dm-cache-policy-smq.c (44970B)
1/* 2 * Copyright (C) 2015 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7#include "dm-cache-background-tracker.h" 8#include "dm-cache-policy-internal.h" 9#include "dm-cache-policy.h" 10#include "dm.h" 11 12#include <linux/hash.h> 13#include <linux/jiffies.h> 14#include <linux/module.h> 15#include <linux/mutex.h> 16#include <linux/vmalloc.h> 17#include <linux/math64.h> 18 19#define DM_MSG_PREFIX "cache-policy-smq" 20 21/*----------------------------------------------------------------*/ 22 23/* 24 * Safe division functions that return zero on divide by zero. 25 */ 26static unsigned safe_div(unsigned n, unsigned d) 27{ 28 return d ? n / d : 0u; 29} 30 31static unsigned safe_mod(unsigned n, unsigned d) 32{ 33 return d ? n % d : 0u; 34} 35 36/*----------------------------------------------------------------*/ 37 38struct entry { 39 unsigned hash_next:28; 40 unsigned prev:28; 41 unsigned next:28; 42 unsigned level:6; 43 bool dirty:1; 44 bool allocated:1; 45 bool sentinel:1; 46 bool pending_work:1; 47 48 dm_oblock_t oblock; 49}; 50 51/*----------------------------------------------------------------*/ 52 53#define INDEXER_NULL ((1u << 28u) - 1u) 54 55/* 56 * An entry_space manages a set of entries that we use for the queues. 57 * The clean and dirty queues share entries, so this object is separate 58 * from the queue itself. 59 */ 60struct entry_space { 61 struct entry *begin; 62 struct entry *end; 63}; 64 65static int space_init(struct entry_space *es, unsigned nr_entries) 66{ 67 if (!nr_entries) { 68 es->begin = es->end = NULL; 69 return 0; 70 } 71 72 es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry))); 73 if (!es->begin) 74 return -ENOMEM; 75 76 es->end = es->begin + nr_entries; 77 return 0; 78} 79 80static void space_exit(struct entry_space *es) 81{ 82 vfree(es->begin); 83} 84 85static struct entry *__get_entry(struct entry_space *es, unsigned block) 86{ 87 struct entry *e; 88 89 e = es->begin + block; 90 BUG_ON(e >= es->end); 91 92 return e; 93} 94 95static unsigned to_index(struct entry_space *es, struct entry *e) 96{ 97 BUG_ON(e < es->begin || e >= es->end); 98 return e - es->begin; 99} 100 101static struct entry *to_entry(struct entry_space *es, unsigned block) 102{ 103 if (block == INDEXER_NULL) 104 return NULL; 105 106 return __get_entry(es, block); 107} 108 109/*----------------------------------------------------------------*/ 110 111struct ilist { 112 unsigned nr_elts; /* excluding sentinel entries */ 113 unsigned head, tail; 114}; 115 116static void l_init(struct ilist *l) 117{ 118 l->nr_elts = 0; 119 l->head = l->tail = INDEXER_NULL; 120} 121 122static struct entry *l_head(struct entry_space *es, struct ilist *l) 123{ 124 return to_entry(es, l->head); 125} 126 127static struct entry *l_tail(struct entry_space *es, struct ilist *l) 128{ 129 return to_entry(es, l->tail); 130} 131 132static struct entry *l_next(struct entry_space *es, struct entry *e) 133{ 134 return to_entry(es, e->next); 135} 136 137static struct entry *l_prev(struct entry_space *es, struct entry *e) 138{ 139 return to_entry(es, e->prev); 140} 141 142static bool l_empty(struct ilist *l) 143{ 144 return l->head == INDEXER_NULL; 145} 146 147static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e) 148{ 149 struct entry *head = l_head(es, l); 150 151 e->next = l->head; 152 e->prev = INDEXER_NULL; 153 154 if (head) 155 head->prev = l->head = to_index(es, e); 156 else 157 l->head = l->tail = to_index(es, e); 158 159 if (!e->sentinel) 160 l->nr_elts++; 161} 162 163static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e) 164{ 165 struct entry *tail = l_tail(es, l); 166 167 e->next = INDEXER_NULL; 168 e->prev = l->tail; 169 170 if (tail) 171 tail->next = l->tail = to_index(es, e); 172 else 173 l->head = l->tail = to_index(es, e); 174 175 if (!e->sentinel) 176 l->nr_elts++; 177} 178 179static void l_add_before(struct entry_space *es, struct ilist *l, 180 struct entry *old, struct entry *e) 181{ 182 struct entry *prev = l_prev(es, old); 183 184 if (!prev) 185 l_add_head(es, l, e); 186 187 else { 188 e->prev = old->prev; 189 e->next = to_index(es, old); 190 prev->next = old->prev = to_index(es, e); 191 192 if (!e->sentinel) 193 l->nr_elts++; 194 } 195} 196 197static void l_del(struct entry_space *es, struct ilist *l, struct entry *e) 198{ 199 struct entry *prev = l_prev(es, e); 200 struct entry *next = l_next(es, e); 201 202 if (prev) 203 prev->next = e->next; 204 else 205 l->head = e->next; 206 207 if (next) 208 next->prev = e->prev; 209 else 210 l->tail = e->prev; 211 212 if (!e->sentinel) 213 l->nr_elts--; 214} 215 216static struct entry *l_pop_head(struct entry_space *es, struct ilist *l) 217{ 218 struct entry *e; 219 220 for (e = l_head(es, l); e; e = l_next(es, e)) 221 if (!e->sentinel) { 222 l_del(es, l, e); 223 return e; 224 } 225 226 return NULL; 227} 228 229static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l) 230{ 231 struct entry *e; 232 233 for (e = l_tail(es, l); e; e = l_prev(es, e)) 234 if (!e->sentinel) { 235 l_del(es, l, e); 236 return e; 237 } 238 239 return NULL; 240} 241 242/*----------------------------------------------------------------*/ 243 244/* 245 * The stochastic-multi-queue is a set of lru lists stacked into levels. 246 * Entries are moved up levels when they are used, which loosely orders the 247 * most accessed entries in the top levels and least in the bottom. This 248 * structure is *much* better than a single lru list. 249 */ 250#define MAX_LEVELS 64u 251 252struct queue { 253 struct entry_space *es; 254 255 unsigned nr_elts; 256 unsigned nr_levels; 257 struct ilist qs[MAX_LEVELS]; 258 259 /* 260 * We maintain a count of the number of entries we would like in each 261 * level. 262 */ 263 unsigned last_target_nr_elts; 264 unsigned nr_top_levels; 265 unsigned nr_in_top_levels; 266 unsigned target_count[MAX_LEVELS]; 267}; 268 269static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels) 270{ 271 unsigned i; 272 273 q->es = es; 274 q->nr_elts = 0; 275 q->nr_levels = nr_levels; 276 277 for (i = 0; i < q->nr_levels; i++) { 278 l_init(q->qs + i); 279 q->target_count[i] = 0u; 280 } 281 282 q->last_target_nr_elts = 0u; 283 q->nr_top_levels = 0u; 284 q->nr_in_top_levels = 0u; 285} 286 287static unsigned q_size(struct queue *q) 288{ 289 return q->nr_elts; 290} 291 292/* 293 * Insert an entry to the back of the given level. 294 */ 295static void q_push(struct queue *q, struct entry *e) 296{ 297 BUG_ON(e->pending_work); 298 299 if (!e->sentinel) 300 q->nr_elts++; 301 302 l_add_tail(q->es, q->qs + e->level, e); 303} 304 305static void q_push_front(struct queue *q, struct entry *e) 306{ 307 BUG_ON(e->pending_work); 308 309 if (!e->sentinel) 310 q->nr_elts++; 311 312 l_add_head(q->es, q->qs + e->level, e); 313} 314 315static void q_push_before(struct queue *q, struct entry *old, struct entry *e) 316{ 317 BUG_ON(e->pending_work); 318 319 if (!e->sentinel) 320 q->nr_elts++; 321 322 l_add_before(q->es, q->qs + e->level, old, e); 323} 324 325static void q_del(struct queue *q, struct entry *e) 326{ 327 l_del(q->es, q->qs + e->level, e); 328 if (!e->sentinel) 329 q->nr_elts--; 330} 331 332/* 333 * Return the oldest entry of the lowest populated level. 334 */ 335static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel) 336{ 337 unsigned level; 338 struct entry *e; 339 340 max_level = min(max_level, q->nr_levels); 341 342 for (level = 0; level < max_level; level++) 343 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { 344 if (e->sentinel) { 345 if (can_cross_sentinel) 346 continue; 347 else 348 break; 349 } 350 351 return e; 352 } 353 354 return NULL; 355} 356 357static struct entry *q_pop(struct queue *q) 358{ 359 struct entry *e = q_peek(q, q->nr_levels, true); 360 361 if (e) 362 q_del(q, e); 363 364 return e; 365} 366 367/* 368 * This function assumes there is a non-sentinel entry to pop. It's only 369 * used by redistribute, so we know this is true. It also doesn't adjust 370 * the q->nr_elts count. 371 */ 372static struct entry *__redist_pop_from(struct queue *q, unsigned level) 373{ 374 struct entry *e; 375 376 for (; level < q->nr_levels; level++) 377 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) 378 if (!e->sentinel) { 379 l_del(q->es, q->qs + e->level, e); 380 return e; 381 } 382 383 return NULL; 384} 385 386static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend) 387{ 388 unsigned level, nr_levels, entries_per_level, remainder; 389 390 BUG_ON(lbegin > lend); 391 BUG_ON(lend > q->nr_levels); 392 nr_levels = lend - lbegin; 393 entries_per_level = safe_div(nr_elts, nr_levels); 394 remainder = safe_mod(nr_elts, nr_levels); 395 396 for (level = lbegin; level < lend; level++) 397 q->target_count[level] = 398 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level; 399} 400 401/* 402 * Typically we have fewer elements in the top few levels which allows us 403 * to adjust the promote threshold nicely. 404 */ 405static void q_set_targets(struct queue *q) 406{ 407 if (q->last_target_nr_elts == q->nr_elts) 408 return; 409 410 q->last_target_nr_elts = q->nr_elts; 411 412 if (q->nr_top_levels > q->nr_levels) 413 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels); 414 415 else { 416 q_set_targets_subrange_(q, q->nr_in_top_levels, 417 q->nr_levels - q->nr_top_levels, q->nr_levels); 418 419 if (q->nr_in_top_levels < q->nr_elts) 420 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels, 421 0, q->nr_levels - q->nr_top_levels); 422 else 423 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels); 424 } 425} 426 427static void q_redistribute(struct queue *q) 428{ 429 unsigned target, level; 430 struct ilist *l, *l_above; 431 struct entry *e; 432 433 q_set_targets(q); 434 435 for (level = 0u; level < q->nr_levels - 1u; level++) { 436 l = q->qs + level; 437 target = q->target_count[level]; 438 439 /* 440 * Pull down some entries from the level above. 441 */ 442 while (l->nr_elts < target) { 443 e = __redist_pop_from(q, level + 1u); 444 if (!e) { 445 /* bug in nr_elts */ 446 break; 447 } 448 449 e->level = level; 450 l_add_tail(q->es, l, e); 451 } 452 453 /* 454 * Push some entries up. 455 */ 456 l_above = q->qs + level + 1u; 457 while (l->nr_elts > target) { 458 e = l_pop_tail(q->es, l); 459 460 if (!e) 461 /* bug in nr_elts */ 462 break; 463 464 e->level = level + 1u; 465 l_add_tail(q->es, l_above, e); 466 } 467 } 468} 469 470static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels, 471 struct entry *s1, struct entry *s2) 472{ 473 struct entry *de; 474 unsigned sentinels_passed = 0; 475 unsigned new_level = min(q->nr_levels - 1u, e->level + extra_levels); 476 477 /* try and find an entry to swap with */ 478 if (extra_levels && (e->level < q->nr_levels - 1u)) { 479 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de)) 480 sentinels_passed++; 481 482 if (de) { 483 q_del(q, de); 484 de->level = e->level; 485 if (s1) { 486 switch (sentinels_passed) { 487 case 0: 488 q_push_before(q, s1, de); 489 break; 490 491 case 1: 492 q_push_before(q, s2, de); 493 break; 494 495 default: 496 q_push(q, de); 497 } 498 } else 499 q_push(q, de); 500 } 501 } 502 503 q_del(q, e); 504 e->level = new_level; 505 q_push(q, e); 506} 507 508/*----------------------------------------------------------------*/ 509 510#define FP_SHIFT 8 511#define SIXTEENTH (1u << (FP_SHIFT - 4u)) 512#define EIGHTH (1u << (FP_SHIFT - 3u)) 513 514struct stats { 515 unsigned hit_threshold; 516 unsigned hits; 517 unsigned misses; 518}; 519 520enum performance { 521 Q_POOR, 522 Q_FAIR, 523 Q_WELL 524}; 525 526static void stats_init(struct stats *s, unsigned nr_levels) 527{ 528 s->hit_threshold = (nr_levels * 3u) / 4u; 529 s->hits = 0u; 530 s->misses = 0u; 531} 532 533static void stats_reset(struct stats *s) 534{ 535 s->hits = s->misses = 0u; 536} 537 538static void stats_level_accessed(struct stats *s, unsigned level) 539{ 540 if (level >= s->hit_threshold) 541 s->hits++; 542 else 543 s->misses++; 544} 545 546static void stats_miss(struct stats *s) 547{ 548 s->misses++; 549} 550 551/* 552 * There are times when we don't have any confidence in the hotspot queue. 553 * Such as when a fresh cache is created and the blocks have been spread 554 * out across the levels, or if an io load changes. We detect this by 555 * seeing how often a lookup is in the top levels of the hotspot queue. 556 */ 557static enum performance stats_assess(struct stats *s) 558{ 559 unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses); 560 561 if (confidence < SIXTEENTH) 562 return Q_POOR; 563 564 else if (confidence < EIGHTH) 565 return Q_FAIR; 566 567 else 568 return Q_WELL; 569} 570 571/*----------------------------------------------------------------*/ 572 573struct smq_hash_table { 574 struct entry_space *es; 575 unsigned long long hash_bits; 576 unsigned *buckets; 577}; 578 579/* 580 * All cache entries are stored in a chained hash table. To save space we 581 * use indexing again, and only store indexes to the next entry. 582 */ 583static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned nr_entries) 584{ 585 unsigned i, nr_buckets; 586 587 ht->es = es; 588 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u)); 589 ht->hash_bits = __ffs(nr_buckets); 590 591 ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets))); 592 if (!ht->buckets) 593 return -ENOMEM; 594 595 for (i = 0; i < nr_buckets; i++) 596 ht->buckets[i] = INDEXER_NULL; 597 598 return 0; 599} 600 601static void h_exit(struct smq_hash_table *ht) 602{ 603 vfree(ht->buckets); 604} 605 606static struct entry *h_head(struct smq_hash_table *ht, unsigned bucket) 607{ 608 return to_entry(ht->es, ht->buckets[bucket]); 609} 610 611static struct entry *h_next(struct smq_hash_table *ht, struct entry *e) 612{ 613 return to_entry(ht->es, e->hash_next); 614} 615 616static void __h_insert(struct smq_hash_table *ht, unsigned bucket, struct entry *e) 617{ 618 e->hash_next = ht->buckets[bucket]; 619 ht->buckets[bucket] = to_index(ht->es, e); 620} 621 622static void h_insert(struct smq_hash_table *ht, struct entry *e) 623{ 624 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); 625 __h_insert(ht, h, e); 626} 627 628static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned h, dm_oblock_t oblock, 629 struct entry **prev) 630{ 631 struct entry *e; 632 633 *prev = NULL; 634 for (e = h_head(ht, h); e; e = h_next(ht, e)) { 635 if (e->oblock == oblock) 636 return e; 637 638 *prev = e; 639 } 640 641 return NULL; 642} 643 644static void __h_unlink(struct smq_hash_table *ht, unsigned h, 645 struct entry *e, struct entry *prev) 646{ 647 if (prev) 648 prev->hash_next = e->hash_next; 649 else 650 ht->buckets[h] = e->hash_next; 651} 652 653/* 654 * Also moves each entry to the front of the bucket. 655 */ 656static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock) 657{ 658 struct entry *e, *prev; 659 unsigned h = hash_64(from_oblock(oblock), ht->hash_bits); 660 661 e = __h_lookup(ht, h, oblock, &prev); 662 if (e && prev) { 663 /* 664 * Move to the front because this entry is likely 665 * to be hit again. 666 */ 667 __h_unlink(ht, h, e, prev); 668 __h_insert(ht, h, e); 669 } 670 671 return e; 672} 673 674static void h_remove(struct smq_hash_table *ht, struct entry *e) 675{ 676 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); 677 struct entry *prev; 678 679 /* 680 * The down side of using a singly linked list is we have to 681 * iterate the bucket to remove an item. 682 */ 683 e = __h_lookup(ht, h, e->oblock, &prev); 684 if (e) 685 __h_unlink(ht, h, e, prev); 686} 687 688/*----------------------------------------------------------------*/ 689 690struct entry_alloc { 691 struct entry_space *es; 692 unsigned begin; 693 694 unsigned nr_allocated; 695 struct ilist free; 696}; 697 698static void init_allocator(struct entry_alloc *ea, struct entry_space *es, 699 unsigned begin, unsigned end) 700{ 701 unsigned i; 702 703 ea->es = es; 704 ea->nr_allocated = 0u; 705 ea->begin = begin; 706 707 l_init(&ea->free); 708 for (i = begin; i != end; i++) 709 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i)); 710} 711 712static void init_entry(struct entry *e) 713{ 714 /* 715 * We can't memset because that would clear the hotspot and 716 * sentinel bits which remain constant. 717 */ 718 e->hash_next = INDEXER_NULL; 719 e->next = INDEXER_NULL; 720 e->prev = INDEXER_NULL; 721 e->level = 0u; 722 e->dirty = true; /* FIXME: audit */ 723 e->allocated = true; 724 e->sentinel = false; 725 e->pending_work = false; 726} 727 728static struct entry *alloc_entry(struct entry_alloc *ea) 729{ 730 struct entry *e; 731 732 if (l_empty(&ea->free)) 733 return NULL; 734 735 e = l_pop_head(ea->es, &ea->free); 736 init_entry(e); 737 ea->nr_allocated++; 738 739 return e; 740} 741 742/* 743 * This assumes the cblock hasn't already been allocated. 744 */ 745static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i) 746{ 747 struct entry *e = __get_entry(ea->es, ea->begin + i); 748 749 BUG_ON(e->allocated); 750 751 l_del(ea->es, &ea->free, e); 752 init_entry(e); 753 ea->nr_allocated++; 754 755 return e; 756} 757 758static void free_entry(struct entry_alloc *ea, struct entry *e) 759{ 760 BUG_ON(!ea->nr_allocated); 761 BUG_ON(!e->allocated); 762 763 ea->nr_allocated--; 764 e->allocated = false; 765 l_add_tail(ea->es, &ea->free, e); 766} 767 768static bool allocator_empty(struct entry_alloc *ea) 769{ 770 return l_empty(&ea->free); 771} 772 773static unsigned get_index(struct entry_alloc *ea, struct entry *e) 774{ 775 return to_index(ea->es, e) - ea->begin; 776} 777 778static struct entry *get_entry(struct entry_alloc *ea, unsigned index) 779{ 780 return __get_entry(ea->es, ea->begin + index); 781} 782 783/*----------------------------------------------------------------*/ 784 785#define NR_HOTSPOT_LEVELS 64u 786#define NR_CACHE_LEVELS 64u 787 788#define WRITEBACK_PERIOD (10ul * HZ) 789#define DEMOTE_PERIOD (60ul * HZ) 790 791#define HOTSPOT_UPDATE_PERIOD (HZ) 792#define CACHE_UPDATE_PERIOD (60ul * HZ) 793 794struct smq_policy { 795 struct dm_cache_policy policy; 796 797 /* protects everything */ 798 spinlock_t lock; 799 dm_cblock_t cache_size; 800 sector_t cache_block_size; 801 802 sector_t hotspot_block_size; 803 unsigned nr_hotspot_blocks; 804 unsigned cache_blocks_per_hotspot_block; 805 unsigned hotspot_level_jump; 806 807 struct entry_space es; 808 struct entry_alloc writeback_sentinel_alloc; 809 struct entry_alloc demote_sentinel_alloc; 810 struct entry_alloc hotspot_alloc; 811 struct entry_alloc cache_alloc; 812 813 unsigned long *hotspot_hit_bits; 814 unsigned long *cache_hit_bits; 815 816 /* 817 * We maintain three queues of entries. The cache proper, 818 * consisting of a clean and dirty queue, containing the currently 819 * active mappings. The hotspot queue uses a larger block size to 820 * track blocks that are being hit frequently and potential 821 * candidates for promotion to the cache. 822 */ 823 struct queue hotspot; 824 struct queue clean; 825 struct queue dirty; 826 827 struct stats hotspot_stats; 828 struct stats cache_stats; 829 830 /* 831 * Keeps track of time, incremented by the core. We use this to 832 * avoid attributing multiple hits within the same tick. 833 */ 834 unsigned tick; 835 836 /* 837 * The hash tables allows us to quickly find an entry by origin 838 * block. 839 */ 840 struct smq_hash_table table; 841 struct smq_hash_table hotspot_table; 842 843 bool current_writeback_sentinels; 844 unsigned long next_writeback_period; 845 846 bool current_demote_sentinels; 847 unsigned long next_demote_period; 848 849 unsigned write_promote_level; 850 unsigned read_promote_level; 851 852 unsigned long next_hotspot_period; 853 unsigned long next_cache_period; 854 855 struct background_tracker *bg_work; 856 857 bool migrations_allowed; 858}; 859 860/*----------------------------------------------------------------*/ 861 862static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which) 863{ 864 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level); 865} 866 867static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level) 868{ 869 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels); 870} 871 872static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level) 873{ 874 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels); 875} 876 877static void __update_writeback_sentinels(struct smq_policy *mq) 878{ 879 unsigned level; 880 struct queue *q = &mq->dirty; 881 struct entry *sentinel; 882 883 for (level = 0; level < q->nr_levels; level++) { 884 sentinel = writeback_sentinel(mq, level); 885 q_del(q, sentinel); 886 q_push(q, sentinel); 887 } 888} 889 890static void __update_demote_sentinels(struct smq_policy *mq) 891{ 892 unsigned level; 893 struct queue *q = &mq->clean; 894 struct entry *sentinel; 895 896 for (level = 0; level < q->nr_levels; level++) { 897 sentinel = demote_sentinel(mq, level); 898 q_del(q, sentinel); 899 q_push(q, sentinel); 900 } 901} 902 903static void update_sentinels(struct smq_policy *mq) 904{ 905 if (time_after(jiffies, mq->next_writeback_period)) { 906 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; 907 mq->current_writeback_sentinels = !mq->current_writeback_sentinels; 908 __update_writeback_sentinels(mq); 909 } 910 911 if (time_after(jiffies, mq->next_demote_period)) { 912 mq->next_demote_period = jiffies + DEMOTE_PERIOD; 913 mq->current_demote_sentinels = !mq->current_demote_sentinels; 914 __update_demote_sentinels(mq); 915 } 916} 917 918static void __sentinels_init(struct smq_policy *mq) 919{ 920 unsigned level; 921 struct entry *sentinel; 922 923 for (level = 0; level < NR_CACHE_LEVELS; level++) { 924 sentinel = writeback_sentinel(mq, level); 925 sentinel->level = level; 926 q_push(&mq->dirty, sentinel); 927 928 sentinel = demote_sentinel(mq, level); 929 sentinel->level = level; 930 q_push(&mq->clean, sentinel); 931 } 932} 933 934static void sentinels_init(struct smq_policy *mq) 935{ 936 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; 937 mq->next_demote_period = jiffies + DEMOTE_PERIOD; 938 939 mq->current_writeback_sentinels = false; 940 mq->current_demote_sentinels = false; 941 __sentinels_init(mq); 942 943 mq->current_writeback_sentinels = !mq->current_writeback_sentinels; 944 mq->current_demote_sentinels = !mq->current_demote_sentinels; 945 __sentinels_init(mq); 946} 947 948/*----------------------------------------------------------------*/ 949 950static void del_queue(struct smq_policy *mq, struct entry *e) 951{ 952 q_del(e->dirty ? &mq->dirty : &mq->clean, e); 953} 954 955static void push_queue(struct smq_policy *mq, struct entry *e) 956{ 957 if (e->dirty) 958 q_push(&mq->dirty, e); 959 else 960 q_push(&mq->clean, e); 961} 962 963// !h, !q, a -> h, q, a 964static void push(struct smq_policy *mq, struct entry *e) 965{ 966 h_insert(&mq->table, e); 967 if (!e->pending_work) 968 push_queue(mq, e); 969} 970 971static void push_queue_front(struct smq_policy *mq, struct entry *e) 972{ 973 if (e->dirty) 974 q_push_front(&mq->dirty, e); 975 else 976 q_push_front(&mq->clean, e); 977} 978 979static void push_front(struct smq_policy *mq, struct entry *e) 980{ 981 h_insert(&mq->table, e); 982 if (!e->pending_work) 983 push_queue_front(mq, e); 984} 985 986static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e) 987{ 988 return to_cblock(get_index(&mq->cache_alloc, e)); 989} 990 991static void requeue(struct smq_policy *mq, struct entry *e) 992{ 993 /* 994 * Pending work has temporarily been taken out of the queues. 995 */ 996 if (e->pending_work) 997 return; 998 999 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) { 1000 if (!e->dirty) { 1001 q_requeue(&mq->clean, e, 1u, NULL, NULL); 1002 return; 1003 } 1004 1005 q_requeue(&mq->dirty, e, 1u, 1006 get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels), 1007 get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels)); 1008 } 1009} 1010 1011static unsigned default_promote_level(struct smq_policy *mq) 1012{ 1013 /* 1014 * The promote level depends on the current performance of the 1015 * cache. 1016 * 1017 * If the cache is performing badly, then we can't afford 1018 * to promote much without causing performance to drop below that 1019 * of the origin device. 1020 * 1021 * If the cache is performing well, then we don't need to promote 1022 * much. If it isn't broken, don't fix it. 1023 * 1024 * If the cache is middling then we promote more. 1025 * 1026 * This scheme reminds me of a graph of entropy vs probability of a 1027 * binary variable. 1028 */ 1029 static const unsigned int table[] = { 1030 1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1 1031 }; 1032 1033 unsigned hits = mq->cache_stats.hits; 1034 unsigned misses = mq->cache_stats.misses; 1035 unsigned index = safe_div(hits << 4u, hits + misses); 1036 return table[index]; 1037} 1038 1039static void update_promote_levels(struct smq_policy *mq) 1040{ 1041 /* 1042 * If there are unused cache entries then we want to be really 1043 * eager to promote. 1044 */ 1045 unsigned threshold_level = allocator_empty(&mq->cache_alloc) ? 1046 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u); 1047 1048 threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS); 1049 1050 /* 1051 * If the hotspot queue is performing badly then we have little 1052 * confidence that we know which blocks to promote. So we cut down 1053 * the amount of promotions. 1054 */ 1055 switch (stats_assess(&mq->hotspot_stats)) { 1056 case Q_POOR: 1057 threshold_level /= 4u; 1058 break; 1059 1060 case Q_FAIR: 1061 threshold_level /= 2u; 1062 break; 1063 1064 case Q_WELL: 1065 break; 1066 } 1067 1068 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level; 1069 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level); 1070} 1071 1072/* 1073 * If the hotspot queue is performing badly, then we try and move entries 1074 * around more quickly. 1075 */ 1076static void update_level_jump(struct smq_policy *mq) 1077{ 1078 switch (stats_assess(&mq->hotspot_stats)) { 1079 case Q_POOR: 1080 mq->hotspot_level_jump = 4u; 1081 break; 1082 1083 case Q_FAIR: 1084 mq->hotspot_level_jump = 2u; 1085 break; 1086 1087 case Q_WELL: 1088 mq->hotspot_level_jump = 1u; 1089 break; 1090 } 1091} 1092 1093static void end_hotspot_period(struct smq_policy *mq) 1094{ 1095 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); 1096 update_promote_levels(mq); 1097 1098 if (time_after(jiffies, mq->next_hotspot_period)) { 1099 update_level_jump(mq); 1100 q_redistribute(&mq->hotspot); 1101 stats_reset(&mq->hotspot_stats); 1102 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD; 1103 } 1104} 1105 1106static void end_cache_period(struct smq_policy *mq) 1107{ 1108 if (time_after(jiffies, mq->next_cache_period)) { 1109 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); 1110 1111 q_redistribute(&mq->dirty); 1112 q_redistribute(&mq->clean); 1113 stats_reset(&mq->cache_stats); 1114 1115 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD; 1116 } 1117} 1118 1119/*----------------------------------------------------------------*/ 1120 1121/* 1122 * Targets are given as a percentage. 1123 */ 1124#define CLEAN_TARGET 25u 1125#define FREE_TARGET 25u 1126 1127static unsigned percent_to_target(struct smq_policy *mq, unsigned p) 1128{ 1129 return from_cblock(mq->cache_size) * p / 100u; 1130} 1131 1132static bool clean_target_met(struct smq_policy *mq, bool idle) 1133{ 1134 /* 1135 * Cache entries may not be populated. So we cannot rely on the 1136 * size of the clean queue. 1137 */ 1138 if (idle) { 1139 /* 1140 * We'd like to clean everything. 1141 */ 1142 return q_size(&mq->dirty) == 0u; 1143 } 1144 1145 /* 1146 * If we're busy we don't worry about cleaning at all. 1147 */ 1148 return true; 1149} 1150 1151static bool free_target_met(struct smq_policy *mq) 1152{ 1153 unsigned nr_free; 1154 1155 nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated; 1156 return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >= 1157 percent_to_target(mq, FREE_TARGET); 1158} 1159 1160/*----------------------------------------------------------------*/ 1161 1162static void mark_pending(struct smq_policy *mq, struct entry *e) 1163{ 1164 BUG_ON(e->sentinel); 1165 BUG_ON(!e->allocated); 1166 BUG_ON(e->pending_work); 1167 e->pending_work = true; 1168} 1169 1170static void clear_pending(struct smq_policy *mq, struct entry *e) 1171{ 1172 BUG_ON(!e->pending_work); 1173 e->pending_work = false; 1174} 1175 1176static void queue_writeback(struct smq_policy *mq, bool idle) 1177{ 1178 int r; 1179 struct policy_work work; 1180 struct entry *e; 1181 1182 e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle); 1183 if (e) { 1184 mark_pending(mq, e); 1185 q_del(&mq->dirty, e); 1186 1187 work.op = POLICY_WRITEBACK; 1188 work.oblock = e->oblock; 1189 work.cblock = infer_cblock(mq, e); 1190 1191 r = btracker_queue(mq->bg_work, &work, NULL); 1192 if (r) { 1193 clear_pending(mq, e); 1194 q_push_front(&mq->dirty, e); 1195 } 1196 } 1197} 1198 1199static void queue_demotion(struct smq_policy *mq) 1200{ 1201 int r; 1202 struct policy_work work; 1203 struct entry *e; 1204 1205 if (WARN_ON_ONCE(!mq->migrations_allowed)) 1206 return; 1207 1208 e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true); 1209 if (!e) { 1210 if (!clean_target_met(mq, true)) 1211 queue_writeback(mq, false); 1212 return; 1213 } 1214 1215 mark_pending(mq, e); 1216 q_del(&mq->clean, e); 1217 1218 work.op = POLICY_DEMOTE; 1219 work.oblock = e->oblock; 1220 work.cblock = infer_cblock(mq, e); 1221 r = btracker_queue(mq->bg_work, &work, NULL); 1222 if (r) { 1223 clear_pending(mq, e); 1224 q_push_front(&mq->clean, e); 1225 } 1226} 1227 1228static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock, 1229 struct policy_work **workp) 1230{ 1231 int r; 1232 struct entry *e; 1233 struct policy_work work; 1234 1235 if (!mq->migrations_allowed) 1236 return; 1237 1238 if (allocator_empty(&mq->cache_alloc)) { 1239 /* 1240 * We always claim to be 'idle' to ensure some demotions happen 1241 * with continuous loads. 1242 */ 1243 if (!free_target_met(mq)) 1244 queue_demotion(mq); 1245 return; 1246 } 1247 1248 if (btracker_promotion_already_present(mq->bg_work, oblock)) 1249 return; 1250 1251 /* 1252 * We allocate the entry now to reserve the cblock. If the 1253 * background work is aborted we must remember to free it. 1254 */ 1255 e = alloc_entry(&mq->cache_alloc); 1256 BUG_ON(!e); 1257 e->pending_work = true; 1258 work.op = POLICY_PROMOTE; 1259 work.oblock = oblock; 1260 work.cblock = infer_cblock(mq, e); 1261 r = btracker_queue(mq->bg_work, &work, workp); 1262 if (r) 1263 free_entry(&mq->cache_alloc, e); 1264} 1265 1266/*----------------------------------------------------------------*/ 1267 1268enum promote_result { 1269 PROMOTE_NOT, 1270 PROMOTE_TEMPORARY, 1271 PROMOTE_PERMANENT 1272}; 1273 1274/* 1275 * Converts a boolean into a promote result. 1276 */ 1277static enum promote_result maybe_promote(bool promote) 1278{ 1279 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT; 1280} 1281 1282static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, 1283 int data_dir, bool fast_promote) 1284{ 1285 if (data_dir == WRITE) { 1286 if (!allocator_empty(&mq->cache_alloc) && fast_promote) 1287 return PROMOTE_TEMPORARY; 1288 1289 return maybe_promote(hs_e->level >= mq->write_promote_level); 1290 } else 1291 return maybe_promote(hs_e->level >= mq->read_promote_level); 1292} 1293 1294static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b) 1295{ 1296 sector_t r = from_oblock(b); 1297 (void) sector_div(r, mq->cache_blocks_per_hotspot_block); 1298 return to_oblock(r); 1299} 1300 1301static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b) 1302{ 1303 unsigned hi; 1304 dm_oblock_t hb = to_hblock(mq, b); 1305 struct entry *e = h_lookup(&mq->hotspot_table, hb); 1306 1307 if (e) { 1308 stats_level_accessed(&mq->hotspot_stats, e->level); 1309 1310 hi = get_index(&mq->hotspot_alloc, e); 1311 q_requeue(&mq->hotspot, e, 1312 test_and_set_bit(hi, mq->hotspot_hit_bits) ? 1313 0u : mq->hotspot_level_jump, 1314 NULL, NULL); 1315 1316 } else { 1317 stats_miss(&mq->hotspot_stats); 1318 1319 e = alloc_entry(&mq->hotspot_alloc); 1320 if (!e) { 1321 e = q_pop(&mq->hotspot); 1322 if (e) { 1323 h_remove(&mq->hotspot_table, e); 1324 hi = get_index(&mq->hotspot_alloc, e); 1325 clear_bit(hi, mq->hotspot_hit_bits); 1326 } 1327 1328 } 1329 1330 if (e) { 1331 e->oblock = hb; 1332 q_push(&mq->hotspot, e); 1333 h_insert(&mq->hotspot_table, e); 1334 } 1335 } 1336 1337 return e; 1338} 1339 1340/*----------------------------------------------------------------*/ 1341 1342/* 1343 * Public interface, via the policy struct. See dm-cache-policy.h for a 1344 * description of these. 1345 */ 1346 1347static struct smq_policy *to_smq_policy(struct dm_cache_policy *p) 1348{ 1349 return container_of(p, struct smq_policy, policy); 1350} 1351 1352static void smq_destroy(struct dm_cache_policy *p) 1353{ 1354 struct smq_policy *mq = to_smq_policy(p); 1355 1356 btracker_destroy(mq->bg_work); 1357 h_exit(&mq->hotspot_table); 1358 h_exit(&mq->table); 1359 free_bitset(mq->hotspot_hit_bits); 1360 free_bitset(mq->cache_hit_bits); 1361 space_exit(&mq->es); 1362 kfree(mq); 1363} 1364 1365/*----------------------------------------------------------------*/ 1366 1367static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock, 1368 int data_dir, bool fast_copy, 1369 struct policy_work **work, bool *background_work) 1370{ 1371 struct entry *e, *hs_e; 1372 enum promote_result pr; 1373 1374 *background_work = false; 1375 1376 e = h_lookup(&mq->table, oblock); 1377 if (e) { 1378 stats_level_accessed(&mq->cache_stats, e->level); 1379 1380 requeue(mq, e); 1381 *cblock = infer_cblock(mq, e); 1382 return 0; 1383 1384 } else { 1385 stats_miss(&mq->cache_stats); 1386 1387 /* 1388 * The hotspot queue only gets updated with misses. 1389 */ 1390 hs_e = update_hotspot_queue(mq, oblock); 1391 1392 pr = should_promote(mq, hs_e, data_dir, fast_copy); 1393 if (pr != PROMOTE_NOT) { 1394 queue_promotion(mq, oblock, work); 1395 *background_work = true; 1396 } 1397 1398 return -ENOENT; 1399 } 1400} 1401 1402static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock, 1403 int data_dir, bool fast_copy, 1404 bool *background_work) 1405{ 1406 int r; 1407 unsigned long flags; 1408 struct smq_policy *mq = to_smq_policy(p); 1409 1410 spin_lock_irqsave(&mq->lock, flags); 1411 r = __lookup(mq, oblock, cblock, 1412 data_dir, fast_copy, 1413 NULL, background_work); 1414 spin_unlock_irqrestore(&mq->lock, flags); 1415 1416 return r; 1417} 1418 1419static int smq_lookup_with_work(struct dm_cache_policy *p, 1420 dm_oblock_t oblock, dm_cblock_t *cblock, 1421 int data_dir, bool fast_copy, 1422 struct policy_work **work) 1423{ 1424 int r; 1425 bool background_queued; 1426 unsigned long flags; 1427 struct smq_policy *mq = to_smq_policy(p); 1428 1429 spin_lock_irqsave(&mq->lock, flags); 1430 r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued); 1431 spin_unlock_irqrestore(&mq->lock, flags); 1432 1433 return r; 1434} 1435 1436static int smq_get_background_work(struct dm_cache_policy *p, bool idle, 1437 struct policy_work **result) 1438{ 1439 int r; 1440 unsigned long flags; 1441 struct smq_policy *mq = to_smq_policy(p); 1442 1443 spin_lock_irqsave(&mq->lock, flags); 1444 r = btracker_issue(mq->bg_work, result); 1445 if (r == -ENODATA) { 1446 if (!clean_target_met(mq, idle)) { 1447 queue_writeback(mq, idle); 1448 r = btracker_issue(mq->bg_work, result); 1449 } 1450 } 1451 spin_unlock_irqrestore(&mq->lock, flags); 1452 1453 return r; 1454} 1455 1456/* 1457 * We need to clear any pending work flags that have been set, and in the 1458 * case of promotion free the entry for the destination cblock. 1459 */ 1460static void __complete_background_work(struct smq_policy *mq, 1461 struct policy_work *work, 1462 bool success) 1463{ 1464 struct entry *e = get_entry(&mq->cache_alloc, 1465 from_cblock(work->cblock)); 1466 1467 switch (work->op) { 1468 case POLICY_PROMOTE: 1469 // !h, !q, a 1470 clear_pending(mq, e); 1471 if (success) { 1472 e->oblock = work->oblock; 1473 e->level = NR_CACHE_LEVELS - 1; 1474 push(mq, e); 1475 // h, q, a 1476 } else { 1477 free_entry(&mq->cache_alloc, e); 1478 // !h, !q, !a 1479 } 1480 break; 1481 1482 case POLICY_DEMOTE: 1483 // h, !q, a 1484 if (success) { 1485 h_remove(&mq->table, e); 1486 free_entry(&mq->cache_alloc, e); 1487 // !h, !q, !a 1488 } else { 1489 clear_pending(mq, e); 1490 push_queue(mq, e); 1491 // h, q, a 1492 } 1493 break; 1494 1495 case POLICY_WRITEBACK: 1496 // h, !q, a 1497 clear_pending(mq, e); 1498 push_queue(mq, e); 1499 // h, q, a 1500 break; 1501 } 1502 1503 btracker_complete(mq->bg_work, work); 1504} 1505 1506static void smq_complete_background_work(struct dm_cache_policy *p, 1507 struct policy_work *work, 1508 bool success) 1509{ 1510 unsigned long flags; 1511 struct smq_policy *mq = to_smq_policy(p); 1512 1513 spin_lock_irqsave(&mq->lock, flags); 1514 __complete_background_work(mq, work, success); 1515 spin_unlock_irqrestore(&mq->lock, flags); 1516} 1517 1518// in_hash(oblock) -> in_hash(oblock) 1519static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set) 1520{ 1521 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1522 1523 if (e->pending_work) 1524 e->dirty = set; 1525 else { 1526 del_queue(mq, e); 1527 e->dirty = set; 1528 push_queue(mq, e); 1529 } 1530} 1531 1532static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock) 1533{ 1534 unsigned long flags; 1535 struct smq_policy *mq = to_smq_policy(p); 1536 1537 spin_lock_irqsave(&mq->lock, flags); 1538 __smq_set_clear_dirty(mq, cblock, true); 1539 spin_unlock_irqrestore(&mq->lock, flags); 1540} 1541 1542static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock) 1543{ 1544 struct smq_policy *mq = to_smq_policy(p); 1545 unsigned long flags; 1546 1547 spin_lock_irqsave(&mq->lock, flags); 1548 __smq_set_clear_dirty(mq, cblock, false); 1549 spin_unlock_irqrestore(&mq->lock, flags); 1550} 1551 1552static unsigned random_level(dm_cblock_t cblock) 1553{ 1554 return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1); 1555} 1556 1557static int smq_load_mapping(struct dm_cache_policy *p, 1558 dm_oblock_t oblock, dm_cblock_t cblock, 1559 bool dirty, uint32_t hint, bool hint_valid) 1560{ 1561 struct smq_policy *mq = to_smq_policy(p); 1562 struct entry *e; 1563 1564 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock)); 1565 e->oblock = oblock; 1566 e->dirty = dirty; 1567 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock); 1568 e->pending_work = false; 1569 1570 /* 1571 * When we load mappings we push ahead of both sentinels in order to 1572 * allow demotions and cleaning to occur immediately. 1573 */ 1574 push_front(mq, e); 1575 1576 return 0; 1577} 1578 1579static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock) 1580{ 1581 struct smq_policy *mq = to_smq_policy(p); 1582 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1583 1584 if (!e->allocated) 1585 return -ENODATA; 1586 1587 // FIXME: what if this block has pending background work? 1588 del_queue(mq, e); 1589 h_remove(&mq->table, e); 1590 free_entry(&mq->cache_alloc, e); 1591 return 0; 1592} 1593 1594static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock) 1595{ 1596 struct smq_policy *mq = to_smq_policy(p); 1597 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1598 1599 if (!e->allocated) 1600 return 0; 1601 1602 return e->level; 1603} 1604 1605static dm_cblock_t smq_residency(struct dm_cache_policy *p) 1606{ 1607 dm_cblock_t r; 1608 unsigned long flags; 1609 struct smq_policy *mq = to_smq_policy(p); 1610 1611 spin_lock_irqsave(&mq->lock, flags); 1612 r = to_cblock(mq->cache_alloc.nr_allocated); 1613 spin_unlock_irqrestore(&mq->lock, flags); 1614 1615 return r; 1616} 1617 1618static void smq_tick(struct dm_cache_policy *p, bool can_block) 1619{ 1620 struct smq_policy *mq = to_smq_policy(p); 1621 unsigned long flags; 1622 1623 spin_lock_irqsave(&mq->lock, flags); 1624 mq->tick++; 1625 update_sentinels(mq); 1626 end_hotspot_period(mq); 1627 end_cache_period(mq); 1628 spin_unlock_irqrestore(&mq->lock, flags); 1629} 1630 1631static void smq_allow_migrations(struct dm_cache_policy *p, bool allow) 1632{ 1633 struct smq_policy *mq = to_smq_policy(p); 1634 mq->migrations_allowed = allow; 1635} 1636 1637/* 1638 * smq has no config values, but the old mq policy did. To avoid breaking 1639 * software we continue to accept these configurables for the mq policy, 1640 * but they have no effect. 1641 */ 1642static int mq_set_config_value(struct dm_cache_policy *p, 1643 const char *key, const char *value) 1644{ 1645 unsigned long tmp; 1646 1647 if (kstrtoul(value, 10, &tmp)) 1648 return -EINVAL; 1649 1650 if (!strcasecmp(key, "random_threshold") || 1651 !strcasecmp(key, "sequential_threshold") || 1652 !strcasecmp(key, "discard_promote_adjustment") || 1653 !strcasecmp(key, "read_promote_adjustment") || 1654 !strcasecmp(key, "write_promote_adjustment")) { 1655 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key); 1656 return 0; 1657 } 1658 1659 return -EINVAL; 1660} 1661 1662static int mq_emit_config_values(struct dm_cache_policy *p, char *result, 1663 unsigned maxlen, ssize_t *sz_ptr) 1664{ 1665 ssize_t sz = *sz_ptr; 1666 1667 DMEMIT("10 random_threshold 0 " 1668 "sequential_threshold 0 " 1669 "discard_promote_adjustment 0 " 1670 "read_promote_adjustment 0 " 1671 "write_promote_adjustment 0 "); 1672 1673 *sz_ptr = sz; 1674 return 0; 1675} 1676 1677/* Init the policy plugin interface function pointers. */ 1678static void init_policy_functions(struct smq_policy *mq, bool mimic_mq) 1679{ 1680 mq->policy.destroy = smq_destroy; 1681 mq->policy.lookup = smq_lookup; 1682 mq->policy.lookup_with_work = smq_lookup_with_work; 1683 mq->policy.get_background_work = smq_get_background_work; 1684 mq->policy.complete_background_work = smq_complete_background_work; 1685 mq->policy.set_dirty = smq_set_dirty; 1686 mq->policy.clear_dirty = smq_clear_dirty; 1687 mq->policy.load_mapping = smq_load_mapping; 1688 mq->policy.invalidate_mapping = smq_invalidate_mapping; 1689 mq->policy.get_hint = smq_get_hint; 1690 mq->policy.residency = smq_residency; 1691 mq->policy.tick = smq_tick; 1692 mq->policy.allow_migrations = smq_allow_migrations; 1693 1694 if (mimic_mq) { 1695 mq->policy.set_config_value = mq_set_config_value; 1696 mq->policy.emit_config_values = mq_emit_config_values; 1697 } 1698} 1699 1700static bool too_many_hotspot_blocks(sector_t origin_size, 1701 sector_t hotspot_block_size, 1702 unsigned nr_hotspot_blocks) 1703{ 1704 return (hotspot_block_size * nr_hotspot_blocks) > origin_size; 1705} 1706 1707static void calc_hotspot_params(sector_t origin_size, 1708 sector_t cache_block_size, 1709 unsigned nr_cache_blocks, 1710 sector_t *hotspot_block_size, 1711 unsigned *nr_hotspot_blocks) 1712{ 1713 *hotspot_block_size = cache_block_size * 16u; 1714 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u); 1715 1716 while ((*hotspot_block_size > cache_block_size) && 1717 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks)) 1718 *hotspot_block_size /= 2u; 1719} 1720 1721static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size, 1722 sector_t origin_size, 1723 sector_t cache_block_size, 1724 bool mimic_mq, 1725 bool migrations_allowed) 1726{ 1727 unsigned i; 1728 unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS; 1729 unsigned total_sentinels = 2u * nr_sentinels_per_queue; 1730 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); 1731 1732 if (!mq) 1733 return NULL; 1734 1735 init_policy_functions(mq, mimic_mq); 1736 mq->cache_size = cache_size; 1737 mq->cache_block_size = cache_block_size; 1738 1739 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size), 1740 &mq->hotspot_block_size, &mq->nr_hotspot_blocks); 1741 1742 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size); 1743 mq->hotspot_level_jump = 1u; 1744 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) { 1745 DMERR("couldn't initialize entry space"); 1746 goto bad_pool_init; 1747 } 1748 1749 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue); 1750 for (i = 0; i < nr_sentinels_per_queue; i++) 1751 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true; 1752 1753 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels); 1754 for (i = 0; i < nr_sentinels_per_queue; i++) 1755 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true; 1756 1757 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels, 1758 total_sentinels + mq->nr_hotspot_blocks); 1759 1760 init_allocator(&mq->cache_alloc, &mq->es, 1761 total_sentinels + mq->nr_hotspot_blocks, 1762 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size)); 1763 1764 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks); 1765 if (!mq->hotspot_hit_bits) { 1766 DMERR("couldn't allocate hotspot hit bitset"); 1767 goto bad_hotspot_hit_bits; 1768 } 1769 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); 1770 1771 if (from_cblock(cache_size)) { 1772 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size)); 1773 if (!mq->cache_hit_bits) { 1774 DMERR("couldn't allocate cache hit bitset"); 1775 goto bad_cache_hit_bits; 1776 } 1777 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); 1778 } else 1779 mq->cache_hit_bits = NULL; 1780 1781 mq->tick = 0; 1782 spin_lock_init(&mq->lock); 1783 1784 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS); 1785 mq->hotspot.nr_top_levels = 8; 1786 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS, 1787 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block); 1788 1789 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS); 1790 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS); 1791 1792 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS); 1793 stats_init(&mq->cache_stats, NR_CACHE_LEVELS); 1794 1795 if (h_init(&mq->table, &mq->es, from_cblock(cache_size))) 1796 goto bad_alloc_table; 1797 1798 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks)) 1799 goto bad_alloc_hotspot_table; 1800 1801 sentinels_init(mq); 1802 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS; 1803 1804 mq->next_hotspot_period = jiffies; 1805 mq->next_cache_period = jiffies; 1806 1807 mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */ 1808 if (!mq->bg_work) 1809 goto bad_btracker; 1810 1811 mq->migrations_allowed = migrations_allowed; 1812 1813 return &mq->policy; 1814 1815bad_btracker: 1816 h_exit(&mq->hotspot_table); 1817bad_alloc_hotspot_table: 1818 h_exit(&mq->table); 1819bad_alloc_table: 1820 free_bitset(mq->cache_hit_bits); 1821bad_cache_hit_bits: 1822 free_bitset(mq->hotspot_hit_bits); 1823bad_hotspot_hit_bits: 1824 space_exit(&mq->es); 1825bad_pool_init: 1826 kfree(mq); 1827 1828 return NULL; 1829} 1830 1831static struct dm_cache_policy *smq_create(dm_cblock_t cache_size, 1832 sector_t origin_size, 1833 sector_t cache_block_size) 1834{ 1835 return __smq_create(cache_size, origin_size, cache_block_size, false, true); 1836} 1837 1838static struct dm_cache_policy *mq_create(dm_cblock_t cache_size, 1839 sector_t origin_size, 1840 sector_t cache_block_size) 1841{ 1842 return __smq_create(cache_size, origin_size, cache_block_size, true, true); 1843} 1844 1845static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size, 1846 sector_t origin_size, 1847 sector_t cache_block_size) 1848{ 1849 return __smq_create(cache_size, origin_size, cache_block_size, false, false); 1850} 1851 1852/*----------------------------------------------------------------*/ 1853 1854static struct dm_cache_policy_type smq_policy_type = { 1855 .name = "smq", 1856 .version = {2, 0, 0}, 1857 .hint_size = 4, 1858 .owner = THIS_MODULE, 1859 .create = smq_create 1860}; 1861 1862static struct dm_cache_policy_type mq_policy_type = { 1863 .name = "mq", 1864 .version = {2, 0, 0}, 1865 .hint_size = 4, 1866 .owner = THIS_MODULE, 1867 .create = mq_create, 1868}; 1869 1870static struct dm_cache_policy_type cleaner_policy_type = { 1871 .name = "cleaner", 1872 .version = {2, 0, 0}, 1873 .hint_size = 4, 1874 .owner = THIS_MODULE, 1875 .create = cleaner_create, 1876}; 1877 1878static struct dm_cache_policy_type default_policy_type = { 1879 .name = "default", 1880 .version = {2, 0, 0}, 1881 .hint_size = 4, 1882 .owner = THIS_MODULE, 1883 .create = smq_create, 1884 .real = &smq_policy_type 1885}; 1886 1887static int __init smq_init(void) 1888{ 1889 int r; 1890 1891 r = dm_cache_policy_register(&smq_policy_type); 1892 if (r) { 1893 DMERR("register failed %d", r); 1894 return -ENOMEM; 1895 } 1896 1897 r = dm_cache_policy_register(&mq_policy_type); 1898 if (r) { 1899 DMERR("register failed (as mq) %d", r); 1900 goto out_mq; 1901 } 1902 1903 r = dm_cache_policy_register(&cleaner_policy_type); 1904 if (r) { 1905 DMERR("register failed (as cleaner) %d", r); 1906 goto out_cleaner; 1907 } 1908 1909 r = dm_cache_policy_register(&default_policy_type); 1910 if (r) { 1911 DMERR("register failed (as default) %d", r); 1912 goto out_default; 1913 } 1914 1915 return 0; 1916 1917out_default: 1918 dm_cache_policy_unregister(&cleaner_policy_type); 1919out_cleaner: 1920 dm_cache_policy_unregister(&mq_policy_type); 1921out_mq: 1922 dm_cache_policy_unregister(&smq_policy_type); 1923 1924 return -ENOMEM; 1925} 1926 1927static void __exit smq_exit(void) 1928{ 1929 dm_cache_policy_unregister(&cleaner_policy_type); 1930 dm_cache_policy_unregister(&smq_policy_type); 1931 dm_cache_policy_unregister(&mq_policy_type); 1932 dm_cache_policy_unregister(&default_policy_type); 1933} 1934 1935module_init(smq_init); 1936module_exit(smq_exit); 1937 1938MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1939MODULE_LICENSE("GPL"); 1940MODULE_DESCRIPTION("smq cache policy"); 1941 1942MODULE_ALIAS("dm-cache-default"); 1943MODULE_ALIAS("dm-cache-mq"); 1944MODULE_ALIAS("dm-cache-cleaner");