189
    190/* Uncore PMC control register */
    191#define SYS_IMP_APL_UPMCR0_EL1		sys_reg(3, 7, 15, 0, 4)
    192#define UPMCR0_IMODE			GENMASK(18, 16)
    193#define UPMCR0_IMODE_OFF		0
    194#define UPMCR0_IMODE_AIC		2
    195#define UPMCR0_IMODE_HALT		3
    196#define UPMCR0_IMODE_FIQ		4
    197
    198/* Uncore PMC status register */
    199#define SYS_IMP_APL_UPMSR_EL1		sys_reg(3, 7, 15, 6, 4)
    200#define UPMSR_IACT			BIT(0)
    201
    202/* MPIDR fields */
    203#define MPIDR_CPU(x)			MPIDR_AFFINITY_LEVEL(x, 0)
    204#define MPIDR_CLUSTER(x)		MPIDR_AFFINITY_LEVEL(x, 1)
    205
    206#define AIC_IRQ_HWIRQ(die, irq)	(FIELD_PREP(AIC_EVENT_DIE, die) | \
    207				 FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
    208				 FIELD_PREP(AIC_EVENT_NUM, irq))
    209#define AIC_FIQ_HWIRQ(x)	(FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
    210				 FIELD_PREP(AIC_EVENT_NUM, x))
    211#define AIC_HWIRQ_IRQ(x)	FIELD_GET(AIC_EVENT_NUM, x)
    212#define AIC_HWIRQ_DIE(x)	FIELD_GET(AIC_EVENT_DIE, x)
    213#define AIC_NR_FIQ		6
    214#define AIC_NR_SWIPI		32
    215
    216/*
    217 * FIQ hwirq index definitions: FIQ sources use the DT binding defines
    218 * directly, except that timers are special. At the irqchip level, the
    219 * two timer types are represented by their access method: _EL0 registers
    220 * or _EL02 registers. In the DT binding, the timers are represented
    221 * by their purpose (HV or guest). This mapping is for when the kernel is
    222 * running at EL2 (with VHE). When the kernel is running at EL1, the
    223 * mapping differs and aic_irq_domain_translate() performs the remapping.
    224 */
    225
    226#define AIC_TMR_EL0_PHYS	AIC_TMR_HV_PHYS
    227#define AIC_TMR_EL0_VIRT	AIC_TMR_HV_VIRT
    228#define AIC_TMR_EL02_PHYS	AIC_TMR_GUEST_PHYS
    229#define AIC_TMR_EL02_VIRT	AIC_TMR_GUEST_VIRT
    230
    231static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
    232
    233struct aic_info {
    234	int version;
    235
    236	/* Register offsets */
    237	u32 event;
    238	u32 target_cpu;
    239	u32 irq_cfg;
    240	u32 sw_set;
    241	u32 sw_clr;
    242	u32 mask_set;
    243	u32 mask_clr;
    244
    245	u32 die_stride;
    246
    247	/* Features */
    248	bool fast_ipi;
    249};
    250
    251static const struct aic_info aic1_info = {
    252	.version	= 1,
    253
    254	.event		= AIC_EVENT,
    255	.target_cpu	= AIC_TARGET_CPU,
    256};
    257
    258static const struct aic_info aic1_fipi_info = {
    259	.version	= 1,
    260
    261	.event		= AIC_EVENT,
    262	.target_cpu	= AIC_TARGET_CPU,
    263
    264	.fast_ipi	= true,
    265};
    266
    267static const struct aic_info aic2_info = {
    268	.version	= 2,
    269
    270	.irq_cfg	= AIC2_IRQ_CFG,
    271
    272	.fast_ipi	= true,
    273};
    274
    275static const struct of_device_id aic_info_match[] = {
    276	{
    277		.compatible = "apple,t8103-aic",
    278		.data = &aic1_fipi_info,
    279	},
    280	{
    281		.compatible = "apple,aic",
    282		.data = &aic1_info,
    283	},
    284	{
    285		.compatible = "apple,aic2",
    286		.data = &aic2_info,
    287	},
    288	{}
    289};
    290
    291struct aic_irq_chip {
    292	void __iomem *base;
    293	void __iomem *event;
    294	struct irq_domain *hw_domain;
    295	struct irq_domain *ipi_domain;
    296	struct {
    297		cpumask_t aff;
    298	} *fiq_aff[AIC_NR_FIQ];
    299
    300	int nr_irq;
    301	int max_irq;
    302	int nr_die;
    303	int max_die;
    304
    305	struct aic_info info;
    306};
    307
    308static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
    309
    310static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
    311static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
    312
    313static struct aic_irq_chip *aic_irqc;
    314
    315static void aic_handle_ipi(struct pt_regs *regs);
    316
    317static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
    318{
    319	return readl_relaxed(ic->base + reg);
    320}
    321
    322static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
    323{
    324	writel_relaxed(val, ic->base + reg);
    325}
    326
    327/*
    328 * IRQ irqchip
    329 */
    330
    331static void aic_irq_mask(struct irq_data *d)
    332{
    333	irq_hw_number_t hwirq = irqd_to_hwirq(d);
    334	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
    335
    336	u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
    337	u32 irq = AIC_HWIRQ_IRQ(hwirq);
    338
    339	aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
    340}
    341
    342static void aic_irq_unmask(struct irq_data *d)
    343{
    344	irq_hw_number_t hwirq = irqd_to_hwirq(d);
    345	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
    346
    347	u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
    348	u32 irq = AIC_HWIRQ_IRQ(hwirq);
    349
    350	aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
    351}
    352
    353static void aic_irq_eoi(struct irq_data *d)
    354{
    355	/*
    356	 * Reading the interrupt reason automatically acknowledges and masks
    357	 * the IRQ, so we just unmask it here if needed.
    358	 */
    359	if (!irqd_irq_masked(d))
    360		aic_irq_unmask(d);
    361}
    362
    363static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
    364{
    365	struct aic_irq_chip *ic = aic_irqc;
    366	u32 event, type, irq;
    367
    368	do {
    369		/*
    370		 * We cannot use a relaxed read here, as reads from DMA buffers
    371		 * need to be ordered after the IRQ fires.
    372		 */
    373		event = readl(ic->event + ic->info.event);
    374		type = FIELD_GET(AIC_EVENT_TYPE, event);
    375		irq = FIELD_GET(AIC_EVENT_NUM, event);
    376
    377		if (type == AIC_EVENT_TYPE_IRQ)
    378			generic_handle_domain_irq(aic_irqc->hw_domain, event);
    379		else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
    380			aic_handle_ipi(regs);
    381		else if (event != 0)
    382			pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
    383	} while (event);
    384
    385	/*
    386	 * vGIC maintenance interrupts end up here too, so we need to check
    387	 * for them separately. This should never trigger if KVM is working
    388	 * properly, because it will have already taken care of clearing it
    389	 * on guest exit before this handler runs.
    390	 */
    391	if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
    392		read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
    393		pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
    394		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
    395	}
    396}
    397
    398static int aic_irq_set_affinity(struct irq_data *d,
    399				const struct cpumask *mask_val, bool force)
    400{
    401	irq_hw_number_t hwirq = irqd_to_hwirq(d);
    402	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
    403	int cpu;
    404
    405	BUG_ON(!ic->info.target_cpu);
    406
    407	if (force)
    408		cpu = cpumask_first(mask_val);
    409	else
    410		cpu = cpumask_any_and(mask_val, cpu_online_mask);
    411
    412	aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
    413	irq_data_update_effective_affinity(d, cpumask_of(cpu));
    414
    415	return IRQ_SET_MASK_OK;
    416}
    417
    418static int aic_irq_set_type(struct irq_data *d, unsigned int type)
    419{
    420	/*
    421	 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
    422	 * have a way to find out the type of any given IRQ, so just allow both.
    423	 */
    424	return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
    425}
    426
    427static struct irq_chip aic_chip = {
    428	.name = "AIC",
    429	.irq_mask = aic_irq_mask,
    430	.irq_unmask = aic_irq_unmask,
    431	.irq_eoi = aic_irq_eoi,
    432	.irq_set_affinity = aic_irq_set_affinity,
    433	.irq_set_type = aic_irq_set_type,
    434};
    435
    436static struct irq_chip aic2_chip = {
    437	.name = "AIC2",
    438	.irq_mask = aic_irq_mask,
    439	.irq_unmask = aic_irq_unmask,
    440	.irq_eoi = aic_irq_eoi,
    441	.irq_set_type = aic_irq_set_type,
    442};
    443
    444/*
    445 * FIQ irqchip
    446 */
    447
    448static unsigned long aic_fiq_get_idx(struct irq_data *d)
    449{
    450	return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
    451}
    452
    453static void aic_fiq_set_mask(struct irq_data *d)
    454{
    455	/* Only the guest timers have real mask bits, unfortunately. */
    456	switch (aic_fiq_get_idx(d)) {
    457	case AIC_TMR_EL02_PHYS:
    458		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
    459		isb();
    460		break;
    461	case AIC_TMR_EL02_VIRT:
    462		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
    463		isb();
    464		break;
    465	default:
    466		break;
    467	}
    468}
    469
    470static void aic_fiq_clear_mask(struct irq_data *d)
    471{
    472	switch (aic_fiq_get_idx(d)) {
    473	case AIC_TMR_EL02_PHYS:
    474		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
    475		isb();
    476		break;
    477	case AIC_TMR_EL02_VIRT:
    478		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
    479		isb();
    480		break;
    481	default:
    482		break;
    483	}
    484}
    485
    486static void aic_fiq_mask(struct irq_data *d)
    487{
    488	aic_fiq_set_mask(d);
    489	__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
    490}
    491
    492static void aic_fiq_unmask(struct irq_data *d)
    493{
    494	aic_fiq_clear_mask(d);
    495	__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
    496}
    497
    498static void aic_fiq_eoi(struct irq_data *d)
    499{
    500	/* We mask to ack (where we can), so we need to unmask at EOI. */
    501	if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
    502		aic_fiq_clear_mask(d);
    503}
    504
    505#define TIMER_FIRING(x)                                                        \
    506	(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK |            \
    507		 ARCH_TIMER_CTRL_IT_STAT)) ==                                  \
    508	 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
    509
    510static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
    511{
    512	/*
    513	 * It would be really nice if we had a system register that lets us get
    514	 * the FIQ source state without having to peek down into sources...
    515	 * but such a register does not seem to exist.
    516	 *
    517	 * So, we have these potential sources to test for:
    518	 *  - Fast IPIs (not yet used)
    519	 *  - The 4 timers (CNTP, CNTV for each of HV and guest)
    520	 *  - Per-core PMCs (not yet supported)
    521	 *  - Per-cluster uncore PMCs (not yet supported)
    522	 *
    523	 * Since not dealing with any of these results in a FIQ storm,
    524	 * we check for everything here, even things we don't support yet.
    525	 */
    526
    527	if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
    528		if (static_branch_likely(&use_fast_ipi)) {
    529			aic_handle_ipi(regs);
    530		} else {
    531			pr_err_ratelimited("Fast IPI fired. Acking.\n");
    532			write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
    533		}
    534	}
    535
    536	if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
    537		generic_handle_domain_irq(aic_irqc->hw_domain,
    538					  AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
    539
    540	if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
    541		generic_handle_domain_irq(aic_irqc->hw_domain,
    542					  AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
    543
    544	if (is_kernel_in_hyp_mode()) {
    545		uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
    546
    547		if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
    548		    TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
    549			generic_handle_domain_irq(aic_irqc->hw_domain,
    550						  AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
    551
    552		if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
    553		    TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
    554			generic_handle_domain_irq(aic_irqc->hw_domain,
    555						  AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
    556	}
    557
    558	if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
    559		int irq;
    560		if (cpumask_test_cpu(smp_processor_id(),
    561				     &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
    562			irq = AIC_CPU_PMU_P;
    563		else
    564			irq = AIC_CPU_PMU_E;
    565		generic_handle_domain_irq(aic_irqc->hw_domain,
    566					  AIC_FIQ_HWIRQ(irq));
    567	}
    568
    569	if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
    570			(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
    571		/* Same story with uncore PMCs */
    572		pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
    573		sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
    574				   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
    575	}
    576}
    577
    578static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
    579{
    580	return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
    581}
    582
    583static struct irq_chip fiq_chip = {
    584	.name = "AIC-FIQ",
    585	.irq_mask = aic_fiq_mask,
    586	.irq_unmask = aic_fiq_unmask,
    587	.irq_ack = aic_fiq_set_mask,
    588	.irq_eoi = aic_fiq_eoi,
    589	.irq_set_type = aic_fiq_set_type,
    590};
    591
    592/*
    593 * Main IRQ domain
    594 */
    595
    596static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
    597			      irq_hw_number_t hw)
    598{
    599	struct aic_irq_chip *ic = id->host_data;
    600	u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
    601	struct irq_chip *chip = &aic_chip;
    602
    603	if (ic->info.version == 2)
    604		chip = &aic2_chip;
    605
    606	if (type == AIC_EVENT_TYPE_IRQ) {
    607		irq_domain_set_info(id, irq, hw, chip, id->host_data,
    608				    handle_fasteoi_irq, NULL, NULL);
    609		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
    610	} else {
    611		int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
    612
    613		switch (fiq) {
    614		case AIC_CPU_PMU_P:
    615		case AIC_CPU_PMU_E:
    616			irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
    617			break;
    618		default:
    619			irq_set_percpu_devid(irq);
    620			break;
    621		}
    622
    623		irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
    624				    handle_percpu_devid_irq, NULL, NULL);
    625	}
    626
    627	return 0;
    628}
    629
    630static int aic_irq_domain_translate(struct irq_domain *id,
    631				    struct irq_fwspec *fwspec,
    632				    unsigned long *hwirq,
    633				    unsigned int *type)
    634{
    635	struct aic_irq_chip *ic = id->host_data;
    636	u32 *args;
    637	u32 die = 0;
    638
    639	if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
    640	    !is_of_node(fwspec->fwnode))
    641		return -EINVAL;
    642
    643	args = &fwspec->param[1];
    644
    645	if (fwspec->param_count == 4) {
    646		die = args[0];
    647		args++;
    648	}
    649
    650	switch (fwspec->param[0]) {
    651	case AIC_IRQ:
    652		if (die >= ic->nr_die)
    653			return -EINVAL;
    654		if (args[0] >= ic->nr_irq)
    655			return -EINVAL;
    656		*hwirq = AIC_IRQ_HWIRQ(die, args[0]);
    657		break;
    658	case AIC_FIQ:
    659		if (die != 0)
    660			return -EINVAL;
    661		if (args[0] >= AIC_NR_FIQ)
    662			return -EINVAL;
    663		*hwirq = AIC_FIQ_HWIRQ(args[0]);
    664
    665		/*
    666		 * In EL1 the non-redirected registers are the guest's,
    667		 * not EL2's, so remap the hwirqs to match.
    668		 */
    669		if (!is_kernel_in_hyp_mode()) {
    670			switch (args[0]) {
    671			case AIC_TMR_GUEST_PHYS:
    672				*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
    673				break;
    674			case AIC_TMR_GUEST_VIRT:
    675				*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
    676				break;
    677			case AIC_TMR_HV_PHYS:
    678			case AIC_TMR_HV_VIRT:
    679				return -ENOENT;
    680			default:
    681				break;
    682			}
    683		}
    684		break;
    685	default:
    686		return -EINVAL;
    687	}
    688
    689	*type = args[1] & IRQ_TYPE_SENSE_MASK;
    690
    691	return 0;
    692}
    693
    694static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
    695				unsigned int nr_irqs, void *arg)
    696{
    697	unsigned int type = IRQ_TYPE_NONE;
    698	struct irq_fwspec *fwspec = arg;
    699	irq_hw_number_t hwirq;
    700	int i, ret;
    701
    702	ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
    703	if (ret)
    704		return ret;
    705
    706	for (i = 0; i < nr_irqs; i++) {
    707		ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
    708		if (ret)
    709			return ret;
    710	}
    711
    712	return 0;
    713}
    714
    715static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
    716				unsigned int nr_irqs)
    717{
    718	int i;
    719
    720	for (i = 0; i < nr_irqs; i++) {
    721		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
    722
    723		irq_set_handler(virq + i, NULL);
    724		irq_domain_reset_irq_data(d);
    725	}
    726}
    727
    728static const struct irq_domain_ops aic_irq_domain_ops = {
    729	.translate	= aic_irq_domain_translate,
    730	.alloc		= aic_irq_domain_alloc,
    731	.free		= aic_irq_domain_free,
    732};
    733
    734/*
    735 * IPI irqchip
    736 */
    737
    738static void aic_ipi_send_fast(int cpu)
    739{
    740	u64 mpidr = cpu_logical_map(cpu);
    741	u64 my_mpidr = read_cpuid_mpidr();
    742	u64 cluster = MPIDR_CLUSTER(mpidr);
    743	u64 idx = MPIDR_CPU(mpidr);
    744
    745	if (MPIDR_CLUSTER(my_mpidr) == cluster)
    746		write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
    747			       SYS_IMP_APL_IPI_RR_LOCAL_EL1);
    748	else
    749		write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
    750			       SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
    751	isb();
    752}
    753
    754static void aic_ipi_mask(struct irq_data *d)
    755{
    756	u32 irq_bit = BIT(irqd_to_hwirq(d));
    757
    758	/* No specific ordering requirements needed here. */
    759	atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
    760}
    761
    762static void aic_ipi_unmask(struct irq_data *d)
    763{
    764	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
    765	u32 irq_bit = BIT(irqd_to_hwirq(d));
    766
    767	atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
    768
    769	/*
    770	 * The atomic_or() above must complete before the atomic_read()
    771	 * below to avoid racing aic_ipi_send_mask().
    772	 */
    773	smp_mb__after_atomic();
    774
    775	/*
    776	 * If a pending vIPI was unmasked, raise a HW IPI to ourselves.
    777	 * No barriers needed here since this is a self-IPI.
    778	 */
    779	if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) {
    780		if (static_branch_likely(&use_fast_ipi))
    781			aic_ipi_send_fast(smp_processor_id());
    782		else
    783			aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
    784	}
    785}
    786
    787static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
    788{
    789	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
    790	u32 irq_bit = BIT(irqd_to_hwirq(d));
    791	u32 send = 0;
    792	int cpu;
    793	unsigned long pending;
    794
    795	for_each_cpu(cpu, mask) {
    796		/*
    797		 * This sequence is the mirror of the one in aic_ipi_unmask();
    798		 * see the comment there. Additionally, release semantics
    799		 * ensure that the vIPI flag set is ordered after any shared
    800		 * memory accesses that precede it. This therefore also pairs
    801		 * with the atomic_fetch_andnot in aic_handle_ipi().
    802		 */
    803		pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
    804
    805		/*
    806		 * The atomic_fetch_or_release() above must complete before the
    807		 * atomic_read() below to avoid racing aic_ipi_unmask().
    808		 */
    809		smp_mb__after_atomic();
    810
    811		if (!(pending & irq_bit) &&
    812		    (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) {
    813			if (static_branch_likely(&use_fast_ipi))
    814				aic_ipi_send_fast(cpu);
    815			else
    816				send |= AIC_IPI_SEND_CPU(cpu);
    817		}
    818	}
    819
    820	/*
    821	 * The flag writes must complete before the physical IPI is issued
    822	 * to another CPU. This is implied by the control dependency on
    823	 * the result of atomic_read_acquire() above, which is itself
    824	 * already ordered after the vIPI flag write.
    825	 */
    826	if (send)
    827		aic_ic_write(ic, AIC_IPI_SEND, send);
    828}
    829
    830static struct irq_chip ipi_chip = {
    831	.name = "AIC-IPI",
    832	.irq_mask = aic_ipi_mask,
    833	.irq_unmask = aic_ipi_unmask,
    834	.ipi_send_mask = aic_ipi_send_mask,
    835};
    836
    837/*
    838 * IPI IRQ domain
    839 */
    840
    841static void aic_handle_ipi(struct pt_regs *regs)
    842{
    843	int i;
    844	unsigned long enabled, firing;
    845
    846	/*
    847	 * Ack the IPI. We need to order this after the AIC event read, but
    848	 * that is enforced by normal MMIO ordering guarantees.
    849	 *
    850	 * For the Fast IPI case, this needs to be ordered before the vIPI
    851	 * handling below, so we need to isb();
    852	 */
    853	if (static_branch_likely(&use_fast_ipi)) {
    854		write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
    855		isb();
    856	} else {
    857		aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
    858	}
    859
    860	/*
    861	 * The mask read does not need to be ordered. Only we can change
    862	 * our own mask anyway, so no races are possible here, as long as
    863	 * we are properly in the interrupt handler (which is covered by
    864	 * the barrier that is part of the top-level AIC handler's readl()).
    865	 */
    866	enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
    867
    868	/*
    869	 * Clear the IPIs we are about to handle. This pairs with the
    870	 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
    871	 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
    872	 * before IPI handling code (to avoid races handling vIPIs before they
    873	 * are signaled). The former is taken care of by the release semantics
    874	 * of the write portion, while the latter is taken care of by the
    875	 * acquire semantics of the read portion.
    876	 */
    877	firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
    878
    879	for_each_set_bit(i, &firing, AIC_NR_SWIPI)
    880		generic_handle_domain_irq(aic_irqc->ipi_domain, i);
    881
    882	/*
    883	 * No ordering needed here; at worst this just changes the timing of
    884	 * when the next IPI will be delivered.
    885	 */
    886	if (!static_branch_likely(&use_fast_ipi))
    887		aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
    888}
    889
    890static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
    891			 unsigned int nr_irqs, void *args)
    892{
    893	int i;
    894
    895	for (i = 0; i < nr_irqs; i++) {
    896		irq_set_percpu_devid(virq + i);
    897		irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
    898				    handle_percpu_devid_irq, NULL, NULL);
    899	}
    900
    901	return 0;
    902}
    903
    904static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
    905{
    906	/* Not freeing IPIs */
    907}
    908
    909static const struct irq_domain_ops aic_ipi_domain_ops = {
    910	.alloc = aic_ipi_alloc,
    911	.free = aic_ipi_free,
    912};
    913
    914static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
    915{
    916	struct irq_domain *ipi_domain;
    917	int base_ipi;
    918
    919	ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
    920					      &aic_ipi_domain_ops, irqc);
    921	if (WARN_ON(!ipi_domain))
    922		return -ENODEV;
    923
    924	ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
    925	irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
    926
    927	base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
    928					   NUMA_NO_NODE, NULL, false, NULL);
    929
    930	if (WARN_ON(!base_ipi)) {
    931		irq_domain_remove(ipi_domain);
    932		return -ENODEV;
    933	}
    934
    935	set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
    936
    937	irqc->ipi_domain = ipi_domain;
    938
    939	return 0;
    940}
    941
    942static int aic_init_cpu(unsigned int cpu)
    943{
    944	/* Mask all hard-wired per-CPU IRQ/FIQ sources */
    945
    946	/* Pending Fast IPI FIQs */
    947	write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
    948
    949	/* Timer FIQs */
    950	sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
    951	sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
    952
    953	/* EL2-only (VHE mode) IRQ sources */
    954	if (is_kernel_in_hyp_mode()) {
    955		/* Guest timers */
    956		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
    957				   VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
    958
    959		/* vGIC maintenance IRQ */
    960		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
    961	}
    962
    963	/* PMC FIQ */
    964	sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
    965			   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
    966
    967	/* Uncore PMC FIQ */
    968	sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
    969			   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
    970
    971	/* Commit all of the above */
    972	isb();
    973
    974	if (aic_irqc->info.version == 1) {
    975		/*
    976		 * Make sure the kernel's idea of logical CPU order is the same as AIC's
    977		 * If we ever end up with a mismatch here, we will have to introduce
    978		 * a mapping table similar to what other irqchip drivers do.
    979		 */
    980		WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
    981
    982		/*
    983		 * Always keep IPIs unmasked at the hardware level (except auto-masking
    984		 * by AIC during processing). We manage masks at the vIPI level.
    985		 * These registers only exist on AICv1, AICv2 always uses fast IPIs.
    986		 */
    987		aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
    988		if (static_branch_likely(&use_fast_ipi)) {
    989			aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
    990		} else {
    991			aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
    992			aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
    993		}
    994	}
    995
    996	/* Initialize the local mask state */
    997	__this_cpu_write(aic_fiq_unmasked, 0);
    998
    999	return 0;
   1000}
   1001
   1002static struct gic_kvm_info vgic_info __initdata = {
   1003	.type			= GIC_V3,
   1004	.no_maint_irq_mask	= true,
   1005	.no_hw_deactivation	= true,
   1006};
   1007
   1008static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
   1009{
   1010	int i, n;
   1011	u32 fiq;
   1012
   1013	if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
   1014	    WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
   1015		return;
   1016
   1017	n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
   1018	if (WARN_ON(n < 0))
   1019		return;
   1020
   1021	ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
   1022	if (!ic->fiq_aff[fiq])
   1023		return;
   1024
   1025	for (i = 0; i < n; i++) {
   1026		struct device_node *cpu_node;
   1027		u32 cpu_phandle;
   1028		int cpu;
   1029
   1030		if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
   1031			continue;
   1032
   1033		cpu_node = of_find_node_by_phandle(cpu_phandle);
   1034		if (WARN_ON(!cpu_node))
   1035			continue;
   1036
   1037		cpu = of_cpu_node_to_id(cpu_node);
   1038		of_node_put(cpu_node);
   1039		if (WARN_ON(cpu < 0))
   1040			continue;
   1041
   1042		cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
   1043	}
   1044}
   1045
   1046static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
   1047{
   1048	int i, die;
   1049	u32 off, start_off;
   1050	void __iomem *regs;
   1051	struct aic_irq_chip *irqc;
   1052	struct device_node *affs;
   1053	const struct of_device_id *match;
   1054
   1055	regs = of_iomap(node, 0);
   1056	if (WARN_ON(!regs))
   1057		return -EIO;
   1058
   1059	irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
   1060	if (!irqc) {
   1061		iounmap(regs);
   1062		return -ENOMEM;
   1063	}
   1064
   1065	irqc->base = regs;
   1066
   1067	match = of_match_node(aic_info_match, node);
   1068	if (!match)
   1069		goto err_unmap;
   1070
   1071	irqc->info = *(struct aic_info *)match->data;
   1072
   1073	aic_irqc = irqc;
   1074
   1075	switch (irqc->info.version) {
   1076	case 1: {
   1077		u32 info;
   1078
   1079		info = aic_ic_read(irqc, AIC_INFO);
   1080		irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
   1081		irqc->max_irq = AIC_MAX_IRQ;
   1082		irqc->nr_die = irqc->max_die = 1;
   1083
   1084		off = start_off = irqc->info.target_cpu;
   1085		off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
   1086
   1087		irqc->event = irqc->base;
   1088
   1089		break;
   1090	}
   1091	case 2: {
   1092		u32 info1, info3;
   1093
   1094		info1 = aic_ic_read(irqc, AIC2_INFO1);
   1095		info3 = aic_ic_read(irqc, AIC2_INFO3);
   1096
   1097		irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
   1098		irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
   1099		irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
   1100		irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
   1101
   1102		off = start_off = irqc->info.irq_cfg;
   1103		off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
   1104
   1105		irqc->event = of_iomap(node, 1);
   1106		if (WARN_ON(!irqc->event))
   1107			goto err_unmap;
   1108
   1109		break;
   1110	}
   1111	}
   1112
   1113	irqc->info.sw_set = off;
   1114	off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
   1115	irqc->info.sw_clr = off;
   1116	off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
   1117	irqc->info.mask_set = off;
   1118	off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
   1119	irqc->info.mask_clr = off;
   1120	off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
   1121	off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
   1122
   1123	if (irqc->info.fast_ipi)
   1124		static_branch_enable(&use_fast_ipi);
   1125	else
   1126		static_branch_disable(&use_fast_ipi);
   1127
   1128	irqc->info.die_stride = off - start_off;
   1129
   1130	irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
   1131						 &aic_irq_domain_ops, irqc);
   1132	if (WARN_ON(!irqc->hw_domain))
   1133		goto err_unmap;
   1134
   1135	irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
   1136
   1137	if (aic_init_smp(irqc, node))
   1138		goto err_remove_domain;
   1139
   1140	affs = of_get_child_by_name(node, "affinities");
   1141	if (affs) {
   1142		struct device_node *chld;
   1143
   1144		for_each_child_of_node(affs, chld)
   1145			build_fiq_affinity(irqc, chld);
   1146	}
   1147	of_node_put(affs);
   1148
   1149	set_handle_irq(aic_handle_irq);
   1150	set_handle_fiq(aic_handle_fiq);
   1151
   1152	off = 0;
   1153	for (die = 0; die < irqc->nr_die; die++) {
   1154		for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
   1155			aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
   1156		for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
   1157			aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
   1158		if (irqc->info.target_cpu)
   1159			for (i = 0; i < irqc->nr_irq; i++)
   1160				aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
   1161		off += irqc->info.die_stride;
   1162	}
   1163
   1164	if (irqc->info.version == 2) {
   1165		u32 config = aic_ic_read(irqc, AIC2_CONFIG);
   1166
   1167		config |= AIC2_CONFIG_ENABLE;
   1168		aic_ic_write(irqc, AIC2_CONFIG, config);
   1169	}
   1170
   1171	if (!is_kernel_in_hyp_mode())
   1172		pr_info("Kernel running in EL1, mapping interrupts");
   1173
   1174	if (static_branch_likely(&use_fast_ipi))
   1175		pr_info("Using Fast IPIs");
   1176
   1177	cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
   1178			  "irqchip/apple-aic/ipi:starting",
   1179			  aic_init_cpu, NULL);
   1180
   1181	vgic_set_kvm_info(&vgic_info);
   1182
   1183	pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
   1184		irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
   1185
   1186	return 0;
   1187
   1188err_remove_domain:
   1189	irq_domain_remove(irqc->hw_domain);
   1190err_unmap:
   1191	if (irqc->event && irqc->event != irqc->base)
   1192		iounmap(irqc->event);
   1193	iounmap(irqc->base);
   1194	kfree(irqc);
   1195	return -ENODEV;
   1196}
   1197
   1198IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
   1199IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);