cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

request.c (35141B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Main bcache entry point - handle a read or a write request and decide what to
      4 * do with it; the make_request functions are called by the block layer.
      5 *
      6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
      7 * Copyright 2012 Google, Inc.
      8 */
      9
     10#include "bcache.h"
     11#include "btree.h"
     12#include "debug.h"
     13#include "request.h"
     14#include "writeback.h"
     15
     16#include <linux/module.h>
     17#include <linux/hash.h>
     18#include <linux/random.h>
     19#include <linux/backing-dev.h>
     20
     21#include <trace/events/bcache.h>
     22
     23#define CUTOFF_CACHE_ADD	95
     24#define CUTOFF_CACHE_READA	90
     25
     26struct kmem_cache *bch_search_cache;
     27
     28static void bch_data_insert_start(struct closure *cl);
     29
     30static unsigned int cache_mode(struct cached_dev *dc)
     31{
     32	return BDEV_CACHE_MODE(&dc->sb);
     33}
     34
     35static bool verify(struct cached_dev *dc)
     36{
     37	return dc->verify;
     38}
     39
     40static void bio_csum(struct bio *bio, struct bkey *k)
     41{
     42	struct bio_vec bv;
     43	struct bvec_iter iter;
     44	uint64_t csum = 0;
     45
     46	bio_for_each_segment(bv, bio, iter) {
     47		void *d = bvec_kmap_local(&bv);
     48
     49		csum = crc64_be(csum, d, bv.bv_len);
     50		kunmap_local(d);
     51	}
     52
     53	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
     54}
     55
     56/* Insert data into cache */
     57
     58static void bch_data_insert_keys(struct closure *cl)
     59{
     60	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
     61	atomic_t *journal_ref = NULL;
     62	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
     63	int ret;
     64
     65	if (!op->replace)
     66		journal_ref = bch_journal(op->c, &op->insert_keys,
     67					  op->flush_journal ? cl : NULL);
     68
     69	ret = bch_btree_insert(op->c, &op->insert_keys,
     70			       journal_ref, replace_key);
     71	if (ret == -ESRCH) {
     72		op->replace_collision = true;
     73	} else if (ret) {
     74		op->status		= BLK_STS_RESOURCE;
     75		op->insert_data_done	= true;
     76	}
     77
     78	if (journal_ref)
     79		atomic_dec_bug(journal_ref);
     80
     81	if (!op->insert_data_done) {
     82		continue_at(cl, bch_data_insert_start, op->wq);
     83		return;
     84	}
     85
     86	bch_keylist_free(&op->insert_keys);
     87	closure_return(cl);
     88}
     89
     90static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
     91			       struct cache_set *c)
     92{
     93	size_t oldsize = bch_keylist_nkeys(l);
     94	size_t newsize = oldsize + u64s;
     95
     96	/*
     97	 * The journalling code doesn't handle the case where the keys to insert
     98	 * is bigger than an empty write: If we just return -ENOMEM here,
     99	 * bch_data_insert_keys() will insert the keys created so far
    100	 * and finish the rest when the keylist is empty.
    101	 */
    102	if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
    103		return -ENOMEM;
    104
    105	return __bch_keylist_realloc(l, u64s);
    106}
    107
    108static void bch_data_invalidate(struct closure *cl)
    109{
    110	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
    111	struct bio *bio = op->bio;
    112
    113	pr_debug("invalidating %i sectors from %llu\n",
    114		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
    115
    116	while (bio_sectors(bio)) {
    117		unsigned int sectors = min(bio_sectors(bio),
    118				       1U << (KEY_SIZE_BITS - 1));
    119
    120		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
    121			goto out;
    122
    123		bio->bi_iter.bi_sector	+= sectors;
    124		bio->bi_iter.bi_size	-= sectors << 9;
    125
    126		bch_keylist_add(&op->insert_keys,
    127				&KEY(op->inode,
    128				     bio->bi_iter.bi_sector,
    129				     sectors));
    130	}
    131
    132	op->insert_data_done = true;
    133	/* get in bch_data_insert() */
    134	bio_put(bio);
    135out:
    136	continue_at(cl, bch_data_insert_keys, op->wq);
    137}
    138
    139static void bch_data_insert_error(struct closure *cl)
    140{
    141	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
    142
    143	/*
    144	 * Our data write just errored, which means we've got a bunch of keys to
    145	 * insert that point to data that wasn't successfully written.
    146	 *
    147	 * We don't have to insert those keys but we still have to invalidate
    148	 * that region of the cache - so, if we just strip off all the pointers
    149	 * from the keys we'll accomplish just that.
    150	 */
    151
    152	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
    153
    154	while (src != op->insert_keys.top) {
    155		struct bkey *n = bkey_next(src);
    156
    157		SET_KEY_PTRS(src, 0);
    158		memmove(dst, src, bkey_bytes(src));
    159
    160		dst = bkey_next(dst);
    161		src = n;
    162	}
    163
    164	op->insert_keys.top = dst;
    165
    166	bch_data_insert_keys(cl);
    167}
    168
    169static void bch_data_insert_endio(struct bio *bio)
    170{
    171	struct closure *cl = bio->bi_private;
    172	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
    173
    174	if (bio->bi_status) {
    175		/* TODO: We could try to recover from this. */
    176		if (op->writeback)
    177			op->status = bio->bi_status;
    178		else if (!op->replace)
    179			set_closure_fn(cl, bch_data_insert_error, op->wq);
    180		else
    181			set_closure_fn(cl, NULL, NULL);
    182	}
    183
    184	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
    185}
    186
    187static void bch_data_insert_start(struct closure *cl)
    188{
    189	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
    190	struct bio *bio = op->bio, *n;
    191
    192	if (op->bypass)
    193		return bch_data_invalidate(cl);
    194
    195	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
    196		wake_up_gc(op->c);
    197
    198	/*
    199	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
    200	 * flush, it'll wait on the journal write.
    201	 */
    202	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
    203
    204	do {
    205		unsigned int i;
    206		struct bkey *k;
    207		struct bio_set *split = &op->c->bio_split;
    208
    209		/* 1 for the device pointer and 1 for the chksum */
    210		if (bch_keylist_realloc(&op->insert_keys,
    211					3 + (op->csum ? 1 : 0),
    212					op->c)) {
    213			continue_at(cl, bch_data_insert_keys, op->wq);
    214			return;
    215		}
    216
    217		k = op->insert_keys.top;
    218		bkey_init(k);
    219		SET_KEY_INODE(k, op->inode);
    220		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
    221
    222		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
    223				       op->write_point, op->write_prio,
    224				       op->writeback))
    225			goto err;
    226
    227		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
    228
    229		n->bi_end_io	= bch_data_insert_endio;
    230		n->bi_private	= cl;
    231
    232		if (op->writeback) {
    233			SET_KEY_DIRTY(k, true);
    234
    235			for (i = 0; i < KEY_PTRS(k); i++)
    236				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
    237					    GC_MARK_DIRTY);
    238		}
    239
    240		SET_KEY_CSUM(k, op->csum);
    241		if (KEY_CSUM(k))
    242			bio_csum(n, k);
    243
    244		trace_bcache_cache_insert(k);
    245		bch_keylist_push(&op->insert_keys);
    246
    247		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
    248		bch_submit_bbio(n, op->c, k, 0);
    249	} while (n != bio);
    250
    251	op->insert_data_done = true;
    252	continue_at(cl, bch_data_insert_keys, op->wq);
    253	return;
    254err:
    255	/* bch_alloc_sectors() blocks if s->writeback = true */
    256	BUG_ON(op->writeback);
    257
    258	/*
    259	 * But if it's not a writeback write we'd rather just bail out if
    260	 * there aren't any buckets ready to write to - it might take awhile and
    261	 * we might be starving btree writes for gc or something.
    262	 */
    263
    264	if (!op->replace) {
    265		/*
    266		 * Writethrough write: We can't complete the write until we've
    267		 * updated the index. But we don't want to delay the write while
    268		 * we wait for buckets to be freed up, so just invalidate the
    269		 * rest of the write.
    270		 */
    271		op->bypass = true;
    272		return bch_data_invalidate(cl);
    273	} else {
    274		/*
    275		 * From a cache miss, we can just insert the keys for the data
    276		 * we have written or bail out if we didn't do anything.
    277		 */
    278		op->insert_data_done = true;
    279		bio_put(bio);
    280
    281		if (!bch_keylist_empty(&op->insert_keys))
    282			continue_at(cl, bch_data_insert_keys, op->wq);
    283		else
    284			closure_return(cl);
    285	}
    286}
    287
    288/**
    289 * bch_data_insert - stick some data in the cache
    290 * @cl: closure pointer.
    291 *
    292 * This is the starting point for any data to end up in a cache device; it could
    293 * be from a normal write, or a writeback write, or a write to a flash only
    294 * volume - it's also used by the moving garbage collector to compact data in
    295 * mostly empty buckets.
    296 *
    297 * It first writes the data to the cache, creating a list of keys to be inserted
    298 * (if the data had to be fragmented there will be multiple keys); after the
    299 * data is written it calls bch_journal, and after the keys have been added to
    300 * the next journal write they're inserted into the btree.
    301 *
    302 * It inserts the data in op->bio; bi_sector is used for the key offset,
    303 * and op->inode is used for the key inode.
    304 *
    305 * If op->bypass is true, instead of inserting the data it invalidates the
    306 * region of the cache represented by op->bio and op->inode.
    307 */
    308void bch_data_insert(struct closure *cl)
    309{
    310	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
    311
    312	trace_bcache_write(op->c, op->inode, op->bio,
    313			   op->writeback, op->bypass);
    314
    315	bch_keylist_init(&op->insert_keys);
    316	bio_get(op->bio);
    317	bch_data_insert_start(cl);
    318}
    319
    320/*
    321 * Congested?  Return 0 (not congested) or the limit (in sectors)
    322 * beyond which we should bypass the cache due to congestion.
    323 */
    324unsigned int bch_get_congested(const struct cache_set *c)
    325{
    326	int i;
    327
    328	if (!c->congested_read_threshold_us &&
    329	    !c->congested_write_threshold_us)
    330		return 0;
    331
    332	i = (local_clock_us() - c->congested_last_us) / 1024;
    333	if (i < 0)
    334		return 0;
    335
    336	i += atomic_read(&c->congested);
    337	if (i >= 0)
    338		return 0;
    339
    340	i += CONGESTED_MAX;
    341
    342	if (i > 0)
    343		i = fract_exp_two(i, 6);
    344
    345	i -= hweight32(get_random_u32());
    346
    347	return i > 0 ? i : 1;
    348}
    349
    350static void add_sequential(struct task_struct *t)
    351{
    352	ewma_add(t->sequential_io_avg,
    353		 t->sequential_io, 8, 0);
    354
    355	t->sequential_io = 0;
    356}
    357
    358static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
    359{
    360	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
    361}
    362
    363static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
    364{
    365	struct cache_set *c = dc->disk.c;
    366	unsigned int mode = cache_mode(dc);
    367	unsigned int sectors, congested;
    368	struct task_struct *task = current;
    369	struct io *i;
    370
    371	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
    372	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
    373	    (bio_op(bio) == REQ_OP_DISCARD))
    374		goto skip;
    375
    376	if (mode == CACHE_MODE_NONE ||
    377	    (mode == CACHE_MODE_WRITEAROUND &&
    378	     op_is_write(bio_op(bio))))
    379		goto skip;
    380
    381	/*
    382	 * If the bio is for read-ahead or background IO, bypass it or
    383	 * not depends on the following situations,
    384	 * - If the IO is for meta data, always cache it and no bypass
    385	 * - If the IO is not meta data, check dc->cache_reada_policy,
    386	 *      BCH_CACHE_READA_ALL: cache it and not bypass
    387	 *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
    388	 * That is, read-ahead request for metadata always get cached
    389	 * (eg, for gfs2 or xfs).
    390	 */
    391	if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
    392		if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
    393		    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
    394			goto skip;
    395	}
    396
    397	if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
    398	    bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
    399		pr_debug("skipping unaligned io\n");
    400		goto skip;
    401	}
    402
    403	if (bypass_torture_test(dc)) {
    404		if ((get_random_int() & 3) == 3)
    405			goto skip;
    406		else
    407			goto rescale;
    408	}
    409
    410	congested = bch_get_congested(c);
    411	if (!congested && !dc->sequential_cutoff)
    412		goto rescale;
    413
    414	spin_lock(&dc->io_lock);
    415
    416	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
    417		if (i->last == bio->bi_iter.bi_sector &&
    418		    time_before(jiffies, i->jiffies))
    419			goto found;
    420
    421	i = list_first_entry(&dc->io_lru, struct io, lru);
    422
    423	add_sequential(task);
    424	i->sequential = 0;
    425found:
    426	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
    427		i->sequential	+= bio->bi_iter.bi_size;
    428
    429	i->last			 = bio_end_sector(bio);
    430	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
    431	task->sequential_io	 = i->sequential;
    432
    433	hlist_del(&i->hash);
    434	hlist_add_head(&i->hash, iohash(dc, i->last));
    435	list_move_tail(&i->lru, &dc->io_lru);
    436
    437	spin_unlock(&dc->io_lock);
    438
    439	sectors = max(task->sequential_io,
    440		      task->sequential_io_avg) >> 9;
    441
    442	if (dc->sequential_cutoff &&
    443	    sectors >= dc->sequential_cutoff >> 9) {
    444		trace_bcache_bypass_sequential(bio);
    445		goto skip;
    446	}
    447
    448	if (congested && sectors >= congested) {
    449		trace_bcache_bypass_congested(bio);
    450		goto skip;
    451	}
    452
    453rescale:
    454	bch_rescale_priorities(c, bio_sectors(bio));
    455	return false;
    456skip:
    457	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
    458	return true;
    459}
    460
    461/* Cache lookup */
    462
    463struct search {
    464	/* Stack frame for bio_complete */
    465	struct closure		cl;
    466
    467	struct bbio		bio;
    468	struct bio		*orig_bio;
    469	struct bio		*cache_miss;
    470	struct bcache_device	*d;
    471
    472	unsigned int		insert_bio_sectors;
    473	unsigned int		recoverable:1;
    474	unsigned int		write:1;
    475	unsigned int		read_dirty_data:1;
    476	unsigned int		cache_missed:1;
    477
    478	struct block_device	*orig_bdev;
    479	unsigned long		start_time;
    480
    481	struct btree_op		op;
    482	struct data_insert_op	iop;
    483};
    484
    485static void bch_cache_read_endio(struct bio *bio)
    486{
    487	struct bbio *b = container_of(bio, struct bbio, bio);
    488	struct closure *cl = bio->bi_private;
    489	struct search *s = container_of(cl, struct search, cl);
    490
    491	/*
    492	 * If the bucket was reused while our bio was in flight, we might have
    493	 * read the wrong data. Set s->error but not error so it doesn't get
    494	 * counted against the cache device, but we'll still reread the data
    495	 * from the backing device.
    496	 */
    497
    498	if (bio->bi_status)
    499		s->iop.status = bio->bi_status;
    500	else if (!KEY_DIRTY(&b->key) &&
    501		 ptr_stale(s->iop.c, &b->key, 0)) {
    502		atomic_long_inc(&s->iop.c->cache_read_races);
    503		s->iop.status = BLK_STS_IOERR;
    504	}
    505
    506	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
    507}
    508
    509/*
    510 * Read from a single key, handling the initial cache miss if the key starts in
    511 * the middle of the bio
    512 */
    513static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
    514{
    515	struct search *s = container_of(op, struct search, op);
    516	struct bio *n, *bio = &s->bio.bio;
    517	struct bkey *bio_key;
    518	unsigned int ptr;
    519
    520	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
    521		return MAP_CONTINUE;
    522
    523	if (KEY_INODE(k) != s->iop.inode ||
    524	    KEY_START(k) > bio->bi_iter.bi_sector) {
    525		unsigned int bio_sectors = bio_sectors(bio);
    526		unsigned int sectors = KEY_INODE(k) == s->iop.inode
    527			? min_t(uint64_t, INT_MAX,
    528				KEY_START(k) - bio->bi_iter.bi_sector)
    529			: INT_MAX;
    530		int ret = s->d->cache_miss(b, s, bio, sectors);
    531
    532		if (ret != MAP_CONTINUE)
    533			return ret;
    534
    535		/* if this was a complete miss we shouldn't get here */
    536		BUG_ON(bio_sectors <= sectors);
    537	}
    538
    539	if (!KEY_SIZE(k))
    540		return MAP_CONTINUE;
    541
    542	/* XXX: figure out best pointer - for multiple cache devices */
    543	ptr = 0;
    544
    545	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
    546
    547	if (KEY_DIRTY(k))
    548		s->read_dirty_data = true;
    549
    550	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
    551				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
    552			   GFP_NOIO, &s->d->bio_split);
    553
    554	bio_key = &container_of(n, struct bbio, bio)->key;
    555	bch_bkey_copy_single_ptr(bio_key, k, ptr);
    556
    557	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
    558	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
    559
    560	n->bi_end_io	= bch_cache_read_endio;
    561	n->bi_private	= &s->cl;
    562
    563	/*
    564	 * The bucket we're reading from might be reused while our bio
    565	 * is in flight, and we could then end up reading the wrong
    566	 * data.
    567	 *
    568	 * We guard against this by checking (in cache_read_endio()) if
    569	 * the pointer is stale again; if so, we treat it as an error
    570	 * and reread from the backing device (but we don't pass that
    571	 * error up anywhere).
    572	 */
    573
    574	__bch_submit_bbio(n, b->c);
    575	return n == bio ? MAP_DONE : MAP_CONTINUE;
    576}
    577
    578static void cache_lookup(struct closure *cl)
    579{
    580	struct search *s = container_of(cl, struct search, iop.cl);
    581	struct bio *bio = &s->bio.bio;
    582	struct cached_dev *dc;
    583	int ret;
    584
    585	bch_btree_op_init(&s->op, -1);
    586
    587	ret = bch_btree_map_keys(&s->op, s->iop.c,
    588				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
    589				 cache_lookup_fn, MAP_END_KEY);
    590	if (ret == -EAGAIN) {
    591		continue_at(cl, cache_lookup, bcache_wq);
    592		return;
    593	}
    594
    595	/*
    596	 * We might meet err when searching the btree, If that happens, we will
    597	 * get negative ret, in this scenario we should not recover data from
    598	 * backing device (when cache device is dirty) because we don't know
    599	 * whether bkeys the read request covered are all clean.
    600	 *
    601	 * And after that happened, s->iop.status is still its initial value
    602	 * before we submit s->bio.bio
    603	 */
    604	if (ret < 0) {
    605		BUG_ON(ret == -EINTR);
    606		if (s->d && s->d->c &&
    607				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
    608			dc = container_of(s->d, struct cached_dev, disk);
    609			if (dc && atomic_read(&dc->has_dirty))
    610				s->recoverable = false;
    611		}
    612		if (!s->iop.status)
    613			s->iop.status = BLK_STS_IOERR;
    614	}
    615
    616	closure_return(cl);
    617}
    618
    619/* Common code for the make_request functions */
    620
    621static void request_endio(struct bio *bio)
    622{
    623	struct closure *cl = bio->bi_private;
    624
    625	if (bio->bi_status) {
    626		struct search *s = container_of(cl, struct search, cl);
    627
    628		s->iop.status = bio->bi_status;
    629		/* Only cache read errors are recoverable */
    630		s->recoverable = false;
    631	}
    632
    633	bio_put(bio);
    634	closure_put(cl);
    635}
    636
    637static void backing_request_endio(struct bio *bio)
    638{
    639	struct closure *cl = bio->bi_private;
    640
    641	if (bio->bi_status) {
    642		struct search *s = container_of(cl, struct search, cl);
    643		struct cached_dev *dc = container_of(s->d,
    644						     struct cached_dev, disk);
    645		/*
    646		 * If a bio has REQ_PREFLUSH for writeback mode, it is
    647		 * speically assembled in cached_dev_write() for a non-zero
    648		 * write request which has REQ_PREFLUSH. we don't set
    649		 * s->iop.status by this failure, the status will be decided
    650		 * by result of bch_data_insert() operation.
    651		 */
    652		if (unlikely(s->iop.writeback &&
    653			     bio->bi_opf & REQ_PREFLUSH)) {
    654			pr_err("Can't flush %pg: returned bi_status %i\n",
    655				dc->bdev, bio->bi_status);
    656		} else {
    657			/* set to orig_bio->bi_status in bio_complete() */
    658			s->iop.status = bio->bi_status;
    659		}
    660		s->recoverable = false;
    661		/* should count I/O error for backing device here */
    662		bch_count_backing_io_errors(dc, bio);
    663	}
    664
    665	bio_put(bio);
    666	closure_put(cl);
    667}
    668
    669static void bio_complete(struct search *s)
    670{
    671	if (s->orig_bio) {
    672		/* Count on bcache device */
    673		bio_end_io_acct_remapped(s->orig_bio, s->start_time,
    674					 s->orig_bdev);
    675		trace_bcache_request_end(s->d, s->orig_bio);
    676		s->orig_bio->bi_status = s->iop.status;
    677		bio_endio(s->orig_bio);
    678		s->orig_bio = NULL;
    679	}
    680}
    681
    682static void do_bio_hook(struct search *s,
    683			struct bio *orig_bio,
    684			bio_end_io_t *end_io_fn)
    685{
    686	struct bio *bio = &s->bio.bio;
    687
    688	bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
    689	/*
    690	 * bi_end_io can be set separately somewhere else, e.g. the
    691	 * variants in,
    692	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
    693	 * - n->bi_end_io from cache_lookup_fn()
    694	 */
    695	bio->bi_end_io		= end_io_fn;
    696	bio->bi_private		= &s->cl;
    697
    698	bio_cnt_set(bio, 3);
    699}
    700
    701static void search_free(struct closure *cl)
    702{
    703	struct search *s = container_of(cl, struct search, cl);
    704
    705	atomic_dec(&s->iop.c->search_inflight);
    706
    707	if (s->iop.bio)
    708		bio_put(s->iop.bio);
    709
    710	bio_complete(s);
    711	closure_debug_destroy(cl);
    712	mempool_free(s, &s->iop.c->search);
    713}
    714
    715static inline struct search *search_alloc(struct bio *bio,
    716		struct bcache_device *d, struct block_device *orig_bdev,
    717		unsigned long start_time)
    718{
    719	struct search *s;
    720
    721	s = mempool_alloc(&d->c->search, GFP_NOIO);
    722
    723	closure_init(&s->cl, NULL);
    724	do_bio_hook(s, bio, request_endio);
    725	atomic_inc(&d->c->search_inflight);
    726
    727	s->orig_bio		= bio;
    728	s->cache_miss		= NULL;
    729	s->cache_missed		= 0;
    730	s->d			= d;
    731	s->recoverable		= 1;
    732	s->write		= op_is_write(bio_op(bio));
    733	s->read_dirty_data	= 0;
    734	/* Count on the bcache device */
    735	s->orig_bdev		= orig_bdev;
    736	s->start_time		= start_time;
    737	s->iop.c		= d->c;
    738	s->iop.bio		= NULL;
    739	s->iop.inode		= d->id;
    740	s->iop.write_point	= hash_long((unsigned long) current, 16);
    741	s->iop.write_prio	= 0;
    742	s->iop.status		= 0;
    743	s->iop.flags		= 0;
    744	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
    745	s->iop.wq		= bcache_wq;
    746
    747	return s;
    748}
    749
    750/* Cached devices */
    751
    752static void cached_dev_bio_complete(struct closure *cl)
    753{
    754	struct search *s = container_of(cl, struct search, cl);
    755	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    756
    757	cached_dev_put(dc);
    758	search_free(cl);
    759}
    760
    761/* Process reads */
    762
    763static void cached_dev_read_error_done(struct closure *cl)
    764{
    765	struct search *s = container_of(cl, struct search, cl);
    766
    767	if (s->iop.replace_collision)
    768		bch_mark_cache_miss_collision(s->iop.c, s->d);
    769
    770	if (s->iop.bio)
    771		bio_free_pages(s->iop.bio);
    772
    773	cached_dev_bio_complete(cl);
    774}
    775
    776static void cached_dev_read_error(struct closure *cl)
    777{
    778	struct search *s = container_of(cl, struct search, cl);
    779	struct bio *bio = &s->bio.bio;
    780
    781	/*
    782	 * If read request hit dirty data (s->read_dirty_data is true),
    783	 * then recovery a failed read request from cached device may
    784	 * get a stale data back. So read failure recovery is only
    785	 * permitted when read request hit clean data in cache device,
    786	 * or when cache read race happened.
    787	 */
    788	if (s->recoverable && !s->read_dirty_data) {
    789		/* Retry from the backing device: */
    790		trace_bcache_read_retry(s->orig_bio);
    791
    792		s->iop.status = 0;
    793		do_bio_hook(s, s->orig_bio, backing_request_endio);
    794
    795		/* XXX: invalidate cache */
    796
    797		/* I/O request sent to backing device */
    798		closure_bio_submit(s->iop.c, bio, cl);
    799	}
    800
    801	continue_at(cl, cached_dev_read_error_done, NULL);
    802}
    803
    804static void cached_dev_cache_miss_done(struct closure *cl)
    805{
    806	struct search *s = container_of(cl, struct search, cl);
    807	struct bcache_device *d = s->d;
    808
    809	if (s->iop.replace_collision)
    810		bch_mark_cache_miss_collision(s->iop.c, s->d);
    811
    812	if (s->iop.bio)
    813		bio_free_pages(s->iop.bio);
    814
    815	cached_dev_bio_complete(cl);
    816	closure_put(&d->cl);
    817}
    818
    819static void cached_dev_read_done(struct closure *cl)
    820{
    821	struct search *s = container_of(cl, struct search, cl);
    822	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    823
    824	/*
    825	 * We had a cache miss; cache_bio now contains data ready to be inserted
    826	 * into the cache.
    827	 *
    828	 * First, we copy the data we just read from cache_bio's bounce buffers
    829	 * to the buffers the original bio pointed to:
    830	 */
    831
    832	if (s->iop.bio) {
    833		bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
    834		s->iop.bio->bi_iter.bi_sector =
    835			s->cache_miss->bi_iter.bi_sector;
    836		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
    837		bio_clone_blkg_association(s->iop.bio, s->cache_miss);
    838		bch_bio_map(s->iop.bio, NULL);
    839
    840		bio_copy_data(s->cache_miss, s->iop.bio);
    841
    842		bio_put(s->cache_miss);
    843		s->cache_miss = NULL;
    844	}
    845
    846	if (verify(dc) && s->recoverable && !s->read_dirty_data)
    847		bch_data_verify(dc, s->orig_bio);
    848
    849	closure_get(&dc->disk.cl);
    850	bio_complete(s);
    851
    852	if (s->iop.bio &&
    853	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
    854		BUG_ON(!s->iop.replace);
    855		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
    856	}
    857
    858	continue_at(cl, cached_dev_cache_miss_done, NULL);
    859}
    860
    861static void cached_dev_read_done_bh(struct closure *cl)
    862{
    863	struct search *s = container_of(cl, struct search, cl);
    864	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    865
    866	bch_mark_cache_accounting(s->iop.c, s->d,
    867				  !s->cache_missed, s->iop.bypass);
    868	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
    869
    870	if (s->iop.status)
    871		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
    872	else if (s->iop.bio || verify(dc))
    873		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
    874	else
    875		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
    876}
    877
    878static int cached_dev_cache_miss(struct btree *b, struct search *s,
    879				 struct bio *bio, unsigned int sectors)
    880{
    881	int ret = MAP_CONTINUE;
    882	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    883	struct bio *miss, *cache_bio;
    884	unsigned int size_limit;
    885
    886	s->cache_missed = 1;
    887
    888	if (s->cache_miss || s->iop.bypass) {
    889		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
    890		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
    891		goto out_submit;
    892	}
    893
    894	/* Limitation for valid replace key size and cache_bio bvecs number */
    895	size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
    896			   (1 << KEY_SIZE_BITS) - 1);
    897	s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
    898
    899	s->iop.replace_key = KEY(s->iop.inode,
    900				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
    901				 s->insert_bio_sectors);
    902
    903	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
    904	if (ret)
    905		return ret;
    906
    907	s->iop.replace = true;
    908
    909	miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
    910			      &s->d->bio_split);
    911
    912	/* btree_search_recurse()'s btree iterator is no good anymore */
    913	ret = miss == bio ? MAP_DONE : -EINTR;
    914
    915	cache_bio = bio_alloc_bioset(miss->bi_bdev,
    916			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
    917			0, GFP_NOWAIT, &dc->disk.bio_split);
    918	if (!cache_bio)
    919		goto out_submit;
    920
    921	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
    922	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
    923
    924	cache_bio->bi_end_io	= backing_request_endio;
    925	cache_bio->bi_private	= &s->cl;
    926
    927	bch_bio_map(cache_bio, NULL);
    928	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
    929		goto out_put;
    930
    931	s->cache_miss	= miss;
    932	s->iop.bio	= cache_bio;
    933	bio_get(cache_bio);
    934	/* I/O request sent to backing device */
    935	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
    936
    937	return ret;
    938out_put:
    939	bio_put(cache_bio);
    940out_submit:
    941	miss->bi_end_io		= backing_request_endio;
    942	miss->bi_private	= &s->cl;
    943	/* I/O request sent to backing device */
    944	closure_bio_submit(s->iop.c, miss, &s->cl);
    945	return ret;
    946}
    947
    948static void cached_dev_read(struct cached_dev *dc, struct search *s)
    949{
    950	struct closure *cl = &s->cl;
    951
    952	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
    953	continue_at(cl, cached_dev_read_done_bh, NULL);
    954}
    955
    956/* Process writes */
    957
    958static void cached_dev_write_complete(struct closure *cl)
    959{
    960	struct search *s = container_of(cl, struct search, cl);
    961	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    962
    963	up_read_non_owner(&dc->writeback_lock);
    964	cached_dev_bio_complete(cl);
    965}
    966
    967static void cached_dev_write(struct cached_dev *dc, struct search *s)
    968{
    969	struct closure *cl = &s->cl;
    970	struct bio *bio = &s->bio.bio;
    971	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
    972	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
    973
    974	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
    975
    976	down_read_non_owner(&dc->writeback_lock);
    977	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
    978		/*
    979		 * We overlap with some dirty data undergoing background
    980		 * writeback, force this write to writeback
    981		 */
    982		s->iop.bypass = false;
    983		s->iop.writeback = true;
    984	}
    985
    986	/*
    987	 * Discards aren't _required_ to do anything, so skipping if
    988	 * check_overlapping returned true is ok
    989	 *
    990	 * But check_overlapping drops dirty keys for which io hasn't started,
    991	 * so we still want to call it.
    992	 */
    993	if (bio_op(bio) == REQ_OP_DISCARD)
    994		s->iop.bypass = true;
    995
    996	if (should_writeback(dc, s->orig_bio,
    997			     cache_mode(dc),
    998			     s->iop.bypass)) {
    999		s->iop.bypass = false;
   1000		s->iop.writeback = true;
   1001	}
   1002
   1003	if (s->iop.bypass) {
   1004		s->iop.bio = s->orig_bio;
   1005		bio_get(s->iop.bio);
   1006
   1007		if (bio_op(bio) == REQ_OP_DISCARD &&
   1008		    !bdev_max_discard_sectors(dc->bdev))
   1009			goto insert_data;
   1010
   1011		/* I/O request sent to backing device */
   1012		bio->bi_end_io = backing_request_endio;
   1013		closure_bio_submit(s->iop.c, bio, cl);
   1014
   1015	} else if (s->iop.writeback) {
   1016		bch_writeback_add(dc);
   1017		s->iop.bio = bio;
   1018
   1019		if (bio->bi_opf & REQ_PREFLUSH) {
   1020			/*
   1021			 * Also need to send a flush to the backing
   1022			 * device.
   1023			 */
   1024			struct bio *flush;
   1025
   1026			flush = bio_alloc_bioset(bio->bi_bdev, 0,
   1027						 REQ_OP_WRITE | REQ_PREFLUSH,
   1028						 GFP_NOIO, &dc->disk.bio_split);
   1029			if (!flush) {
   1030				s->iop.status = BLK_STS_RESOURCE;
   1031				goto insert_data;
   1032			}
   1033			flush->bi_end_io = backing_request_endio;
   1034			flush->bi_private = cl;
   1035			/* I/O request sent to backing device */
   1036			closure_bio_submit(s->iop.c, flush, cl);
   1037		}
   1038	} else {
   1039		s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
   1040					     &dc->disk.bio_split);
   1041		/* I/O request sent to backing device */
   1042		bio->bi_end_io = backing_request_endio;
   1043		closure_bio_submit(s->iop.c, bio, cl);
   1044	}
   1045
   1046insert_data:
   1047	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
   1048	continue_at(cl, cached_dev_write_complete, NULL);
   1049}
   1050
   1051static void cached_dev_nodata(struct closure *cl)
   1052{
   1053	struct search *s = container_of(cl, struct search, cl);
   1054	struct bio *bio = &s->bio.bio;
   1055
   1056	if (s->iop.flush_journal)
   1057		bch_journal_meta(s->iop.c, cl);
   1058
   1059	/* If it's a flush, we send the flush to the backing device too */
   1060	bio->bi_end_io = backing_request_endio;
   1061	closure_bio_submit(s->iop.c, bio, cl);
   1062
   1063	continue_at(cl, cached_dev_bio_complete, NULL);
   1064}
   1065
   1066struct detached_dev_io_private {
   1067	struct bcache_device	*d;
   1068	unsigned long		start_time;
   1069	bio_end_io_t		*bi_end_io;
   1070	void			*bi_private;
   1071	struct block_device	*orig_bdev;
   1072};
   1073
   1074static void detached_dev_end_io(struct bio *bio)
   1075{
   1076	struct detached_dev_io_private *ddip;
   1077
   1078	ddip = bio->bi_private;
   1079	bio->bi_end_io = ddip->bi_end_io;
   1080	bio->bi_private = ddip->bi_private;
   1081
   1082	/* Count on the bcache device */
   1083	bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
   1084
   1085	if (bio->bi_status) {
   1086		struct cached_dev *dc = container_of(ddip->d,
   1087						     struct cached_dev, disk);
   1088		/* should count I/O error for backing device here */
   1089		bch_count_backing_io_errors(dc, bio);
   1090	}
   1091
   1092	kfree(ddip);
   1093	bio->bi_end_io(bio);
   1094}
   1095
   1096static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
   1097		struct block_device *orig_bdev, unsigned long start_time)
   1098{
   1099	struct detached_dev_io_private *ddip;
   1100	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
   1101
   1102	/*
   1103	 * no need to call closure_get(&dc->disk.cl),
   1104	 * because upper layer had already opened bcache device,
   1105	 * which would call closure_get(&dc->disk.cl)
   1106	 */
   1107	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
   1108	if (!ddip) {
   1109		bio->bi_status = BLK_STS_RESOURCE;
   1110		bio->bi_end_io(bio);
   1111		return;
   1112	}
   1113
   1114	ddip->d = d;
   1115	/* Count on the bcache device */
   1116	ddip->orig_bdev = orig_bdev;
   1117	ddip->start_time = start_time;
   1118	ddip->bi_end_io = bio->bi_end_io;
   1119	ddip->bi_private = bio->bi_private;
   1120	bio->bi_end_io = detached_dev_end_io;
   1121	bio->bi_private = ddip;
   1122
   1123	if ((bio_op(bio) == REQ_OP_DISCARD) &&
   1124	    !bdev_max_discard_sectors(dc->bdev))
   1125		bio->bi_end_io(bio);
   1126	else
   1127		submit_bio_noacct(bio);
   1128}
   1129
   1130static void quit_max_writeback_rate(struct cache_set *c,
   1131				    struct cached_dev *this_dc)
   1132{
   1133	int i;
   1134	struct bcache_device *d;
   1135	struct cached_dev *dc;
   1136
   1137	/*
   1138	 * mutex bch_register_lock may compete with other parallel requesters,
   1139	 * or attach/detach operations on other backing device. Waiting to
   1140	 * the mutex lock may increase I/O request latency for seconds or more.
   1141	 * To avoid such situation, if mutext_trylock() failed, only writeback
   1142	 * rate of current cached device is set to 1, and __update_write_back()
   1143	 * will decide writeback rate of other cached devices (remember now
   1144	 * c->idle_counter is 0 already).
   1145	 */
   1146	if (mutex_trylock(&bch_register_lock)) {
   1147		for (i = 0; i < c->devices_max_used; i++) {
   1148			if (!c->devices[i])
   1149				continue;
   1150
   1151			if (UUID_FLASH_ONLY(&c->uuids[i]))
   1152				continue;
   1153
   1154			d = c->devices[i];
   1155			dc = container_of(d, struct cached_dev, disk);
   1156			/*
   1157			 * set writeback rate to default minimum value,
   1158			 * then let update_writeback_rate() to decide the
   1159			 * upcoming rate.
   1160			 */
   1161			atomic_long_set(&dc->writeback_rate.rate, 1);
   1162		}
   1163		mutex_unlock(&bch_register_lock);
   1164	} else
   1165		atomic_long_set(&this_dc->writeback_rate.rate, 1);
   1166}
   1167
   1168/* Cached devices - read & write stuff */
   1169
   1170void cached_dev_submit_bio(struct bio *bio)
   1171{
   1172	struct search *s;
   1173	struct block_device *orig_bdev = bio->bi_bdev;
   1174	struct bcache_device *d = orig_bdev->bd_disk->private_data;
   1175	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
   1176	unsigned long start_time;
   1177	int rw = bio_data_dir(bio);
   1178
   1179	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
   1180		     dc->io_disable)) {
   1181		bio->bi_status = BLK_STS_IOERR;
   1182		bio_endio(bio);
   1183		return;
   1184	}
   1185
   1186	if (likely(d->c)) {
   1187		if (atomic_read(&d->c->idle_counter))
   1188			atomic_set(&d->c->idle_counter, 0);
   1189		/*
   1190		 * If at_max_writeback_rate of cache set is true and new I/O
   1191		 * comes, quit max writeback rate of all cached devices
   1192		 * attached to this cache set, and set at_max_writeback_rate
   1193		 * to false.
   1194		 */
   1195		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
   1196			atomic_set(&d->c->at_max_writeback_rate, 0);
   1197			quit_max_writeback_rate(d->c, dc);
   1198		}
   1199	}
   1200
   1201	start_time = bio_start_io_acct(bio);
   1202
   1203	bio_set_dev(bio, dc->bdev);
   1204	bio->bi_iter.bi_sector += dc->sb.data_offset;
   1205
   1206	if (cached_dev_get(dc)) {
   1207		s = search_alloc(bio, d, orig_bdev, start_time);
   1208		trace_bcache_request_start(s->d, bio);
   1209
   1210		if (!bio->bi_iter.bi_size) {
   1211			/*
   1212			 * can't call bch_journal_meta from under
   1213			 * submit_bio_noacct
   1214			 */
   1215			continue_at_nobarrier(&s->cl,
   1216					      cached_dev_nodata,
   1217					      bcache_wq);
   1218		} else {
   1219			s->iop.bypass = check_should_bypass(dc, bio);
   1220
   1221			if (rw)
   1222				cached_dev_write(dc, s);
   1223			else
   1224				cached_dev_read(dc, s);
   1225		}
   1226	} else
   1227		/* I/O request sent to backing device */
   1228		detached_dev_do_request(d, bio, orig_bdev, start_time);
   1229}
   1230
   1231static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
   1232			    unsigned int cmd, unsigned long arg)
   1233{
   1234	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
   1235
   1236	if (dc->io_disable)
   1237		return -EIO;
   1238	if (!dc->bdev->bd_disk->fops->ioctl)
   1239		return -ENOTTY;
   1240	return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
   1241}
   1242
   1243void bch_cached_dev_request_init(struct cached_dev *dc)
   1244{
   1245	dc->disk.cache_miss			= cached_dev_cache_miss;
   1246	dc->disk.ioctl				= cached_dev_ioctl;
   1247}
   1248
   1249/* Flash backed devices */
   1250
   1251static int flash_dev_cache_miss(struct btree *b, struct search *s,
   1252				struct bio *bio, unsigned int sectors)
   1253{
   1254	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
   1255
   1256	swap(bio->bi_iter.bi_size, bytes);
   1257	zero_fill_bio(bio);
   1258	swap(bio->bi_iter.bi_size, bytes);
   1259
   1260	bio_advance(bio, bytes);
   1261
   1262	if (!bio->bi_iter.bi_size)
   1263		return MAP_DONE;
   1264
   1265	return MAP_CONTINUE;
   1266}
   1267
   1268static void flash_dev_nodata(struct closure *cl)
   1269{
   1270	struct search *s = container_of(cl, struct search, cl);
   1271
   1272	if (s->iop.flush_journal)
   1273		bch_journal_meta(s->iop.c, cl);
   1274
   1275	continue_at(cl, search_free, NULL);
   1276}
   1277
   1278void flash_dev_submit_bio(struct bio *bio)
   1279{
   1280	struct search *s;
   1281	struct closure *cl;
   1282	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
   1283
   1284	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
   1285		bio->bi_status = BLK_STS_IOERR;
   1286		bio_endio(bio);
   1287		return;
   1288	}
   1289
   1290	s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
   1291	cl = &s->cl;
   1292	bio = &s->bio.bio;
   1293
   1294	trace_bcache_request_start(s->d, bio);
   1295
   1296	if (!bio->bi_iter.bi_size) {
   1297		/*
   1298		 * can't call bch_journal_meta from under submit_bio_noacct
   1299		 */
   1300		continue_at_nobarrier(&s->cl,
   1301				      flash_dev_nodata,
   1302				      bcache_wq);
   1303		return;
   1304	} else if (bio_data_dir(bio)) {
   1305		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
   1306					&KEY(d->id, bio->bi_iter.bi_sector, 0),
   1307					&KEY(d->id, bio_end_sector(bio), 0));
   1308
   1309		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
   1310		s->iop.writeback	= true;
   1311		s->iop.bio		= bio;
   1312
   1313		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
   1314	} else {
   1315		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
   1316	}
   1317
   1318	continue_at(cl, search_free, NULL);
   1319}
   1320
   1321static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
   1322			   unsigned int cmd, unsigned long arg)
   1323{
   1324	return -ENOTTY;
   1325}
   1326
   1327void bch_flash_dev_request_init(struct bcache_device *d)
   1328{
   1329	d->cache_miss				= flash_dev_cache_miss;
   1330	d->ioctl				= flash_dev_ioctl;
   1331}
   1332
   1333void bch_request_exit(void)
   1334{
   1335	kmem_cache_destroy(bch_search_cache);
   1336}
   1337
   1338int __init bch_request_init(void)
   1339{
   1340	bch_search_cache = KMEM_CACHE(search, 0);
   1341	if (!bch_search_cache)
   1342		return -ENOMEM;
   1343
   1344	return 0;
   1345}