cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

util.h (14965B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2
      3#ifndef _BCACHE_UTIL_H
      4#define _BCACHE_UTIL_H
      5
      6#include <linux/blkdev.h>
      7#include <linux/errno.h>
      8#include <linux/kernel.h>
      9#include <linux/sched/clock.h>
     10#include <linux/llist.h>
     11#include <linux/ratelimit.h>
     12#include <linux/vmalloc.h>
     13#include <linux/workqueue.h>
     14#include <linux/crc64.h>
     15
     16#include "closure.h"
     17
     18struct closure;
     19
     20#ifdef CONFIG_BCACHE_DEBUG
     21
     22#define EBUG_ON(cond)			BUG_ON(cond)
     23#define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
     24#define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
     25
     26#else /* DEBUG */
     27
     28#define EBUG_ON(cond)		do { if (cond) do {} while (0); } while (0)
     29#define atomic_dec_bug(v)	atomic_dec(v)
     30#define atomic_inc_bug(v, i)	atomic_inc(v)
     31
     32#endif
     33
     34#define DECLARE_HEAP(type, name)					\
     35	struct {							\
     36		size_t size, used;					\
     37		type *data;						\
     38	} name
     39
     40#define init_heap(heap, _size, gfp)					\
     41({									\
     42	size_t _bytes;							\
     43	(heap)->used = 0;						\
     44	(heap)->size = (_size);						\
     45	_bytes = (heap)->size * sizeof(*(heap)->data);			\
     46	(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
     47	(heap)->data;							\
     48})
     49
     50#define free_heap(heap)							\
     51do {									\
     52	kvfree((heap)->data);						\
     53	(heap)->data = NULL;						\
     54} while (0)
     55
     56#define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
     57
     58#define heap_sift(h, i, cmp)						\
     59do {									\
     60	size_t _r, _j = i;						\
     61									\
     62	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
     63		_r = _j * 2 + 1;					\
     64		if (_r + 1 < (h)->used &&				\
     65		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
     66			_r++;						\
     67									\
     68		if (cmp((h)->data[_r], (h)->data[_j]))			\
     69			break;						\
     70		heap_swap(h, _r, _j);					\
     71	}								\
     72} while (0)
     73
     74#define heap_sift_down(h, i, cmp)					\
     75do {									\
     76	while (i) {							\
     77		size_t p = (i - 1) / 2;					\
     78		if (cmp((h)->data[i], (h)->data[p]))			\
     79			break;						\
     80		heap_swap(h, i, p);					\
     81		i = p;							\
     82	}								\
     83} while (0)
     84
     85#define heap_add(h, d, cmp)						\
     86({									\
     87	bool _r = !heap_full(h);					\
     88	if (_r) {							\
     89		size_t _i = (h)->used++;				\
     90		(h)->data[_i] = d;					\
     91									\
     92		heap_sift_down(h, _i, cmp);				\
     93		heap_sift(h, _i, cmp);					\
     94	}								\
     95	_r;								\
     96})
     97
     98#define heap_pop(h, d, cmp)						\
     99({									\
    100	bool _r = (h)->used;						\
    101	if (_r) {							\
    102		(d) = (h)->data[0];					\
    103		(h)->used--;						\
    104		heap_swap(h, 0, (h)->used);				\
    105		heap_sift(h, 0, cmp);					\
    106	}								\
    107	_r;								\
    108})
    109
    110#define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)
    111
    112#define heap_full(h)	((h)->used == (h)->size)
    113
    114#define DECLARE_FIFO(type, name)					\
    115	struct {							\
    116		size_t front, back, size, mask;				\
    117		type *data;						\
    118	} name
    119
    120#define fifo_for_each(c, fifo, iter)					\
    121	for (iter = (fifo)->front;					\
    122	     c = (fifo)->data[iter], iter != (fifo)->back;		\
    123	     iter = (iter + 1) & (fifo)->mask)
    124
    125#define __init_fifo(fifo, gfp)						\
    126({									\
    127	size_t _allocated_size, _bytes;					\
    128	BUG_ON(!(fifo)->size);						\
    129									\
    130	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
    131	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
    132									\
    133	(fifo)->mask = _allocated_size - 1;				\
    134	(fifo)->front = (fifo)->back = 0;				\
    135									\
    136	(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
    137	(fifo)->data;							\
    138})
    139
    140#define init_fifo_exact(fifo, _size, gfp)				\
    141({									\
    142	(fifo)->size = (_size);						\
    143	__init_fifo(fifo, gfp);						\
    144})
    145
    146#define init_fifo(fifo, _size, gfp)					\
    147({									\
    148	(fifo)->size = (_size);						\
    149	if ((fifo)->size > 4)						\
    150		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
    151	__init_fifo(fifo, gfp);						\
    152})
    153
    154#define free_fifo(fifo)							\
    155do {									\
    156	kvfree((fifo)->data);						\
    157	(fifo)->data = NULL;						\
    158} while (0)
    159
    160#define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
    161#define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
    162
    163#define fifo_empty(fifo)	(!fifo_used(fifo))
    164#define fifo_full(fifo)		(!fifo_free(fifo))
    165
    166#define fifo_front(fifo)	((fifo)->data[(fifo)->front])
    167#define fifo_back(fifo)							\
    168	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
    169
    170#define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
    171
    172#define fifo_push_back(fifo, i)						\
    173({									\
    174	bool _r = !fifo_full((fifo));					\
    175	if (_r) {							\
    176		(fifo)->data[(fifo)->back++] = (i);			\
    177		(fifo)->back &= (fifo)->mask;				\
    178	}								\
    179	_r;								\
    180})
    181
    182#define fifo_pop_front(fifo, i)						\
    183({									\
    184	bool _r = !fifo_empty((fifo));					\
    185	if (_r) {							\
    186		(i) = (fifo)->data[(fifo)->front++];			\
    187		(fifo)->front &= (fifo)->mask;				\
    188	}								\
    189	_r;								\
    190})
    191
    192#define fifo_push_front(fifo, i)					\
    193({									\
    194	bool _r = !fifo_full((fifo));					\
    195	if (_r) {							\
    196		--(fifo)->front;					\
    197		(fifo)->front &= (fifo)->mask;				\
    198		(fifo)->data[(fifo)->front] = (i);			\
    199	}								\
    200	_r;								\
    201})
    202
    203#define fifo_pop_back(fifo, i)						\
    204({									\
    205	bool _r = !fifo_empty((fifo));					\
    206	if (_r) {							\
    207		--(fifo)->back;						\
    208		(fifo)->back &= (fifo)->mask;				\
    209		(i) = (fifo)->data[(fifo)->back]			\
    210	}								\
    211	_r;								\
    212})
    213
    214#define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
    215#define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
    216
    217#define fifo_swap(l, r)							\
    218do {									\
    219	swap((l)->front, (r)->front);					\
    220	swap((l)->back, (r)->back);					\
    221	swap((l)->size, (r)->size);					\
    222	swap((l)->mask, (r)->mask);					\
    223	swap((l)->data, (r)->data);					\
    224} while (0)
    225
    226#define fifo_move(dest, src)						\
    227do {									\
    228	typeof(*((dest)->data)) _t;					\
    229	while (!fifo_full(dest) &&					\
    230	       fifo_pop(src, _t))					\
    231		fifo_push(dest, _t);					\
    232} while (0)
    233
    234/*
    235 * Simple array based allocator - preallocates a number of elements and you can
    236 * never allocate more than that, also has no locking.
    237 *
    238 * Handy because if you know you only need a fixed number of elements you don't
    239 * have to worry about memory allocation failure, and sometimes a mempool isn't
    240 * what you want.
    241 *
    242 * We treat the free elements as entries in a singly linked list, and the
    243 * freelist as a stack - allocating and freeing push and pop off the freelist.
    244 */
    245
    246#define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
    247	struct {							\
    248		type	*freelist;					\
    249		type	data[size];					\
    250	} name
    251
    252#define array_alloc(array)						\
    253({									\
    254	typeof((array)->freelist) _ret = (array)->freelist;		\
    255									\
    256	if (_ret)							\
    257		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
    258									\
    259	_ret;								\
    260})
    261
    262#define array_free(array, ptr)						\
    263do {									\
    264	typeof((array)->freelist) _ptr = ptr;				\
    265									\
    266	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
    267	(array)->freelist = _ptr;					\
    268} while (0)
    269
    270#define array_allocator_init(array)					\
    271do {									\
    272	typeof((array)->freelist) _i;					\
    273									\
    274	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
    275	(array)->freelist = NULL;					\
    276									\
    277	for (_i = (array)->data;					\
    278	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
    279	     _i++)							\
    280		array_free(array, _i);					\
    281} while (0)
    282
    283#define array_freelist_empty(array)	((array)->freelist == NULL)
    284
    285#define ANYSINT_MAX(t)							\
    286	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
    287
    288int bch_strtoint_h(const char *cp, int *res);
    289int bch_strtouint_h(const char *cp, unsigned int *res);
    290int bch_strtoll_h(const char *cp, long long *res);
    291int bch_strtoull_h(const char *cp, unsigned long long *res);
    292
    293static inline int bch_strtol_h(const char *cp, long *res)
    294{
    295#if BITS_PER_LONG == 32
    296	return bch_strtoint_h(cp, (int *) res);
    297#else
    298	return bch_strtoll_h(cp, (long long *) res);
    299#endif
    300}
    301
    302static inline int bch_strtoul_h(const char *cp, long *res)
    303{
    304#if BITS_PER_LONG == 32
    305	return bch_strtouint_h(cp, (unsigned int *) res);
    306#else
    307	return bch_strtoull_h(cp, (unsigned long long *) res);
    308#endif
    309}
    310
    311#define strtoi_h(cp, res)						\
    312	(__builtin_types_compatible_p(typeof(*res), int)		\
    313	? bch_strtoint_h(cp, (void *) res)				\
    314	: __builtin_types_compatible_p(typeof(*res), long)		\
    315	? bch_strtol_h(cp, (void *) res)				\
    316	: __builtin_types_compatible_p(typeof(*res), long long)		\
    317	? bch_strtoll_h(cp, (void *) res)				\
    318	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
    319	? bch_strtouint_h(cp, (void *) res)				\
    320	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
    321	? bch_strtoul_h(cp, (void *) res)				\
    322	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
    323	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
    324
    325#define strtoul_safe(cp, var)						\
    326({									\
    327	unsigned long _v;						\
    328	int _r = kstrtoul(cp, 10, &_v);					\
    329	if (!_r)							\
    330		var = _v;						\
    331	_r;								\
    332})
    333
    334#define strtoul_safe_clamp(cp, var, min, max)				\
    335({									\
    336	unsigned long _v;						\
    337	int _r = kstrtoul(cp, 10, &_v);					\
    338	if (!_r)							\
    339		var = clamp_t(typeof(var), _v, min, max);		\
    340	_r;								\
    341})
    342
    343ssize_t bch_hprint(char *buf, int64_t v);
    344
    345bool bch_is_zero(const char *p, size_t n);
    346int bch_parse_uuid(const char *s, char *uuid);
    347
    348struct time_stats {
    349	spinlock_t	lock;
    350	/*
    351	 * all fields are in nanoseconds, averages are ewmas stored left shifted
    352	 * by 8
    353	 */
    354	uint64_t	max_duration;
    355	uint64_t	average_duration;
    356	uint64_t	average_frequency;
    357	uint64_t	last;
    358};
    359
    360void bch_time_stats_update(struct time_stats *stats, uint64_t time);
    361
    362static inline unsigned int local_clock_us(void)
    363{
    364	return local_clock() >> 10;
    365}
    366
    367#define NSEC_PER_ns			1L
    368#define NSEC_PER_us			NSEC_PER_USEC
    369#define NSEC_PER_ms			NSEC_PER_MSEC
    370#define NSEC_PER_sec			NSEC_PER_SEC
    371
    372#define __print_time_stat(stats, name, stat, units)			\
    373	sysfs_print(name ## _ ## stat ## _ ## units,			\
    374		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
    375
    376#define sysfs_print_time_stats(stats, name,				\
    377			       frequency_units,				\
    378			       duration_units)				\
    379do {									\
    380	__print_time_stat(stats, name,					\
    381			  average_frequency,	frequency_units);	\
    382	__print_time_stat(stats, name,					\
    383			  average_duration,	duration_units);	\
    384	sysfs_print(name ## _ ##max_duration ## _ ## duration_units,	\
    385			div_u64((stats)->max_duration,			\
    386				NSEC_PER_ ## duration_units));		\
    387									\
    388	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
    389		    ? div_s64(local_clock() - (stats)->last,		\
    390			      NSEC_PER_ ## frequency_units)		\
    391		    : -1LL);						\
    392} while (0)
    393
    394#define sysfs_time_stats_attribute(name,				\
    395				   frequency_units,			\
    396				   duration_units)			\
    397read_attribute(name ## _average_frequency_ ## frequency_units);		\
    398read_attribute(name ## _average_duration_ ## duration_units);		\
    399read_attribute(name ## _max_duration_ ## duration_units);		\
    400read_attribute(name ## _last_ ## frequency_units)
    401
    402#define sysfs_time_stats_attribute_list(name,				\
    403					frequency_units,		\
    404					duration_units)			\
    405&sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
    406&sysfs_ ## name ## _average_duration_ ## duration_units,		\
    407&sysfs_ ## name ## _max_duration_ ## duration_units,			\
    408&sysfs_ ## name ## _last_ ## frequency_units,
    409
    410#define ewma_add(ewma, val, weight, factor)				\
    411({									\
    412	(ewma) *= (weight) - 1;						\
    413	(ewma) += (val) << factor;					\
    414	(ewma) /= (weight);						\
    415	(ewma) >> factor;						\
    416})
    417
    418struct bch_ratelimit {
    419	/* Next time we want to do some work, in nanoseconds */
    420	uint64_t		next;
    421
    422	/*
    423	 * Rate at which we want to do work, in units per second
    424	 * The units here correspond to the units passed to bch_next_delay()
    425	 */
    426	atomic_long_t		rate;
    427};
    428
    429static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
    430{
    431	d->next = local_clock();
    432}
    433
    434uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
    435
    436#define __DIV_SAFE(n, d, zero)						\
    437({									\
    438	typeof(n) _n = (n);						\
    439	typeof(d) _d = (d);						\
    440	_d ? _n / _d : zero;						\
    441})
    442
    443#define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
    444
    445#define container_of_or_null(ptr, type, member)				\
    446({									\
    447	typeof(ptr) _ptr = ptr;						\
    448	_ptr ? container_of(_ptr, type, member) : NULL;			\
    449})
    450
    451#define RB_INSERT(root, new, member, cmp)				\
    452({									\
    453	__label__ dup;							\
    454	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
    455	typeof(new) this;						\
    456	int res, ret = -1;						\
    457									\
    458	while (*n) {							\
    459		parent = *n;						\
    460		this = container_of(*n, typeof(*(new)), member);	\
    461		res = cmp(new, this);					\
    462		if (!res)						\
    463			goto dup;					\
    464		n = res < 0						\
    465			? &(*n)->rb_left				\
    466			: &(*n)->rb_right;				\
    467	}								\
    468									\
    469	rb_link_node(&(new)->member, parent, n);			\
    470	rb_insert_color(&(new)->member, root);				\
    471	ret = 0;							\
    472dup:									\
    473	ret;								\
    474})
    475
    476#define RB_SEARCH(root, search, member, cmp)				\
    477({									\
    478	struct rb_node *n = (root)->rb_node;				\
    479	typeof(&(search)) this, ret = NULL;				\
    480	int res;							\
    481									\
    482	while (n) {							\
    483		this = container_of(n, typeof(search), member);		\
    484		res = cmp(&(search), this);				\
    485		if (!res) {						\
    486			ret = this;					\
    487			break;						\
    488		}							\
    489		n = res < 0						\
    490			? n->rb_left					\
    491			: n->rb_right;					\
    492	}								\
    493	ret;								\
    494})
    495
    496#define RB_GREATER(root, search, member, cmp)				\
    497({									\
    498	struct rb_node *n = (root)->rb_node;				\
    499	typeof(&(search)) this, ret = NULL;				\
    500	int res;							\
    501									\
    502	while (n) {							\
    503		this = container_of(n, typeof(search), member);		\
    504		res = cmp(&(search), this);				\
    505		if (res < 0) {						\
    506			ret = this;					\
    507			n = n->rb_left;					\
    508		} else							\
    509			n = n->rb_right;				\
    510	}								\
    511	ret;								\
    512})
    513
    514#define RB_FIRST(root, type, member)					\
    515	container_of_or_null(rb_first(root), type, member)
    516
    517#define RB_LAST(root, type, member)					\
    518	container_of_or_null(rb_last(root), type, member)
    519
    520#define RB_NEXT(ptr, member)						\
    521	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
    522
    523#define RB_PREV(ptr, member)						\
    524	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
    525
    526static inline uint64_t bch_crc64(const void *p, size_t len)
    527{
    528	uint64_t crc = 0xffffffffffffffffULL;
    529
    530	crc = crc64_be(crc, p, len);
    531	return crc ^ 0xffffffffffffffffULL;
    532}
    533
    534/*
    535 * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
    536 * frac_bits), with the less-significant bits filled in by linear
    537 * interpolation.
    538 *
    539 * This can also be interpreted as a floating-point number format,
    540 * where the low frac_bits are the mantissa (with implicit leading
    541 * 1 bit), and the more significant bits are the exponent.
    542 * The return value is 1.mantissa * 2^exponent.
    543 *
    544 * The way this is used, fract_bits is 6 and the largest possible
    545 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
    546 * so the maximum output is 0x1fc00.
    547 */
    548static inline unsigned int fract_exp_two(unsigned int x,
    549					 unsigned int fract_bits)
    550{
    551	unsigned int mantissa = 1 << fract_bits;	/* Implicit bit */
    552
    553	mantissa += x & (mantissa - 1);
    554	x >>= fract_bits;	/* The exponent */
    555	/* Largest intermediate value 0x7f0000 */
    556	return mantissa << x >> fract_bits;
    557}
    558
    559void bch_bio_map(struct bio *bio, void *base);
    560int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
    561
    562#endif /* _BCACHE_UTIL_H */