cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

irq-gic-v3-its.c (140976B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
      4 * Author: Marc Zyngier <marc.zyngier@arm.com>
      5 */
      6
      7#include <linux/acpi.h>
      8#include <linux/acpi_iort.h>
      9#include <linux/bitfield.h>
     10#include <linux/bitmap.h>
     11#include <linux/cpu.h>
     12#include <linux/crash_dump.h>
     13#include <linux/delay.h>
     14#include <linux/dma-iommu.h>
     15#include <linux/efi.h>
     16#include <linux/interrupt.h>
     17#include <linux/iopoll.h>
     18#include <linux/irqdomain.h>
     19#include <linux/list.h>
     20#include <linux/log2.h>
     21#include <linux/memblock.h>
     22#include <linux/mm.h>
     23#include <linux/msi.h>
     24#include <linux/of.h>
     25#include <linux/of_address.h>
     26#include <linux/of_irq.h>
     27#include <linux/of_pci.h>
     28#include <linux/of_platform.h>
     29#include <linux/percpu.h>
     30#include <linux/slab.h>
     31#include <linux/syscore_ops.h>
     32
     33#include <linux/irqchip.h>
     34#include <linux/irqchip/arm-gic-v3.h>
     35#include <linux/irqchip/arm-gic-v4.h>
     36
     37#include <asm/cputype.h>
     38#include <asm/exception.h>
     39
     40#include "irq-gic-common.h"
     41
     42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
     43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
     44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
     45
     46#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
     47#define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
     48
     49#define RD_LOCAL_LPI_ENABLED                    BIT(0)
     50#define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
     51#define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
     52
     53static u32 lpi_id_bits;
     54
     55/*
     56 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
     57 * deal with (one configuration byte per interrupt). PENDBASE has to
     58 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
     59 */
     60#define LPI_NRBITS		lpi_id_bits
     61#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
     62#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
     63
     64#define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
     65
     66/*
     67 * Collection structure - just an ID, and a redistributor address to
     68 * ping. We use one per CPU as a bag of interrupts assigned to this
     69 * CPU.
     70 */
     71struct its_collection {
     72	u64			target_address;
     73	u16			col_id;
     74};
     75
     76/*
     77 * The ITS_BASER structure - contains memory information, cached
     78 * value of BASER register configuration and ITS page size.
     79 */
     80struct its_baser {
     81	void		*base;
     82	u64		val;
     83	u32		order;
     84	u32		psz;
     85};
     86
     87struct its_device;
     88
     89/*
     90 * The ITS structure - contains most of the infrastructure, with the
     91 * top-level MSI domain, the command queue, the collections, and the
     92 * list of devices writing to it.
     93 *
     94 * dev_alloc_lock has to be taken for device allocations, while the
     95 * spinlock must be taken to parse data structures such as the device
     96 * list.
     97 */
     98struct its_node {
     99	raw_spinlock_t		lock;
    100	struct mutex		dev_alloc_lock;
    101	struct list_head	entry;
    102	void __iomem		*base;
    103	void __iomem		*sgir_base;
    104	phys_addr_t		phys_base;
    105	struct its_cmd_block	*cmd_base;
    106	struct its_cmd_block	*cmd_write;
    107	struct its_baser	tables[GITS_BASER_NR_REGS];
    108	struct its_collection	*collections;
    109	struct fwnode_handle	*fwnode_handle;
    110	u64			(*get_msi_base)(struct its_device *its_dev);
    111	u64			typer;
    112	u64			cbaser_save;
    113	u32			ctlr_save;
    114	u32			mpidr;
    115	struct list_head	its_device_list;
    116	u64			flags;
    117	unsigned long		list_nr;
    118	int			numa_node;
    119	unsigned int		msi_domain_flags;
    120	u32			pre_its_base; /* for Socionext Synquacer */
    121	int			vlpi_redist_offset;
    122};
    123
    124#define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
    125#define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
    126#define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
    127
    128#define ITS_ITT_ALIGN		SZ_256
    129
    130/* The maximum number of VPEID bits supported by VLPI commands */
    131#define ITS_MAX_VPEID_BITS						\
    132	({								\
    133		int nvpeid = 16;					\
    134		if (gic_rdists->has_rvpeid &&				\
    135		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
    136			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
    137				      GICD_TYPER2_VID);			\
    138									\
    139		nvpeid;							\
    140	})
    141#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
    142
    143/* Convert page order to size in bytes */
    144#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
    145
    146struct event_lpi_map {
    147	unsigned long		*lpi_map;
    148	u16			*col_map;
    149	irq_hw_number_t		lpi_base;
    150	int			nr_lpis;
    151	raw_spinlock_t		vlpi_lock;
    152	struct its_vm		*vm;
    153	struct its_vlpi_map	*vlpi_maps;
    154	int			nr_vlpis;
    155};
    156
    157/*
    158 * The ITS view of a device - belongs to an ITS, owns an interrupt
    159 * translation table, and a list of interrupts.  If it some of its
    160 * LPIs are injected into a guest (GICv4), the event_map.vm field
    161 * indicates which one.
    162 */
    163struct its_device {
    164	struct list_head	entry;
    165	struct its_node		*its;
    166	struct event_lpi_map	event_map;
    167	void			*itt;
    168	u32			nr_ites;
    169	u32			device_id;
    170	bool			shared;
    171};
    172
    173static struct {
    174	raw_spinlock_t		lock;
    175	struct its_device	*dev;
    176	struct its_vpe		**vpes;
    177	int			next_victim;
    178} vpe_proxy;
    179
    180struct cpu_lpi_count {
    181	atomic_t	managed;
    182	atomic_t	unmanaged;
    183};
    184
    185static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
    186
    187static LIST_HEAD(its_nodes);
    188static DEFINE_RAW_SPINLOCK(its_lock);
    189static struct rdists *gic_rdists;
    190static struct irq_domain *its_parent;
    191
    192static unsigned long its_list_map;
    193static u16 vmovp_seq_num;
    194static DEFINE_RAW_SPINLOCK(vmovp_lock);
    195
    196static DEFINE_IDA(its_vpeid_ida);
    197
    198#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
    199#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
    200#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
    201#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
    202
    203/*
    204 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
    205 * always have vSGIs mapped.
    206 */
    207static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
    208{
    209	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
    210}
    211
    212static u16 get_its_list(struct its_vm *vm)
    213{
    214	struct its_node *its;
    215	unsigned long its_list = 0;
    216
    217	list_for_each_entry(its, &its_nodes, entry) {
    218		if (!is_v4(its))
    219			continue;
    220
    221		if (require_its_list_vmovp(vm, its))
    222			__set_bit(its->list_nr, &its_list);
    223	}
    224
    225	return (u16)its_list;
    226}
    227
    228static inline u32 its_get_event_id(struct irq_data *d)
    229{
    230	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
    231	return d->hwirq - its_dev->event_map.lpi_base;
    232}
    233
    234static struct its_collection *dev_event_to_col(struct its_device *its_dev,
    235					       u32 event)
    236{
    237	struct its_node *its = its_dev->its;
    238
    239	return its->collections + its_dev->event_map.col_map[event];
    240}
    241
    242static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
    243					       u32 event)
    244{
    245	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
    246		return NULL;
    247
    248	return &its_dev->event_map.vlpi_maps[event];
    249}
    250
    251static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
    252{
    253	if (irqd_is_forwarded_to_vcpu(d)) {
    254		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
    255		u32 event = its_get_event_id(d);
    256
    257		return dev_event_to_vlpi_map(its_dev, event);
    258	}
    259
    260	return NULL;
    261}
    262
    263static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
    264{
    265	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
    266	return vpe->col_idx;
    267}
    268
    269static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
    270{
    271	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
    272}
    273
    274static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
    275{
    276	struct its_vlpi_map *map = get_vlpi_map(d);
    277	int cpu;
    278
    279	if (map) {
    280		cpu = vpe_to_cpuid_lock(map->vpe, flags);
    281	} else {
    282		/* Physical LPIs are already locked via the irq_desc lock */
    283		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
    284		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
    285		/* Keep GCC quiet... */
    286		*flags = 0;
    287	}
    288
    289	return cpu;
    290}
    291
    292static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
    293{
    294	struct its_vlpi_map *map = get_vlpi_map(d);
    295
    296	if (map)
    297		vpe_to_cpuid_unlock(map->vpe, flags);
    298}
    299
    300static struct its_collection *valid_col(struct its_collection *col)
    301{
    302	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
    303		return NULL;
    304
    305	return col;
    306}
    307
    308static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
    309{
    310	if (valid_col(its->collections + vpe->col_idx))
    311		return vpe;
    312
    313	return NULL;
    314}
    315
    316/*
    317 * ITS command descriptors - parameters to be encoded in a command
    318 * block.
    319 */
    320struct its_cmd_desc {
    321	union {
    322		struct {
    323			struct its_device *dev;
    324			u32 event_id;
    325		} its_inv_cmd;
    326
    327		struct {
    328			struct its_device *dev;
    329			u32 event_id;
    330		} its_clear_cmd;
    331
    332		struct {
    333			struct its_device *dev;
    334			u32 event_id;
    335		} its_int_cmd;
    336
    337		struct {
    338			struct its_device *dev;
    339			int valid;
    340		} its_mapd_cmd;
    341
    342		struct {
    343			struct its_collection *col;
    344			int valid;
    345		} its_mapc_cmd;
    346
    347		struct {
    348			struct its_device *dev;
    349			u32 phys_id;
    350			u32 event_id;
    351		} its_mapti_cmd;
    352
    353		struct {
    354			struct its_device *dev;
    355			struct its_collection *col;
    356			u32 event_id;
    357		} its_movi_cmd;
    358
    359		struct {
    360			struct its_device *dev;
    361			u32 event_id;
    362		} its_discard_cmd;
    363
    364		struct {
    365			struct its_collection *col;
    366		} its_invall_cmd;
    367
    368		struct {
    369			struct its_vpe *vpe;
    370		} its_vinvall_cmd;
    371
    372		struct {
    373			struct its_vpe *vpe;
    374			struct its_collection *col;
    375			bool valid;
    376		} its_vmapp_cmd;
    377
    378		struct {
    379			struct its_vpe *vpe;
    380			struct its_device *dev;
    381			u32 virt_id;
    382			u32 event_id;
    383			bool db_enabled;
    384		} its_vmapti_cmd;
    385
    386		struct {
    387			struct its_vpe *vpe;
    388			struct its_device *dev;
    389			u32 event_id;
    390			bool db_enabled;
    391		} its_vmovi_cmd;
    392
    393		struct {
    394			struct its_vpe *vpe;
    395			struct its_collection *col;
    396			u16 seq_num;
    397			u16 its_list;
    398		} its_vmovp_cmd;
    399
    400		struct {
    401			struct its_vpe *vpe;
    402		} its_invdb_cmd;
    403
    404		struct {
    405			struct its_vpe *vpe;
    406			u8 sgi;
    407			u8 priority;
    408			bool enable;
    409			bool group;
    410			bool clear;
    411		} its_vsgi_cmd;
    412	};
    413};
    414
    415/*
    416 * The ITS command block, which is what the ITS actually parses.
    417 */
    418struct its_cmd_block {
    419	union {
    420		u64	raw_cmd[4];
    421		__le64	raw_cmd_le[4];
    422	};
    423};
    424
    425#define ITS_CMD_QUEUE_SZ		SZ_64K
    426#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
    427
    428typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
    429						    struct its_cmd_block *,
    430						    struct its_cmd_desc *);
    431
    432typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
    433					      struct its_cmd_block *,
    434					      struct its_cmd_desc *);
    435
    436static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
    437{
    438	u64 mask = GENMASK_ULL(h, l);
    439	*raw_cmd &= ~mask;
    440	*raw_cmd |= (val << l) & mask;
    441}
    442
    443static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
    444{
    445	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
    446}
    447
    448static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
    449{
    450	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
    451}
    452
    453static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
    454{
    455	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
    456}
    457
    458static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
    459{
    460	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
    461}
    462
    463static void its_encode_size(struct its_cmd_block *cmd, u8 size)
    464{
    465	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
    466}
    467
    468static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
    469{
    470	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
    471}
    472
    473static void its_encode_valid(struct its_cmd_block *cmd, int valid)
    474{
    475	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
    476}
    477
    478static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
    479{
    480	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
    481}
    482
    483static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
    484{
    485	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
    486}
    487
    488static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
    489{
    490	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
    491}
    492
    493static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
    494{
    495	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
    496}
    497
    498static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
    499{
    500	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
    501}
    502
    503static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
    504{
    505	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
    506}
    507
    508static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
    509{
    510	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
    511}
    512
    513static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
    514{
    515	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
    516}
    517
    518static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
    519{
    520	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
    521}
    522
    523static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
    524{
    525	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
    526}
    527
    528static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
    529{
    530	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
    531}
    532
    533static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
    534{
    535	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
    536}
    537
    538static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
    539{
    540	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
    541}
    542
    543static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
    544					u32 vpe_db_lpi)
    545{
    546	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
    547}
    548
    549static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
    550					u32 vpe_db_lpi)
    551{
    552	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
    553}
    554
    555static void its_encode_db(struct its_cmd_block *cmd, bool db)
    556{
    557	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
    558}
    559
    560static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
    561{
    562	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
    563}
    564
    565static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
    566{
    567	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
    568}
    569
    570static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
    571{
    572	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
    573}
    574
    575static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
    576{
    577	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
    578}
    579
    580static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
    581{
    582	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
    583}
    584
    585static inline void its_fixup_cmd(struct its_cmd_block *cmd)
    586{
    587	/* Let's fixup BE commands */
    588	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
    589	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
    590	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
    591	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
    592}
    593
    594static struct its_collection *its_build_mapd_cmd(struct its_node *its,
    595						 struct its_cmd_block *cmd,
    596						 struct its_cmd_desc *desc)
    597{
    598	unsigned long itt_addr;
    599	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
    600
    601	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
    602	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
    603
    604	its_encode_cmd(cmd, GITS_CMD_MAPD);
    605	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
    606	its_encode_size(cmd, size - 1);
    607	its_encode_itt(cmd, itt_addr);
    608	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
    609
    610	its_fixup_cmd(cmd);
    611
    612	return NULL;
    613}
    614
    615static struct its_collection *its_build_mapc_cmd(struct its_node *its,
    616						 struct its_cmd_block *cmd,
    617						 struct its_cmd_desc *desc)
    618{
    619	its_encode_cmd(cmd, GITS_CMD_MAPC);
    620	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
    621	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
    622	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
    623
    624	its_fixup_cmd(cmd);
    625
    626	return desc->its_mapc_cmd.col;
    627}
    628
    629static struct its_collection *its_build_mapti_cmd(struct its_node *its,
    630						  struct its_cmd_block *cmd,
    631						  struct its_cmd_desc *desc)
    632{
    633	struct its_collection *col;
    634
    635	col = dev_event_to_col(desc->its_mapti_cmd.dev,
    636			       desc->its_mapti_cmd.event_id);
    637
    638	its_encode_cmd(cmd, GITS_CMD_MAPTI);
    639	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
    640	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
    641	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
    642	its_encode_collection(cmd, col->col_id);
    643
    644	its_fixup_cmd(cmd);
    645
    646	return valid_col(col);
    647}
    648
    649static struct its_collection *its_build_movi_cmd(struct its_node *its,
    650						 struct its_cmd_block *cmd,
    651						 struct its_cmd_desc *desc)
    652{
    653	struct its_collection *col;
    654
    655	col = dev_event_to_col(desc->its_movi_cmd.dev,
    656			       desc->its_movi_cmd.event_id);
    657
    658	its_encode_cmd(cmd, GITS_CMD_MOVI);
    659	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
    660	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
    661	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
    662
    663	its_fixup_cmd(cmd);
    664
    665	return valid_col(col);
    666}
    667
    668static struct its_collection *its_build_discard_cmd(struct its_node *its,
    669						    struct its_cmd_block *cmd,
    670						    struct its_cmd_desc *desc)
    671{
    672	struct its_collection *col;
    673
    674	col = dev_event_to_col(desc->its_discard_cmd.dev,
    675			       desc->its_discard_cmd.event_id);
    676
    677	its_encode_cmd(cmd, GITS_CMD_DISCARD);
    678	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
    679	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
    680
    681	its_fixup_cmd(cmd);
    682
    683	return valid_col(col);
    684}
    685
    686static struct its_collection *its_build_inv_cmd(struct its_node *its,
    687						struct its_cmd_block *cmd,
    688						struct its_cmd_desc *desc)
    689{
    690	struct its_collection *col;
    691
    692	col = dev_event_to_col(desc->its_inv_cmd.dev,
    693			       desc->its_inv_cmd.event_id);
    694
    695	its_encode_cmd(cmd, GITS_CMD_INV);
    696	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
    697	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
    698
    699	its_fixup_cmd(cmd);
    700
    701	return valid_col(col);
    702}
    703
    704static struct its_collection *its_build_int_cmd(struct its_node *its,
    705						struct its_cmd_block *cmd,
    706						struct its_cmd_desc *desc)
    707{
    708	struct its_collection *col;
    709
    710	col = dev_event_to_col(desc->its_int_cmd.dev,
    711			       desc->its_int_cmd.event_id);
    712
    713	its_encode_cmd(cmd, GITS_CMD_INT);
    714	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
    715	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
    716
    717	its_fixup_cmd(cmd);
    718
    719	return valid_col(col);
    720}
    721
    722static struct its_collection *its_build_clear_cmd(struct its_node *its,
    723						  struct its_cmd_block *cmd,
    724						  struct its_cmd_desc *desc)
    725{
    726	struct its_collection *col;
    727
    728	col = dev_event_to_col(desc->its_clear_cmd.dev,
    729			       desc->its_clear_cmd.event_id);
    730
    731	its_encode_cmd(cmd, GITS_CMD_CLEAR);
    732	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
    733	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
    734
    735	its_fixup_cmd(cmd);
    736
    737	return valid_col(col);
    738}
    739
    740static struct its_collection *its_build_invall_cmd(struct its_node *its,
    741						   struct its_cmd_block *cmd,
    742						   struct its_cmd_desc *desc)
    743{
    744	its_encode_cmd(cmd, GITS_CMD_INVALL);
    745	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
    746
    747	its_fixup_cmd(cmd);
    748
    749	return desc->its_invall_cmd.col;
    750}
    751
    752static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
    753					     struct its_cmd_block *cmd,
    754					     struct its_cmd_desc *desc)
    755{
    756	its_encode_cmd(cmd, GITS_CMD_VINVALL);
    757	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
    758
    759	its_fixup_cmd(cmd);
    760
    761	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
    762}
    763
    764static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
    765					   struct its_cmd_block *cmd,
    766					   struct its_cmd_desc *desc)
    767{
    768	unsigned long vpt_addr, vconf_addr;
    769	u64 target;
    770	bool alloc;
    771
    772	its_encode_cmd(cmd, GITS_CMD_VMAPP);
    773	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
    774	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
    775
    776	if (!desc->its_vmapp_cmd.valid) {
    777		if (is_v4_1(its)) {
    778			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
    779			its_encode_alloc(cmd, alloc);
    780		}
    781
    782		goto out;
    783	}
    784
    785	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
    786	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
    787
    788	its_encode_target(cmd, target);
    789	its_encode_vpt_addr(cmd, vpt_addr);
    790	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
    791
    792	if (!is_v4_1(its))
    793		goto out;
    794
    795	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
    796
    797	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
    798
    799	its_encode_alloc(cmd, alloc);
    800
    801	/*
    802	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
    803	 * to be unmapped first, and in this case, we may remap the vPE
    804	 * back while the VPT is not empty. So we can't assume that the
    805	 * VPT is empty on map. This is why we never advertise PTZ.
    806	 */
    807	its_encode_ptz(cmd, false);
    808	its_encode_vconf_addr(cmd, vconf_addr);
    809	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
    810
    811out:
    812	its_fixup_cmd(cmd);
    813
    814	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
    815}
    816
    817static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
    818					    struct its_cmd_block *cmd,
    819					    struct its_cmd_desc *desc)
    820{
    821	u32 db;
    822
    823	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
    824		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
    825	else
    826		db = 1023;
    827
    828	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
    829	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
    830	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
    831	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
    832	its_encode_db_phys_id(cmd, db);
    833	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
    834
    835	its_fixup_cmd(cmd);
    836
    837	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
    838}
    839
    840static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
    841					   struct its_cmd_block *cmd,
    842					   struct its_cmd_desc *desc)
    843{
    844	u32 db;
    845
    846	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
    847		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
    848	else
    849		db = 1023;
    850
    851	its_encode_cmd(cmd, GITS_CMD_VMOVI);
    852	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
    853	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
    854	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
    855	its_encode_db_phys_id(cmd, db);
    856	its_encode_db_valid(cmd, true);
    857
    858	its_fixup_cmd(cmd);
    859
    860	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
    861}
    862
    863static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
    864					   struct its_cmd_block *cmd,
    865					   struct its_cmd_desc *desc)
    866{
    867	u64 target;
    868
    869	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
    870	its_encode_cmd(cmd, GITS_CMD_VMOVP);
    871	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
    872	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
    873	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
    874	its_encode_target(cmd, target);
    875
    876	if (is_v4_1(its)) {
    877		its_encode_db(cmd, true);
    878		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
    879	}
    880
    881	its_fixup_cmd(cmd);
    882
    883	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
    884}
    885
    886static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
    887					  struct its_cmd_block *cmd,
    888					  struct its_cmd_desc *desc)
    889{
    890	struct its_vlpi_map *map;
    891
    892	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
    893				    desc->its_inv_cmd.event_id);
    894
    895	its_encode_cmd(cmd, GITS_CMD_INV);
    896	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
    897	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
    898
    899	its_fixup_cmd(cmd);
    900
    901	return valid_vpe(its, map->vpe);
    902}
    903
    904static struct its_vpe *its_build_vint_cmd(struct its_node *its,
    905					  struct its_cmd_block *cmd,
    906					  struct its_cmd_desc *desc)
    907{
    908	struct its_vlpi_map *map;
    909
    910	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
    911				    desc->its_int_cmd.event_id);
    912
    913	its_encode_cmd(cmd, GITS_CMD_INT);
    914	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
    915	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
    916
    917	its_fixup_cmd(cmd);
    918
    919	return valid_vpe(its, map->vpe);
    920}
    921
    922static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
    923					    struct its_cmd_block *cmd,
    924					    struct its_cmd_desc *desc)
    925{
    926	struct its_vlpi_map *map;
    927
    928	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
    929				    desc->its_clear_cmd.event_id);
    930
    931	its_encode_cmd(cmd, GITS_CMD_CLEAR);
    932	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
    933	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
    934
    935	its_fixup_cmd(cmd);
    936
    937	return valid_vpe(its, map->vpe);
    938}
    939
    940static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
    941					   struct its_cmd_block *cmd,
    942					   struct its_cmd_desc *desc)
    943{
    944	if (WARN_ON(!is_v4_1(its)))
    945		return NULL;
    946
    947	its_encode_cmd(cmd, GITS_CMD_INVDB);
    948	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
    949
    950	its_fixup_cmd(cmd);
    951
    952	return valid_vpe(its, desc->its_invdb_cmd.vpe);
    953}
    954
    955static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
    956					  struct its_cmd_block *cmd,
    957					  struct its_cmd_desc *desc)
    958{
    959	if (WARN_ON(!is_v4_1(its)))
    960		return NULL;
    961
    962	its_encode_cmd(cmd, GITS_CMD_VSGI);
    963	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
    964	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
    965	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
    966	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
    967	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
    968	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
    969
    970	its_fixup_cmd(cmd);
    971
    972	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
    973}
    974
    975static u64 its_cmd_ptr_to_offset(struct its_node *its,
    976				 struct its_cmd_block *ptr)
    977{
    978	return (ptr - its->cmd_base) * sizeof(*ptr);
    979}
    980
    981static int its_queue_full(struct its_node *its)
    982{
    983	int widx;
    984	int ridx;
    985
    986	widx = its->cmd_write - its->cmd_base;
    987	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
    988
    989	/* This is incredibly unlikely to happen, unless the ITS locks up. */
    990	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
    991		return 1;
    992
    993	return 0;
    994}
    995
    996static struct its_cmd_block *its_allocate_entry(struct its_node *its)
    997{
    998	struct its_cmd_block *cmd;
    999	u32 count = 1000000;	/* 1s! */
   1000
   1001	while (its_queue_full(its)) {
   1002		count--;
   1003		if (!count) {
   1004			pr_err_ratelimited("ITS queue not draining\n");
   1005			return NULL;
   1006		}
   1007		cpu_relax();
   1008		udelay(1);
   1009	}
   1010
   1011	cmd = its->cmd_write++;
   1012
   1013	/* Handle queue wrapping */
   1014	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
   1015		its->cmd_write = its->cmd_base;
   1016
   1017	/* Clear command  */
   1018	cmd->raw_cmd[0] = 0;
   1019	cmd->raw_cmd[1] = 0;
   1020	cmd->raw_cmd[2] = 0;
   1021	cmd->raw_cmd[3] = 0;
   1022
   1023	return cmd;
   1024}
   1025
   1026static struct its_cmd_block *its_post_commands(struct its_node *its)
   1027{
   1028	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
   1029
   1030	writel_relaxed(wr, its->base + GITS_CWRITER);
   1031
   1032	return its->cmd_write;
   1033}
   1034
   1035static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
   1036{
   1037	/*
   1038	 * Make sure the commands written to memory are observable by
   1039	 * the ITS.
   1040	 */
   1041	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
   1042		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
   1043	else
   1044		dsb(ishst);
   1045}
   1046
   1047static int its_wait_for_range_completion(struct its_node *its,
   1048					 u64	prev_idx,
   1049					 struct its_cmd_block *to)
   1050{
   1051	u64 rd_idx, to_idx, linear_idx;
   1052	u32 count = 1000000;	/* 1s! */
   1053
   1054	/* Linearize to_idx if the command set has wrapped around */
   1055	to_idx = its_cmd_ptr_to_offset(its, to);
   1056	if (to_idx < prev_idx)
   1057		to_idx += ITS_CMD_QUEUE_SZ;
   1058
   1059	linear_idx = prev_idx;
   1060
   1061	while (1) {
   1062		s64 delta;
   1063
   1064		rd_idx = readl_relaxed(its->base + GITS_CREADR);
   1065
   1066		/*
   1067		 * Compute the read pointer progress, taking the
   1068		 * potential wrap-around into account.
   1069		 */
   1070		delta = rd_idx - prev_idx;
   1071		if (rd_idx < prev_idx)
   1072			delta += ITS_CMD_QUEUE_SZ;
   1073
   1074		linear_idx += delta;
   1075		if (linear_idx >= to_idx)
   1076			break;
   1077
   1078		count--;
   1079		if (!count) {
   1080			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
   1081					   to_idx, linear_idx);
   1082			return -1;
   1083		}
   1084		prev_idx = rd_idx;
   1085		cpu_relax();
   1086		udelay(1);
   1087	}
   1088
   1089	return 0;
   1090}
   1091
   1092/* Warning, macro hell follows */
   1093#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
   1094void name(struct its_node *its,						\
   1095	  buildtype builder,						\
   1096	  struct its_cmd_desc *desc)					\
   1097{									\
   1098	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
   1099	synctype *sync_obj;						\
   1100	unsigned long flags;						\
   1101	u64 rd_idx;							\
   1102									\
   1103	raw_spin_lock_irqsave(&its->lock, flags);			\
   1104									\
   1105	cmd = its_allocate_entry(its);					\
   1106	if (!cmd) {		/* We're soooooo screewed... */		\
   1107		raw_spin_unlock_irqrestore(&its->lock, flags);		\
   1108		return;							\
   1109	}								\
   1110	sync_obj = builder(its, cmd, desc);				\
   1111	its_flush_cmd(its, cmd);					\
   1112									\
   1113	if (sync_obj) {							\
   1114		sync_cmd = its_allocate_entry(its);			\
   1115		if (!sync_cmd)						\
   1116			goto post;					\
   1117									\
   1118		buildfn(its, sync_cmd, sync_obj);			\
   1119		its_flush_cmd(its, sync_cmd);				\
   1120	}								\
   1121									\
   1122post:									\
   1123	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
   1124	next_cmd = its_post_commands(its);				\
   1125	raw_spin_unlock_irqrestore(&its->lock, flags);			\
   1126									\
   1127	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
   1128		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
   1129}
   1130
   1131static void its_build_sync_cmd(struct its_node *its,
   1132			       struct its_cmd_block *sync_cmd,
   1133			       struct its_collection *sync_col)
   1134{
   1135	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
   1136	its_encode_target(sync_cmd, sync_col->target_address);
   1137
   1138	its_fixup_cmd(sync_cmd);
   1139}
   1140
   1141static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
   1142			     struct its_collection, its_build_sync_cmd)
   1143
   1144static void its_build_vsync_cmd(struct its_node *its,
   1145				struct its_cmd_block *sync_cmd,
   1146				struct its_vpe *sync_vpe)
   1147{
   1148	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
   1149	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
   1150
   1151	its_fixup_cmd(sync_cmd);
   1152}
   1153
   1154static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
   1155			     struct its_vpe, its_build_vsync_cmd)
   1156
   1157static void its_send_int(struct its_device *dev, u32 event_id)
   1158{
   1159	struct its_cmd_desc desc;
   1160
   1161	desc.its_int_cmd.dev = dev;
   1162	desc.its_int_cmd.event_id = event_id;
   1163
   1164	its_send_single_command(dev->its, its_build_int_cmd, &desc);
   1165}
   1166
   1167static void its_send_clear(struct its_device *dev, u32 event_id)
   1168{
   1169	struct its_cmd_desc desc;
   1170
   1171	desc.its_clear_cmd.dev = dev;
   1172	desc.its_clear_cmd.event_id = event_id;
   1173
   1174	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
   1175}
   1176
   1177static void its_send_inv(struct its_device *dev, u32 event_id)
   1178{
   1179	struct its_cmd_desc desc;
   1180
   1181	desc.its_inv_cmd.dev = dev;
   1182	desc.its_inv_cmd.event_id = event_id;
   1183
   1184	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
   1185}
   1186
   1187static void its_send_mapd(struct its_device *dev, int valid)
   1188{
   1189	struct its_cmd_desc desc;
   1190
   1191	desc.its_mapd_cmd.dev = dev;
   1192	desc.its_mapd_cmd.valid = !!valid;
   1193
   1194	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
   1195}
   1196
   1197static void its_send_mapc(struct its_node *its, struct its_collection *col,
   1198			  int valid)
   1199{
   1200	struct its_cmd_desc desc;
   1201
   1202	desc.its_mapc_cmd.col = col;
   1203	desc.its_mapc_cmd.valid = !!valid;
   1204
   1205	its_send_single_command(its, its_build_mapc_cmd, &desc);
   1206}
   1207
   1208static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
   1209{
   1210	struct its_cmd_desc desc;
   1211
   1212	desc.its_mapti_cmd.dev = dev;
   1213	desc.its_mapti_cmd.phys_id = irq_id;
   1214	desc.its_mapti_cmd.event_id = id;
   1215
   1216	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
   1217}
   1218
   1219static void its_send_movi(struct its_device *dev,
   1220			  struct its_collection *col, u32 id)
   1221{
   1222	struct its_cmd_desc desc;
   1223
   1224	desc.its_movi_cmd.dev = dev;
   1225	desc.its_movi_cmd.col = col;
   1226	desc.its_movi_cmd.event_id = id;
   1227
   1228	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
   1229}
   1230
   1231static void its_send_discard(struct its_device *dev, u32 id)
   1232{
   1233	struct its_cmd_desc desc;
   1234
   1235	desc.its_discard_cmd.dev = dev;
   1236	desc.its_discard_cmd.event_id = id;
   1237
   1238	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
   1239}
   1240
   1241static void its_send_invall(struct its_node *its, struct its_collection *col)
   1242{
   1243	struct its_cmd_desc desc;
   1244
   1245	desc.its_invall_cmd.col = col;
   1246
   1247	its_send_single_command(its, its_build_invall_cmd, &desc);
   1248}
   1249
   1250static void its_send_vmapti(struct its_device *dev, u32 id)
   1251{
   1252	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
   1253	struct its_cmd_desc desc;
   1254
   1255	desc.its_vmapti_cmd.vpe = map->vpe;
   1256	desc.its_vmapti_cmd.dev = dev;
   1257	desc.its_vmapti_cmd.virt_id = map->vintid;
   1258	desc.its_vmapti_cmd.event_id = id;
   1259	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
   1260
   1261	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
   1262}
   1263
   1264static void its_send_vmovi(struct its_device *dev, u32 id)
   1265{
   1266	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
   1267	struct its_cmd_desc desc;
   1268
   1269	desc.its_vmovi_cmd.vpe = map->vpe;
   1270	desc.its_vmovi_cmd.dev = dev;
   1271	desc.its_vmovi_cmd.event_id = id;
   1272	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
   1273
   1274	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
   1275}
   1276
   1277static void its_send_vmapp(struct its_node *its,
   1278			   struct its_vpe *vpe, bool valid)
   1279{
   1280	struct its_cmd_desc desc;
   1281
   1282	desc.its_vmapp_cmd.vpe = vpe;
   1283	desc.its_vmapp_cmd.valid = valid;
   1284	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
   1285
   1286	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
   1287}
   1288
   1289static void its_send_vmovp(struct its_vpe *vpe)
   1290{
   1291	struct its_cmd_desc desc = {};
   1292	struct its_node *its;
   1293	unsigned long flags;
   1294	int col_id = vpe->col_idx;
   1295
   1296	desc.its_vmovp_cmd.vpe = vpe;
   1297
   1298	if (!its_list_map) {
   1299		its = list_first_entry(&its_nodes, struct its_node, entry);
   1300		desc.its_vmovp_cmd.col = &its->collections[col_id];
   1301		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
   1302		return;
   1303	}
   1304
   1305	/*
   1306	 * Yet another marvel of the architecture. If using the
   1307	 * its_list "feature", we need to make sure that all ITSs
   1308	 * receive all VMOVP commands in the same order. The only way
   1309	 * to guarantee this is to make vmovp a serialization point.
   1310	 *
   1311	 * Wall <-- Head.
   1312	 */
   1313	raw_spin_lock_irqsave(&vmovp_lock, flags);
   1314
   1315	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
   1316	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
   1317
   1318	/* Emit VMOVPs */
   1319	list_for_each_entry(its, &its_nodes, entry) {
   1320		if (!is_v4(its))
   1321			continue;
   1322
   1323		if (!require_its_list_vmovp(vpe->its_vm, its))
   1324			continue;
   1325
   1326		desc.its_vmovp_cmd.col = &its->collections[col_id];
   1327		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
   1328	}
   1329
   1330	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
   1331}
   1332
   1333static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
   1334{
   1335	struct its_cmd_desc desc;
   1336
   1337	desc.its_vinvall_cmd.vpe = vpe;
   1338	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
   1339}
   1340
   1341static void its_send_vinv(struct its_device *dev, u32 event_id)
   1342{
   1343	struct its_cmd_desc desc;
   1344
   1345	/*
   1346	 * There is no real VINV command. This is just a normal INV,
   1347	 * with a VSYNC instead of a SYNC.
   1348	 */
   1349	desc.its_inv_cmd.dev = dev;
   1350	desc.its_inv_cmd.event_id = event_id;
   1351
   1352	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
   1353}
   1354
   1355static void its_send_vint(struct its_device *dev, u32 event_id)
   1356{
   1357	struct its_cmd_desc desc;
   1358
   1359	/*
   1360	 * There is no real VINT command. This is just a normal INT,
   1361	 * with a VSYNC instead of a SYNC.
   1362	 */
   1363	desc.its_int_cmd.dev = dev;
   1364	desc.its_int_cmd.event_id = event_id;
   1365
   1366	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
   1367}
   1368
   1369static void its_send_vclear(struct its_device *dev, u32 event_id)
   1370{
   1371	struct its_cmd_desc desc;
   1372
   1373	/*
   1374	 * There is no real VCLEAR command. This is just a normal CLEAR,
   1375	 * with a VSYNC instead of a SYNC.
   1376	 */
   1377	desc.its_clear_cmd.dev = dev;
   1378	desc.its_clear_cmd.event_id = event_id;
   1379
   1380	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
   1381}
   1382
   1383static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
   1384{
   1385	struct its_cmd_desc desc;
   1386
   1387	desc.its_invdb_cmd.vpe = vpe;
   1388	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
   1389}
   1390
   1391/*
   1392 * irqchip functions - assumes MSI, mostly.
   1393 */
   1394static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
   1395{
   1396	struct its_vlpi_map *map = get_vlpi_map(d);
   1397	irq_hw_number_t hwirq;
   1398	void *va;
   1399	u8 *cfg;
   1400
   1401	if (map) {
   1402		va = page_address(map->vm->vprop_page);
   1403		hwirq = map->vintid;
   1404
   1405		/* Remember the updated property */
   1406		map->properties &= ~clr;
   1407		map->properties |= set | LPI_PROP_GROUP1;
   1408	} else {
   1409		va = gic_rdists->prop_table_va;
   1410		hwirq = d->hwirq;
   1411	}
   1412
   1413	cfg = va + hwirq - 8192;
   1414	*cfg &= ~clr;
   1415	*cfg |= set | LPI_PROP_GROUP1;
   1416
   1417	/*
   1418	 * Make the above write visible to the redistributors.
   1419	 * And yes, we're flushing exactly: One. Single. Byte.
   1420	 * Humpf...
   1421	 */
   1422	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
   1423		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
   1424	else
   1425		dsb(ishst);
   1426}
   1427
   1428static void wait_for_syncr(void __iomem *rdbase)
   1429{
   1430	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
   1431		cpu_relax();
   1432}
   1433
   1434static void direct_lpi_inv(struct irq_data *d)
   1435{
   1436	struct its_vlpi_map *map = get_vlpi_map(d);
   1437	void __iomem *rdbase;
   1438	unsigned long flags;
   1439	u64 val;
   1440	int cpu;
   1441
   1442	if (map) {
   1443		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1444
   1445		WARN_ON(!is_v4_1(its_dev->its));
   1446
   1447		val  = GICR_INVLPIR_V;
   1448		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
   1449		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
   1450	} else {
   1451		val = d->hwirq;
   1452	}
   1453
   1454	/* Target the redistributor this LPI is currently routed to */
   1455	cpu = irq_to_cpuid_lock(d, &flags);
   1456	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
   1457	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
   1458	gic_write_lpir(val, rdbase + GICR_INVLPIR);
   1459
   1460	wait_for_syncr(rdbase);
   1461	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
   1462	irq_to_cpuid_unlock(d, flags);
   1463}
   1464
   1465static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
   1466{
   1467	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1468
   1469	lpi_write_config(d, clr, set);
   1470	if (gic_rdists->has_direct_lpi &&
   1471	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
   1472		direct_lpi_inv(d);
   1473	else if (!irqd_is_forwarded_to_vcpu(d))
   1474		its_send_inv(its_dev, its_get_event_id(d));
   1475	else
   1476		its_send_vinv(its_dev, its_get_event_id(d));
   1477}
   1478
   1479static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
   1480{
   1481	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1482	u32 event = its_get_event_id(d);
   1483	struct its_vlpi_map *map;
   1484
   1485	/*
   1486	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
   1487	 * here.
   1488	 */
   1489	if (is_v4_1(its_dev->its))
   1490		return;
   1491
   1492	map = dev_event_to_vlpi_map(its_dev, event);
   1493
   1494	if (map->db_enabled == enable)
   1495		return;
   1496
   1497	map->db_enabled = enable;
   1498
   1499	/*
   1500	 * More fun with the architecture:
   1501	 *
   1502	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
   1503	 * value or to 1023, depending on the enable bit. But that
   1504	 * would be issuing a mapping for an /existing/ DevID+EventID
   1505	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
   1506	 * to the /same/ vPE, using this opportunity to adjust the
   1507	 * doorbell. Mouahahahaha. We loves it, Precious.
   1508	 */
   1509	its_send_vmovi(its_dev, event);
   1510}
   1511
   1512static void its_mask_irq(struct irq_data *d)
   1513{
   1514	if (irqd_is_forwarded_to_vcpu(d))
   1515		its_vlpi_set_doorbell(d, false);
   1516
   1517	lpi_update_config(d, LPI_PROP_ENABLED, 0);
   1518}
   1519
   1520static void its_unmask_irq(struct irq_data *d)
   1521{
   1522	if (irqd_is_forwarded_to_vcpu(d))
   1523		its_vlpi_set_doorbell(d, true);
   1524
   1525	lpi_update_config(d, 0, LPI_PROP_ENABLED);
   1526}
   1527
   1528static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
   1529{
   1530	if (irqd_affinity_is_managed(d))
   1531		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
   1532
   1533	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
   1534}
   1535
   1536static void its_inc_lpi_count(struct irq_data *d, int cpu)
   1537{
   1538	if (irqd_affinity_is_managed(d))
   1539		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
   1540	else
   1541		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
   1542}
   1543
   1544static void its_dec_lpi_count(struct irq_data *d, int cpu)
   1545{
   1546	if (irqd_affinity_is_managed(d))
   1547		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
   1548	else
   1549		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
   1550}
   1551
   1552static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
   1553					      const struct cpumask *cpu_mask)
   1554{
   1555	unsigned int cpu = nr_cpu_ids, tmp;
   1556	int count = S32_MAX;
   1557
   1558	for_each_cpu(tmp, cpu_mask) {
   1559		int this_count = its_read_lpi_count(d, tmp);
   1560		if (this_count < count) {
   1561			cpu = tmp;
   1562		        count = this_count;
   1563		}
   1564	}
   1565
   1566	return cpu;
   1567}
   1568
   1569/*
   1570 * As suggested by Thomas Gleixner in:
   1571 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
   1572 */
   1573static int its_select_cpu(struct irq_data *d,
   1574			  const struct cpumask *aff_mask)
   1575{
   1576	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1577	cpumask_var_t tmpmask;
   1578	int cpu, node;
   1579
   1580	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
   1581		return -ENOMEM;
   1582
   1583	node = its_dev->its->numa_node;
   1584
   1585	if (!irqd_affinity_is_managed(d)) {
   1586		/* First try the NUMA node */
   1587		if (node != NUMA_NO_NODE) {
   1588			/*
   1589			 * Try the intersection of the affinity mask and the
   1590			 * node mask (and the online mask, just to be safe).
   1591			 */
   1592			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
   1593			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
   1594
   1595			/*
   1596			 * Ideally, we would check if the mask is empty, and
   1597			 * try again on the full node here.
   1598			 *
   1599			 * But it turns out that the way ACPI describes the
   1600			 * affinity for ITSs only deals about memory, and
   1601			 * not target CPUs, so it cannot describe a single
   1602			 * ITS placed next to two NUMA nodes.
   1603			 *
   1604			 * Instead, just fallback on the online mask. This
   1605			 * diverges from Thomas' suggestion above.
   1606			 */
   1607			cpu = cpumask_pick_least_loaded(d, tmpmask);
   1608			if (cpu < nr_cpu_ids)
   1609				goto out;
   1610
   1611			/* If we can't cross sockets, give up */
   1612			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
   1613				goto out;
   1614
   1615			/* If the above failed, expand the search */
   1616		}
   1617
   1618		/* Try the intersection of the affinity and online masks */
   1619		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
   1620
   1621		/* If that doesn't fly, the online mask is the last resort */
   1622		if (cpumask_empty(tmpmask))
   1623			cpumask_copy(tmpmask, cpu_online_mask);
   1624
   1625		cpu = cpumask_pick_least_loaded(d, tmpmask);
   1626	} else {
   1627		cpumask_copy(tmpmask, aff_mask);
   1628
   1629		/* If we cannot cross sockets, limit the search to that node */
   1630		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
   1631		    node != NUMA_NO_NODE)
   1632			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
   1633
   1634		cpu = cpumask_pick_least_loaded(d, tmpmask);
   1635	}
   1636out:
   1637	free_cpumask_var(tmpmask);
   1638
   1639	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
   1640	return cpu;
   1641}
   1642
   1643static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
   1644			    bool force)
   1645{
   1646	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1647	struct its_collection *target_col;
   1648	u32 id = its_get_event_id(d);
   1649	int cpu, prev_cpu;
   1650
   1651	/* A forwarded interrupt should use irq_set_vcpu_affinity */
   1652	if (irqd_is_forwarded_to_vcpu(d))
   1653		return -EINVAL;
   1654
   1655	prev_cpu = its_dev->event_map.col_map[id];
   1656	its_dec_lpi_count(d, prev_cpu);
   1657
   1658	if (!force)
   1659		cpu = its_select_cpu(d, mask_val);
   1660	else
   1661		cpu = cpumask_pick_least_loaded(d, mask_val);
   1662
   1663	if (cpu < 0 || cpu >= nr_cpu_ids)
   1664		goto err;
   1665
   1666	/* don't set the affinity when the target cpu is same as current one */
   1667	if (cpu != prev_cpu) {
   1668		target_col = &its_dev->its->collections[cpu];
   1669		its_send_movi(its_dev, target_col, id);
   1670		its_dev->event_map.col_map[id] = cpu;
   1671		irq_data_update_effective_affinity(d, cpumask_of(cpu));
   1672	}
   1673
   1674	its_inc_lpi_count(d, cpu);
   1675
   1676	return IRQ_SET_MASK_OK_DONE;
   1677
   1678err:
   1679	its_inc_lpi_count(d, prev_cpu);
   1680	return -EINVAL;
   1681}
   1682
   1683static u64 its_irq_get_msi_base(struct its_device *its_dev)
   1684{
   1685	struct its_node *its = its_dev->its;
   1686
   1687	return its->phys_base + GITS_TRANSLATER;
   1688}
   1689
   1690static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
   1691{
   1692	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1693	struct its_node *its;
   1694	u64 addr;
   1695
   1696	its = its_dev->its;
   1697	addr = its->get_msi_base(its_dev);
   1698
   1699	msg->address_lo		= lower_32_bits(addr);
   1700	msg->address_hi		= upper_32_bits(addr);
   1701	msg->data		= its_get_event_id(d);
   1702
   1703	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
   1704}
   1705
   1706static int its_irq_set_irqchip_state(struct irq_data *d,
   1707				     enum irqchip_irq_state which,
   1708				     bool state)
   1709{
   1710	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1711	u32 event = its_get_event_id(d);
   1712
   1713	if (which != IRQCHIP_STATE_PENDING)
   1714		return -EINVAL;
   1715
   1716	if (irqd_is_forwarded_to_vcpu(d)) {
   1717		if (state)
   1718			its_send_vint(its_dev, event);
   1719		else
   1720			its_send_vclear(its_dev, event);
   1721	} else {
   1722		if (state)
   1723			its_send_int(its_dev, event);
   1724		else
   1725			its_send_clear(its_dev, event);
   1726	}
   1727
   1728	return 0;
   1729}
   1730
   1731static int its_irq_retrigger(struct irq_data *d)
   1732{
   1733	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
   1734}
   1735
   1736/*
   1737 * Two favourable cases:
   1738 *
   1739 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
   1740 *     for vSGI delivery
   1741 *
   1742 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
   1743 *     and we're better off mapping all VPEs always
   1744 *
   1745 * If neither (a) nor (b) is true, then we map vPEs on demand.
   1746 *
   1747 */
   1748static bool gic_requires_eager_mapping(void)
   1749{
   1750	if (!its_list_map || gic_rdists->has_rvpeid)
   1751		return true;
   1752
   1753	return false;
   1754}
   1755
   1756static void its_map_vm(struct its_node *its, struct its_vm *vm)
   1757{
   1758	unsigned long flags;
   1759
   1760	if (gic_requires_eager_mapping())
   1761		return;
   1762
   1763	raw_spin_lock_irqsave(&vmovp_lock, flags);
   1764
   1765	/*
   1766	 * If the VM wasn't mapped yet, iterate over the vpes and get
   1767	 * them mapped now.
   1768	 */
   1769	vm->vlpi_count[its->list_nr]++;
   1770
   1771	if (vm->vlpi_count[its->list_nr] == 1) {
   1772		int i;
   1773
   1774		for (i = 0; i < vm->nr_vpes; i++) {
   1775			struct its_vpe *vpe = vm->vpes[i];
   1776			struct irq_data *d = irq_get_irq_data(vpe->irq);
   1777
   1778			/* Map the VPE to the first possible CPU */
   1779			vpe->col_idx = cpumask_first(cpu_online_mask);
   1780			its_send_vmapp(its, vpe, true);
   1781			its_send_vinvall(its, vpe);
   1782			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
   1783		}
   1784	}
   1785
   1786	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
   1787}
   1788
   1789static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
   1790{
   1791	unsigned long flags;
   1792
   1793	/* Not using the ITS list? Everything is always mapped. */
   1794	if (gic_requires_eager_mapping())
   1795		return;
   1796
   1797	raw_spin_lock_irqsave(&vmovp_lock, flags);
   1798
   1799	if (!--vm->vlpi_count[its->list_nr]) {
   1800		int i;
   1801
   1802		for (i = 0; i < vm->nr_vpes; i++)
   1803			its_send_vmapp(its, vm->vpes[i], false);
   1804	}
   1805
   1806	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
   1807}
   1808
   1809static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
   1810{
   1811	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1812	u32 event = its_get_event_id(d);
   1813	int ret = 0;
   1814
   1815	if (!info->map)
   1816		return -EINVAL;
   1817
   1818	raw_spin_lock(&its_dev->event_map.vlpi_lock);
   1819
   1820	if (!its_dev->event_map.vm) {
   1821		struct its_vlpi_map *maps;
   1822
   1823		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
   1824			       GFP_ATOMIC);
   1825		if (!maps) {
   1826			ret = -ENOMEM;
   1827			goto out;
   1828		}
   1829
   1830		its_dev->event_map.vm = info->map->vm;
   1831		its_dev->event_map.vlpi_maps = maps;
   1832	} else if (its_dev->event_map.vm != info->map->vm) {
   1833		ret = -EINVAL;
   1834		goto out;
   1835	}
   1836
   1837	/* Get our private copy of the mapping information */
   1838	its_dev->event_map.vlpi_maps[event] = *info->map;
   1839
   1840	if (irqd_is_forwarded_to_vcpu(d)) {
   1841		/* Already mapped, move it around */
   1842		its_send_vmovi(its_dev, event);
   1843	} else {
   1844		/* Ensure all the VPEs are mapped on this ITS */
   1845		its_map_vm(its_dev->its, info->map->vm);
   1846
   1847		/*
   1848		 * Flag the interrupt as forwarded so that we can
   1849		 * start poking the virtual property table.
   1850		 */
   1851		irqd_set_forwarded_to_vcpu(d);
   1852
   1853		/* Write out the property to the prop table */
   1854		lpi_write_config(d, 0xff, info->map->properties);
   1855
   1856		/* Drop the physical mapping */
   1857		its_send_discard(its_dev, event);
   1858
   1859		/* and install the virtual one */
   1860		its_send_vmapti(its_dev, event);
   1861
   1862		/* Increment the number of VLPIs */
   1863		its_dev->event_map.nr_vlpis++;
   1864	}
   1865
   1866out:
   1867	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
   1868	return ret;
   1869}
   1870
   1871static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
   1872{
   1873	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1874	struct its_vlpi_map *map;
   1875	int ret = 0;
   1876
   1877	raw_spin_lock(&its_dev->event_map.vlpi_lock);
   1878
   1879	map = get_vlpi_map(d);
   1880
   1881	if (!its_dev->event_map.vm || !map) {
   1882		ret = -EINVAL;
   1883		goto out;
   1884	}
   1885
   1886	/* Copy our mapping information to the incoming request */
   1887	*info->map = *map;
   1888
   1889out:
   1890	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
   1891	return ret;
   1892}
   1893
   1894static int its_vlpi_unmap(struct irq_data *d)
   1895{
   1896	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1897	u32 event = its_get_event_id(d);
   1898	int ret = 0;
   1899
   1900	raw_spin_lock(&its_dev->event_map.vlpi_lock);
   1901
   1902	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
   1903		ret = -EINVAL;
   1904		goto out;
   1905	}
   1906
   1907	/* Drop the virtual mapping */
   1908	its_send_discard(its_dev, event);
   1909
   1910	/* and restore the physical one */
   1911	irqd_clr_forwarded_to_vcpu(d);
   1912	its_send_mapti(its_dev, d->hwirq, event);
   1913	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
   1914				    LPI_PROP_ENABLED |
   1915				    LPI_PROP_GROUP1));
   1916
   1917	/* Potentially unmap the VM from this ITS */
   1918	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
   1919
   1920	/*
   1921	 * Drop the refcount and make the device available again if
   1922	 * this was the last VLPI.
   1923	 */
   1924	if (!--its_dev->event_map.nr_vlpis) {
   1925		its_dev->event_map.vm = NULL;
   1926		kfree(its_dev->event_map.vlpi_maps);
   1927	}
   1928
   1929out:
   1930	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
   1931	return ret;
   1932}
   1933
   1934static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
   1935{
   1936	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1937
   1938	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
   1939		return -EINVAL;
   1940
   1941	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
   1942		lpi_update_config(d, 0xff, info->config);
   1943	else
   1944		lpi_write_config(d, 0xff, info->config);
   1945	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
   1946
   1947	return 0;
   1948}
   1949
   1950static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
   1951{
   1952	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   1953	struct its_cmd_info *info = vcpu_info;
   1954
   1955	/* Need a v4 ITS */
   1956	if (!is_v4(its_dev->its))
   1957		return -EINVAL;
   1958
   1959	/* Unmap request? */
   1960	if (!info)
   1961		return its_vlpi_unmap(d);
   1962
   1963	switch (info->cmd_type) {
   1964	case MAP_VLPI:
   1965		return its_vlpi_map(d, info);
   1966
   1967	case GET_VLPI:
   1968		return its_vlpi_get(d, info);
   1969
   1970	case PROP_UPDATE_VLPI:
   1971	case PROP_UPDATE_AND_INV_VLPI:
   1972		return its_vlpi_prop_update(d, info);
   1973
   1974	default:
   1975		return -EINVAL;
   1976	}
   1977}
   1978
   1979static struct irq_chip its_irq_chip = {
   1980	.name			= "ITS",
   1981	.irq_mask		= its_mask_irq,
   1982	.irq_unmask		= its_unmask_irq,
   1983	.irq_eoi		= irq_chip_eoi_parent,
   1984	.irq_set_affinity	= its_set_affinity,
   1985	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
   1986	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
   1987	.irq_retrigger		= its_irq_retrigger,
   1988	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
   1989};
   1990
   1991
   1992/*
   1993 * How we allocate LPIs:
   1994 *
   1995 * lpi_range_list contains ranges of LPIs that are to available to
   1996 * allocate from. To allocate LPIs, just pick the first range that
   1997 * fits the required allocation, and reduce it by the required
   1998 * amount. Once empty, remove the range from the list.
   1999 *
   2000 * To free a range of LPIs, add a free range to the list, sort it and
   2001 * merge the result if the new range happens to be adjacent to an
   2002 * already free block.
   2003 *
   2004 * The consequence of the above is that allocation is cost is low, but
   2005 * freeing is expensive. We assumes that freeing rarely occurs.
   2006 */
   2007#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
   2008
   2009static DEFINE_MUTEX(lpi_range_lock);
   2010static LIST_HEAD(lpi_range_list);
   2011
   2012struct lpi_range {
   2013	struct list_head	entry;
   2014	u32			base_id;
   2015	u32			span;
   2016};
   2017
   2018static struct lpi_range *mk_lpi_range(u32 base, u32 span)
   2019{
   2020	struct lpi_range *range;
   2021
   2022	range = kmalloc(sizeof(*range), GFP_KERNEL);
   2023	if (range) {
   2024		range->base_id = base;
   2025		range->span = span;
   2026	}
   2027
   2028	return range;
   2029}
   2030
   2031static int alloc_lpi_range(u32 nr_lpis, u32 *base)
   2032{
   2033	struct lpi_range *range, *tmp;
   2034	int err = -ENOSPC;
   2035
   2036	mutex_lock(&lpi_range_lock);
   2037
   2038	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
   2039		if (range->span >= nr_lpis) {
   2040			*base = range->base_id;
   2041			range->base_id += nr_lpis;
   2042			range->span -= nr_lpis;
   2043
   2044			if (range->span == 0) {
   2045				list_del(&range->entry);
   2046				kfree(range);
   2047			}
   2048
   2049			err = 0;
   2050			break;
   2051		}
   2052	}
   2053
   2054	mutex_unlock(&lpi_range_lock);
   2055
   2056	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
   2057	return err;
   2058}
   2059
   2060static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
   2061{
   2062	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
   2063		return;
   2064	if (a->base_id + a->span != b->base_id)
   2065		return;
   2066	b->base_id = a->base_id;
   2067	b->span += a->span;
   2068	list_del(&a->entry);
   2069	kfree(a);
   2070}
   2071
   2072static int free_lpi_range(u32 base, u32 nr_lpis)
   2073{
   2074	struct lpi_range *new, *old;
   2075
   2076	new = mk_lpi_range(base, nr_lpis);
   2077	if (!new)
   2078		return -ENOMEM;
   2079
   2080	mutex_lock(&lpi_range_lock);
   2081
   2082	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
   2083		if (old->base_id < base)
   2084			break;
   2085	}
   2086	/*
   2087	 * old is the last element with ->base_id smaller than base,
   2088	 * so new goes right after it. If there are no elements with
   2089	 * ->base_id smaller than base, &old->entry ends up pointing
   2090	 * at the head of the list, and inserting new it the start of
   2091	 * the list is the right thing to do in that case as well.
   2092	 */
   2093	list_add(&new->entry, &old->entry);
   2094	/*
   2095	 * Now check if we can merge with the preceding and/or
   2096	 * following ranges.
   2097	 */
   2098	merge_lpi_ranges(old, new);
   2099	merge_lpi_ranges(new, list_next_entry(new, entry));
   2100
   2101	mutex_unlock(&lpi_range_lock);
   2102	return 0;
   2103}
   2104
   2105static int __init its_lpi_init(u32 id_bits)
   2106{
   2107	u32 lpis = (1UL << id_bits) - 8192;
   2108	u32 numlpis;
   2109	int err;
   2110
   2111	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
   2112
   2113	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
   2114		lpis = numlpis;
   2115		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
   2116			lpis);
   2117	}
   2118
   2119	/*
   2120	 * Initializing the allocator is just the same as freeing the
   2121	 * full range of LPIs.
   2122	 */
   2123	err = free_lpi_range(8192, lpis);
   2124	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
   2125	return err;
   2126}
   2127
   2128static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
   2129{
   2130	unsigned long *bitmap = NULL;
   2131	int err = 0;
   2132
   2133	do {
   2134		err = alloc_lpi_range(nr_irqs, base);
   2135		if (!err)
   2136			break;
   2137
   2138		nr_irqs /= 2;
   2139	} while (nr_irqs > 0);
   2140
   2141	if (!nr_irqs)
   2142		err = -ENOSPC;
   2143
   2144	if (err)
   2145		goto out;
   2146
   2147	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
   2148	if (!bitmap)
   2149		goto out;
   2150
   2151	*nr_ids = nr_irqs;
   2152
   2153out:
   2154	if (!bitmap)
   2155		*base = *nr_ids = 0;
   2156
   2157	return bitmap;
   2158}
   2159
   2160static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
   2161{
   2162	WARN_ON(free_lpi_range(base, nr_ids));
   2163	bitmap_free(bitmap);
   2164}
   2165
   2166static void gic_reset_prop_table(void *va)
   2167{
   2168	/* Priority 0xa0, Group-1, disabled */
   2169	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
   2170
   2171	/* Make sure the GIC will observe the written configuration */
   2172	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
   2173}
   2174
   2175static struct page *its_allocate_prop_table(gfp_t gfp_flags)
   2176{
   2177	struct page *prop_page;
   2178
   2179	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
   2180	if (!prop_page)
   2181		return NULL;
   2182
   2183	gic_reset_prop_table(page_address(prop_page));
   2184
   2185	return prop_page;
   2186}
   2187
   2188static void its_free_prop_table(struct page *prop_page)
   2189{
   2190	free_pages((unsigned long)page_address(prop_page),
   2191		   get_order(LPI_PROPBASE_SZ));
   2192}
   2193
   2194static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
   2195{
   2196	phys_addr_t start, end, addr_end;
   2197	u64 i;
   2198
   2199	/*
   2200	 * We don't bother checking for a kdump kernel as by
   2201	 * construction, the LPI tables are out of this kernel's
   2202	 * memory map.
   2203	 */
   2204	if (is_kdump_kernel())
   2205		return true;
   2206
   2207	addr_end = addr + size - 1;
   2208
   2209	for_each_reserved_mem_range(i, &start, &end) {
   2210		if (addr >= start && addr_end <= end)
   2211			return true;
   2212	}
   2213
   2214	/* Not found, not a good sign... */
   2215	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
   2216		&addr, &addr_end);
   2217	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
   2218	return false;
   2219}
   2220
   2221static int gic_reserve_range(phys_addr_t addr, unsigned long size)
   2222{
   2223	if (efi_enabled(EFI_CONFIG_TABLES))
   2224		return efi_mem_reserve_persistent(addr, size);
   2225
   2226	return 0;
   2227}
   2228
   2229static int __init its_setup_lpi_prop_table(void)
   2230{
   2231	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
   2232		u64 val;
   2233
   2234		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
   2235		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
   2236
   2237		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
   2238		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
   2239						     LPI_PROPBASE_SZ,
   2240						     MEMREMAP_WB);
   2241		gic_reset_prop_table(gic_rdists->prop_table_va);
   2242	} else {
   2243		struct page *page;
   2244
   2245		lpi_id_bits = min_t(u32,
   2246				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
   2247				    ITS_MAX_LPI_NRBITS);
   2248		page = its_allocate_prop_table(GFP_NOWAIT);
   2249		if (!page) {
   2250			pr_err("Failed to allocate PROPBASE\n");
   2251			return -ENOMEM;
   2252		}
   2253
   2254		gic_rdists->prop_table_pa = page_to_phys(page);
   2255		gic_rdists->prop_table_va = page_address(page);
   2256		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
   2257					  LPI_PROPBASE_SZ));
   2258	}
   2259
   2260	pr_info("GICv3: using LPI property table @%pa\n",
   2261		&gic_rdists->prop_table_pa);
   2262
   2263	return its_lpi_init(lpi_id_bits);
   2264}
   2265
   2266static const char *its_base_type_string[] = {
   2267	[GITS_BASER_TYPE_DEVICE]	= "Devices",
   2268	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
   2269	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
   2270	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
   2271	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
   2272	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
   2273	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
   2274};
   2275
   2276static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
   2277{
   2278	u32 idx = baser - its->tables;
   2279
   2280	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
   2281}
   2282
   2283static void its_write_baser(struct its_node *its, struct its_baser *baser,
   2284			    u64 val)
   2285{
   2286	u32 idx = baser - its->tables;
   2287
   2288	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
   2289	baser->val = its_read_baser(its, baser);
   2290}
   2291
   2292static int its_setup_baser(struct its_node *its, struct its_baser *baser,
   2293			   u64 cache, u64 shr, u32 order, bool indirect)
   2294{
   2295	u64 val = its_read_baser(its, baser);
   2296	u64 esz = GITS_BASER_ENTRY_SIZE(val);
   2297	u64 type = GITS_BASER_TYPE(val);
   2298	u64 baser_phys, tmp;
   2299	u32 alloc_pages, psz;
   2300	struct page *page;
   2301	void *base;
   2302
   2303	psz = baser->psz;
   2304	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
   2305	if (alloc_pages > GITS_BASER_PAGES_MAX) {
   2306		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
   2307			&its->phys_base, its_base_type_string[type],
   2308			alloc_pages, GITS_BASER_PAGES_MAX);
   2309		alloc_pages = GITS_BASER_PAGES_MAX;
   2310		order = get_order(GITS_BASER_PAGES_MAX * psz);
   2311	}
   2312
   2313	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
   2314	if (!page)
   2315		return -ENOMEM;
   2316
   2317	base = (void *)page_address(page);
   2318	baser_phys = virt_to_phys(base);
   2319
   2320	/* Check if the physical address of the memory is above 48bits */
   2321	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
   2322
   2323		/* 52bit PA is supported only when PageSize=64K */
   2324		if (psz != SZ_64K) {
   2325			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
   2326			free_pages((unsigned long)base, order);
   2327			return -ENXIO;
   2328		}
   2329
   2330		/* Convert 52bit PA to 48bit field */
   2331		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
   2332	}
   2333
   2334retry_baser:
   2335	val = (baser_phys					 |
   2336		(type << GITS_BASER_TYPE_SHIFT)			 |
   2337		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
   2338		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
   2339		cache						 |
   2340		shr						 |
   2341		GITS_BASER_VALID);
   2342
   2343	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
   2344
   2345	switch (psz) {
   2346	case SZ_4K:
   2347		val |= GITS_BASER_PAGE_SIZE_4K;
   2348		break;
   2349	case SZ_16K:
   2350		val |= GITS_BASER_PAGE_SIZE_16K;
   2351		break;
   2352	case SZ_64K:
   2353		val |= GITS_BASER_PAGE_SIZE_64K;
   2354		break;
   2355	}
   2356
   2357	its_write_baser(its, baser, val);
   2358	tmp = baser->val;
   2359
   2360	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
   2361		/*
   2362		 * Shareability didn't stick. Just use
   2363		 * whatever the read reported, which is likely
   2364		 * to be the only thing this redistributor
   2365		 * supports. If that's zero, make it
   2366		 * non-cacheable as well.
   2367		 */
   2368		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
   2369		if (!shr) {
   2370			cache = GITS_BASER_nC;
   2371			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
   2372		}
   2373		goto retry_baser;
   2374	}
   2375
   2376	if (val != tmp) {
   2377		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
   2378		       &its->phys_base, its_base_type_string[type],
   2379		       val, tmp);
   2380		free_pages((unsigned long)base, order);
   2381		return -ENXIO;
   2382	}
   2383
   2384	baser->order = order;
   2385	baser->base = base;
   2386	baser->psz = psz;
   2387	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
   2388
   2389	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
   2390		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
   2391		its_base_type_string[type],
   2392		(unsigned long)virt_to_phys(base),
   2393		indirect ? "indirect" : "flat", (int)esz,
   2394		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
   2395
   2396	return 0;
   2397}
   2398
   2399static bool its_parse_indirect_baser(struct its_node *its,
   2400				     struct its_baser *baser,
   2401				     u32 *order, u32 ids)
   2402{
   2403	u64 tmp = its_read_baser(its, baser);
   2404	u64 type = GITS_BASER_TYPE(tmp);
   2405	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
   2406	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
   2407	u32 new_order = *order;
   2408	u32 psz = baser->psz;
   2409	bool indirect = false;
   2410
   2411	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
   2412	if ((esz << ids) > (psz * 2)) {
   2413		/*
   2414		 * Find out whether hw supports a single or two-level table by
   2415		 * table by reading bit at offset '62' after writing '1' to it.
   2416		 */
   2417		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
   2418		indirect = !!(baser->val & GITS_BASER_INDIRECT);
   2419
   2420		if (indirect) {
   2421			/*
   2422			 * The size of the lvl2 table is equal to ITS page size
   2423			 * which is 'psz'. For computing lvl1 table size,
   2424			 * subtract ID bits that sparse lvl2 table from 'ids'
   2425			 * which is reported by ITS hardware times lvl1 table
   2426			 * entry size.
   2427			 */
   2428			ids -= ilog2(psz / (int)esz);
   2429			esz = GITS_LVL1_ENTRY_SIZE;
   2430		}
   2431	}
   2432
   2433	/*
   2434	 * Allocate as many entries as required to fit the
   2435	 * range of device IDs that the ITS can grok... The ID
   2436	 * space being incredibly sparse, this results in a
   2437	 * massive waste of memory if two-level device table
   2438	 * feature is not supported by hardware.
   2439	 */
   2440	new_order = max_t(u32, get_order(esz << ids), new_order);
   2441	if (new_order >= MAX_ORDER) {
   2442		new_order = MAX_ORDER - 1;
   2443		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
   2444		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
   2445			&its->phys_base, its_base_type_string[type],
   2446			device_ids(its), ids);
   2447	}
   2448
   2449	*order = new_order;
   2450
   2451	return indirect;
   2452}
   2453
   2454static u32 compute_common_aff(u64 val)
   2455{
   2456	u32 aff, clpiaff;
   2457
   2458	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
   2459	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
   2460
   2461	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
   2462}
   2463
   2464static u32 compute_its_aff(struct its_node *its)
   2465{
   2466	u64 val;
   2467	u32 svpet;
   2468
   2469	/*
   2470	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
   2471	 * the resulting affinity. We then use that to see if this match
   2472	 * our own affinity.
   2473	 */
   2474	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
   2475	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
   2476	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
   2477	return compute_common_aff(val);
   2478}
   2479
   2480static struct its_node *find_sibling_its(struct its_node *cur_its)
   2481{
   2482	struct its_node *its;
   2483	u32 aff;
   2484
   2485	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
   2486		return NULL;
   2487
   2488	aff = compute_its_aff(cur_its);
   2489
   2490	list_for_each_entry(its, &its_nodes, entry) {
   2491		u64 baser;
   2492
   2493		if (!is_v4_1(its) || its == cur_its)
   2494			continue;
   2495
   2496		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
   2497			continue;
   2498
   2499		if (aff != compute_its_aff(its))
   2500			continue;
   2501
   2502		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
   2503		baser = its->tables[2].val;
   2504		if (!(baser & GITS_BASER_VALID))
   2505			continue;
   2506
   2507		return its;
   2508	}
   2509
   2510	return NULL;
   2511}
   2512
   2513static void its_free_tables(struct its_node *its)
   2514{
   2515	int i;
   2516
   2517	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
   2518		if (its->tables[i].base) {
   2519			free_pages((unsigned long)its->tables[i].base,
   2520				   its->tables[i].order);
   2521			its->tables[i].base = NULL;
   2522		}
   2523	}
   2524}
   2525
   2526static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
   2527{
   2528	u64 psz = SZ_64K;
   2529
   2530	while (psz) {
   2531		u64 val, gpsz;
   2532
   2533		val = its_read_baser(its, baser);
   2534		val &= ~GITS_BASER_PAGE_SIZE_MASK;
   2535
   2536		switch (psz) {
   2537		case SZ_64K:
   2538			gpsz = GITS_BASER_PAGE_SIZE_64K;
   2539			break;
   2540		case SZ_16K:
   2541			gpsz = GITS_BASER_PAGE_SIZE_16K;
   2542			break;
   2543		case SZ_4K:
   2544		default:
   2545			gpsz = GITS_BASER_PAGE_SIZE_4K;
   2546			break;
   2547		}
   2548
   2549		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
   2550
   2551		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
   2552		its_write_baser(its, baser, val);
   2553
   2554		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
   2555			break;
   2556
   2557		switch (psz) {
   2558		case SZ_64K:
   2559			psz = SZ_16K;
   2560			break;
   2561		case SZ_16K:
   2562			psz = SZ_4K;
   2563			break;
   2564		case SZ_4K:
   2565		default:
   2566			return -1;
   2567		}
   2568	}
   2569
   2570	baser->psz = psz;
   2571	return 0;
   2572}
   2573
   2574static int its_alloc_tables(struct its_node *its)
   2575{
   2576	u64 shr = GITS_BASER_InnerShareable;
   2577	u64 cache = GITS_BASER_RaWaWb;
   2578	int err, i;
   2579
   2580	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
   2581		/* erratum 24313: ignore memory access type */
   2582		cache = GITS_BASER_nCnB;
   2583
   2584	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
   2585		struct its_baser *baser = its->tables + i;
   2586		u64 val = its_read_baser(its, baser);
   2587		u64 type = GITS_BASER_TYPE(val);
   2588		bool indirect = false;
   2589		u32 order;
   2590
   2591		if (type == GITS_BASER_TYPE_NONE)
   2592			continue;
   2593
   2594		if (its_probe_baser_psz(its, baser)) {
   2595			its_free_tables(its);
   2596			return -ENXIO;
   2597		}
   2598
   2599		order = get_order(baser->psz);
   2600
   2601		switch (type) {
   2602		case GITS_BASER_TYPE_DEVICE:
   2603			indirect = its_parse_indirect_baser(its, baser, &order,
   2604							    device_ids(its));
   2605			break;
   2606
   2607		case GITS_BASER_TYPE_VCPU:
   2608			if (is_v4_1(its)) {
   2609				struct its_node *sibling;
   2610
   2611				WARN_ON(i != 2);
   2612				if ((sibling = find_sibling_its(its))) {
   2613					*baser = sibling->tables[2];
   2614					its_write_baser(its, baser, baser->val);
   2615					continue;
   2616				}
   2617			}
   2618
   2619			indirect = its_parse_indirect_baser(its, baser, &order,
   2620							    ITS_MAX_VPEID_BITS);
   2621			break;
   2622		}
   2623
   2624		err = its_setup_baser(its, baser, cache, shr, order, indirect);
   2625		if (err < 0) {
   2626			its_free_tables(its);
   2627			return err;
   2628		}
   2629
   2630		/* Update settings which will be used for next BASERn */
   2631		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
   2632		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
   2633	}
   2634
   2635	return 0;
   2636}
   2637
   2638static u64 inherit_vpe_l1_table_from_its(void)
   2639{
   2640	struct its_node *its;
   2641	u64 val;
   2642	u32 aff;
   2643
   2644	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
   2645	aff = compute_common_aff(val);
   2646
   2647	list_for_each_entry(its, &its_nodes, entry) {
   2648		u64 baser, addr;
   2649
   2650		if (!is_v4_1(its))
   2651			continue;
   2652
   2653		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
   2654			continue;
   2655
   2656		if (aff != compute_its_aff(its))
   2657			continue;
   2658
   2659		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
   2660		baser = its->tables[2].val;
   2661		if (!(baser & GITS_BASER_VALID))
   2662			continue;
   2663
   2664		/* We have a winner! */
   2665		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
   2666
   2667		val  = GICR_VPROPBASER_4_1_VALID;
   2668		if (baser & GITS_BASER_INDIRECT)
   2669			val |= GICR_VPROPBASER_4_1_INDIRECT;
   2670		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
   2671				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
   2672		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
   2673		case GIC_PAGE_SIZE_64K:
   2674			addr = GITS_BASER_ADDR_48_to_52(baser);
   2675			break;
   2676		default:
   2677			addr = baser & GENMASK_ULL(47, 12);
   2678			break;
   2679		}
   2680		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
   2681		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
   2682				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
   2683		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
   2684				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
   2685		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
   2686
   2687		return val;
   2688	}
   2689
   2690	return 0;
   2691}
   2692
   2693static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
   2694{
   2695	u32 aff;
   2696	u64 val;
   2697	int cpu;
   2698
   2699	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
   2700	aff = compute_common_aff(val);
   2701
   2702	for_each_possible_cpu(cpu) {
   2703		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
   2704
   2705		if (!base || cpu == smp_processor_id())
   2706			continue;
   2707
   2708		val = gic_read_typer(base + GICR_TYPER);
   2709		if (aff != compute_common_aff(val))
   2710			continue;
   2711
   2712		/*
   2713		 * At this point, we have a victim. This particular CPU
   2714		 * has already booted, and has an affinity that matches
   2715		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
   2716		 * Make sure we don't write the Z bit in that case.
   2717		 */
   2718		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
   2719		val &= ~GICR_VPROPBASER_4_1_Z;
   2720
   2721		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
   2722		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
   2723
   2724		return val;
   2725	}
   2726
   2727	return 0;
   2728}
   2729
   2730static bool allocate_vpe_l2_table(int cpu, u32 id)
   2731{
   2732	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
   2733	unsigned int psz, esz, idx, npg, gpsz;
   2734	u64 val;
   2735	struct page *page;
   2736	__le64 *table;
   2737
   2738	if (!gic_rdists->has_rvpeid)
   2739		return true;
   2740
   2741	/* Skip non-present CPUs */
   2742	if (!base)
   2743		return true;
   2744
   2745	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
   2746
   2747	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
   2748	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
   2749	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
   2750
   2751	switch (gpsz) {
   2752	default:
   2753		WARN_ON(1);
   2754		fallthrough;
   2755	case GIC_PAGE_SIZE_4K:
   2756		psz = SZ_4K;
   2757		break;
   2758	case GIC_PAGE_SIZE_16K:
   2759		psz = SZ_16K;
   2760		break;
   2761	case GIC_PAGE_SIZE_64K:
   2762		psz = SZ_64K;
   2763		break;
   2764	}
   2765
   2766	/* Don't allow vpe_id that exceeds single, flat table limit */
   2767	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
   2768		return (id < (npg * psz / (esz * SZ_8)));
   2769
   2770	/* Compute 1st level table index & check if that exceeds table limit */
   2771	idx = id >> ilog2(psz / (esz * SZ_8));
   2772	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
   2773		return false;
   2774
   2775	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
   2776
   2777	/* Allocate memory for 2nd level table */
   2778	if (!table[idx]) {
   2779		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
   2780		if (!page)
   2781			return false;
   2782
   2783		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
   2784		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
   2785			gic_flush_dcache_to_poc(page_address(page), psz);
   2786
   2787		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
   2788
   2789		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
   2790		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
   2791			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
   2792
   2793		/* Ensure updated table contents are visible to RD hardware */
   2794		dsb(sy);
   2795	}
   2796
   2797	return true;
   2798}
   2799
   2800static int allocate_vpe_l1_table(void)
   2801{
   2802	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
   2803	u64 val, gpsz, npg, pa;
   2804	unsigned int psz = SZ_64K;
   2805	unsigned int np, epp, esz;
   2806	struct page *page;
   2807
   2808	if (!gic_rdists->has_rvpeid)
   2809		return 0;
   2810
   2811	/*
   2812	 * if VPENDBASER.Valid is set, disable any previously programmed
   2813	 * VPE by setting PendingLast while clearing Valid. This has the
   2814	 * effect of making sure no doorbell will be generated and we can
   2815	 * then safely clear VPROPBASER.Valid.
   2816	 */
   2817	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
   2818		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
   2819				      vlpi_base + GICR_VPENDBASER);
   2820
   2821	/*
   2822	 * If we can inherit the configuration from another RD, let's do
   2823	 * so. Otherwise, we have to go through the allocation process. We
   2824	 * assume that all RDs have the exact same requirements, as
   2825	 * nothing will work otherwise.
   2826	 */
   2827	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
   2828	if (val & GICR_VPROPBASER_4_1_VALID)
   2829		goto out;
   2830
   2831	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
   2832	if (!gic_data_rdist()->vpe_table_mask)
   2833		return -ENOMEM;
   2834
   2835	val = inherit_vpe_l1_table_from_its();
   2836	if (val & GICR_VPROPBASER_4_1_VALID)
   2837		goto out;
   2838
   2839	/* First probe the page size */
   2840	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
   2841	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
   2842	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
   2843	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
   2844	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
   2845
   2846	switch (gpsz) {
   2847	default:
   2848		gpsz = GIC_PAGE_SIZE_4K;
   2849		fallthrough;
   2850	case GIC_PAGE_SIZE_4K:
   2851		psz = SZ_4K;
   2852		break;
   2853	case GIC_PAGE_SIZE_16K:
   2854		psz = SZ_16K;
   2855		break;
   2856	case GIC_PAGE_SIZE_64K:
   2857		psz = SZ_64K;
   2858		break;
   2859	}
   2860
   2861	/*
   2862	 * Start populating the register from scratch, including RO fields
   2863	 * (which we want to print in debug cases...)
   2864	 */
   2865	val = 0;
   2866	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
   2867	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
   2868
   2869	/* How many entries per GIC page? */
   2870	esz++;
   2871	epp = psz / (esz * SZ_8);
   2872
   2873	/*
   2874	 * If we need more than just a single L1 page, flag the table
   2875	 * as indirect and compute the number of required L1 pages.
   2876	 */
   2877	if (epp < ITS_MAX_VPEID) {
   2878		int nl2;
   2879
   2880		val |= GICR_VPROPBASER_4_1_INDIRECT;
   2881
   2882		/* Number of L2 pages required to cover the VPEID space */
   2883		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
   2884
   2885		/* Number of L1 pages to point to the L2 pages */
   2886		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
   2887	} else {
   2888		npg = 1;
   2889	}
   2890
   2891	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
   2892
   2893	/* Right, that's the number of CPU pages we need for L1 */
   2894	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
   2895
   2896	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
   2897		 np, npg, psz, epp, esz);
   2898	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
   2899	if (!page)
   2900		return -ENOMEM;
   2901
   2902	gic_data_rdist()->vpe_l1_base = page_address(page);
   2903	pa = virt_to_phys(page_address(page));
   2904	WARN_ON(!IS_ALIGNED(pa, psz));
   2905
   2906	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
   2907	val |= GICR_VPROPBASER_RaWb;
   2908	val |= GICR_VPROPBASER_InnerShareable;
   2909	val |= GICR_VPROPBASER_4_1_Z;
   2910	val |= GICR_VPROPBASER_4_1_VALID;
   2911
   2912out:
   2913	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
   2914	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
   2915
   2916	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
   2917		 smp_processor_id(), val,
   2918		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
   2919
   2920	return 0;
   2921}
   2922
   2923static int its_alloc_collections(struct its_node *its)
   2924{
   2925	int i;
   2926
   2927	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
   2928				   GFP_KERNEL);
   2929	if (!its->collections)
   2930		return -ENOMEM;
   2931
   2932	for (i = 0; i < nr_cpu_ids; i++)
   2933		its->collections[i].target_address = ~0ULL;
   2934
   2935	return 0;
   2936}
   2937
   2938static struct page *its_allocate_pending_table(gfp_t gfp_flags)
   2939{
   2940	struct page *pend_page;
   2941
   2942	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
   2943				get_order(LPI_PENDBASE_SZ));
   2944	if (!pend_page)
   2945		return NULL;
   2946
   2947	/* Make sure the GIC will observe the zero-ed page */
   2948	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
   2949
   2950	return pend_page;
   2951}
   2952
   2953static void its_free_pending_table(struct page *pt)
   2954{
   2955	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
   2956}
   2957
   2958/*
   2959 * Booting with kdump and LPIs enabled is generally fine. Any other
   2960 * case is wrong in the absence of firmware/EFI support.
   2961 */
   2962static bool enabled_lpis_allowed(void)
   2963{
   2964	phys_addr_t addr;
   2965	u64 val;
   2966
   2967	/* Check whether the property table is in a reserved region */
   2968	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
   2969	addr = val & GENMASK_ULL(51, 12);
   2970
   2971	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
   2972}
   2973
   2974static int __init allocate_lpi_tables(void)
   2975{
   2976	u64 val;
   2977	int err, cpu;
   2978
   2979	/*
   2980	 * If LPIs are enabled while we run this from the boot CPU,
   2981	 * flag the RD tables as pre-allocated if the stars do align.
   2982	 */
   2983	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
   2984	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
   2985		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
   2986				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
   2987		pr_info("GICv3: Using preallocated redistributor tables\n");
   2988	}
   2989
   2990	err = its_setup_lpi_prop_table();
   2991	if (err)
   2992		return err;
   2993
   2994	/*
   2995	 * We allocate all the pending tables anyway, as we may have a
   2996	 * mix of RDs that have had LPIs enabled, and some that
   2997	 * don't. We'll free the unused ones as each CPU comes online.
   2998	 */
   2999	for_each_possible_cpu(cpu) {
   3000		struct page *pend_page;
   3001
   3002		pend_page = its_allocate_pending_table(GFP_NOWAIT);
   3003		if (!pend_page) {
   3004			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
   3005			return -ENOMEM;
   3006		}
   3007
   3008		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
   3009	}
   3010
   3011	return 0;
   3012}
   3013
   3014static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
   3015{
   3016	u32 count = 1000000;	/* 1s! */
   3017	bool clean;
   3018	u64 val;
   3019
   3020	do {
   3021		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
   3022		clean = !(val & GICR_VPENDBASER_Dirty);
   3023		if (!clean) {
   3024			count--;
   3025			cpu_relax();
   3026			udelay(1);
   3027		}
   3028	} while (!clean && count);
   3029
   3030	if (unlikely(!clean))
   3031		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
   3032
   3033	return val;
   3034}
   3035
   3036static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
   3037{
   3038	u64 val;
   3039
   3040	/* Make sure we wait until the RD is done with the initial scan */
   3041	val = read_vpend_dirty_clear(vlpi_base);
   3042	val &= ~GICR_VPENDBASER_Valid;
   3043	val &= ~clr;
   3044	val |= set;
   3045	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
   3046
   3047	val = read_vpend_dirty_clear(vlpi_base);
   3048	if (unlikely(val & GICR_VPENDBASER_Dirty))
   3049		val |= GICR_VPENDBASER_PendingLast;
   3050
   3051	return val;
   3052}
   3053
   3054static void its_cpu_init_lpis(void)
   3055{
   3056	void __iomem *rbase = gic_data_rdist_rd_base();
   3057	struct page *pend_page;
   3058	phys_addr_t paddr;
   3059	u64 val, tmp;
   3060
   3061	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
   3062		return;
   3063
   3064	val = readl_relaxed(rbase + GICR_CTLR);
   3065	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
   3066	    (val & GICR_CTLR_ENABLE_LPIS)) {
   3067		/*
   3068		 * Check that we get the same property table on all
   3069		 * RDs. If we don't, this is hopeless.
   3070		 */
   3071		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
   3072		paddr &= GENMASK_ULL(51, 12);
   3073		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
   3074			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
   3075
   3076		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
   3077		paddr &= GENMASK_ULL(51, 16);
   3078
   3079		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
   3080		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
   3081
   3082		goto out;
   3083	}
   3084
   3085	pend_page = gic_data_rdist()->pend_page;
   3086	paddr = page_to_phys(pend_page);
   3087
   3088	/* set PROPBASE */
   3089	val = (gic_rdists->prop_table_pa |
   3090	       GICR_PROPBASER_InnerShareable |
   3091	       GICR_PROPBASER_RaWaWb |
   3092	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
   3093
   3094	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
   3095	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
   3096
   3097	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
   3098		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
   3099			/*
   3100			 * The HW reports non-shareable, we must
   3101			 * remove the cacheability attributes as
   3102			 * well.
   3103			 */
   3104			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
   3105				 GICR_PROPBASER_CACHEABILITY_MASK);
   3106			val |= GICR_PROPBASER_nC;
   3107			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
   3108		}
   3109		pr_info_once("GIC: using cache flushing for LPI property table\n");
   3110		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
   3111	}
   3112
   3113	/* set PENDBASE */
   3114	val = (page_to_phys(pend_page) |
   3115	       GICR_PENDBASER_InnerShareable |
   3116	       GICR_PENDBASER_RaWaWb);
   3117
   3118	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
   3119	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
   3120
   3121	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
   3122		/*
   3123		 * The HW reports non-shareable, we must remove the
   3124		 * cacheability attributes as well.
   3125		 */
   3126		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
   3127			 GICR_PENDBASER_CACHEABILITY_MASK);
   3128		val |= GICR_PENDBASER_nC;
   3129		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
   3130	}
   3131
   3132	/* Enable LPIs */
   3133	val = readl_relaxed(rbase + GICR_CTLR);
   3134	val |= GICR_CTLR_ENABLE_LPIS;
   3135	writel_relaxed(val, rbase + GICR_CTLR);
   3136
   3137	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
   3138		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
   3139
   3140		/*
   3141		 * It's possible for CPU to receive VLPIs before it is
   3142		 * scheduled as a vPE, especially for the first CPU, and the
   3143		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
   3144		 * as out of range and dropped by GIC.
   3145		 * So we initialize IDbits to known value to avoid VLPI drop.
   3146		 */
   3147		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
   3148		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
   3149			smp_processor_id(), val);
   3150		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
   3151
   3152		/*
   3153		 * Also clear Valid bit of GICR_VPENDBASER, in case some
   3154		 * ancient programming gets left in and has possibility of
   3155		 * corrupting memory.
   3156		 */
   3157		val = its_clear_vpend_valid(vlpi_base, 0, 0);
   3158	}
   3159
   3160	if (allocate_vpe_l1_table()) {
   3161		/*
   3162		 * If the allocation has failed, we're in massive trouble.
   3163		 * Disable direct injection, and pray that no VM was
   3164		 * already running...
   3165		 */
   3166		gic_rdists->has_rvpeid = false;
   3167		gic_rdists->has_vlpis = false;
   3168	}
   3169
   3170	/* Make sure the GIC has seen the above */
   3171	dsb(sy);
   3172out:
   3173	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
   3174	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
   3175		smp_processor_id(),
   3176		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
   3177		"reserved" : "allocated",
   3178		&paddr);
   3179}
   3180
   3181static void its_cpu_init_collection(struct its_node *its)
   3182{
   3183	int cpu = smp_processor_id();
   3184	u64 target;
   3185
   3186	/* avoid cross node collections and its mapping */
   3187	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
   3188		struct device_node *cpu_node;
   3189
   3190		cpu_node = of_get_cpu_node(cpu, NULL);
   3191		if (its->numa_node != NUMA_NO_NODE &&
   3192			its->numa_node != of_node_to_nid(cpu_node))
   3193			return;
   3194	}
   3195
   3196	/*
   3197	 * We now have to bind each collection to its target
   3198	 * redistributor.
   3199	 */
   3200	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
   3201		/*
   3202		 * This ITS wants the physical address of the
   3203		 * redistributor.
   3204		 */
   3205		target = gic_data_rdist()->phys_base;
   3206	} else {
   3207		/* This ITS wants a linear CPU number. */
   3208		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
   3209		target = GICR_TYPER_CPU_NUMBER(target) << 16;
   3210	}
   3211
   3212	/* Perform collection mapping */
   3213	its->collections[cpu].target_address = target;
   3214	its->collections[cpu].col_id = cpu;
   3215
   3216	its_send_mapc(its, &its->collections[cpu], 1);
   3217	its_send_invall(its, &its->collections[cpu]);
   3218}
   3219
   3220static void its_cpu_init_collections(void)
   3221{
   3222	struct its_node *its;
   3223
   3224	raw_spin_lock(&its_lock);
   3225
   3226	list_for_each_entry(its, &its_nodes, entry)
   3227		its_cpu_init_collection(its);
   3228
   3229	raw_spin_unlock(&its_lock);
   3230}
   3231
   3232static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
   3233{
   3234	struct its_device *its_dev = NULL, *tmp;
   3235	unsigned long flags;
   3236
   3237	raw_spin_lock_irqsave(&its->lock, flags);
   3238
   3239	list_for_each_entry(tmp, &its->its_device_list, entry) {
   3240		if (tmp->device_id == dev_id) {
   3241			its_dev = tmp;
   3242			break;
   3243		}
   3244	}
   3245
   3246	raw_spin_unlock_irqrestore(&its->lock, flags);
   3247
   3248	return its_dev;
   3249}
   3250
   3251static struct its_baser *its_get_baser(struct its_node *its, u32 type)
   3252{
   3253	int i;
   3254
   3255	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
   3256		if (GITS_BASER_TYPE(its->tables[i].val) == type)
   3257			return &its->tables[i];
   3258	}
   3259
   3260	return NULL;
   3261}
   3262
   3263static bool its_alloc_table_entry(struct its_node *its,
   3264				  struct its_baser *baser, u32 id)
   3265{
   3266	struct page *page;
   3267	u32 esz, idx;
   3268	__le64 *table;
   3269
   3270	/* Don't allow device id that exceeds single, flat table limit */
   3271	esz = GITS_BASER_ENTRY_SIZE(baser->val);
   3272	if (!(baser->val & GITS_BASER_INDIRECT))
   3273		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
   3274
   3275	/* Compute 1st level table index & check if that exceeds table limit */
   3276	idx = id >> ilog2(baser->psz / esz);
   3277	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
   3278		return false;
   3279
   3280	table = baser->base;
   3281
   3282	/* Allocate memory for 2nd level table */
   3283	if (!table[idx]) {
   3284		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
   3285					get_order(baser->psz));
   3286		if (!page)
   3287			return false;
   3288
   3289		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
   3290		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
   3291			gic_flush_dcache_to_poc(page_address(page), baser->psz);
   3292
   3293		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
   3294
   3295		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
   3296		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
   3297			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
   3298
   3299		/* Ensure updated table contents are visible to ITS hardware */
   3300		dsb(sy);
   3301	}
   3302
   3303	return true;
   3304}
   3305
   3306static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
   3307{
   3308	struct its_baser *baser;
   3309
   3310	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
   3311
   3312	/* Don't allow device id that exceeds ITS hardware limit */
   3313	if (!baser)
   3314		return (ilog2(dev_id) < device_ids(its));
   3315
   3316	return its_alloc_table_entry(its, baser, dev_id);
   3317}
   3318
   3319static bool its_alloc_vpe_table(u32 vpe_id)
   3320{
   3321	struct its_node *its;
   3322	int cpu;
   3323
   3324	/*
   3325	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
   3326	 * could try and only do it on ITSs corresponding to devices
   3327	 * that have interrupts targeted at this VPE, but the
   3328	 * complexity becomes crazy (and you have tons of memory
   3329	 * anyway, right?).
   3330	 */
   3331	list_for_each_entry(its, &its_nodes, entry) {
   3332		struct its_baser *baser;
   3333
   3334		if (!is_v4(its))
   3335			continue;
   3336
   3337		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
   3338		if (!baser)
   3339			return false;
   3340
   3341		if (!its_alloc_table_entry(its, baser, vpe_id))
   3342			return false;
   3343	}
   3344
   3345	/* Non v4.1? No need to iterate RDs and go back early. */
   3346	if (!gic_rdists->has_rvpeid)
   3347		return true;
   3348
   3349	/*
   3350	 * Make sure the L2 tables are allocated for all copies of
   3351	 * the L1 table on *all* v4.1 RDs.
   3352	 */
   3353	for_each_possible_cpu(cpu) {
   3354		if (!allocate_vpe_l2_table(cpu, vpe_id))
   3355			return false;
   3356	}
   3357
   3358	return true;
   3359}
   3360
   3361static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
   3362					    int nvecs, bool alloc_lpis)
   3363{
   3364	struct its_device *dev;
   3365	unsigned long *lpi_map = NULL;
   3366	unsigned long flags;
   3367	u16 *col_map = NULL;
   3368	void *itt;
   3369	int lpi_base;
   3370	int nr_lpis;
   3371	int nr_ites;
   3372	int sz;
   3373
   3374	if (!its_alloc_device_table(its, dev_id))
   3375		return NULL;
   3376
   3377	if (WARN_ON(!is_power_of_2(nvecs)))
   3378		nvecs = roundup_pow_of_two(nvecs);
   3379
   3380	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
   3381	/*
   3382	 * Even if the device wants a single LPI, the ITT must be
   3383	 * sized as a power of two (and you need at least one bit...).
   3384	 */
   3385	nr_ites = max(2, nvecs);
   3386	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
   3387	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
   3388	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
   3389	if (alloc_lpis) {
   3390		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
   3391		if (lpi_map)
   3392			col_map = kcalloc(nr_lpis, sizeof(*col_map),
   3393					  GFP_KERNEL);
   3394	} else {
   3395		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
   3396		nr_lpis = 0;
   3397		lpi_base = 0;
   3398	}
   3399
   3400	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
   3401		kfree(dev);
   3402		kfree(itt);
   3403		bitmap_free(lpi_map);
   3404		kfree(col_map);
   3405		return NULL;
   3406	}
   3407
   3408	gic_flush_dcache_to_poc(itt, sz);
   3409
   3410	dev->its = its;
   3411	dev->itt = itt;
   3412	dev->nr_ites = nr_ites;
   3413	dev->event_map.lpi_map = lpi_map;
   3414	dev->event_map.col_map = col_map;
   3415	dev->event_map.lpi_base = lpi_base;
   3416	dev->event_map.nr_lpis = nr_lpis;
   3417	raw_spin_lock_init(&dev->event_map.vlpi_lock);
   3418	dev->device_id = dev_id;
   3419	INIT_LIST_HEAD(&dev->entry);
   3420
   3421	raw_spin_lock_irqsave(&its->lock, flags);
   3422	list_add(&dev->entry, &its->its_device_list);
   3423	raw_spin_unlock_irqrestore(&its->lock, flags);
   3424
   3425	/* Map device to its ITT */
   3426	its_send_mapd(dev, 1);
   3427
   3428	return dev;
   3429}
   3430
   3431static void its_free_device(struct its_device *its_dev)
   3432{
   3433	unsigned long flags;
   3434
   3435	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
   3436	list_del(&its_dev->entry);
   3437	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
   3438	kfree(its_dev->event_map.col_map);
   3439	kfree(its_dev->itt);
   3440	kfree(its_dev);
   3441}
   3442
   3443static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
   3444{
   3445	int idx;
   3446
   3447	/* Find a free LPI region in lpi_map and allocate them. */
   3448	idx = bitmap_find_free_region(dev->event_map.lpi_map,
   3449				      dev->event_map.nr_lpis,
   3450				      get_count_order(nvecs));
   3451	if (idx < 0)
   3452		return -ENOSPC;
   3453
   3454	*hwirq = dev->event_map.lpi_base + idx;
   3455
   3456	return 0;
   3457}
   3458
   3459static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
   3460			   int nvec, msi_alloc_info_t *info)
   3461{
   3462	struct its_node *its;
   3463	struct its_device *its_dev;
   3464	struct msi_domain_info *msi_info;
   3465	u32 dev_id;
   3466	int err = 0;
   3467
   3468	/*
   3469	 * We ignore "dev" entirely, and rely on the dev_id that has
   3470	 * been passed via the scratchpad. This limits this domain's
   3471	 * usefulness to upper layers that definitely know that they
   3472	 * are built on top of the ITS.
   3473	 */
   3474	dev_id = info->scratchpad[0].ul;
   3475
   3476	msi_info = msi_get_domain_info(domain);
   3477	its = msi_info->data;
   3478
   3479	if (!gic_rdists->has_direct_lpi &&
   3480	    vpe_proxy.dev &&
   3481	    vpe_proxy.dev->its == its &&
   3482	    dev_id == vpe_proxy.dev->device_id) {
   3483		/* Bad luck. Get yourself a better implementation */
   3484		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
   3485			  dev_id);
   3486		return -EINVAL;
   3487	}
   3488
   3489	mutex_lock(&its->dev_alloc_lock);
   3490	its_dev = its_find_device(its, dev_id);
   3491	if (its_dev) {
   3492		/*
   3493		 * We already have seen this ID, probably through
   3494		 * another alias (PCI bridge of some sort). No need to
   3495		 * create the device.
   3496		 */
   3497		its_dev->shared = true;
   3498		pr_debug("Reusing ITT for devID %x\n", dev_id);
   3499		goto out;
   3500	}
   3501
   3502	its_dev = its_create_device(its, dev_id, nvec, true);
   3503	if (!its_dev) {
   3504		err = -ENOMEM;
   3505		goto out;
   3506	}
   3507
   3508	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
   3509		its_dev->shared = true;
   3510
   3511	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
   3512out:
   3513	mutex_unlock(&its->dev_alloc_lock);
   3514	info->scratchpad[0].ptr = its_dev;
   3515	return err;
   3516}
   3517
   3518static struct msi_domain_ops its_msi_domain_ops = {
   3519	.msi_prepare	= its_msi_prepare,
   3520};
   3521
   3522static int its_irq_gic_domain_alloc(struct irq_domain *domain,
   3523				    unsigned int virq,
   3524				    irq_hw_number_t hwirq)
   3525{
   3526	struct irq_fwspec fwspec;
   3527
   3528	if (irq_domain_get_of_node(domain->parent)) {
   3529		fwspec.fwnode = domain->parent->fwnode;
   3530		fwspec.param_count = 3;
   3531		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
   3532		fwspec.param[1] = hwirq;
   3533		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
   3534	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
   3535		fwspec.fwnode = domain->parent->fwnode;
   3536		fwspec.param_count = 2;
   3537		fwspec.param[0] = hwirq;
   3538		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
   3539	} else {
   3540		return -EINVAL;
   3541	}
   3542
   3543	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
   3544}
   3545
   3546static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
   3547				unsigned int nr_irqs, void *args)
   3548{
   3549	msi_alloc_info_t *info = args;
   3550	struct its_device *its_dev = info->scratchpad[0].ptr;
   3551	struct its_node *its = its_dev->its;
   3552	struct irq_data *irqd;
   3553	irq_hw_number_t hwirq;
   3554	int err;
   3555	int i;
   3556
   3557	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
   3558	if (err)
   3559		return err;
   3560
   3561	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
   3562	if (err)
   3563		return err;
   3564
   3565	for (i = 0; i < nr_irqs; i++) {
   3566		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
   3567		if (err)
   3568			return err;
   3569
   3570		irq_domain_set_hwirq_and_chip(domain, virq + i,
   3571					      hwirq + i, &its_irq_chip, its_dev);
   3572		irqd = irq_get_irq_data(virq + i);
   3573		irqd_set_single_target(irqd);
   3574		irqd_set_affinity_on_activate(irqd);
   3575		pr_debug("ID:%d pID:%d vID:%d\n",
   3576			 (int)(hwirq + i - its_dev->event_map.lpi_base),
   3577			 (int)(hwirq + i), virq + i);
   3578	}
   3579
   3580	return 0;
   3581}
   3582
   3583static int its_irq_domain_activate(struct irq_domain *domain,
   3584				   struct irq_data *d, bool reserve)
   3585{
   3586	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   3587	u32 event = its_get_event_id(d);
   3588	int cpu;
   3589
   3590	cpu = its_select_cpu(d, cpu_online_mask);
   3591	if (cpu < 0 || cpu >= nr_cpu_ids)
   3592		return -EINVAL;
   3593
   3594	its_inc_lpi_count(d, cpu);
   3595	its_dev->event_map.col_map[event] = cpu;
   3596	irq_data_update_effective_affinity(d, cpumask_of(cpu));
   3597
   3598	/* Map the GIC IRQ and event to the device */
   3599	its_send_mapti(its_dev, d->hwirq, event);
   3600	return 0;
   3601}
   3602
   3603static void its_irq_domain_deactivate(struct irq_domain *domain,
   3604				      struct irq_data *d)
   3605{
   3606	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   3607	u32 event = its_get_event_id(d);
   3608
   3609	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
   3610	/* Stop the delivery of interrupts */
   3611	its_send_discard(its_dev, event);
   3612}
   3613
   3614static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
   3615				unsigned int nr_irqs)
   3616{
   3617	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
   3618	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
   3619	struct its_node *its = its_dev->its;
   3620	int i;
   3621
   3622	bitmap_release_region(its_dev->event_map.lpi_map,
   3623			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
   3624			      get_count_order(nr_irqs));
   3625
   3626	for (i = 0; i < nr_irqs; i++) {
   3627		struct irq_data *data = irq_domain_get_irq_data(domain,
   3628								virq + i);
   3629		/* Nuke the entry in the domain */
   3630		irq_domain_reset_irq_data(data);
   3631	}
   3632
   3633	mutex_lock(&its->dev_alloc_lock);
   3634
   3635	/*
   3636	 * If all interrupts have been freed, start mopping the
   3637	 * floor. This is conditioned on the device not being shared.
   3638	 */
   3639	if (!its_dev->shared &&
   3640	    bitmap_empty(its_dev->event_map.lpi_map,
   3641			 its_dev->event_map.nr_lpis)) {
   3642		its_lpi_free(its_dev->event_map.lpi_map,
   3643			     its_dev->event_map.lpi_base,
   3644			     its_dev->event_map.nr_lpis);
   3645
   3646		/* Unmap device/itt */
   3647		its_send_mapd(its_dev, 0);
   3648		its_free_device(its_dev);
   3649	}
   3650
   3651	mutex_unlock(&its->dev_alloc_lock);
   3652
   3653	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
   3654}
   3655
   3656static const struct irq_domain_ops its_domain_ops = {
   3657	.alloc			= its_irq_domain_alloc,
   3658	.free			= its_irq_domain_free,
   3659	.activate		= its_irq_domain_activate,
   3660	.deactivate		= its_irq_domain_deactivate,
   3661};
   3662
   3663/*
   3664 * This is insane.
   3665 *
   3666 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
   3667 * likely), the only way to perform an invalidate is to use a fake
   3668 * device to issue an INV command, implying that the LPI has first
   3669 * been mapped to some event on that device. Since this is not exactly
   3670 * cheap, we try to keep that mapping around as long as possible, and
   3671 * only issue an UNMAP if we're short on available slots.
   3672 *
   3673 * Broken by design(tm).
   3674 *
   3675 * GICv4.1, on the other hand, mandates that we're able to invalidate
   3676 * by writing to a MMIO register. It doesn't implement the whole of
   3677 * DirectLPI, but that's good enough. And most of the time, we don't
   3678 * even have to invalidate anything, as the redistributor can be told
   3679 * whether to generate a doorbell or not (we thus leave it enabled,
   3680 * always).
   3681 */
   3682static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
   3683{
   3684	/* GICv4.1 doesn't use a proxy, so nothing to do here */
   3685	if (gic_rdists->has_rvpeid)
   3686		return;
   3687
   3688	/* Already unmapped? */
   3689	if (vpe->vpe_proxy_event == -1)
   3690		return;
   3691
   3692	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
   3693	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
   3694
   3695	/*
   3696	 * We don't track empty slots at all, so let's move the
   3697	 * next_victim pointer if we can quickly reuse that slot
   3698	 * instead of nuking an existing entry. Not clear that this is
   3699	 * always a win though, and this might just generate a ripple
   3700	 * effect... Let's just hope VPEs don't migrate too often.
   3701	 */
   3702	if (vpe_proxy.vpes[vpe_proxy.next_victim])
   3703		vpe_proxy.next_victim = vpe->vpe_proxy_event;
   3704
   3705	vpe->vpe_proxy_event = -1;
   3706}
   3707
   3708static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
   3709{
   3710	/* GICv4.1 doesn't use a proxy, so nothing to do here */
   3711	if (gic_rdists->has_rvpeid)
   3712		return;
   3713
   3714	if (!gic_rdists->has_direct_lpi) {
   3715		unsigned long flags;
   3716
   3717		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
   3718		its_vpe_db_proxy_unmap_locked(vpe);
   3719		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
   3720	}
   3721}
   3722
   3723static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
   3724{
   3725	/* GICv4.1 doesn't use a proxy, so nothing to do here */
   3726	if (gic_rdists->has_rvpeid)
   3727		return;
   3728
   3729	/* Already mapped? */
   3730	if (vpe->vpe_proxy_event != -1)
   3731		return;
   3732
   3733	/* This slot was already allocated. Kick the other VPE out. */
   3734	if (vpe_proxy.vpes[vpe_proxy.next_victim])
   3735		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
   3736
   3737	/* Map the new VPE instead */
   3738	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
   3739	vpe->vpe_proxy_event = vpe_proxy.next_victim;
   3740	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
   3741
   3742	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
   3743	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
   3744}
   3745
   3746static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
   3747{
   3748	unsigned long flags;
   3749	struct its_collection *target_col;
   3750
   3751	/* GICv4.1 doesn't use a proxy, so nothing to do here */
   3752	if (gic_rdists->has_rvpeid)
   3753		return;
   3754
   3755	if (gic_rdists->has_direct_lpi) {
   3756		void __iomem *rdbase;
   3757
   3758		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
   3759		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
   3760		wait_for_syncr(rdbase);
   3761
   3762		return;
   3763	}
   3764
   3765	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
   3766
   3767	its_vpe_db_proxy_map_locked(vpe);
   3768
   3769	target_col = &vpe_proxy.dev->its->collections[to];
   3770	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
   3771	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
   3772
   3773	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
   3774}
   3775
   3776static int its_vpe_set_affinity(struct irq_data *d,
   3777				const struct cpumask *mask_val,
   3778				bool force)
   3779{
   3780	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   3781	int from, cpu = cpumask_first(mask_val);
   3782	unsigned long flags;
   3783
   3784	/*
   3785	 * Changing affinity is mega expensive, so let's be as lazy as
   3786	 * we can and only do it if we really have to. Also, if mapped
   3787	 * into the proxy device, we need to move the doorbell
   3788	 * interrupt to its new location.
   3789	 *
   3790	 * Another thing is that changing the affinity of a vPE affects
   3791	 * *other interrupts* such as all the vLPIs that are routed to
   3792	 * this vPE. This means that the irq_desc lock is not enough to
   3793	 * protect us, and that we must ensure nobody samples vpe->col_idx
   3794	 * during the update, hence the lock below which must also be
   3795	 * taken on any vLPI handling path that evaluates vpe->col_idx.
   3796	 */
   3797	from = vpe_to_cpuid_lock(vpe, &flags);
   3798	if (from == cpu)
   3799		goto out;
   3800
   3801	vpe->col_idx = cpu;
   3802
   3803	/*
   3804	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
   3805	 * is sharing its VPE table with the current one.
   3806	 */
   3807	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
   3808	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
   3809		goto out;
   3810
   3811	its_send_vmovp(vpe);
   3812	its_vpe_db_proxy_move(vpe, from, cpu);
   3813
   3814out:
   3815	irq_data_update_effective_affinity(d, cpumask_of(cpu));
   3816	vpe_to_cpuid_unlock(vpe, flags);
   3817
   3818	return IRQ_SET_MASK_OK_DONE;
   3819}
   3820
   3821static void its_wait_vpt_parse_complete(void)
   3822{
   3823	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
   3824	u64 val;
   3825
   3826	if (!gic_rdists->has_vpend_valid_dirty)
   3827		return;
   3828
   3829	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
   3830						       val,
   3831						       !(val & GICR_VPENDBASER_Dirty),
   3832						       1, 500));
   3833}
   3834
   3835static void its_vpe_schedule(struct its_vpe *vpe)
   3836{
   3837	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
   3838	u64 val;
   3839
   3840	/* Schedule the VPE */
   3841	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
   3842		GENMASK_ULL(51, 12);
   3843	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
   3844	val |= GICR_VPROPBASER_RaWb;
   3845	val |= GICR_VPROPBASER_InnerShareable;
   3846	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
   3847
   3848	val  = virt_to_phys(page_address(vpe->vpt_page)) &
   3849		GENMASK_ULL(51, 16);
   3850	val |= GICR_VPENDBASER_RaWaWb;
   3851	val |= GICR_VPENDBASER_InnerShareable;
   3852	/*
   3853	 * There is no good way of finding out if the pending table is
   3854	 * empty as we can race against the doorbell interrupt very
   3855	 * easily. So in the end, vpe->pending_last is only an
   3856	 * indication that the vcpu has something pending, not one
   3857	 * that the pending table is empty. A good implementation
   3858	 * would be able to read its coarse map pretty quickly anyway,
   3859	 * making this a tolerable issue.
   3860	 */
   3861	val |= GICR_VPENDBASER_PendingLast;
   3862	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
   3863	val |= GICR_VPENDBASER_Valid;
   3864	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
   3865}
   3866
   3867static void its_vpe_deschedule(struct its_vpe *vpe)
   3868{
   3869	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
   3870	u64 val;
   3871
   3872	val = its_clear_vpend_valid(vlpi_base, 0, 0);
   3873
   3874	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
   3875	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
   3876}
   3877
   3878static void its_vpe_invall(struct its_vpe *vpe)
   3879{
   3880	struct its_node *its;
   3881
   3882	list_for_each_entry(its, &its_nodes, entry) {
   3883		if (!is_v4(its))
   3884			continue;
   3885
   3886		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
   3887			continue;
   3888
   3889		/*
   3890		 * Sending a VINVALL to a single ITS is enough, as all
   3891		 * we need is to reach the redistributors.
   3892		 */
   3893		its_send_vinvall(its, vpe);
   3894		return;
   3895	}
   3896}
   3897
   3898static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
   3899{
   3900	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   3901	struct its_cmd_info *info = vcpu_info;
   3902
   3903	switch (info->cmd_type) {
   3904	case SCHEDULE_VPE:
   3905		its_vpe_schedule(vpe);
   3906		return 0;
   3907
   3908	case DESCHEDULE_VPE:
   3909		its_vpe_deschedule(vpe);
   3910		return 0;
   3911
   3912	case COMMIT_VPE:
   3913		its_wait_vpt_parse_complete();
   3914		return 0;
   3915
   3916	case INVALL_VPE:
   3917		its_vpe_invall(vpe);
   3918		return 0;
   3919
   3920	default:
   3921		return -EINVAL;
   3922	}
   3923}
   3924
   3925static void its_vpe_send_cmd(struct its_vpe *vpe,
   3926			     void (*cmd)(struct its_device *, u32))
   3927{
   3928	unsigned long flags;
   3929
   3930	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
   3931
   3932	its_vpe_db_proxy_map_locked(vpe);
   3933	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
   3934
   3935	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
   3936}
   3937
   3938static void its_vpe_send_inv(struct irq_data *d)
   3939{
   3940	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   3941
   3942	if (gic_rdists->has_direct_lpi) {
   3943		void __iomem *rdbase;
   3944
   3945		/* Target the redistributor this VPE is currently known on */
   3946		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
   3947		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
   3948		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
   3949		wait_for_syncr(rdbase);
   3950		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
   3951	} else {
   3952		its_vpe_send_cmd(vpe, its_send_inv);
   3953	}
   3954}
   3955
   3956static void its_vpe_mask_irq(struct irq_data *d)
   3957{
   3958	/*
   3959	 * We need to unmask the LPI, which is described by the parent
   3960	 * irq_data. Instead of calling into the parent (which won't
   3961	 * exactly do the right thing, let's simply use the
   3962	 * parent_data pointer. Yes, I'm naughty.
   3963	 */
   3964	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
   3965	its_vpe_send_inv(d);
   3966}
   3967
   3968static void its_vpe_unmask_irq(struct irq_data *d)
   3969{
   3970	/* Same hack as above... */
   3971	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
   3972	its_vpe_send_inv(d);
   3973}
   3974
   3975static int its_vpe_set_irqchip_state(struct irq_data *d,
   3976				     enum irqchip_irq_state which,
   3977				     bool state)
   3978{
   3979	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   3980
   3981	if (which != IRQCHIP_STATE_PENDING)
   3982		return -EINVAL;
   3983
   3984	if (gic_rdists->has_direct_lpi) {
   3985		void __iomem *rdbase;
   3986
   3987		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
   3988		if (state) {
   3989			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
   3990		} else {
   3991			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
   3992			wait_for_syncr(rdbase);
   3993		}
   3994	} else {
   3995		if (state)
   3996			its_vpe_send_cmd(vpe, its_send_int);
   3997		else
   3998			its_vpe_send_cmd(vpe, its_send_clear);
   3999	}
   4000
   4001	return 0;
   4002}
   4003
   4004static int its_vpe_retrigger(struct irq_data *d)
   4005{
   4006	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
   4007}
   4008
   4009static struct irq_chip its_vpe_irq_chip = {
   4010	.name			= "GICv4-vpe",
   4011	.irq_mask		= its_vpe_mask_irq,
   4012	.irq_unmask		= its_vpe_unmask_irq,
   4013	.irq_eoi		= irq_chip_eoi_parent,
   4014	.irq_set_affinity	= its_vpe_set_affinity,
   4015	.irq_retrigger		= its_vpe_retrigger,
   4016	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
   4017	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
   4018};
   4019
   4020static struct its_node *find_4_1_its(void)
   4021{
   4022	static struct its_node *its = NULL;
   4023
   4024	if (!its) {
   4025		list_for_each_entry(its, &its_nodes, entry) {
   4026			if (is_v4_1(its))
   4027				return its;
   4028		}
   4029
   4030		/* Oops? */
   4031		its = NULL;
   4032	}
   4033
   4034	return its;
   4035}
   4036
   4037static void its_vpe_4_1_send_inv(struct irq_data *d)
   4038{
   4039	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4040	struct its_node *its;
   4041
   4042	/*
   4043	 * GICv4.1 wants doorbells to be invalidated using the
   4044	 * INVDB command in order to be broadcast to all RDs. Send
   4045	 * it to the first valid ITS, and let the HW do its magic.
   4046	 */
   4047	its = find_4_1_its();
   4048	if (its)
   4049		its_send_invdb(its, vpe);
   4050}
   4051
   4052static void its_vpe_4_1_mask_irq(struct irq_data *d)
   4053{
   4054	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
   4055	its_vpe_4_1_send_inv(d);
   4056}
   4057
   4058static void its_vpe_4_1_unmask_irq(struct irq_data *d)
   4059{
   4060	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
   4061	its_vpe_4_1_send_inv(d);
   4062}
   4063
   4064static void its_vpe_4_1_schedule(struct its_vpe *vpe,
   4065				 struct its_cmd_info *info)
   4066{
   4067	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
   4068	u64 val = 0;
   4069
   4070	/* Schedule the VPE */
   4071	val |= GICR_VPENDBASER_Valid;
   4072	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
   4073	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
   4074	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
   4075
   4076	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
   4077}
   4078
   4079static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
   4080				   struct its_cmd_info *info)
   4081{
   4082	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
   4083	u64 val;
   4084
   4085	if (info->req_db) {
   4086		unsigned long flags;
   4087
   4088		/*
   4089		 * vPE is going to block: make the vPE non-resident with
   4090		 * PendingLast clear and DB set. The GIC guarantees that if
   4091		 * we read-back PendingLast clear, then a doorbell will be
   4092		 * delivered when an interrupt comes.
   4093		 *
   4094		 * Note the locking to deal with the concurrent update of
   4095		 * pending_last from the doorbell interrupt handler that can
   4096		 * run concurrently.
   4097		 */
   4098		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
   4099		val = its_clear_vpend_valid(vlpi_base,
   4100					    GICR_VPENDBASER_PendingLast,
   4101					    GICR_VPENDBASER_4_1_DB);
   4102		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
   4103		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
   4104	} else {
   4105		/*
   4106		 * We're not blocking, so just make the vPE non-resident
   4107		 * with PendingLast set, indicating that we'll be back.
   4108		 */
   4109		val = its_clear_vpend_valid(vlpi_base,
   4110					    0,
   4111					    GICR_VPENDBASER_PendingLast);
   4112		vpe->pending_last = true;
   4113	}
   4114}
   4115
   4116static void its_vpe_4_1_invall(struct its_vpe *vpe)
   4117{
   4118	void __iomem *rdbase;
   4119	unsigned long flags;
   4120	u64 val;
   4121	int cpu;
   4122
   4123	val  = GICR_INVALLR_V;
   4124	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
   4125
   4126	/* Target the redistributor this vPE is currently known on */
   4127	cpu = vpe_to_cpuid_lock(vpe, &flags);
   4128	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
   4129	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
   4130	gic_write_lpir(val, rdbase + GICR_INVALLR);
   4131
   4132	wait_for_syncr(rdbase);
   4133	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
   4134	vpe_to_cpuid_unlock(vpe, flags);
   4135}
   4136
   4137static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
   4138{
   4139	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4140	struct its_cmd_info *info = vcpu_info;
   4141
   4142	switch (info->cmd_type) {
   4143	case SCHEDULE_VPE:
   4144		its_vpe_4_1_schedule(vpe, info);
   4145		return 0;
   4146
   4147	case DESCHEDULE_VPE:
   4148		its_vpe_4_1_deschedule(vpe, info);
   4149		return 0;
   4150
   4151	case COMMIT_VPE:
   4152		its_wait_vpt_parse_complete();
   4153		return 0;
   4154
   4155	case INVALL_VPE:
   4156		its_vpe_4_1_invall(vpe);
   4157		return 0;
   4158
   4159	default:
   4160		return -EINVAL;
   4161	}
   4162}
   4163
   4164static struct irq_chip its_vpe_4_1_irq_chip = {
   4165	.name			= "GICv4.1-vpe",
   4166	.irq_mask		= its_vpe_4_1_mask_irq,
   4167	.irq_unmask		= its_vpe_4_1_unmask_irq,
   4168	.irq_eoi		= irq_chip_eoi_parent,
   4169	.irq_set_affinity	= its_vpe_set_affinity,
   4170	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
   4171};
   4172
   4173static void its_configure_sgi(struct irq_data *d, bool clear)
   4174{
   4175	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4176	struct its_cmd_desc desc;
   4177
   4178	desc.its_vsgi_cmd.vpe = vpe;
   4179	desc.its_vsgi_cmd.sgi = d->hwirq;
   4180	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
   4181	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
   4182	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
   4183	desc.its_vsgi_cmd.clear = clear;
   4184
   4185	/*
   4186	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
   4187	 * destination VPE is mapped there. Since we map them eagerly at
   4188	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
   4189	 */
   4190	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
   4191}
   4192
   4193static void its_sgi_mask_irq(struct irq_data *d)
   4194{
   4195	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4196
   4197	vpe->sgi_config[d->hwirq].enabled = false;
   4198	its_configure_sgi(d, false);
   4199}
   4200
   4201static void its_sgi_unmask_irq(struct irq_data *d)
   4202{
   4203	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4204
   4205	vpe->sgi_config[d->hwirq].enabled = true;
   4206	its_configure_sgi(d, false);
   4207}
   4208
   4209static int its_sgi_set_affinity(struct irq_data *d,
   4210				const struct cpumask *mask_val,
   4211				bool force)
   4212{
   4213	/*
   4214	 * There is no notion of affinity for virtual SGIs, at least
   4215	 * not on the host (since they can only be targeting a vPE).
   4216	 * Tell the kernel we've done whatever it asked for.
   4217	 */
   4218	irq_data_update_effective_affinity(d, mask_val);
   4219	return IRQ_SET_MASK_OK;
   4220}
   4221
   4222static int its_sgi_set_irqchip_state(struct irq_data *d,
   4223				     enum irqchip_irq_state which,
   4224				     bool state)
   4225{
   4226	if (which != IRQCHIP_STATE_PENDING)
   4227		return -EINVAL;
   4228
   4229	if (state) {
   4230		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4231		struct its_node *its = find_4_1_its();
   4232		u64 val;
   4233
   4234		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
   4235		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
   4236		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
   4237	} else {
   4238		its_configure_sgi(d, true);
   4239	}
   4240
   4241	return 0;
   4242}
   4243
   4244static int its_sgi_get_irqchip_state(struct irq_data *d,
   4245				     enum irqchip_irq_state which, bool *val)
   4246{
   4247	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4248	void __iomem *base;
   4249	unsigned long flags;
   4250	u32 count = 1000000;	/* 1s! */
   4251	u32 status;
   4252	int cpu;
   4253
   4254	if (which != IRQCHIP_STATE_PENDING)
   4255		return -EINVAL;
   4256
   4257	/*
   4258	 * Locking galore! We can race against two different events:
   4259	 *
   4260	 * - Concurrent vPE affinity change: we must make sure it cannot
   4261	 *   happen, or we'll talk to the wrong redistributor. This is
   4262	 *   identical to what happens with vLPIs.
   4263	 *
   4264	 * - Concurrent VSGIPENDR access: As it involves accessing two
   4265	 *   MMIO registers, this must be made atomic one way or another.
   4266	 */
   4267	cpu = vpe_to_cpuid_lock(vpe, &flags);
   4268	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
   4269	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
   4270	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
   4271	do {
   4272		status = readl_relaxed(base + GICR_VSGIPENDR);
   4273		if (!(status & GICR_VSGIPENDR_BUSY))
   4274			goto out;
   4275
   4276		count--;
   4277		if (!count) {
   4278			pr_err_ratelimited("Unable to get SGI status\n");
   4279			goto out;
   4280		}
   4281		cpu_relax();
   4282		udelay(1);
   4283	} while (count);
   4284
   4285out:
   4286	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
   4287	vpe_to_cpuid_unlock(vpe, flags);
   4288
   4289	if (!count)
   4290		return -ENXIO;
   4291
   4292	*val = !!(status & (1 << d->hwirq));
   4293
   4294	return 0;
   4295}
   4296
   4297static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
   4298{
   4299	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4300	struct its_cmd_info *info = vcpu_info;
   4301
   4302	switch (info->cmd_type) {
   4303	case PROP_UPDATE_VSGI:
   4304		vpe->sgi_config[d->hwirq].priority = info->priority;
   4305		vpe->sgi_config[d->hwirq].group = info->group;
   4306		its_configure_sgi(d, false);
   4307		return 0;
   4308
   4309	default:
   4310		return -EINVAL;
   4311	}
   4312}
   4313
   4314static struct irq_chip its_sgi_irq_chip = {
   4315	.name			= "GICv4.1-sgi",
   4316	.irq_mask		= its_sgi_mask_irq,
   4317	.irq_unmask		= its_sgi_unmask_irq,
   4318	.irq_set_affinity	= its_sgi_set_affinity,
   4319	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
   4320	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
   4321	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
   4322};
   4323
   4324static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
   4325				    unsigned int virq, unsigned int nr_irqs,
   4326				    void *args)
   4327{
   4328	struct its_vpe *vpe = args;
   4329	int i;
   4330
   4331	/* Yes, we do want 16 SGIs */
   4332	WARN_ON(nr_irqs != 16);
   4333
   4334	for (i = 0; i < 16; i++) {
   4335		vpe->sgi_config[i].priority = 0;
   4336		vpe->sgi_config[i].enabled = false;
   4337		vpe->sgi_config[i].group = false;
   4338
   4339		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
   4340					      &its_sgi_irq_chip, vpe);
   4341		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
   4342	}
   4343
   4344	return 0;
   4345}
   4346
   4347static void its_sgi_irq_domain_free(struct irq_domain *domain,
   4348				    unsigned int virq,
   4349				    unsigned int nr_irqs)
   4350{
   4351	/* Nothing to do */
   4352}
   4353
   4354static int its_sgi_irq_domain_activate(struct irq_domain *domain,
   4355				       struct irq_data *d, bool reserve)
   4356{
   4357	/* Write out the initial SGI configuration */
   4358	its_configure_sgi(d, false);
   4359	return 0;
   4360}
   4361
   4362static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
   4363					  struct irq_data *d)
   4364{
   4365	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4366
   4367	/*
   4368	 * The VSGI command is awkward:
   4369	 *
   4370	 * - To change the configuration, CLEAR must be set to false,
   4371	 *   leaving the pending bit unchanged.
   4372	 * - To clear the pending bit, CLEAR must be set to true, leaving
   4373	 *   the configuration unchanged.
   4374	 *
   4375	 * You just can't do both at once, hence the two commands below.
   4376	 */
   4377	vpe->sgi_config[d->hwirq].enabled = false;
   4378	its_configure_sgi(d, false);
   4379	its_configure_sgi(d, true);
   4380}
   4381
   4382static const struct irq_domain_ops its_sgi_domain_ops = {
   4383	.alloc		= its_sgi_irq_domain_alloc,
   4384	.free		= its_sgi_irq_domain_free,
   4385	.activate	= its_sgi_irq_domain_activate,
   4386	.deactivate	= its_sgi_irq_domain_deactivate,
   4387};
   4388
   4389static int its_vpe_id_alloc(void)
   4390{
   4391	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
   4392}
   4393
   4394static void its_vpe_id_free(u16 id)
   4395{
   4396	ida_simple_remove(&its_vpeid_ida, id);
   4397}
   4398
   4399static int its_vpe_init(struct its_vpe *vpe)
   4400{
   4401	struct page *vpt_page;
   4402	int vpe_id;
   4403
   4404	/* Allocate vpe_id */
   4405	vpe_id = its_vpe_id_alloc();
   4406	if (vpe_id < 0)
   4407		return vpe_id;
   4408
   4409	/* Allocate VPT */
   4410	vpt_page = its_allocate_pending_table(GFP_KERNEL);
   4411	if (!vpt_page) {
   4412		its_vpe_id_free(vpe_id);
   4413		return -ENOMEM;
   4414	}
   4415
   4416	if (!its_alloc_vpe_table(vpe_id)) {
   4417		its_vpe_id_free(vpe_id);
   4418		its_free_pending_table(vpt_page);
   4419		return -ENOMEM;
   4420	}
   4421
   4422	raw_spin_lock_init(&vpe->vpe_lock);
   4423	vpe->vpe_id = vpe_id;
   4424	vpe->vpt_page = vpt_page;
   4425	if (gic_rdists->has_rvpeid)
   4426		atomic_set(&vpe->vmapp_count, 0);
   4427	else
   4428		vpe->vpe_proxy_event = -1;
   4429
   4430	return 0;
   4431}
   4432
   4433static void its_vpe_teardown(struct its_vpe *vpe)
   4434{
   4435	its_vpe_db_proxy_unmap(vpe);
   4436	its_vpe_id_free(vpe->vpe_id);
   4437	its_free_pending_table(vpe->vpt_page);
   4438}
   4439
   4440static void its_vpe_irq_domain_free(struct irq_domain *domain,
   4441				    unsigned int virq,
   4442				    unsigned int nr_irqs)
   4443{
   4444	struct its_vm *vm = domain->host_data;
   4445	int i;
   4446
   4447	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
   4448
   4449	for (i = 0; i < nr_irqs; i++) {
   4450		struct irq_data *data = irq_domain_get_irq_data(domain,
   4451								virq + i);
   4452		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
   4453
   4454		BUG_ON(vm != vpe->its_vm);
   4455
   4456		clear_bit(data->hwirq, vm->db_bitmap);
   4457		its_vpe_teardown(vpe);
   4458		irq_domain_reset_irq_data(data);
   4459	}
   4460
   4461	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
   4462		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
   4463		its_free_prop_table(vm->vprop_page);
   4464	}
   4465}
   4466
   4467static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
   4468				    unsigned int nr_irqs, void *args)
   4469{
   4470	struct irq_chip *irqchip = &its_vpe_irq_chip;
   4471	struct its_vm *vm = args;
   4472	unsigned long *bitmap;
   4473	struct page *vprop_page;
   4474	int base, nr_ids, i, err = 0;
   4475
   4476	BUG_ON(!vm);
   4477
   4478	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
   4479	if (!bitmap)
   4480		return -ENOMEM;
   4481
   4482	if (nr_ids < nr_irqs) {
   4483		its_lpi_free(bitmap, base, nr_ids);
   4484		return -ENOMEM;
   4485	}
   4486
   4487	vprop_page = its_allocate_prop_table(GFP_KERNEL);
   4488	if (!vprop_page) {
   4489		its_lpi_free(bitmap, base, nr_ids);
   4490		return -ENOMEM;
   4491	}
   4492
   4493	vm->db_bitmap = bitmap;
   4494	vm->db_lpi_base = base;
   4495	vm->nr_db_lpis = nr_ids;
   4496	vm->vprop_page = vprop_page;
   4497
   4498	if (gic_rdists->has_rvpeid)
   4499		irqchip = &its_vpe_4_1_irq_chip;
   4500
   4501	for (i = 0; i < nr_irqs; i++) {
   4502		vm->vpes[i]->vpe_db_lpi = base + i;
   4503		err = its_vpe_init(vm->vpes[i]);
   4504		if (err)
   4505			break;
   4506		err = its_irq_gic_domain_alloc(domain, virq + i,
   4507					       vm->vpes[i]->vpe_db_lpi);
   4508		if (err)
   4509			break;
   4510		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
   4511					      irqchip, vm->vpes[i]);
   4512		set_bit(i, bitmap);
   4513	}
   4514
   4515	if (err) {
   4516		if (i > 0)
   4517			its_vpe_irq_domain_free(domain, virq, i);
   4518
   4519		its_lpi_free(bitmap, base, nr_ids);
   4520		its_free_prop_table(vprop_page);
   4521	}
   4522
   4523	return err;
   4524}
   4525
   4526static int its_vpe_irq_domain_activate(struct irq_domain *domain,
   4527				       struct irq_data *d, bool reserve)
   4528{
   4529	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4530	struct its_node *its;
   4531
   4532	/*
   4533	 * If we use the list map, we issue VMAPP on demand... Unless
   4534	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
   4535	 * so that VSGIs can work.
   4536	 */
   4537	if (!gic_requires_eager_mapping())
   4538		return 0;
   4539
   4540	/* Map the VPE to the first possible CPU */
   4541	vpe->col_idx = cpumask_first(cpu_online_mask);
   4542
   4543	list_for_each_entry(its, &its_nodes, entry) {
   4544		if (!is_v4(its))
   4545			continue;
   4546
   4547		its_send_vmapp(its, vpe, true);
   4548		its_send_vinvall(its, vpe);
   4549	}
   4550
   4551	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
   4552
   4553	return 0;
   4554}
   4555
   4556static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
   4557					  struct irq_data *d)
   4558{
   4559	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
   4560	struct its_node *its;
   4561
   4562	/*
   4563	 * If we use the list map on GICv4.0, we unmap the VPE once no
   4564	 * VLPIs are associated with the VM.
   4565	 */
   4566	if (!gic_requires_eager_mapping())
   4567		return;
   4568
   4569	list_for_each_entry(its, &its_nodes, entry) {
   4570		if (!is_v4(its))
   4571			continue;
   4572
   4573		its_send_vmapp(its, vpe, false);
   4574	}
   4575
   4576	/*
   4577	 * There may be a direct read to the VPT after unmapping the
   4578	 * vPE, to guarantee the validity of this, we make the VPT
   4579	 * memory coherent with the CPU caches here.
   4580	 */
   4581	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
   4582		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
   4583					LPI_PENDBASE_SZ);
   4584}
   4585
   4586static const struct irq_domain_ops its_vpe_domain_ops = {
   4587	.alloc			= its_vpe_irq_domain_alloc,
   4588	.free			= its_vpe_irq_domain_free,
   4589	.activate		= its_vpe_irq_domain_activate,
   4590	.deactivate		= its_vpe_irq_domain_deactivate,
   4591};
   4592
   4593static int its_force_quiescent(void __iomem *base)
   4594{
   4595	u32 count = 1000000;	/* 1s */
   4596	u32 val;
   4597
   4598	val = readl_relaxed(base + GITS_CTLR);
   4599	/*
   4600	 * GIC architecture specification requires the ITS to be both
   4601	 * disabled and quiescent for writes to GITS_BASER<n> or
   4602	 * GITS_CBASER to not have UNPREDICTABLE results.
   4603	 */
   4604	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
   4605		return 0;
   4606
   4607	/* Disable the generation of all interrupts to this ITS */
   4608	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
   4609	writel_relaxed(val, base + GITS_CTLR);
   4610
   4611	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
   4612	while (1) {
   4613		val = readl_relaxed(base + GITS_CTLR);
   4614		if (val & GITS_CTLR_QUIESCENT)
   4615			return 0;
   4616
   4617		count--;
   4618		if (!count)
   4619			return -EBUSY;
   4620
   4621		cpu_relax();
   4622		udelay(1);
   4623	}
   4624}
   4625
   4626static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
   4627{
   4628	struct its_node *its = data;
   4629
   4630	/* erratum 22375: only alloc 8MB table size (20 bits) */
   4631	its->typer &= ~GITS_TYPER_DEVBITS;
   4632	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
   4633	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
   4634
   4635	return true;
   4636}
   4637
   4638static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
   4639{
   4640	struct its_node *its = data;
   4641
   4642	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
   4643
   4644	return true;
   4645}
   4646
   4647static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
   4648{
   4649	struct its_node *its = data;
   4650
   4651	/* On QDF2400, the size of the ITE is 16Bytes */
   4652	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
   4653	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
   4654
   4655	return true;
   4656}
   4657
   4658static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
   4659{
   4660	struct its_node *its = its_dev->its;
   4661
   4662	/*
   4663	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
   4664	 * which maps 32-bit writes targeted at a separate window of
   4665	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
   4666	 * with device ID taken from bits [device_id_bits + 1:2] of
   4667	 * the window offset.
   4668	 */
   4669	return its->pre_its_base + (its_dev->device_id << 2);
   4670}
   4671
   4672static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
   4673{
   4674	struct its_node *its = data;
   4675	u32 pre_its_window[2];
   4676	u32 ids;
   4677
   4678	if (!fwnode_property_read_u32_array(its->fwnode_handle,
   4679					   "socionext,synquacer-pre-its",
   4680					   pre_its_window,
   4681					   ARRAY_SIZE(pre_its_window))) {
   4682
   4683		its->pre_its_base = pre_its_window[0];
   4684		its->get_msi_base = its_irq_get_msi_base_pre_its;
   4685
   4686		ids = ilog2(pre_its_window[1]) - 2;
   4687		if (device_ids(its) > ids) {
   4688			its->typer &= ~GITS_TYPER_DEVBITS;
   4689			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
   4690		}
   4691
   4692		/* the pre-ITS breaks isolation, so disable MSI remapping */
   4693		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
   4694		return true;
   4695	}
   4696	return false;
   4697}
   4698
   4699static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
   4700{
   4701	struct its_node *its = data;
   4702
   4703	/*
   4704	 * Hip07 insists on using the wrong address for the VLPI
   4705	 * page. Trick it into doing the right thing...
   4706	 */
   4707	its->vlpi_redist_offset = SZ_128K;
   4708	return true;
   4709}
   4710
   4711static const struct gic_quirk its_quirks[] = {
   4712#ifdef CONFIG_CAVIUM_ERRATUM_22375
   4713	{
   4714		.desc	= "ITS: Cavium errata 22375, 24313",
   4715		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
   4716		.mask	= 0xffff0fff,
   4717		.init	= its_enable_quirk_cavium_22375,
   4718	},
   4719#endif
   4720#ifdef CONFIG_CAVIUM_ERRATUM_23144
   4721	{
   4722		.desc	= "ITS: Cavium erratum 23144",
   4723		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
   4724		.mask	= 0xffff0fff,
   4725		.init	= its_enable_quirk_cavium_23144,
   4726	},
   4727#endif
   4728#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
   4729	{
   4730		.desc	= "ITS: QDF2400 erratum 0065",
   4731		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
   4732		.mask	= 0xffffffff,
   4733		.init	= its_enable_quirk_qdf2400_e0065,
   4734	},
   4735#endif
   4736#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
   4737	{
   4738		/*
   4739		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
   4740		 * implementation, but with a 'pre-ITS' added that requires
   4741		 * special handling in software.
   4742		 */
   4743		.desc	= "ITS: Socionext Synquacer pre-ITS",
   4744		.iidr	= 0x0001143b,
   4745		.mask	= 0xffffffff,
   4746		.init	= its_enable_quirk_socionext_synquacer,
   4747	},
   4748#endif
   4749#ifdef CONFIG_HISILICON_ERRATUM_161600802
   4750	{
   4751		.desc	= "ITS: Hip07 erratum 161600802",
   4752		.iidr	= 0x00000004,
   4753		.mask	= 0xffffffff,
   4754		.init	= its_enable_quirk_hip07_161600802,
   4755	},
   4756#endif
   4757	{
   4758	}
   4759};
   4760
   4761static void its_enable_quirks(struct its_node *its)
   4762{
   4763	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
   4764
   4765	gic_enable_quirks(iidr, its_quirks, its);
   4766}
   4767
   4768static int its_save_disable(void)
   4769{
   4770	struct its_node *its;
   4771	int err = 0;
   4772
   4773	raw_spin_lock(&its_lock);
   4774	list_for_each_entry(its, &its_nodes, entry) {
   4775		void __iomem *base;
   4776
   4777		base = its->base;
   4778		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
   4779		err = its_force_quiescent(base);
   4780		if (err) {
   4781			pr_err("ITS@%pa: failed to quiesce: %d\n",
   4782			       &its->phys_base, err);
   4783			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
   4784			goto err;
   4785		}
   4786
   4787		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
   4788	}
   4789
   4790err:
   4791	if (err) {
   4792		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
   4793			void __iomem *base;
   4794
   4795			base = its->base;
   4796			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
   4797		}
   4798	}
   4799	raw_spin_unlock(&its_lock);
   4800
   4801	return err;
   4802}
   4803
   4804static void its_restore_enable(void)
   4805{
   4806	struct its_node *its;
   4807	int ret;
   4808
   4809	raw_spin_lock(&its_lock);
   4810	list_for_each_entry(its, &its_nodes, entry) {
   4811		void __iomem *base;
   4812		int i;
   4813
   4814		base = its->base;
   4815
   4816		/*
   4817		 * Make sure that the ITS is disabled. If it fails to quiesce,
   4818		 * don't restore it since writing to CBASER or BASER<n>
   4819		 * registers is undefined according to the GIC v3 ITS
   4820		 * Specification.
   4821		 *
   4822		 * Firmware resuming with the ITS enabled is terminally broken.
   4823		 */
   4824		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
   4825		ret = its_force_quiescent(base);
   4826		if (ret) {
   4827			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
   4828			       &its->phys_base, ret);
   4829			continue;
   4830		}
   4831
   4832		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
   4833
   4834		/*
   4835		 * Writing CBASER resets CREADR to 0, so make CWRITER and
   4836		 * cmd_write line up with it.
   4837		 */
   4838		its->cmd_write = its->cmd_base;
   4839		gits_write_cwriter(0, base + GITS_CWRITER);
   4840
   4841		/* Restore GITS_BASER from the value cache. */
   4842		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
   4843			struct its_baser *baser = &its->tables[i];
   4844
   4845			if (!(baser->val & GITS_BASER_VALID))
   4846				continue;
   4847
   4848			its_write_baser(its, baser, baser->val);
   4849		}
   4850		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
   4851
   4852		/*
   4853		 * Reinit the collection if it's stored in the ITS. This is
   4854		 * indicated by the col_id being less than the HCC field.
   4855		 * CID < HCC as specified in the GIC v3 Documentation.
   4856		 */
   4857		if (its->collections[smp_processor_id()].col_id <
   4858		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
   4859			its_cpu_init_collection(its);
   4860	}
   4861	raw_spin_unlock(&its_lock);
   4862}
   4863
   4864static struct syscore_ops its_syscore_ops = {
   4865	.suspend = its_save_disable,
   4866	.resume = its_restore_enable,
   4867};
   4868
   4869static void __init __iomem *its_map_one(struct resource *res, int *err)
   4870{
   4871	void __iomem *its_base;
   4872	u32 val;
   4873
   4874	its_base = ioremap(res->start, SZ_64K);
   4875	if (!its_base) {
   4876		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
   4877		*err = -ENOMEM;
   4878		return NULL;
   4879	}
   4880
   4881	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
   4882	if (val != 0x30 && val != 0x40) {
   4883		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
   4884		*err = -ENODEV;
   4885		goto out_unmap;
   4886	}
   4887
   4888	*err = its_force_quiescent(its_base);
   4889	if (*err) {
   4890		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
   4891		goto out_unmap;
   4892	}
   4893
   4894	return its_base;
   4895
   4896out_unmap:
   4897	iounmap(its_base);
   4898	return NULL;
   4899}
   4900
   4901static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
   4902{
   4903	struct irq_domain *inner_domain;
   4904	struct msi_domain_info *info;
   4905
   4906	info = kzalloc(sizeof(*info), GFP_KERNEL);
   4907	if (!info)
   4908		return -ENOMEM;
   4909
   4910	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
   4911	if (!inner_domain) {
   4912		kfree(info);
   4913		return -ENOMEM;
   4914	}
   4915
   4916	inner_domain->parent = its_parent;
   4917	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
   4918	inner_domain->flags |= its->msi_domain_flags;
   4919	info->ops = &its_msi_domain_ops;
   4920	info->data = its;
   4921	inner_domain->host_data = info;
   4922
   4923	return 0;
   4924}
   4925
   4926static int its_init_vpe_domain(void)
   4927{
   4928	struct its_node *its;
   4929	u32 devid;
   4930	int entries;
   4931
   4932	if (gic_rdists->has_direct_lpi) {
   4933		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
   4934		return 0;
   4935	}
   4936
   4937	/* Any ITS will do, even if not v4 */
   4938	its = list_first_entry(&its_nodes, struct its_node, entry);
   4939
   4940	entries = roundup_pow_of_two(nr_cpu_ids);
   4941	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
   4942				 GFP_KERNEL);
   4943	if (!vpe_proxy.vpes)
   4944		return -ENOMEM;
   4945
   4946	/* Use the last possible DevID */
   4947	devid = GENMASK(device_ids(its) - 1, 0);
   4948	vpe_proxy.dev = its_create_device(its, devid, entries, false);
   4949	if (!vpe_proxy.dev) {
   4950		kfree(vpe_proxy.vpes);
   4951		pr_err("ITS: Can't allocate GICv4 proxy device\n");
   4952		return -ENOMEM;
   4953	}
   4954
   4955	BUG_ON(entries > vpe_proxy.dev->nr_ites);
   4956
   4957	raw_spin_lock_init(&vpe_proxy.lock);
   4958	vpe_proxy.next_victim = 0;
   4959	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
   4960		devid, vpe_proxy.dev->nr_ites);
   4961
   4962	return 0;
   4963}
   4964
   4965static int __init its_compute_its_list_map(struct resource *res,
   4966					   void __iomem *its_base)
   4967{
   4968	int its_number;
   4969	u32 ctlr;
   4970
   4971	/*
   4972	 * This is assumed to be done early enough that we're
   4973	 * guaranteed to be single-threaded, hence no
   4974	 * locking. Should this change, we should address
   4975	 * this.
   4976	 */
   4977	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
   4978	if (its_number >= GICv4_ITS_LIST_MAX) {
   4979		pr_err("ITS@%pa: No ITSList entry available!\n",
   4980		       &res->start);
   4981		return -EINVAL;
   4982	}
   4983
   4984	ctlr = readl_relaxed(its_base + GITS_CTLR);
   4985	ctlr &= ~GITS_CTLR_ITS_NUMBER;
   4986	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
   4987	writel_relaxed(ctlr, its_base + GITS_CTLR);
   4988	ctlr = readl_relaxed(its_base + GITS_CTLR);
   4989	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
   4990		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
   4991		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
   4992	}
   4993
   4994	if (test_and_set_bit(its_number, &its_list_map)) {
   4995		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
   4996		       &res->start, its_number);
   4997		return -EINVAL;
   4998	}
   4999
   5000	return its_number;
   5001}
   5002
   5003static int __init its_probe_one(struct resource *res,
   5004				struct fwnode_handle *handle, int numa_node)
   5005{
   5006	struct its_node *its;
   5007	void __iomem *its_base;
   5008	u64 baser, tmp, typer;
   5009	struct page *page;
   5010	u32 ctlr;
   5011	int err;
   5012
   5013	its_base = its_map_one(res, &err);
   5014	if (!its_base)
   5015		return err;
   5016
   5017	pr_info("ITS %pR\n", res);
   5018
   5019	its = kzalloc(sizeof(*its), GFP_KERNEL);
   5020	if (!its) {
   5021		err = -ENOMEM;
   5022		goto out_unmap;
   5023	}
   5024
   5025	raw_spin_lock_init(&its->lock);
   5026	mutex_init(&its->dev_alloc_lock);
   5027	INIT_LIST_HEAD(&its->entry);
   5028	INIT_LIST_HEAD(&its->its_device_list);
   5029	typer = gic_read_typer(its_base + GITS_TYPER);
   5030	its->typer = typer;
   5031	its->base = its_base;
   5032	its->phys_base = res->start;
   5033	if (is_v4(its)) {
   5034		if (!(typer & GITS_TYPER_VMOVP)) {
   5035			err = its_compute_its_list_map(res, its_base);
   5036			if (err < 0)
   5037				goto out_free_its;
   5038
   5039			its->list_nr = err;
   5040
   5041			pr_info("ITS@%pa: Using ITS number %d\n",
   5042				&res->start, err);
   5043		} else {
   5044			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
   5045		}
   5046
   5047		if (is_v4_1(its)) {
   5048			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
   5049
   5050			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
   5051			if (!its->sgir_base) {
   5052				err = -ENOMEM;
   5053				goto out_free_its;
   5054			}
   5055
   5056			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
   5057
   5058			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
   5059				&res->start, its->mpidr, svpet);
   5060		}
   5061	}
   5062
   5063	its->numa_node = numa_node;
   5064
   5065	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
   5066				get_order(ITS_CMD_QUEUE_SZ));
   5067	if (!page) {
   5068		err = -ENOMEM;
   5069		goto out_unmap_sgir;
   5070	}
   5071	its->cmd_base = (void *)page_address(page);
   5072	its->cmd_write = its->cmd_base;
   5073	its->fwnode_handle = handle;
   5074	its->get_msi_base = its_irq_get_msi_base;
   5075	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
   5076
   5077	its_enable_quirks(its);
   5078
   5079	err = its_alloc_tables(its);
   5080	if (err)
   5081		goto out_free_cmd;
   5082
   5083	err = its_alloc_collections(its);
   5084	if (err)
   5085		goto out_free_tables;
   5086
   5087	baser = (virt_to_phys(its->cmd_base)	|
   5088		 GITS_CBASER_RaWaWb		|
   5089		 GITS_CBASER_InnerShareable	|
   5090		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
   5091		 GITS_CBASER_VALID);
   5092
   5093	gits_write_cbaser(baser, its->base + GITS_CBASER);
   5094	tmp = gits_read_cbaser(its->base + GITS_CBASER);
   5095
   5096	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
   5097		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
   5098			/*
   5099			 * The HW reports non-shareable, we must
   5100			 * remove the cacheability attributes as
   5101			 * well.
   5102			 */
   5103			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
   5104				   GITS_CBASER_CACHEABILITY_MASK);
   5105			baser |= GITS_CBASER_nC;
   5106			gits_write_cbaser(baser, its->base + GITS_CBASER);
   5107		}
   5108		pr_info("ITS: using cache flushing for cmd queue\n");
   5109		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
   5110	}
   5111
   5112	gits_write_cwriter(0, its->base + GITS_CWRITER);
   5113	ctlr = readl_relaxed(its->base + GITS_CTLR);
   5114	ctlr |= GITS_CTLR_ENABLE;
   5115	if (is_v4(its))
   5116		ctlr |= GITS_CTLR_ImDe;
   5117	writel_relaxed(ctlr, its->base + GITS_CTLR);
   5118
   5119	err = its_init_domain(handle, its);
   5120	if (err)
   5121		goto out_free_tables;
   5122
   5123	raw_spin_lock(&its_lock);
   5124	list_add(&its->entry, &its_nodes);
   5125	raw_spin_unlock(&its_lock);
   5126
   5127	return 0;
   5128
   5129out_free_tables:
   5130	its_free_tables(its);
   5131out_free_cmd:
   5132	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
   5133out_unmap_sgir:
   5134	if (its->sgir_base)
   5135		iounmap(its->sgir_base);
   5136out_free_its:
   5137	kfree(its);
   5138out_unmap:
   5139	iounmap(its_base);
   5140	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
   5141	return err;
   5142}
   5143
   5144static bool gic_rdists_supports_plpis(void)
   5145{
   5146	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
   5147}
   5148
   5149static int redist_disable_lpis(void)
   5150{
   5151	void __iomem *rbase = gic_data_rdist_rd_base();
   5152	u64 timeout = USEC_PER_SEC;
   5153	u64 val;
   5154
   5155	if (!gic_rdists_supports_plpis()) {
   5156		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
   5157		return -ENXIO;
   5158	}
   5159
   5160	val = readl_relaxed(rbase + GICR_CTLR);
   5161	if (!(val & GICR_CTLR_ENABLE_LPIS))
   5162		return 0;
   5163
   5164	/*
   5165	 * If coming via a CPU hotplug event, we don't need to disable
   5166	 * LPIs before trying to re-enable them. They are already
   5167	 * configured and all is well in the world.
   5168	 *
   5169	 * If running with preallocated tables, there is nothing to do.
   5170	 */
   5171	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
   5172	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
   5173		return 0;
   5174
   5175	/*
   5176	 * From that point on, we only try to do some damage control.
   5177	 */
   5178	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
   5179		smp_processor_id());
   5180	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
   5181
   5182	/* Disable LPIs */
   5183	val &= ~GICR_CTLR_ENABLE_LPIS;
   5184	writel_relaxed(val, rbase + GICR_CTLR);
   5185
   5186	/* Make sure any change to GICR_CTLR is observable by the GIC */
   5187	dsb(sy);
   5188
   5189	/*
   5190	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
   5191	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
   5192	 * Error out if we time out waiting for RWP to clear.
   5193	 */
   5194	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
   5195		if (!timeout) {
   5196			pr_err("CPU%d: Timeout while disabling LPIs\n",
   5197			       smp_processor_id());
   5198			return -ETIMEDOUT;
   5199		}
   5200		udelay(1);
   5201		timeout--;
   5202	}
   5203
   5204	/*
   5205	 * After it has been written to 1, it is IMPLEMENTATION
   5206	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
   5207	 * cleared to 0. Error out if clearing the bit failed.
   5208	 */
   5209	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
   5210		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
   5211		return -EBUSY;
   5212	}
   5213
   5214	return 0;
   5215}
   5216
   5217int its_cpu_init(void)
   5218{
   5219	if (!list_empty(&its_nodes)) {
   5220		int ret;
   5221
   5222		ret = redist_disable_lpis();
   5223		if (ret)
   5224			return ret;
   5225
   5226		its_cpu_init_lpis();
   5227		its_cpu_init_collections();
   5228	}
   5229
   5230	return 0;
   5231}
   5232
   5233static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
   5234{
   5235	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
   5236	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
   5237}
   5238
   5239static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
   5240		    rdist_memreserve_cpuhp_cleanup_workfn);
   5241
   5242static int its_cpu_memreserve_lpi(unsigned int cpu)
   5243{
   5244	struct page *pend_page;
   5245	int ret = 0;
   5246
   5247	/* This gets to run exactly once per CPU */
   5248	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
   5249		return 0;
   5250
   5251	pend_page = gic_data_rdist()->pend_page;
   5252	if (WARN_ON(!pend_page)) {
   5253		ret = -ENOMEM;
   5254		goto out;
   5255	}
   5256	/*
   5257	 * If the pending table was pre-programmed, free the memory we
   5258	 * preemptively allocated. Otherwise, reserve that memory for
   5259	 * later kexecs.
   5260	 */
   5261	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
   5262		its_free_pending_table(pend_page);
   5263		gic_data_rdist()->pend_page = NULL;
   5264	} else {
   5265		phys_addr_t paddr = page_to_phys(pend_page);
   5266		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
   5267	}
   5268
   5269out:
   5270	/* Last CPU being brought up gets to issue the cleanup */
   5271	if (!IS_ENABLED(CONFIG_SMP) ||
   5272	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
   5273		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
   5274
   5275	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
   5276	return ret;
   5277}
   5278
   5279/* Mark all the BASER registers as invalid before they get reprogrammed */
   5280static int __init its_reset_one(struct resource *res)
   5281{
   5282	void __iomem *its_base;
   5283	int err, i;
   5284
   5285	its_base = its_map_one(res, &err);
   5286	if (!its_base)
   5287		return err;
   5288
   5289	for (i = 0; i < GITS_BASER_NR_REGS; i++)
   5290		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
   5291
   5292	iounmap(its_base);
   5293	return 0;
   5294}
   5295
   5296static const struct of_device_id its_device_id[] = {
   5297	{	.compatible	= "arm,gic-v3-its",	},
   5298	{},
   5299};
   5300
   5301static int __init its_of_probe(struct device_node *node)
   5302{
   5303	struct device_node *np;
   5304	struct resource res;
   5305
   5306	/*
   5307	 * Make sure *all* the ITS are reset before we probe any, as
   5308	 * they may be sharing memory. If any of the ITS fails to
   5309	 * reset, don't even try to go any further, as this could
   5310	 * result in something even worse.
   5311	 */
   5312	for (np = of_find_matching_node(node, its_device_id); np;
   5313	     np = of_find_matching_node(np, its_device_id)) {
   5314		int err;
   5315
   5316		if (!of_device_is_available(np) ||
   5317		    !of_property_read_bool(np, "msi-controller") ||
   5318		    of_address_to_resource(np, 0, &res))
   5319			continue;
   5320
   5321		err = its_reset_one(&res);
   5322		if (err)
   5323			return err;
   5324	}
   5325
   5326	for (np = of_find_matching_node(node, its_device_id); np;
   5327	     np = of_find_matching_node(np, its_device_id)) {
   5328		if (!of_device_is_available(np))
   5329			continue;
   5330		if (!of_property_read_bool(np, "msi-controller")) {
   5331			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
   5332				np);
   5333			continue;
   5334		}
   5335
   5336		if (of_address_to_resource(np, 0, &res)) {
   5337			pr_warn("%pOF: no regs?\n", np);
   5338			continue;
   5339		}
   5340
   5341		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
   5342	}
   5343	return 0;
   5344}
   5345
   5346#ifdef CONFIG_ACPI
   5347
   5348#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
   5349
   5350#ifdef CONFIG_ACPI_NUMA
   5351struct its_srat_map {
   5352	/* numa node id */
   5353	u32	numa_node;
   5354	/* GIC ITS ID */
   5355	u32	its_id;
   5356};
   5357
   5358static struct its_srat_map *its_srat_maps __initdata;
   5359static int its_in_srat __initdata;
   5360
   5361static int __init acpi_get_its_numa_node(u32 its_id)
   5362{
   5363	int i;
   5364
   5365	for (i = 0; i < its_in_srat; i++) {
   5366		if (its_id == its_srat_maps[i].its_id)
   5367			return its_srat_maps[i].numa_node;
   5368	}
   5369	return NUMA_NO_NODE;
   5370}
   5371
   5372static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
   5373					  const unsigned long end)
   5374{
   5375	return 0;
   5376}
   5377
   5378static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
   5379			 const unsigned long end)
   5380{
   5381	int node;
   5382	struct acpi_srat_gic_its_affinity *its_affinity;
   5383
   5384	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
   5385	if (!its_affinity)
   5386		return -EINVAL;
   5387
   5388	if (its_affinity->header.length < sizeof(*its_affinity)) {
   5389		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
   5390			its_affinity->header.length);
   5391		return -EINVAL;
   5392	}
   5393
   5394	/*
   5395	 * Note that in theory a new proximity node could be created by this
   5396	 * entry as it is an SRAT resource allocation structure.
   5397	 * We do not currently support doing so.
   5398	 */
   5399	node = pxm_to_node(its_affinity->proximity_domain);
   5400
   5401	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
   5402		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
   5403		return 0;
   5404	}
   5405
   5406	its_srat_maps[its_in_srat].numa_node = node;
   5407	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
   5408	its_in_srat++;
   5409	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
   5410		its_affinity->proximity_domain, its_affinity->its_id, node);
   5411
   5412	return 0;
   5413}
   5414
   5415static void __init acpi_table_parse_srat_its(void)
   5416{
   5417	int count;
   5418
   5419	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
   5420			sizeof(struct acpi_table_srat),
   5421			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
   5422			gic_acpi_match_srat_its, 0);
   5423	if (count <= 0)
   5424		return;
   5425
   5426	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
   5427				      GFP_KERNEL);
   5428	if (!its_srat_maps)
   5429		return;
   5430
   5431	acpi_table_parse_entries(ACPI_SIG_SRAT,
   5432			sizeof(struct acpi_table_srat),
   5433			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
   5434			gic_acpi_parse_srat_its, 0);
   5435}
   5436
   5437/* free the its_srat_maps after ITS probing */
   5438static void __init acpi_its_srat_maps_free(void)
   5439{
   5440	kfree(its_srat_maps);
   5441}
   5442#else
   5443static void __init acpi_table_parse_srat_its(void)	{ }
   5444static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
   5445static void __init acpi_its_srat_maps_free(void) { }
   5446#endif
   5447
   5448static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
   5449					  const unsigned long end)
   5450{
   5451	struct acpi_madt_generic_translator *its_entry;
   5452	struct fwnode_handle *dom_handle;
   5453	struct resource res;
   5454	int err;
   5455
   5456	its_entry = (struct acpi_madt_generic_translator *)header;
   5457	memset(&res, 0, sizeof(res));
   5458	res.start = its_entry->base_address;
   5459	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
   5460	res.flags = IORESOURCE_MEM;
   5461
   5462	dom_handle = irq_domain_alloc_fwnode(&res.start);
   5463	if (!dom_handle) {
   5464		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
   5465		       &res.start);
   5466		return -ENOMEM;
   5467	}
   5468
   5469	err = iort_register_domain_token(its_entry->translation_id, res.start,
   5470					 dom_handle);
   5471	if (err) {
   5472		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
   5473		       &res.start, its_entry->translation_id);
   5474		goto dom_err;
   5475	}
   5476
   5477	err = its_probe_one(&res, dom_handle,
   5478			acpi_get_its_numa_node(its_entry->translation_id));
   5479	if (!err)
   5480		return 0;
   5481
   5482	iort_deregister_domain_token(its_entry->translation_id);
   5483dom_err:
   5484	irq_domain_free_fwnode(dom_handle);
   5485	return err;
   5486}
   5487
   5488static int __init its_acpi_reset(union acpi_subtable_headers *header,
   5489				 const unsigned long end)
   5490{
   5491	struct acpi_madt_generic_translator *its_entry;
   5492	struct resource res;
   5493
   5494	its_entry = (struct acpi_madt_generic_translator *)header;
   5495	res = (struct resource) {
   5496		.start	= its_entry->base_address,
   5497		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
   5498		.flags	= IORESOURCE_MEM,
   5499	};
   5500
   5501	return its_reset_one(&res);
   5502}
   5503
   5504static void __init its_acpi_probe(void)
   5505{
   5506	acpi_table_parse_srat_its();
   5507	/*
   5508	 * Make sure *all* the ITS are reset before we probe any, as
   5509	 * they may be sharing memory. If any of the ITS fails to
   5510	 * reset, don't even try to go any further, as this could
   5511	 * result in something even worse.
   5512	 */
   5513	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
   5514				  its_acpi_reset, 0) > 0)
   5515		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
   5516				      gic_acpi_parse_madt_its, 0);
   5517	acpi_its_srat_maps_free();
   5518}
   5519#else
   5520static void __init its_acpi_probe(void) { }
   5521#endif
   5522
   5523int __init its_lpi_memreserve_init(void)
   5524{
   5525	int state;
   5526
   5527	if (!efi_enabled(EFI_CONFIG_TABLES))
   5528		return 0;
   5529
   5530	if (list_empty(&its_nodes))
   5531		return 0;
   5532
   5533	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
   5534	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
   5535				  "irqchip/arm/gicv3/memreserve:online",
   5536				  its_cpu_memreserve_lpi,
   5537				  NULL);
   5538	if (state < 0)
   5539		return state;
   5540
   5541	gic_rdists->cpuhp_memreserve_state = state;
   5542
   5543	return 0;
   5544}
   5545
   5546int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
   5547		    struct irq_domain *parent_domain)
   5548{
   5549	struct device_node *of_node;
   5550	struct its_node *its;
   5551	bool has_v4 = false;
   5552	bool has_v4_1 = false;
   5553	int err;
   5554
   5555	gic_rdists = rdists;
   5556
   5557	its_parent = parent_domain;
   5558	of_node = to_of_node(handle);
   5559	if (of_node)
   5560		its_of_probe(of_node);
   5561	else
   5562		its_acpi_probe();
   5563
   5564	if (list_empty(&its_nodes)) {
   5565		pr_warn("ITS: No ITS available, not enabling LPIs\n");
   5566		return -ENXIO;
   5567	}
   5568
   5569	err = allocate_lpi_tables();
   5570	if (err)
   5571		return err;
   5572
   5573	list_for_each_entry(its, &its_nodes, entry) {
   5574		has_v4 |= is_v4(its);
   5575		has_v4_1 |= is_v4_1(its);
   5576	}
   5577
   5578	/* Don't bother with inconsistent systems */
   5579	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
   5580		rdists->has_rvpeid = false;
   5581
   5582	if (has_v4 & rdists->has_vlpis) {
   5583		const struct irq_domain_ops *sgi_ops;
   5584
   5585		if (has_v4_1)
   5586			sgi_ops = &its_sgi_domain_ops;
   5587		else
   5588			sgi_ops = NULL;
   5589
   5590		if (its_init_vpe_domain() ||
   5591		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
   5592			rdists->has_vlpis = false;
   5593			pr_err("ITS: Disabling GICv4 support\n");
   5594		}
   5595	}
   5596
   5597	register_syscore_ops(&its_syscore_ops);
   5598
   5599	return 0;
   5600}