cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

writeback.c (28159B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * background writeback - scan btree for dirty data and write it to the backing
      4 * device
      5 *
      6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
      7 * Copyright 2012 Google, Inc.
      8 */
      9
     10#include "bcache.h"
     11#include "btree.h"
     12#include "debug.h"
     13#include "writeback.h"
     14
     15#include <linux/delay.h>
     16#include <linux/kthread.h>
     17#include <linux/sched/clock.h>
     18#include <trace/events/bcache.h>
     19
     20static void update_gc_after_writeback(struct cache_set *c)
     21{
     22	if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
     23	    c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
     24		return;
     25
     26	c->gc_after_writeback |= BCH_DO_AUTO_GC;
     27}
     28
     29/* Rate limiting */
     30static uint64_t __calc_target_rate(struct cached_dev *dc)
     31{
     32	struct cache_set *c = dc->disk.c;
     33
     34	/*
     35	 * This is the size of the cache, minus the amount used for
     36	 * flash-only devices
     37	 */
     38	uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
     39				atomic_long_read(&c->flash_dev_dirty_sectors);
     40
     41	/*
     42	 * Unfortunately there is no control of global dirty data.  If the
     43	 * user states that they want 10% dirty data in the cache, and has,
     44	 * e.g., 5 backing volumes of equal size, we try and ensure each
     45	 * backing volume uses about 2% of the cache for dirty data.
     46	 */
     47	uint32_t bdev_share =
     48		div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
     49				c->cached_dev_sectors);
     50
     51	uint64_t cache_dirty_target =
     52		div_u64(cache_sectors * dc->writeback_percent, 100);
     53
     54	/* Ensure each backing dev gets at least one dirty share */
     55	if (bdev_share < 1)
     56		bdev_share = 1;
     57
     58	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
     59}
     60
     61static void __update_writeback_rate(struct cached_dev *dc)
     62{
     63	/*
     64	 * PI controller:
     65	 * Figures out the amount that should be written per second.
     66	 *
     67	 * First, the error (number of sectors that are dirty beyond our
     68	 * target) is calculated.  The error is accumulated (numerically
     69	 * integrated).
     70	 *
     71	 * Then, the proportional value and integral value are scaled
     72	 * based on configured values.  These are stored as inverses to
     73	 * avoid fixed point math and to make configuration easy-- e.g.
     74	 * the default value of 40 for writeback_rate_p_term_inverse
     75	 * attempts to write at a rate that would retire all the dirty
     76	 * blocks in 40 seconds.
     77	 *
     78	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
     79	 * of the error is accumulated in the integral term per second.
     80	 * This acts as a slow, long-term average that is not subject to
     81	 * variations in usage like the p term.
     82	 */
     83	int64_t target = __calc_target_rate(dc);
     84	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
     85	int64_t error = dirty - target;
     86	int64_t proportional_scaled =
     87		div_s64(error, dc->writeback_rate_p_term_inverse);
     88	int64_t integral_scaled;
     89	uint32_t new_rate;
     90
     91	/*
     92	 * We need to consider the number of dirty buckets as well
     93	 * when calculating the proportional_scaled, Otherwise we might
     94	 * have an unreasonable small writeback rate at a highly fragmented situation
     95	 * when very few dirty sectors consumed a lot dirty buckets, the
     96	 * worst case is when dirty buckets reached cutoff_writeback_sync and
     97	 * dirty data is still not even reached to writeback percent, so the rate
     98	 * still will be at the minimum value, which will cause the write
     99	 * stuck at a non-writeback mode.
    100	 */
    101	struct cache_set *c = dc->disk.c;
    102
    103	int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
    104
    105	if (dc->writeback_consider_fragment &&
    106		c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
    107		int64_t fragment =
    108			div_s64((dirty_buckets *  c->cache->sb.bucket_size), dirty);
    109		int64_t fp_term;
    110		int64_t fps;
    111
    112		if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
    113			fp_term = (int64_t)dc->writeback_rate_fp_term_low *
    114			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
    115		} else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
    116			fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
    117			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
    118		} else {
    119			fp_term = (int64_t)dc->writeback_rate_fp_term_high *
    120			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
    121		}
    122		fps = div_s64(dirty, dirty_buckets) * fp_term;
    123		if (fragment > 3 && fps > proportional_scaled) {
    124			/* Only overrite the p when fragment > 3 */
    125			proportional_scaled = fps;
    126		}
    127	}
    128
    129	if ((error < 0 && dc->writeback_rate_integral > 0) ||
    130	    (error > 0 && time_before64(local_clock(),
    131			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
    132		/*
    133		 * Only decrease the integral term if it's more than
    134		 * zero.  Only increase the integral term if the device
    135		 * is keeping up.  (Don't wind up the integral
    136		 * ineffectively in either case).
    137		 *
    138		 * It's necessary to scale this by
    139		 * writeback_rate_update_seconds to keep the integral
    140		 * term dimensioned properly.
    141		 */
    142		dc->writeback_rate_integral += error *
    143			dc->writeback_rate_update_seconds;
    144	}
    145
    146	integral_scaled = div_s64(dc->writeback_rate_integral,
    147			dc->writeback_rate_i_term_inverse);
    148
    149	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
    150			dc->writeback_rate_minimum, NSEC_PER_SEC);
    151
    152	dc->writeback_rate_proportional = proportional_scaled;
    153	dc->writeback_rate_integral_scaled = integral_scaled;
    154	dc->writeback_rate_change = new_rate -
    155			atomic_long_read(&dc->writeback_rate.rate);
    156	atomic_long_set(&dc->writeback_rate.rate, new_rate);
    157	dc->writeback_rate_target = target;
    158}
    159
    160static bool set_at_max_writeback_rate(struct cache_set *c,
    161				       struct cached_dev *dc)
    162{
    163	/* Don't sst max writeback rate if it is disabled */
    164	if (!c->idle_max_writeback_rate_enabled)
    165		return false;
    166
    167	/* Don't set max writeback rate if gc is running */
    168	if (!c->gc_mark_valid)
    169		return false;
    170	/*
    171	 * Idle_counter is increased everytime when update_writeback_rate() is
    172	 * called. If all backing devices attached to the same cache set have
    173	 * identical dc->writeback_rate_update_seconds values, it is about 6
    174	 * rounds of update_writeback_rate() on each backing device before
    175	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
    176	 * to each dc->writeback_rate.rate.
    177	 * In order to avoid extra locking cost for counting exact dirty cached
    178	 * devices number, c->attached_dev_nr is used to calculate the idle
    179	 * throushold. It might be bigger if not all cached device are in write-
    180	 * back mode, but it still works well with limited extra rounds of
    181	 * update_writeback_rate().
    182	 */
    183	if (atomic_inc_return(&c->idle_counter) <
    184	    atomic_read(&c->attached_dev_nr) * 6)
    185		return false;
    186
    187	if (atomic_read(&c->at_max_writeback_rate) != 1)
    188		atomic_set(&c->at_max_writeback_rate, 1);
    189
    190	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
    191
    192	/* keep writeback_rate_target as existing value */
    193	dc->writeback_rate_proportional = 0;
    194	dc->writeback_rate_integral_scaled = 0;
    195	dc->writeback_rate_change = 0;
    196
    197	/*
    198	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
    199	 * new I/O arrives during before set_at_max_writeback_rate() returns.
    200	 * Then the writeback rate is set to 1, and its new value should be
    201	 * decided via __update_writeback_rate().
    202	 */
    203	if ((atomic_read(&c->idle_counter) <
    204	     atomic_read(&c->attached_dev_nr) * 6) ||
    205	    !atomic_read(&c->at_max_writeback_rate))
    206		return false;
    207
    208	return true;
    209}
    210
    211static void update_writeback_rate(struct work_struct *work)
    212{
    213	struct cached_dev *dc = container_of(to_delayed_work(work),
    214					     struct cached_dev,
    215					     writeback_rate_update);
    216	struct cache_set *c = dc->disk.c;
    217
    218	/*
    219	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
    220	 * cancel_delayed_work_sync().
    221	 */
    222	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
    223	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
    224	smp_mb__after_atomic();
    225
    226	/*
    227	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
    228	 * check it here too.
    229	 */
    230	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
    231	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
    232		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
    233		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
    234		smp_mb__after_atomic();
    235		return;
    236	}
    237
    238	/*
    239	 * If the whole cache set is idle, set_at_max_writeback_rate()
    240	 * will set writeback rate to a max number. Then it is
    241	 * unncessary to update writeback rate for an idle cache set
    242	 * in maximum writeback rate number(s).
    243	 */
    244	if (atomic_read(&dc->has_dirty) && dc->writeback_percent &&
    245	    !set_at_max_writeback_rate(c, dc)) {
    246		do {
    247			if (!down_read_trylock((&dc->writeback_lock))) {
    248				dc->rate_update_retry++;
    249				if (dc->rate_update_retry <=
    250				    BCH_WBRATE_UPDATE_MAX_SKIPS)
    251					break;
    252				down_read(&dc->writeback_lock);
    253				dc->rate_update_retry = 0;
    254			}
    255			__update_writeback_rate(dc);
    256			update_gc_after_writeback(c);
    257			up_read(&dc->writeback_lock);
    258		} while (0);
    259	}
    260
    261
    262	/*
    263	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
    264	 * check it here too.
    265	 */
    266	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
    267	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
    268		schedule_delayed_work(&dc->writeback_rate_update,
    269			      dc->writeback_rate_update_seconds * HZ);
    270	}
    271
    272	/*
    273	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
    274	 * cancel_delayed_work_sync().
    275	 */
    276	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
    277	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
    278	smp_mb__after_atomic();
    279}
    280
    281static unsigned int writeback_delay(struct cached_dev *dc,
    282				    unsigned int sectors)
    283{
    284	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
    285	    !dc->writeback_percent)
    286		return 0;
    287
    288	return bch_next_delay(&dc->writeback_rate, sectors);
    289}
    290
    291struct dirty_io {
    292	struct closure		cl;
    293	struct cached_dev	*dc;
    294	uint16_t		sequence;
    295	struct bio		bio;
    296};
    297
    298static void dirty_init(struct keybuf_key *w)
    299{
    300	struct dirty_io *io = w->private;
    301	struct bio *bio = &io->bio;
    302
    303	bio_init(bio, NULL, bio->bi_inline_vecs,
    304		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0);
    305	if (!io->dc->writeback_percent)
    306		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
    307
    308	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
    309	bio->bi_private		= w;
    310	bch_bio_map(bio, NULL);
    311}
    312
    313static void dirty_io_destructor(struct closure *cl)
    314{
    315	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
    316
    317	kfree(io);
    318}
    319
    320static void write_dirty_finish(struct closure *cl)
    321{
    322	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
    323	struct keybuf_key *w = io->bio.bi_private;
    324	struct cached_dev *dc = io->dc;
    325
    326	bio_free_pages(&io->bio);
    327
    328	/* This is kind of a dumb way of signalling errors. */
    329	if (KEY_DIRTY(&w->key)) {
    330		int ret;
    331		unsigned int i;
    332		struct keylist keys;
    333
    334		bch_keylist_init(&keys);
    335
    336		bkey_copy(keys.top, &w->key);
    337		SET_KEY_DIRTY(keys.top, false);
    338		bch_keylist_push(&keys);
    339
    340		for (i = 0; i < KEY_PTRS(&w->key); i++)
    341			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
    342
    343		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
    344
    345		if (ret)
    346			trace_bcache_writeback_collision(&w->key);
    347
    348		atomic_long_inc(ret
    349				? &dc->disk.c->writeback_keys_failed
    350				: &dc->disk.c->writeback_keys_done);
    351	}
    352
    353	bch_keybuf_del(&dc->writeback_keys, w);
    354	up(&dc->in_flight);
    355
    356	closure_return_with_destructor(cl, dirty_io_destructor);
    357}
    358
    359static void dirty_endio(struct bio *bio)
    360{
    361	struct keybuf_key *w = bio->bi_private;
    362	struct dirty_io *io = w->private;
    363
    364	if (bio->bi_status) {
    365		SET_KEY_DIRTY(&w->key, false);
    366		bch_count_backing_io_errors(io->dc, bio);
    367	}
    368
    369	closure_put(&io->cl);
    370}
    371
    372static void write_dirty(struct closure *cl)
    373{
    374	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
    375	struct keybuf_key *w = io->bio.bi_private;
    376	struct cached_dev *dc = io->dc;
    377
    378	uint16_t next_sequence;
    379
    380	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
    381		/* Not our turn to write; wait for a write to complete */
    382		closure_wait(&dc->writeback_ordering_wait, cl);
    383
    384		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
    385			/*
    386			 * Edge case-- it happened in indeterminate order
    387			 * relative to when we were added to wait list..
    388			 */
    389			closure_wake_up(&dc->writeback_ordering_wait);
    390		}
    391
    392		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
    393		return;
    394	}
    395
    396	next_sequence = io->sequence + 1;
    397
    398	/*
    399	 * IO errors are signalled using the dirty bit on the key.
    400	 * If we failed to read, we should not attempt to write to the
    401	 * backing device.  Instead, immediately go to write_dirty_finish
    402	 * to clean up.
    403	 */
    404	if (KEY_DIRTY(&w->key)) {
    405		dirty_init(w);
    406		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
    407		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
    408		bio_set_dev(&io->bio, io->dc->bdev);
    409		io->bio.bi_end_io	= dirty_endio;
    410
    411		/* I/O request sent to backing device */
    412		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
    413	}
    414
    415	atomic_set(&dc->writeback_sequence_next, next_sequence);
    416	closure_wake_up(&dc->writeback_ordering_wait);
    417
    418	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
    419}
    420
    421static void read_dirty_endio(struct bio *bio)
    422{
    423	struct keybuf_key *w = bio->bi_private;
    424	struct dirty_io *io = w->private;
    425
    426	/* is_read = 1 */
    427	bch_count_io_errors(io->dc->disk.c->cache,
    428			    bio->bi_status, 1,
    429			    "reading dirty data from cache");
    430
    431	dirty_endio(bio);
    432}
    433
    434static void read_dirty_submit(struct closure *cl)
    435{
    436	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
    437
    438	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
    439
    440	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
    441}
    442
    443static void read_dirty(struct cached_dev *dc)
    444{
    445	unsigned int delay = 0;
    446	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
    447	size_t size;
    448	int nk, i;
    449	struct dirty_io *io;
    450	struct closure cl;
    451	uint16_t sequence = 0;
    452
    453	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
    454	atomic_set(&dc->writeback_sequence_next, sequence);
    455	closure_init_stack(&cl);
    456
    457	/*
    458	 * XXX: if we error, background writeback just spins. Should use some
    459	 * mempools.
    460	 */
    461
    462	next = bch_keybuf_next(&dc->writeback_keys);
    463
    464	while (!kthread_should_stop() &&
    465	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
    466	       next) {
    467		size = 0;
    468		nk = 0;
    469
    470		do {
    471			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
    472
    473			/*
    474			 * Don't combine too many operations, even if they
    475			 * are all small.
    476			 */
    477			if (nk >= MAX_WRITEBACKS_IN_PASS)
    478				break;
    479
    480			/*
    481			 * If the current operation is very large, don't
    482			 * further combine operations.
    483			 */
    484			if (size >= MAX_WRITESIZE_IN_PASS)
    485				break;
    486
    487			/*
    488			 * Operations are only eligible to be combined
    489			 * if they are contiguous.
    490			 *
    491			 * TODO: add a heuristic willing to fire a
    492			 * certain amount of non-contiguous IO per pass,
    493			 * so that we can benefit from backing device
    494			 * command queueing.
    495			 */
    496			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
    497						&START_KEY(&next->key)))
    498				break;
    499
    500			size += KEY_SIZE(&next->key);
    501			keys[nk++] = next;
    502		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
    503
    504		/* Now we have gathered a set of 1..5 keys to write back. */
    505		for (i = 0; i < nk; i++) {
    506			w = keys[i];
    507
    508			io = kzalloc(struct_size(io, bio.bi_inline_vecs,
    509						DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
    510				     GFP_KERNEL);
    511			if (!io)
    512				goto err;
    513
    514			w->private	= io;
    515			io->dc		= dc;
    516			io->sequence    = sequence++;
    517
    518			dirty_init(w);
    519			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
    520			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
    521			bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
    522			io->bio.bi_end_io	= read_dirty_endio;
    523
    524			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
    525				goto err_free;
    526
    527			trace_bcache_writeback(&w->key);
    528
    529			down(&dc->in_flight);
    530
    531			/*
    532			 * We've acquired a semaphore for the maximum
    533			 * simultaneous number of writebacks; from here
    534			 * everything happens asynchronously.
    535			 */
    536			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
    537		}
    538
    539		delay = writeback_delay(dc, size);
    540
    541		while (!kthread_should_stop() &&
    542		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
    543		       delay) {
    544			schedule_timeout_interruptible(delay);
    545			delay = writeback_delay(dc, 0);
    546		}
    547	}
    548
    549	if (0) {
    550err_free:
    551		kfree(w->private);
    552err:
    553		bch_keybuf_del(&dc->writeback_keys, w);
    554	}
    555
    556	/*
    557	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
    558	 * freed) before refilling again
    559	 */
    560	closure_sync(&cl);
    561}
    562
    563/* Scan for dirty data */
    564
    565void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
    566				  uint64_t offset, int nr_sectors)
    567{
    568	struct bcache_device *d = c->devices[inode];
    569	unsigned int stripe_offset, sectors_dirty;
    570	int stripe;
    571
    572	if (!d)
    573		return;
    574
    575	stripe = offset_to_stripe(d, offset);
    576	if (stripe < 0)
    577		return;
    578
    579	if (UUID_FLASH_ONLY(&c->uuids[inode]))
    580		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
    581
    582	stripe_offset = offset & (d->stripe_size - 1);
    583
    584	while (nr_sectors) {
    585		int s = min_t(unsigned int, abs(nr_sectors),
    586			      d->stripe_size - stripe_offset);
    587
    588		if (nr_sectors < 0)
    589			s = -s;
    590
    591		if (stripe >= d->nr_stripes)
    592			return;
    593
    594		sectors_dirty = atomic_add_return(s,
    595					d->stripe_sectors_dirty + stripe);
    596		if (sectors_dirty == d->stripe_size) {
    597			if (!test_bit(stripe, d->full_dirty_stripes))
    598				set_bit(stripe, d->full_dirty_stripes);
    599		} else {
    600			if (test_bit(stripe, d->full_dirty_stripes))
    601				clear_bit(stripe, d->full_dirty_stripes);
    602		}
    603
    604		nr_sectors -= s;
    605		stripe_offset = 0;
    606		stripe++;
    607	}
    608}
    609
    610static bool dirty_pred(struct keybuf *buf, struct bkey *k)
    611{
    612	struct cached_dev *dc = container_of(buf,
    613					     struct cached_dev,
    614					     writeback_keys);
    615
    616	BUG_ON(KEY_INODE(k) != dc->disk.id);
    617
    618	return KEY_DIRTY(k);
    619}
    620
    621static void refill_full_stripes(struct cached_dev *dc)
    622{
    623	struct keybuf *buf = &dc->writeback_keys;
    624	unsigned int start_stripe, next_stripe;
    625	int stripe;
    626	bool wrapped = false;
    627
    628	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
    629	if (stripe < 0)
    630		stripe = 0;
    631
    632	start_stripe = stripe;
    633
    634	while (1) {
    635		stripe = find_next_bit(dc->disk.full_dirty_stripes,
    636				       dc->disk.nr_stripes, stripe);
    637
    638		if (stripe == dc->disk.nr_stripes)
    639			goto next;
    640
    641		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
    642						 dc->disk.nr_stripes, stripe);
    643
    644		buf->last_scanned = KEY(dc->disk.id,
    645					stripe * dc->disk.stripe_size, 0);
    646
    647		bch_refill_keybuf(dc->disk.c, buf,
    648				  &KEY(dc->disk.id,
    649				       next_stripe * dc->disk.stripe_size, 0),
    650				  dirty_pred);
    651
    652		if (array_freelist_empty(&buf->freelist))
    653			return;
    654
    655		stripe = next_stripe;
    656next:
    657		if (wrapped && stripe > start_stripe)
    658			return;
    659
    660		if (stripe == dc->disk.nr_stripes) {
    661			stripe = 0;
    662			wrapped = true;
    663		}
    664	}
    665}
    666
    667/*
    668 * Returns true if we scanned the entire disk
    669 */
    670static bool refill_dirty(struct cached_dev *dc)
    671{
    672	struct keybuf *buf = &dc->writeback_keys;
    673	struct bkey start = KEY(dc->disk.id, 0, 0);
    674	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
    675	struct bkey start_pos;
    676
    677	/*
    678	 * make sure keybuf pos is inside the range for this disk - at bringup
    679	 * we might not be attached yet so this disk's inode nr isn't
    680	 * initialized then
    681	 */
    682	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
    683	    bkey_cmp(&buf->last_scanned, &end) > 0)
    684		buf->last_scanned = start;
    685
    686	if (dc->partial_stripes_expensive) {
    687		refill_full_stripes(dc);
    688		if (array_freelist_empty(&buf->freelist))
    689			return false;
    690	}
    691
    692	start_pos = buf->last_scanned;
    693	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
    694
    695	if (bkey_cmp(&buf->last_scanned, &end) < 0)
    696		return false;
    697
    698	/*
    699	 * If we get to the end start scanning again from the beginning, and
    700	 * only scan up to where we initially started scanning from:
    701	 */
    702	buf->last_scanned = start;
    703	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
    704
    705	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
    706}
    707
    708static int bch_writeback_thread(void *arg)
    709{
    710	struct cached_dev *dc = arg;
    711	struct cache_set *c = dc->disk.c;
    712	bool searched_full_index;
    713
    714	bch_ratelimit_reset(&dc->writeback_rate);
    715
    716	while (!kthread_should_stop() &&
    717	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
    718		down_write(&dc->writeback_lock);
    719		set_current_state(TASK_INTERRUPTIBLE);
    720		/*
    721		 * If the bache device is detaching, skip here and continue
    722		 * to perform writeback. Otherwise, if no dirty data on cache,
    723		 * or there is dirty data on cache but writeback is disabled,
    724		 * the writeback thread should sleep here and wait for others
    725		 * to wake up it.
    726		 */
    727		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
    728		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
    729			up_write(&dc->writeback_lock);
    730
    731			if (kthread_should_stop() ||
    732			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
    733				set_current_state(TASK_RUNNING);
    734				break;
    735			}
    736
    737			schedule();
    738			continue;
    739		}
    740		set_current_state(TASK_RUNNING);
    741
    742		searched_full_index = refill_dirty(dc);
    743
    744		if (searched_full_index &&
    745		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
    746			atomic_set(&dc->has_dirty, 0);
    747			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
    748			bch_write_bdev_super(dc, NULL);
    749			/*
    750			 * If bcache device is detaching via sysfs interface,
    751			 * writeback thread should stop after there is no dirty
    752			 * data on cache. BCACHE_DEV_DETACHING flag is set in
    753			 * bch_cached_dev_detach().
    754			 */
    755			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
    756				struct closure cl;
    757
    758				closure_init_stack(&cl);
    759				memset(&dc->sb.set_uuid, 0, 16);
    760				SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
    761
    762				bch_write_bdev_super(dc, &cl);
    763				closure_sync(&cl);
    764
    765				up_write(&dc->writeback_lock);
    766				break;
    767			}
    768
    769			/*
    770			 * When dirty data rate is high (e.g. 50%+), there might
    771			 * be heavy buckets fragmentation after writeback
    772			 * finished, which hurts following write performance.
    773			 * If users really care about write performance they
    774			 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
    775			 * BCH_DO_AUTO_GC is set, garbage collection thread
    776			 * will be wake up here. After moving gc, the shrunk
    777			 * btree and discarded free buckets SSD space may be
    778			 * helpful for following write requests.
    779			 */
    780			if (c->gc_after_writeback ==
    781			    (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
    782				c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
    783				force_wake_up_gc(c);
    784			}
    785		}
    786
    787		up_write(&dc->writeback_lock);
    788
    789		read_dirty(dc);
    790
    791		if (searched_full_index) {
    792			unsigned int delay = dc->writeback_delay * HZ;
    793
    794			while (delay &&
    795			       !kthread_should_stop() &&
    796			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
    797			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
    798				delay = schedule_timeout_interruptible(delay);
    799
    800			bch_ratelimit_reset(&dc->writeback_rate);
    801		}
    802	}
    803
    804	if (dc->writeback_write_wq) {
    805		flush_workqueue(dc->writeback_write_wq);
    806		destroy_workqueue(dc->writeback_write_wq);
    807	}
    808	cached_dev_put(dc);
    809	wait_for_kthread_stop();
    810
    811	return 0;
    812}
    813
    814/* Init */
    815#define INIT_KEYS_EACH_TIME	500000
    816
    817struct sectors_dirty_init {
    818	struct btree_op	op;
    819	unsigned int	inode;
    820	size_t		count;
    821};
    822
    823static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
    824				 struct bkey *k)
    825{
    826	struct sectors_dirty_init *op = container_of(_op,
    827						struct sectors_dirty_init, op);
    828	if (KEY_INODE(k) > op->inode)
    829		return MAP_DONE;
    830
    831	if (KEY_DIRTY(k))
    832		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
    833					     KEY_START(k), KEY_SIZE(k));
    834
    835	op->count++;
    836	if (!(op->count % INIT_KEYS_EACH_TIME))
    837		cond_resched();
    838
    839	return MAP_CONTINUE;
    840}
    841
    842static int bch_root_node_dirty_init(struct cache_set *c,
    843				     struct bcache_device *d,
    844				     struct bkey *k)
    845{
    846	struct sectors_dirty_init op;
    847	int ret;
    848
    849	bch_btree_op_init(&op.op, -1);
    850	op.inode = d->id;
    851	op.count = 0;
    852
    853	ret = bcache_btree(map_keys_recurse,
    854			   k,
    855			   c->root,
    856			   &op.op,
    857			   &KEY(op.inode, 0, 0),
    858			   sectors_dirty_init_fn,
    859			   0);
    860	if (ret < 0)
    861		pr_warn("sectors dirty init failed, ret=%d!\n", ret);
    862
    863	return ret;
    864}
    865
    866static int bch_dirty_init_thread(void *arg)
    867{
    868	struct dirty_init_thrd_info *info = arg;
    869	struct bch_dirty_init_state *state = info->state;
    870	struct cache_set *c = state->c;
    871	struct btree_iter iter;
    872	struct bkey *k, *p;
    873	int cur_idx, prev_idx, skip_nr;
    874
    875	k = p = NULL;
    876	cur_idx = prev_idx = 0;
    877
    878	bch_btree_iter_init(&c->root->keys, &iter, NULL);
    879	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
    880	BUG_ON(!k);
    881
    882	p = k;
    883
    884	while (k) {
    885		spin_lock(&state->idx_lock);
    886		cur_idx = state->key_idx;
    887		state->key_idx++;
    888		spin_unlock(&state->idx_lock);
    889
    890		skip_nr = cur_idx - prev_idx;
    891
    892		while (skip_nr) {
    893			k = bch_btree_iter_next_filter(&iter,
    894						       &c->root->keys,
    895						       bch_ptr_bad);
    896			if (k)
    897				p = k;
    898			else {
    899				atomic_set(&state->enough, 1);
    900				/* Update state->enough earlier */
    901				smp_mb__after_atomic();
    902				goto out;
    903			}
    904			skip_nr--;
    905		}
    906
    907		if (p) {
    908			if (bch_root_node_dirty_init(c, state->d, p) < 0)
    909				goto out;
    910		}
    911
    912		p = NULL;
    913		prev_idx = cur_idx;
    914	}
    915
    916out:
    917	/* In order to wake up state->wait in time */
    918	smp_mb__before_atomic();
    919	if (atomic_dec_and_test(&state->started))
    920		wake_up(&state->wait);
    921
    922	return 0;
    923}
    924
    925static int bch_btre_dirty_init_thread_nr(void)
    926{
    927	int n = num_online_cpus()/2;
    928
    929	if (n == 0)
    930		n = 1;
    931	else if (n > BCH_DIRTY_INIT_THRD_MAX)
    932		n = BCH_DIRTY_INIT_THRD_MAX;
    933
    934	return n;
    935}
    936
    937void bch_sectors_dirty_init(struct bcache_device *d)
    938{
    939	int i;
    940	struct bkey *k = NULL;
    941	struct btree_iter iter;
    942	struct sectors_dirty_init op;
    943	struct cache_set *c = d->c;
    944	struct bch_dirty_init_state state;
    945
    946	/* Just count root keys if no leaf node */
    947	rw_lock(0, c->root, c->root->level);
    948	if (c->root->level == 0) {
    949		bch_btree_op_init(&op.op, -1);
    950		op.inode = d->id;
    951		op.count = 0;
    952
    953		for_each_key_filter(&c->root->keys,
    954				    k, &iter, bch_ptr_invalid)
    955			sectors_dirty_init_fn(&op.op, c->root, k);
    956
    957		rw_unlock(0, c->root);
    958		return;
    959	}
    960
    961	memset(&state, 0, sizeof(struct bch_dirty_init_state));
    962	state.c = c;
    963	state.d = d;
    964	state.total_threads = bch_btre_dirty_init_thread_nr();
    965	state.key_idx = 0;
    966	spin_lock_init(&state.idx_lock);
    967	atomic_set(&state.started, 0);
    968	atomic_set(&state.enough, 0);
    969	init_waitqueue_head(&state.wait);
    970
    971	for (i = 0; i < state.total_threads; i++) {
    972		/* Fetch latest state.enough earlier */
    973		smp_mb__before_atomic();
    974		if (atomic_read(&state.enough))
    975			break;
    976
    977		state.infos[i].state = &state;
    978		state.infos[i].thread =
    979			kthread_run(bch_dirty_init_thread, &state.infos[i],
    980				    "bch_dirtcnt[%d]", i);
    981		if (IS_ERR(state.infos[i].thread)) {
    982			pr_err("fails to run thread bch_dirty_init[%d]\n", i);
    983			for (--i; i >= 0; i--)
    984				kthread_stop(state.infos[i].thread);
    985			goto out;
    986		}
    987		atomic_inc(&state.started);
    988	}
    989
    990out:
    991	/* Must wait for all threads to stop. */
    992	wait_event(state.wait, atomic_read(&state.started) == 0);
    993	rw_unlock(0, c->root);
    994}
    995
    996void bch_cached_dev_writeback_init(struct cached_dev *dc)
    997{
    998	sema_init(&dc->in_flight, 64);
    999	init_rwsem(&dc->writeback_lock);
   1000	bch_keybuf_init(&dc->writeback_keys);
   1001
   1002	dc->writeback_metadata		= true;
   1003	dc->writeback_running		= false;
   1004	dc->writeback_consider_fragment = true;
   1005	dc->writeback_percent		= 10;
   1006	dc->writeback_delay		= 30;
   1007	atomic_long_set(&dc->writeback_rate.rate, 1024);
   1008	dc->writeback_rate_minimum	= 8;
   1009
   1010	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
   1011	dc->writeback_rate_p_term_inverse = 40;
   1012	dc->writeback_rate_fp_term_low = 1;
   1013	dc->writeback_rate_fp_term_mid = 10;
   1014	dc->writeback_rate_fp_term_high = 1000;
   1015	dc->writeback_rate_i_term_inverse = 10000;
   1016
   1017	/* For dc->writeback_lock contention in update_writeback_rate() */
   1018	dc->rate_update_retry = 0;
   1019
   1020	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
   1021	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
   1022}
   1023
   1024int bch_cached_dev_writeback_start(struct cached_dev *dc)
   1025{
   1026	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
   1027						WQ_MEM_RECLAIM, 0);
   1028	if (!dc->writeback_write_wq)
   1029		return -ENOMEM;
   1030
   1031	cached_dev_get(dc);
   1032	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
   1033					      "bcache_writeback");
   1034	if (IS_ERR(dc->writeback_thread)) {
   1035		cached_dev_put(dc);
   1036		destroy_workqueue(dc->writeback_write_wq);
   1037		return PTR_ERR(dc->writeback_thread);
   1038	}
   1039	dc->writeback_running = true;
   1040
   1041	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
   1042	schedule_delayed_work(&dc->writeback_rate_update,
   1043			      dc->writeback_rate_update_seconds * HZ);
   1044
   1045	bch_writeback_queue(dc);
   1046
   1047	return 0;
   1048}