cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

alloc.c (19378B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Primary bucket allocation code
      4 *
      5 * Copyright 2012 Google, Inc.
      6 *
      7 * Allocation in bcache is done in terms of buckets:
      8 *
      9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
     10 * btree pointers - they must match for the pointer to be considered valid.
     11 *
     12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
     13 * bucket simply by incrementing its gen.
     14 *
     15 * The gens (along with the priorities; it's really the gens are important but
     16 * the code is named as if it's the priorities) are written in an arbitrary list
     17 * of buckets on disk, with a pointer to them in the journal header.
     18 *
     19 * When we invalidate a bucket, we have to write its new gen to disk and wait
     20 * for that write to complete before we use it - otherwise after a crash we
     21 * could have pointers that appeared to be good but pointed to data that had
     22 * been overwritten.
     23 *
     24 * Since the gens and priorities are all stored contiguously on disk, we can
     25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
     26 * call prio_write(), and when prio_write() finishes we pull buckets off the
     27 * free_inc list and optionally discard them.
     28 *
     29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
     30 * priorities and gens were being written before we could allocate. c->free is a
     31 * smaller freelist, and buckets on that list are always ready to be used.
     32 *
     33 * If we've got discards enabled, that happens when a bucket moves from the
     34 * free_inc list to the free list.
     35 *
     36 * There is another freelist, because sometimes we have buckets that we know
     37 * have nothing pointing into them - these we can reuse without waiting for
     38 * priorities to be rewritten. These come from freed btree nodes and buckets
     39 * that garbage collection discovered no longer had valid keys pointing into
     40 * them (because they were overwritten). That's the unused list - buckets on the
     41 * unused list move to the free list, optionally being discarded in the process.
     42 *
     43 * It's also important to ensure that gens don't wrap around - with respect to
     44 * either the oldest gen in the btree or the gen on disk. This is quite
     45 * difficult to do in practice, but we explicitly guard against it anyways - if
     46 * a bucket is in danger of wrapping around we simply skip invalidating it that
     47 * time around, and we garbage collect or rewrite the priorities sooner than we
     48 * would have otherwise.
     49 *
     50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
     51 *
     52 * bch_bucket_alloc_set() allocates one  bucket from different caches
     53 * out of a cache set.
     54 *
     55 * free_some_buckets() drives all the processes described above. It's called
     56 * from bch_bucket_alloc() and a few other places that need to make sure free
     57 * buckets are ready.
     58 *
     59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
     60 * invalidated, and then invalidate them and stick them on the free_inc list -
     61 * in either lru or fifo order.
     62 */
     63
     64#include "bcache.h"
     65#include "btree.h"
     66
     67#include <linux/blkdev.h>
     68#include <linux/kthread.h>
     69#include <linux/random.h>
     70#include <trace/events/bcache.h>
     71
     72#define MAX_OPEN_BUCKETS 128
     73
     74/* Bucket heap / gen */
     75
     76uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
     77{
     78	uint8_t ret = ++b->gen;
     79
     80	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
     81	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
     82
     83	return ret;
     84}
     85
     86void bch_rescale_priorities(struct cache_set *c, int sectors)
     87{
     88	struct cache *ca;
     89	struct bucket *b;
     90	unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024;
     91	int r;
     92
     93	atomic_sub(sectors, &c->rescale);
     94
     95	do {
     96		r = atomic_read(&c->rescale);
     97
     98		if (r >= 0)
     99			return;
    100	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
    101
    102	mutex_lock(&c->bucket_lock);
    103
    104	c->min_prio = USHRT_MAX;
    105
    106	ca = c->cache;
    107	for_each_bucket(b, ca)
    108		if (b->prio &&
    109		    b->prio != BTREE_PRIO &&
    110		    !atomic_read(&b->pin)) {
    111			b->prio--;
    112			c->min_prio = min(c->min_prio, b->prio);
    113		}
    114
    115	mutex_unlock(&c->bucket_lock);
    116}
    117
    118/*
    119 * Background allocation thread: scans for buckets to be invalidated,
    120 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
    121 * then optionally issues discard commands to the newly free buckets, then puts
    122 * them on the various freelists.
    123 */
    124
    125static inline bool can_inc_bucket_gen(struct bucket *b)
    126{
    127	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
    128}
    129
    130bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
    131{
    132	BUG_ON(!ca->set->gc_mark_valid);
    133
    134	return (!GC_MARK(b) ||
    135		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
    136		!atomic_read(&b->pin) &&
    137		can_inc_bucket_gen(b);
    138}
    139
    140void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
    141{
    142	lockdep_assert_held(&ca->set->bucket_lock);
    143	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
    144
    145	if (GC_SECTORS_USED(b))
    146		trace_bcache_invalidate(ca, b - ca->buckets);
    147
    148	bch_inc_gen(ca, b);
    149	b->prio = INITIAL_PRIO;
    150	atomic_inc(&b->pin);
    151}
    152
    153static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
    154{
    155	__bch_invalidate_one_bucket(ca, b);
    156
    157	fifo_push(&ca->free_inc, b - ca->buckets);
    158}
    159
    160/*
    161 * Determines what order we're going to reuse buckets, smallest bucket_prio()
    162 * first: we also take into account the number of sectors of live data in that
    163 * bucket, and in order for that multiply to make sense we have to scale bucket
    164 *
    165 * Thus, we scale the bucket priorities so that the bucket with the smallest
    166 * prio is worth 1/8th of what INITIAL_PRIO is worth.
    167 */
    168
    169#define bucket_prio(b)							\
    170({									\
    171	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
    172									\
    173	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
    174})
    175
    176#define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
    177#define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
    178
    179static void invalidate_buckets_lru(struct cache *ca)
    180{
    181	struct bucket *b;
    182	ssize_t i;
    183
    184	ca->heap.used = 0;
    185
    186	for_each_bucket(b, ca) {
    187		if (!bch_can_invalidate_bucket(ca, b))
    188			continue;
    189
    190		if (!heap_full(&ca->heap))
    191			heap_add(&ca->heap, b, bucket_max_cmp);
    192		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
    193			ca->heap.data[0] = b;
    194			heap_sift(&ca->heap, 0, bucket_max_cmp);
    195		}
    196	}
    197
    198	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
    199		heap_sift(&ca->heap, i, bucket_min_cmp);
    200
    201	while (!fifo_full(&ca->free_inc)) {
    202		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
    203			/*
    204			 * We don't want to be calling invalidate_buckets()
    205			 * multiple times when it can't do anything
    206			 */
    207			ca->invalidate_needs_gc = 1;
    208			wake_up_gc(ca->set);
    209			return;
    210		}
    211
    212		bch_invalidate_one_bucket(ca, b);
    213	}
    214}
    215
    216static void invalidate_buckets_fifo(struct cache *ca)
    217{
    218	struct bucket *b;
    219	size_t checked = 0;
    220
    221	while (!fifo_full(&ca->free_inc)) {
    222		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
    223		    ca->fifo_last_bucket >= ca->sb.nbuckets)
    224			ca->fifo_last_bucket = ca->sb.first_bucket;
    225
    226		b = ca->buckets + ca->fifo_last_bucket++;
    227
    228		if (bch_can_invalidate_bucket(ca, b))
    229			bch_invalidate_one_bucket(ca, b);
    230
    231		if (++checked >= ca->sb.nbuckets) {
    232			ca->invalidate_needs_gc = 1;
    233			wake_up_gc(ca->set);
    234			return;
    235		}
    236	}
    237}
    238
    239static void invalidate_buckets_random(struct cache *ca)
    240{
    241	struct bucket *b;
    242	size_t checked = 0;
    243
    244	while (!fifo_full(&ca->free_inc)) {
    245		size_t n;
    246
    247		get_random_bytes(&n, sizeof(n));
    248
    249		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
    250		n += ca->sb.first_bucket;
    251
    252		b = ca->buckets + n;
    253
    254		if (bch_can_invalidate_bucket(ca, b))
    255			bch_invalidate_one_bucket(ca, b);
    256
    257		if (++checked >= ca->sb.nbuckets / 2) {
    258			ca->invalidate_needs_gc = 1;
    259			wake_up_gc(ca->set);
    260			return;
    261		}
    262	}
    263}
    264
    265static void invalidate_buckets(struct cache *ca)
    266{
    267	BUG_ON(ca->invalidate_needs_gc);
    268
    269	switch (CACHE_REPLACEMENT(&ca->sb)) {
    270	case CACHE_REPLACEMENT_LRU:
    271		invalidate_buckets_lru(ca);
    272		break;
    273	case CACHE_REPLACEMENT_FIFO:
    274		invalidate_buckets_fifo(ca);
    275		break;
    276	case CACHE_REPLACEMENT_RANDOM:
    277		invalidate_buckets_random(ca);
    278		break;
    279	}
    280}
    281
    282#define allocator_wait(ca, cond)					\
    283do {									\
    284	while (1) {							\
    285		set_current_state(TASK_INTERRUPTIBLE);			\
    286		if (cond)						\
    287			break;						\
    288									\
    289		mutex_unlock(&(ca)->set->bucket_lock);			\
    290		if (kthread_should_stop() ||				\
    291		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
    292			set_current_state(TASK_RUNNING);		\
    293			goto out;					\
    294		}							\
    295									\
    296		schedule();						\
    297		mutex_lock(&(ca)->set->bucket_lock);			\
    298	}								\
    299	__set_current_state(TASK_RUNNING);				\
    300} while (0)
    301
    302static int bch_allocator_push(struct cache *ca, long bucket)
    303{
    304	unsigned int i;
    305
    306	/* Prios/gens are actually the most important reserve */
    307	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
    308		return true;
    309
    310	for (i = 0; i < RESERVE_NR; i++)
    311		if (fifo_push(&ca->free[i], bucket))
    312			return true;
    313
    314	return false;
    315}
    316
    317static int bch_allocator_thread(void *arg)
    318{
    319	struct cache *ca = arg;
    320
    321	mutex_lock(&ca->set->bucket_lock);
    322
    323	while (1) {
    324		/*
    325		 * First, we pull buckets off of the unused and free_inc lists,
    326		 * possibly issue discards to them, then we add the bucket to
    327		 * the free list:
    328		 */
    329		while (1) {
    330			long bucket;
    331
    332			if (!fifo_pop(&ca->free_inc, bucket))
    333				break;
    334
    335			if (ca->discard) {
    336				mutex_unlock(&ca->set->bucket_lock);
    337				blkdev_issue_discard(ca->bdev,
    338					bucket_to_sector(ca->set, bucket),
    339					ca->sb.bucket_size, GFP_KERNEL);
    340				mutex_lock(&ca->set->bucket_lock);
    341			}
    342
    343			allocator_wait(ca, bch_allocator_push(ca, bucket));
    344			wake_up(&ca->set->btree_cache_wait);
    345			wake_up(&ca->set->bucket_wait);
    346		}
    347
    348		/*
    349		 * We've run out of free buckets, we need to find some buckets
    350		 * we can invalidate. First, invalidate them in memory and add
    351		 * them to the free_inc list:
    352		 */
    353
    354retry_invalidate:
    355		allocator_wait(ca, ca->set->gc_mark_valid &&
    356			       !ca->invalidate_needs_gc);
    357		invalidate_buckets(ca);
    358
    359		/*
    360		 * Now, we write their new gens to disk so we can start writing
    361		 * new stuff to them:
    362		 */
    363		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
    364		if (CACHE_SYNC(&ca->sb)) {
    365			/*
    366			 * This could deadlock if an allocation with a btree
    367			 * node locked ever blocked - having the btree node
    368			 * locked would block garbage collection, but here we're
    369			 * waiting on garbage collection before we invalidate
    370			 * and free anything.
    371			 *
    372			 * But this should be safe since the btree code always
    373			 * uses btree_check_reserve() before allocating now, and
    374			 * if it fails it blocks without btree nodes locked.
    375			 */
    376			if (!fifo_full(&ca->free_inc))
    377				goto retry_invalidate;
    378
    379			if (bch_prio_write(ca, false) < 0) {
    380				ca->invalidate_needs_gc = 1;
    381				wake_up_gc(ca->set);
    382			}
    383		}
    384	}
    385out:
    386	wait_for_kthread_stop();
    387	return 0;
    388}
    389
    390/* Allocation */
    391
    392long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
    393{
    394	DEFINE_WAIT(w);
    395	struct bucket *b;
    396	long r;
    397
    398
    399	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
    400	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
    401		return -1;
    402
    403	/* fastpath */
    404	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
    405	    fifo_pop(&ca->free[reserve], r))
    406		goto out;
    407
    408	if (!wait) {
    409		trace_bcache_alloc_fail(ca, reserve);
    410		return -1;
    411	}
    412
    413	do {
    414		prepare_to_wait(&ca->set->bucket_wait, &w,
    415				TASK_UNINTERRUPTIBLE);
    416
    417		mutex_unlock(&ca->set->bucket_lock);
    418		schedule();
    419		mutex_lock(&ca->set->bucket_lock);
    420	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
    421		 !fifo_pop(&ca->free[reserve], r));
    422
    423	finish_wait(&ca->set->bucket_wait, &w);
    424out:
    425	if (ca->alloc_thread)
    426		wake_up_process(ca->alloc_thread);
    427
    428	trace_bcache_alloc(ca, reserve);
    429
    430	if (expensive_debug_checks(ca->set)) {
    431		size_t iter;
    432		long i;
    433		unsigned int j;
    434
    435		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
    436			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
    437
    438		for (j = 0; j < RESERVE_NR; j++)
    439			fifo_for_each(i, &ca->free[j], iter)
    440				BUG_ON(i == r);
    441		fifo_for_each(i, &ca->free_inc, iter)
    442			BUG_ON(i == r);
    443	}
    444
    445	b = ca->buckets + r;
    446
    447	BUG_ON(atomic_read(&b->pin) != 1);
    448
    449	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
    450
    451	if (reserve <= RESERVE_PRIO) {
    452		SET_GC_MARK(b, GC_MARK_METADATA);
    453		SET_GC_MOVE(b, 0);
    454		b->prio = BTREE_PRIO;
    455	} else {
    456		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
    457		SET_GC_MOVE(b, 0);
    458		b->prio = INITIAL_PRIO;
    459	}
    460
    461	if (ca->set->avail_nbuckets > 0) {
    462		ca->set->avail_nbuckets--;
    463		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
    464	}
    465
    466	return r;
    467}
    468
    469void __bch_bucket_free(struct cache *ca, struct bucket *b)
    470{
    471	SET_GC_MARK(b, 0);
    472	SET_GC_SECTORS_USED(b, 0);
    473
    474	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
    475		ca->set->avail_nbuckets++;
    476		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
    477	}
    478}
    479
    480void bch_bucket_free(struct cache_set *c, struct bkey *k)
    481{
    482	unsigned int i;
    483
    484	for (i = 0; i < KEY_PTRS(k); i++)
    485		__bch_bucket_free(c->cache, PTR_BUCKET(c, k, i));
    486}
    487
    488int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
    489			   struct bkey *k, bool wait)
    490{
    491	struct cache *ca;
    492	long b;
    493
    494	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
    495	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
    496		return -1;
    497
    498	lockdep_assert_held(&c->bucket_lock);
    499
    500	bkey_init(k);
    501
    502	ca = c->cache;
    503	b = bch_bucket_alloc(ca, reserve, wait);
    504	if (b == -1)
    505		goto err;
    506
    507	k->ptr[0] = MAKE_PTR(ca->buckets[b].gen,
    508			     bucket_to_sector(c, b),
    509			     ca->sb.nr_this_dev);
    510
    511	SET_KEY_PTRS(k, 1);
    512
    513	return 0;
    514err:
    515	bch_bucket_free(c, k);
    516	bkey_put(c, k);
    517	return -1;
    518}
    519
    520int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
    521			 struct bkey *k, bool wait)
    522{
    523	int ret;
    524
    525	mutex_lock(&c->bucket_lock);
    526	ret = __bch_bucket_alloc_set(c, reserve, k, wait);
    527	mutex_unlock(&c->bucket_lock);
    528	return ret;
    529}
    530
    531/* Sector allocator */
    532
    533struct open_bucket {
    534	struct list_head	list;
    535	unsigned int		last_write_point;
    536	unsigned int		sectors_free;
    537	BKEY_PADDED(key);
    538};
    539
    540/*
    541 * We keep multiple buckets open for writes, and try to segregate different
    542 * write streams for better cache utilization: first we try to segregate flash
    543 * only volume write streams from cached devices, secondly we look for a bucket
    544 * where the last write to it was sequential with the current write, and
    545 * failing that we look for a bucket that was last used by the same task.
    546 *
    547 * The ideas is if you've got multiple tasks pulling data into the cache at the
    548 * same time, you'll get better cache utilization if you try to segregate their
    549 * data and preserve locality.
    550 *
    551 * For example, dirty sectors of flash only volume is not reclaimable, if their
    552 * dirty sectors mixed with dirty sectors of cached device, such buckets will
    553 * be marked as dirty and won't be reclaimed, though the dirty data of cached
    554 * device have been written back to backend device.
    555 *
    556 * And say you've starting Firefox at the same time you're copying a
    557 * bunch of files. Firefox will likely end up being fairly hot and stay in the
    558 * cache awhile, but the data you copied might not be; if you wrote all that
    559 * data to the same buckets it'd get invalidated at the same time.
    560 *
    561 * Both of those tasks will be doing fairly random IO so we can't rely on
    562 * detecting sequential IO to segregate their data, but going off of the task
    563 * should be a sane heuristic.
    564 */
    565static struct open_bucket *pick_data_bucket(struct cache_set *c,
    566					    const struct bkey *search,
    567					    unsigned int write_point,
    568					    struct bkey *alloc)
    569{
    570	struct open_bucket *ret, *ret_task = NULL;
    571
    572	list_for_each_entry_reverse(ret, &c->data_buckets, list)
    573		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
    574		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
    575			continue;
    576		else if (!bkey_cmp(&ret->key, search))
    577			goto found;
    578		else if (ret->last_write_point == write_point)
    579			ret_task = ret;
    580
    581	ret = ret_task ?: list_first_entry(&c->data_buckets,
    582					   struct open_bucket, list);
    583found:
    584	if (!ret->sectors_free && KEY_PTRS(alloc)) {
    585		ret->sectors_free = c->cache->sb.bucket_size;
    586		bkey_copy(&ret->key, alloc);
    587		bkey_init(alloc);
    588	}
    589
    590	if (!ret->sectors_free)
    591		ret = NULL;
    592
    593	return ret;
    594}
    595
    596/*
    597 * Allocates some space in the cache to write to, and k to point to the newly
    598 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
    599 * end of the newly allocated space).
    600 *
    601 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
    602 * sectors were actually allocated.
    603 *
    604 * If s->writeback is true, will not fail.
    605 */
    606bool bch_alloc_sectors(struct cache_set *c,
    607		       struct bkey *k,
    608		       unsigned int sectors,
    609		       unsigned int write_point,
    610		       unsigned int write_prio,
    611		       bool wait)
    612{
    613	struct open_bucket *b;
    614	BKEY_PADDED(key) alloc;
    615	unsigned int i;
    616
    617	/*
    618	 * We might have to allocate a new bucket, which we can't do with a
    619	 * spinlock held. So if we have to allocate, we drop the lock, allocate
    620	 * and then retry. KEY_PTRS() indicates whether alloc points to
    621	 * allocated bucket(s).
    622	 */
    623
    624	bkey_init(&alloc.key);
    625	spin_lock(&c->data_bucket_lock);
    626
    627	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
    628		unsigned int watermark = write_prio
    629			? RESERVE_MOVINGGC
    630			: RESERVE_NONE;
    631
    632		spin_unlock(&c->data_bucket_lock);
    633
    634		if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait))
    635			return false;
    636
    637		spin_lock(&c->data_bucket_lock);
    638	}
    639
    640	/*
    641	 * If we had to allocate, we might race and not need to allocate the
    642	 * second time we call pick_data_bucket(). If we allocated a bucket but
    643	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
    644	 */
    645	if (KEY_PTRS(&alloc.key))
    646		bkey_put(c, &alloc.key);
    647
    648	for (i = 0; i < KEY_PTRS(&b->key); i++)
    649		EBUG_ON(ptr_stale(c, &b->key, i));
    650
    651	/* Set up the pointer to the space we're allocating: */
    652
    653	for (i = 0; i < KEY_PTRS(&b->key); i++)
    654		k->ptr[i] = b->key.ptr[i];
    655
    656	sectors = min(sectors, b->sectors_free);
    657
    658	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
    659	SET_KEY_SIZE(k, sectors);
    660	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
    661
    662	/*
    663	 * Move b to the end of the lru, and keep track of what this bucket was
    664	 * last used for:
    665	 */
    666	list_move_tail(&b->list, &c->data_buckets);
    667	bkey_copy_key(&b->key, k);
    668	b->last_write_point = write_point;
    669
    670	b->sectors_free	-= sectors;
    671
    672	for (i = 0; i < KEY_PTRS(&b->key); i++) {
    673		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
    674
    675		atomic_long_add(sectors,
    676				&c->cache->sectors_written);
    677	}
    678
    679	if (b->sectors_free < c->cache->sb.block_size)
    680		b->sectors_free = 0;
    681
    682	/*
    683	 * k takes refcounts on the buckets it points to until it's inserted
    684	 * into the btree, but if we're done with this bucket we just transfer
    685	 * get_data_bucket()'s refcount.
    686	 */
    687	if (b->sectors_free)
    688		for (i = 0; i < KEY_PTRS(&b->key); i++)
    689			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
    690
    691	spin_unlock(&c->data_bucket_lock);
    692	return true;
    693}
    694
    695/* Init */
    696
    697void bch_open_buckets_free(struct cache_set *c)
    698{
    699	struct open_bucket *b;
    700
    701	while (!list_empty(&c->data_buckets)) {
    702		b = list_first_entry(&c->data_buckets,
    703				     struct open_bucket, list);
    704		list_del(&b->list);
    705		kfree(b);
    706	}
    707}
    708
    709int bch_open_buckets_alloc(struct cache_set *c)
    710{
    711	int i;
    712
    713	spin_lock_init(&c->data_bucket_lock);
    714
    715	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
    716		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
    717
    718		if (!b)
    719			return -ENOMEM;
    720
    721		list_add(&b->list, &c->data_buckets);
    722	}
    723
    724	return 0;
    725}
    726
    727int bch_cache_allocator_start(struct cache *ca)
    728{
    729	struct task_struct *k = kthread_run(bch_allocator_thread,
    730					    ca, "bcache_allocator");
    731	if (IS_ERR(k))
    732		return PTR_ERR(k);
    733
    734	ca->alloc_thread = k;
    735	return 0;
    736}