cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ledtrig-activity.c (7833B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Activity LED trigger
      4 *
      5 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
      6 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
      7 */
      8
      9#include <linux/init.h>
     10#include <linux/kernel.h>
     11#include <linux/kernel_stat.h>
     12#include <linux/leds.h>
     13#include <linux/module.h>
     14#include <linux/panic_notifier.h>
     15#include <linux/reboot.h>
     16#include <linux/sched.h>
     17#include <linux/slab.h>
     18#include <linux/timer.h>
     19#include "../leds.h"
     20
     21static int panic_detected;
     22
     23struct activity_data {
     24	struct timer_list timer;
     25	struct led_classdev *led_cdev;
     26	u64 last_used;
     27	u64 last_boot;
     28	int time_left;
     29	int state;
     30	int invert;
     31};
     32
     33static void led_activity_function(struct timer_list *t)
     34{
     35	struct activity_data *activity_data = from_timer(activity_data, t,
     36							 timer);
     37	struct led_classdev *led_cdev = activity_data->led_cdev;
     38	unsigned int target;
     39	unsigned int usage;
     40	int delay;
     41	u64 curr_used;
     42	u64 curr_boot;
     43	s32 diff_used;
     44	s32 diff_boot;
     45	int cpus;
     46	int i;
     47
     48	if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
     49		led_cdev->blink_brightness = led_cdev->new_blink_brightness;
     50
     51	if (unlikely(panic_detected)) {
     52		/* full brightness in case of panic */
     53		led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
     54		return;
     55	}
     56
     57	cpus = 0;
     58	curr_used = 0;
     59
     60	for_each_possible_cpu(i) {
     61		struct kernel_cpustat kcpustat;
     62
     63		kcpustat_cpu_fetch(&kcpustat, i);
     64
     65		curr_used += kcpustat.cpustat[CPUTIME_USER]
     66			  +  kcpustat.cpustat[CPUTIME_NICE]
     67			  +  kcpustat.cpustat[CPUTIME_SYSTEM]
     68			  +  kcpustat.cpustat[CPUTIME_SOFTIRQ]
     69			  +  kcpustat.cpustat[CPUTIME_IRQ];
     70		cpus++;
     71	}
     72
     73	/* We come here every 100ms in the worst case, so that's 100M ns of
     74	 * cumulated time. By dividing by 2^16, we get the time resolution
     75	 * down to 16us, ensuring we won't overflow 32-bit computations below
     76	 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
     77	 */
     78	curr_boot = ktime_get_boottime_ns() * cpus;
     79	diff_boot = (curr_boot - activity_data->last_boot) >> 16;
     80	diff_used = (curr_used - activity_data->last_used) >> 16;
     81	activity_data->last_boot = curr_boot;
     82	activity_data->last_used = curr_used;
     83
     84	if (diff_boot <= 0 || diff_used < 0)
     85		usage = 0;
     86	else if (diff_used >= diff_boot)
     87		usage = 100;
     88	else
     89		usage = 100 * diff_used / diff_boot;
     90
     91	/*
     92	 * Now we know the total boot_time multiplied by the number of CPUs, and
     93	 * the total idle+wait time for all CPUs. We'll compare how they evolved
     94	 * since last call. The % of overall CPU usage is :
     95	 *
     96	 *      1 - delta_idle / delta_boot
     97	 *
     98	 * What we want is that when the CPU usage is zero, the LED must blink
     99	 * slowly with very faint flashes that are detectable but not disturbing
    100	 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
    101	 * blinking frequency to increase up to the point where the load is
    102	 * enough to saturate one core in multi-core systems or 50% in single
    103	 * core systems. At this point it should reach 10 Hz with a 10/90 duty
    104	 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
    105	 * remains stable (10 Hz) and only the duty cycle increases to report
    106	 * the activity, up to the point where we have 90ms ON, 10ms OFF when
    107	 * all cores are saturated. It's important that the LED never stays in
    108	 * a steady state so that it's easy to distinguish an idle or saturated
    109	 * machine from a hung one.
    110	 *
    111	 * This gives us :
    112	 *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
    113	 *     (10ms ON, 90ms OFF)
    114	 *   - below target :
    115	 *      ON_ms  = 10
    116	 *      OFF_ms = 90 + (1 - usage/target) * 900
    117	 *   - above target :
    118	 *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
    119	 *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
    120	 *
    121	 * In order to keep a good responsiveness, we cap the sleep time to
    122	 * 100 ms and keep track of the sleep time left. This allows us to
    123	 * quickly change it if needed.
    124	 */
    125
    126	activity_data->time_left -= 100;
    127	if (activity_data->time_left <= 0) {
    128		activity_data->time_left = 0;
    129		activity_data->state = !activity_data->state;
    130		led_set_brightness_nosleep(led_cdev,
    131			(activity_data->state ^ activity_data->invert) ?
    132			led_cdev->blink_brightness : LED_OFF);
    133	}
    134
    135	target = (cpus > 1) ? (100 / cpus) : 50;
    136
    137	if (usage < target)
    138		delay = activity_data->state ?
    139			10 :                        /* ON  */
    140			990 - 900 * usage / target; /* OFF */
    141	else
    142		delay = activity_data->state ?
    143			10 + 80 * (usage - target) / (100 - target) : /* ON  */
    144			90 - 80 * (usage - target) / (100 - target);  /* OFF */
    145
    146
    147	if (!activity_data->time_left || delay <= activity_data->time_left)
    148		activity_data->time_left = delay;
    149
    150	delay = min_t(int, activity_data->time_left, 100);
    151	mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
    152}
    153
    154static ssize_t led_invert_show(struct device *dev,
    155                               struct device_attribute *attr, char *buf)
    156{
    157	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
    158
    159	return sprintf(buf, "%u\n", activity_data->invert);
    160}
    161
    162static ssize_t led_invert_store(struct device *dev,
    163                                struct device_attribute *attr,
    164                                const char *buf, size_t size)
    165{
    166	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
    167	unsigned long state;
    168	int ret;
    169
    170	ret = kstrtoul(buf, 0, &state);
    171	if (ret)
    172		return ret;
    173
    174	activity_data->invert = !!state;
    175
    176	return size;
    177}
    178
    179static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
    180
    181static struct attribute *activity_led_attrs[] = {
    182	&dev_attr_invert.attr,
    183	NULL
    184};
    185ATTRIBUTE_GROUPS(activity_led);
    186
    187static int activity_activate(struct led_classdev *led_cdev)
    188{
    189	struct activity_data *activity_data;
    190
    191	activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
    192	if (!activity_data)
    193		return -ENOMEM;
    194
    195	led_set_trigger_data(led_cdev, activity_data);
    196
    197	activity_data->led_cdev = led_cdev;
    198	timer_setup(&activity_data->timer, led_activity_function, 0);
    199	if (!led_cdev->blink_brightness)
    200		led_cdev->blink_brightness = led_cdev->max_brightness;
    201	led_activity_function(&activity_data->timer);
    202	set_bit(LED_BLINK_SW, &led_cdev->work_flags);
    203
    204	return 0;
    205}
    206
    207static void activity_deactivate(struct led_classdev *led_cdev)
    208{
    209	struct activity_data *activity_data = led_get_trigger_data(led_cdev);
    210
    211	del_timer_sync(&activity_data->timer);
    212	kfree(activity_data);
    213	clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
    214}
    215
    216static struct led_trigger activity_led_trigger = {
    217	.name       = "activity",
    218	.activate   = activity_activate,
    219	.deactivate = activity_deactivate,
    220	.groups     = activity_led_groups,
    221};
    222
    223static int activity_reboot_notifier(struct notifier_block *nb,
    224                                    unsigned long code, void *unused)
    225{
    226	led_trigger_unregister(&activity_led_trigger);
    227	return NOTIFY_DONE;
    228}
    229
    230static int activity_panic_notifier(struct notifier_block *nb,
    231                                   unsigned long code, void *unused)
    232{
    233	panic_detected = 1;
    234	return NOTIFY_DONE;
    235}
    236
    237static struct notifier_block activity_reboot_nb = {
    238	.notifier_call = activity_reboot_notifier,
    239};
    240
    241static struct notifier_block activity_panic_nb = {
    242	.notifier_call = activity_panic_notifier,
    243};
    244
    245static int __init activity_init(void)
    246{
    247	int rc = led_trigger_register(&activity_led_trigger);
    248
    249	if (!rc) {
    250		atomic_notifier_chain_register(&panic_notifier_list,
    251					       &activity_panic_nb);
    252		register_reboot_notifier(&activity_reboot_nb);
    253	}
    254	return rc;
    255}
    256
    257static void __exit activity_exit(void)
    258{
    259	unregister_reboot_notifier(&activity_reboot_nb);
    260	atomic_notifier_chain_unregister(&panic_notifier_list,
    261					 &activity_panic_nb);
    262	led_trigger_unregister(&activity_led_trigger);
    263}
    264
    265module_init(activity_init);
    266module_exit(activity_exit);
    267
    268MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
    269MODULE_DESCRIPTION("Activity LED trigger");
    270MODULE_LICENSE("GPL v2");