cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dm-crypt.c (96967B)


      1/*
      2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
      3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
      4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
      5 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
      6 *
      7 * This file is released under the GPL.
      8 */
      9
     10#include <linux/completion.h>
     11#include <linux/err.h>
     12#include <linux/module.h>
     13#include <linux/init.h>
     14#include <linux/kernel.h>
     15#include <linux/key.h>
     16#include <linux/bio.h>
     17#include <linux/blkdev.h>
     18#include <linux/blk-integrity.h>
     19#include <linux/mempool.h>
     20#include <linux/slab.h>
     21#include <linux/crypto.h>
     22#include <linux/workqueue.h>
     23#include <linux/kthread.h>
     24#include <linux/backing-dev.h>
     25#include <linux/atomic.h>
     26#include <linux/scatterlist.h>
     27#include <linux/rbtree.h>
     28#include <linux/ctype.h>
     29#include <asm/page.h>
     30#include <asm/unaligned.h>
     31#include <crypto/hash.h>
     32#include <crypto/md5.h>
     33#include <crypto/algapi.h>
     34#include <crypto/skcipher.h>
     35#include <crypto/aead.h>
     36#include <crypto/authenc.h>
     37#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
     38#include <linux/key-type.h>
     39#include <keys/user-type.h>
     40#include <keys/encrypted-type.h>
     41#include <keys/trusted-type.h>
     42
     43#include <linux/device-mapper.h>
     44
     45#include "dm-audit.h"
     46
     47#define DM_MSG_PREFIX "crypt"
     48
     49/*
     50 * context holding the current state of a multi-part conversion
     51 */
     52struct convert_context {
     53	struct completion restart;
     54	struct bio *bio_in;
     55	struct bio *bio_out;
     56	struct bvec_iter iter_in;
     57	struct bvec_iter iter_out;
     58	u64 cc_sector;
     59	atomic_t cc_pending;
     60	union {
     61		struct skcipher_request *req;
     62		struct aead_request *req_aead;
     63	} r;
     64
     65};
     66
     67/*
     68 * per bio private data
     69 */
     70struct dm_crypt_io {
     71	struct crypt_config *cc;
     72	struct bio *base_bio;
     73	u8 *integrity_metadata;
     74	bool integrity_metadata_from_pool;
     75	struct work_struct work;
     76	struct tasklet_struct tasklet;
     77
     78	struct convert_context ctx;
     79
     80	atomic_t io_pending;
     81	blk_status_t error;
     82	sector_t sector;
     83
     84	struct rb_node rb_node;
     85} CRYPTO_MINALIGN_ATTR;
     86
     87struct dm_crypt_request {
     88	struct convert_context *ctx;
     89	struct scatterlist sg_in[4];
     90	struct scatterlist sg_out[4];
     91	u64 iv_sector;
     92};
     93
     94struct crypt_config;
     95
     96struct crypt_iv_operations {
     97	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
     98		   const char *opts);
     99	void (*dtr)(struct crypt_config *cc);
    100	int (*init)(struct crypt_config *cc);
    101	int (*wipe)(struct crypt_config *cc);
    102	int (*generator)(struct crypt_config *cc, u8 *iv,
    103			 struct dm_crypt_request *dmreq);
    104	int (*post)(struct crypt_config *cc, u8 *iv,
    105		    struct dm_crypt_request *dmreq);
    106};
    107
    108struct iv_benbi_private {
    109	int shift;
    110};
    111
    112#define LMK_SEED_SIZE 64 /* hash + 0 */
    113struct iv_lmk_private {
    114	struct crypto_shash *hash_tfm;
    115	u8 *seed;
    116};
    117
    118#define TCW_WHITENING_SIZE 16
    119struct iv_tcw_private {
    120	struct crypto_shash *crc32_tfm;
    121	u8 *iv_seed;
    122	u8 *whitening;
    123};
    124
    125#define ELEPHANT_MAX_KEY_SIZE 32
    126struct iv_elephant_private {
    127	struct crypto_skcipher *tfm;
    128};
    129
    130/*
    131 * Crypt: maps a linear range of a block device
    132 * and encrypts / decrypts at the same time.
    133 */
    134enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
    135	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
    136	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
    137	     DM_CRYPT_WRITE_INLINE };
    138
    139enum cipher_flags {
    140	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
    141	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
    142	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
    143};
    144
    145/*
    146 * The fields in here must be read only after initialization.
    147 */
    148struct crypt_config {
    149	struct dm_dev *dev;
    150	sector_t start;
    151
    152	struct percpu_counter n_allocated_pages;
    153
    154	struct workqueue_struct *io_queue;
    155	struct workqueue_struct *crypt_queue;
    156
    157	spinlock_t write_thread_lock;
    158	struct task_struct *write_thread;
    159	struct rb_root write_tree;
    160
    161	char *cipher_string;
    162	char *cipher_auth;
    163	char *key_string;
    164
    165	const struct crypt_iv_operations *iv_gen_ops;
    166	union {
    167		struct iv_benbi_private benbi;
    168		struct iv_lmk_private lmk;
    169		struct iv_tcw_private tcw;
    170		struct iv_elephant_private elephant;
    171	} iv_gen_private;
    172	u64 iv_offset;
    173	unsigned int iv_size;
    174	unsigned short int sector_size;
    175	unsigned char sector_shift;
    176
    177	union {
    178		struct crypto_skcipher **tfms;
    179		struct crypto_aead **tfms_aead;
    180	} cipher_tfm;
    181	unsigned tfms_count;
    182	unsigned long cipher_flags;
    183
    184	/*
    185	 * Layout of each crypto request:
    186	 *
    187	 *   struct skcipher_request
    188	 *      context
    189	 *      padding
    190	 *   struct dm_crypt_request
    191	 *      padding
    192	 *   IV
    193	 *
    194	 * The padding is added so that dm_crypt_request and the IV are
    195	 * correctly aligned.
    196	 */
    197	unsigned int dmreq_start;
    198
    199	unsigned int per_bio_data_size;
    200
    201	unsigned long flags;
    202	unsigned int key_size;
    203	unsigned int key_parts;      /* independent parts in key buffer */
    204	unsigned int key_extra_size; /* additional keys length */
    205	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
    206
    207	unsigned int integrity_tag_size;
    208	unsigned int integrity_iv_size;
    209	unsigned int on_disk_tag_size;
    210
    211	/*
    212	 * pool for per bio private data, crypto requests,
    213	 * encryption requeusts/buffer pages and integrity tags
    214	 */
    215	unsigned tag_pool_max_sectors;
    216	mempool_t tag_pool;
    217	mempool_t req_pool;
    218	mempool_t page_pool;
    219
    220	struct bio_set bs;
    221	struct mutex bio_alloc_lock;
    222
    223	u8 *authenc_key; /* space for keys in authenc() format (if used) */
    224	u8 key[];
    225};
    226
    227#define MIN_IOS		64
    228#define MAX_TAG_SIZE	480
    229#define POOL_ENTRY_SIZE	512
    230
    231static DEFINE_SPINLOCK(dm_crypt_clients_lock);
    232static unsigned dm_crypt_clients_n = 0;
    233static volatile unsigned long dm_crypt_pages_per_client;
    234#define DM_CRYPT_MEMORY_PERCENT			2
    235#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
    236
    237static void crypt_endio(struct bio *clone);
    238static void kcryptd_queue_crypt(struct dm_crypt_io *io);
    239static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
    240					     struct scatterlist *sg);
    241
    242static bool crypt_integrity_aead(struct crypt_config *cc);
    243
    244/*
    245 * Use this to access cipher attributes that are independent of the key.
    246 */
    247static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
    248{
    249	return cc->cipher_tfm.tfms[0];
    250}
    251
    252static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
    253{
    254	return cc->cipher_tfm.tfms_aead[0];
    255}
    256
    257/*
    258 * Different IV generation algorithms:
    259 *
    260 * plain: the initial vector is the 32-bit little-endian version of the sector
    261 *        number, padded with zeros if necessary.
    262 *
    263 * plain64: the initial vector is the 64-bit little-endian version of the sector
    264 *        number, padded with zeros if necessary.
    265 *
    266 * plain64be: the initial vector is the 64-bit big-endian version of the sector
    267 *        number, padded with zeros if necessary.
    268 *
    269 * essiv: "encrypted sector|salt initial vector", the sector number is
    270 *        encrypted with the bulk cipher using a salt as key. The salt
    271 *        should be derived from the bulk cipher's key via hashing.
    272 *
    273 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
    274 *        (needed for LRW-32-AES and possible other narrow block modes)
    275 *
    276 * null: the initial vector is always zero.  Provides compatibility with
    277 *       obsolete loop_fish2 devices.  Do not use for new devices.
    278 *
    279 * lmk:  Compatible implementation of the block chaining mode used
    280 *       by the Loop-AES block device encryption system
    281 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
    282 *       It operates on full 512 byte sectors and uses CBC
    283 *       with an IV derived from the sector number, the data and
    284 *       optionally extra IV seed.
    285 *       This means that after decryption the first block
    286 *       of sector must be tweaked according to decrypted data.
    287 *       Loop-AES can use three encryption schemes:
    288 *         version 1: is plain aes-cbc mode
    289 *         version 2: uses 64 multikey scheme with lmk IV generator
    290 *         version 3: the same as version 2 with additional IV seed
    291 *                   (it uses 65 keys, last key is used as IV seed)
    292 *
    293 * tcw:  Compatible implementation of the block chaining mode used
    294 *       by the TrueCrypt device encryption system (prior to version 4.1).
    295 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
    296 *       It operates on full 512 byte sectors and uses CBC
    297 *       with an IV derived from initial key and the sector number.
    298 *       In addition, whitening value is applied on every sector, whitening
    299 *       is calculated from initial key, sector number and mixed using CRC32.
    300 *       Note that this encryption scheme is vulnerable to watermarking attacks
    301 *       and should be used for old compatible containers access only.
    302 *
    303 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
    304 *        The IV is encrypted little-endian byte-offset (with the same key
    305 *        and cipher as the volume).
    306 *
    307 * elephant: The extended version of eboiv with additional Elephant diffuser
    308 *           used with Bitlocker CBC mode.
    309 *           This mode was used in older Windows systems
    310 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
    311 */
    312
    313static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
    314			      struct dm_crypt_request *dmreq)
    315{
    316	memset(iv, 0, cc->iv_size);
    317	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
    318
    319	return 0;
    320}
    321
    322static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
    323				struct dm_crypt_request *dmreq)
    324{
    325	memset(iv, 0, cc->iv_size);
    326	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
    327
    328	return 0;
    329}
    330
    331static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
    332				  struct dm_crypt_request *dmreq)
    333{
    334	memset(iv, 0, cc->iv_size);
    335	/* iv_size is at least of size u64; usually it is 16 bytes */
    336	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
    337
    338	return 0;
    339}
    340
    341static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
    342			      struct dm_crypt_request *dmreq)
    343{
    344	/*
    345	 * ESSIV encryption of the IV is now handled by the crypto API,
    346	 * so just pass the plain sector number here.
    347	 */
    348	memset(iv, 0, cc->iv_size);
    349	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
    350
    351	return 0;
    352}
    353
    354static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
    355			      const char *opts)
    356{
    357	unsigned bs;
    358	int log;
    359
    360	if (crypt_integrity_aead(cc))
    361		bs = crypto_aead_blocksize(any_tfm_aead(cc));
    362	else
    363		bs = crypto_skcipher_blocksize(any_tfm(cc));
    364	log = ilog2(bs);
    365
    366	/* we need to calculate how far we must shift the sector count
    367	 * to get the cipher block count, we use this shift in _gen */
    368
    369	if (1 << log != bs) {
    370		ti->error = "cypher blocksize is not a power of 2";
    371		return -EINVAL;
    372	}
    373
    374	if (log > 9) {
    375		ti->error = "cypher blocksize is > 512";
    376		return -EINVAL;
    377	}
    378
    379	cc->iv_gen_private.benbi.shift = 9 - log;
    380
    381	return 0;
    382}
    383
    384static void crypt_iv_benbi_dtr(struct crypt_config *cc)
    385{
    386}
    387
    388static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
    389			      struct dm_crypt_request *dmreq)
    390{
    391	__be64 val;
    392
    393	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
    394
    395	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
    396	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
    397
    398	return 0;
    399}
    400
    401static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
    402			     struct dm_crypt_request *dmreq)
    403{
    404	memset(iv, 0, cc->iv_size);
    405
    406	return 0;
    407}
    408
    409static void crypt_iv_lmk_dtr(struct crypt_config *cc)
    410{
    411	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
    412
    413	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
    414		crypto_free_shash(lmk->hash_tfm);
    415	lmk->hash_tfm = NULL;
    416
    417	kfree_sensitive(lmk->seed);
    418	lmk->seed = NULL;
    419}
    420
    421static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
    422			    const char *opts)
    423{
    424	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
    425
    426	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
    427		ti->error = "Unsupported sector size for LMK";
    428		return -EINVAL;
    429	}
    430
    431	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
    432					   CRYPTO_ALG_ALLOCATES_MEMORY);
    433	if (IS_ERR(lmk->hash_tfm)) {
    434		ti->error = "Error initializing LMK hash";
    435		return PTR_ERR(lmk->hash_tfm);
    436	}
    437
    438	/* No seed in LMK version 2 */
    439	if (cc->key_parts == cc->tfms_count) {
    440		lmk->seed = NULL;
    441		return 0;
    442	}
    443
    444	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
    445	if (!lmk->seed) {
    446		crypt_iv_lmk_dtr(cc);
    447		ti->error = "Error kmallocing seed storage in LMK";
    448		return -ENOMEM;
    449	}
    450
    451	return 0;
    452}
    453
    454static int crypt_iv_lmk_init(struct crypt_config *cc)
    455{
    456	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
    457	int subkey_size = cc->key_size / cc->key_parts;
    458
    459	/* LMK seed is on the position of LMK_KEYS + 1 key */
    460	if (lmk->seed)
    461		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
    462		       crypto_shash_digestsize(lmk->hash_tfm));
    463
    464	return 0;
    465}
    466
    467static int crypt_iv_lmk_wipe(struct crypt_config *cc)
    468{
    469	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
    470
    471	if (lmk->seed)
    472		memset(lmk->seed, 0, LMK_SEED_SIZE);
    473
    474	return 0;
    475}
    476
    477static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
    478			    struct dm_crypt_request *dmreq,
    479			    u8 *data)
    480{
    481	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
    482	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
    483	struct md5_state md5state;
    484	__le32 buf[4];
    485	int i, r;
    486
    487	desc->tfm = lmk->hash_tfm;
    488
    489	r = crypto_shash_init(desc);
    490	if (r)
    491		return r;
    492
    493	if (lmk->seed) {
    494		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
    495		if (r)
    496			return r;
    497	}
    498
    499	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
    500	r = crypto_shash_update(desc, data + 16, 16 * 31);
    501	if (r)
    502		return r;
    503
    504	/* Sector is cropped to 56 bits here */
    505	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
    506	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
    507	buf[2] = cpu_to_le32(4024);
    508	buf[3] = 0;
    509	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
    510	if (r)
    511		return r;
    512
    513	/* No MD5 padding here */
    514	r = crypto_shash_export(desc, &md5state);
    515	if (r)
    516		return r;
    517
    518	for (i = 0; i < MD5_HASH_WORDS; i++)
    519		__cpu_to_le32s(&md5state.hash[i]);
    520	memcpy(iv, &md5state.hash, cc->iv_size);
    521
    522	return 0;
    523}
    524
    525static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
    526			    struct dm_crypt_request *dmreq)
    527{
    528	struct scatterlist *sg;
    529	u8 *src;
    530	int r = 0;
    531
    532	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
    533		sg = crypt_get_sg_data(cc, dmreq->sg_in);
    534		src = kmap_atomic(sg_page(sg));
    535		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
    536		kunmap_atomic(src);
    537	} else
    538		memset(iv, 0, cc->iv_size);
    539
    540	return r;
    541}
    542
    543static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
    544			     struct dm_crypt_request *dmreq)
    545{
    546	struct scatterlist *sg;
    547	u8 *dst;
    548	int r;
    549
    550	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
    551		return 0;
    552
    553	sg = crypt_get_sg_data(cc, dmreq->sg_out);
    554	dst = kmap_atomic(sg_page(sg));
    555	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
    556
    557	/* Tweak the first block of plaintext sector */
    558	if (!r)
    559		crypto_xor(dst + sg->offset, iv, cc->iv_size);
    560
    561	kunmap_atomic(dst);
    562	return r;
    563}
    564
    565static void crypt_iv_tcw_dtr(struct crypt_config *cc)
    566{
    567	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
    568
    569	kfree_sensitive(tcw->iv_seed);
    570	tcw->iv_seed = NULL;
    571	kfree_sensitive(tcw->whitening);
    572	tcw->whitening = NULL;
    573
    574	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
    575		crypto_free_shash(tcw->crc32_tfm);
    576	tcw->crc32_tfm = NULL;
    577}
    578
    579static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
    580			    const char *opts)
    581{
    582	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
    583
    584	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
    585		ti->error = "Unsupported sector size for TCW";
    586		return -EINVAL;
    587	}
    588
    589	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
    590		ti->error = "Wrong key size for TCW";
    591		return -EINVAL;
    592	}
    593
    594	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
    595					    CRYPTO_ALG_ALLOCATES_MEMORY);
    596	if (IS_ERR(tcw->crc32_tfm)) {
    597		ti->error = "Error initializing CRC32 in TCW";
    598		return PTR_ERR(tcw->crc32_tfm);
    599	}
    600
    601	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
    602	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
    603	if (!tcw->iv_seed || !tcw->whitening) {
    604		crypt_iv_tcw_dtr(cc);
    605		ti->error = "Error allocating seed storage in TCW";
    606		return -ENOMEM;
    607	}
    608
    609	return 0;
    610}
    611
    612static int crypt_iv_tcw_init(struct crypt_config *cc)
    613{
    614	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
    615	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
    616
    617	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
    618	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
    619	       TCW_WHITENING_SIZE);
    620
    621	return 0;
    622}
    623
    624static int crypt_iv_tcw_wipe(struct crypt_config *cc)
    625{
    626	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
    627
    628	memset(tcw->iv_seed, 0, cc->iv_size);
    629	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
    630
    631	return 0;
    632}
    633
    634static int crypt_iv_tcw_whitening(struct crypt_config *cc,
    635				  struct dm_crypt_request *dmreq,
    636				  u8 *data)
    637{
    638	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
    639	__le64 sector = cpu_to_le64(dmreq->iv_sector);
    640	u8 buf[TCW_WHITENING_SIZE];
    641	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
    642	int i, r;
    643
    644	/* xor whitening with sector number */
    645	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
    646	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
    647
    648	/* calculate crc32 for every 32bit part and xor it */
    649	desc->tfm = tcw->crc32_tfm;
    650	for (i = 0; i < 4; i++) {
    651		r = crypto_shash_init(desc);
    652		if (r)
    653			goto out;
    654		r = crypto_shash_update(desc, &buf[i * 4], 4);
    655		if (r)
    656			goto out;
    657		r = crypto_shash_final(desc, &buf[i * 4]);
    658		if (r)
    659			goto out;
    660	}
    661	crypto_xor(&buf[0], &buf[12], 4);
    662	crypto_xor(&buf[4], &buf[8], 4);
    663
    664	/* apply whitening (8 bytes) to whole sector */
    665	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
    666		crypto_xor(data + i * 8, buf, 8);
    667out:
    668	memzero_explicit(buf, sizeof(buf));
    669	return r;
    670}
    671
    672static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
    673			    struct dm_crypt_request *dmreq)
    674{
    675	struct scatterlist *sg;
    676	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
    677	__le64 sector = cpu_to_le64(dmreq->iv_sector);
    678	u8 *src;
    679	int r = 0;
    680
    681	/* Remove whitening from ciphertext */
    682	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
    683		sg = crypt_get_sg_data(cc, dmreq->sg_in);
    684		src = kmap_atomic(sg_page(sg));
    685		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
    686		kunmap_atomic(src);
    687	}
    688
    689	/* Calculate IV */
    690	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
    691	if (cc->iv_size > 8)
    692		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
    693			       cc->iv_size - 8);
    694
    695	return r;
    696}
    697
    698static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
    699			     struct dm_crypt_request *dmreq)
    700{
    701	struct scatterlist *sg;
    702	u8 *dst;
    703	int r;
    704
    705	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
    706		return 0;
    707
    708	/* Apply whitening on ciphertext */
    709	sg = crypt_get_sg_data(cc, dmreq->sg_out);
    710	dst = kmap_atomic(sg_page(sg));
    711	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
    712	kunmap_atomic(dst);
    713
    714	return r;
    715}
    716
    717static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
    718				struct dm_crypt_request *dmreq)
    719{
    720	/* Used only for writes, there must be an additional space to store IV */
    721	get_random_bytes(iv, cc->iv_size);
    722	return 0;
    723}
    724
    725static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
    726			    const char *opts)
    727{
    728	if (crypt_integrity_aead(cc)) {
    729		ti->error = "AEAD transforms not supported for EBOIV";
    730		return -EINVAL;
    731	}
    732
    733	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
    734		ti->error = "Block size of EBOIV cipher does "
    735			    "not match IV size of block cipher";
    736		return -EINVAL;
    737	}
    738
    739	return 0;
    740}
    741
    742static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
    743			    struct dm_crypt_request *dmreq)
    744{
    745	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
    746	struct skcipher_request *req;
    747	struct scatterlist src, dst;
    748	DECLARE_CRYPTO_WAIT(wait);
    749	int err;
    750
    751	req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
    752	if (!req)
    753		return -ENOMEM;
    754
    755	memset(buf, 0, cc->iv_size);
    756	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
    757
    758	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
    759	sg_init_one(&dst, iv, cc->iv_size);
    760	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
    761	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
    762	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
    763	skcipher_request_free(req);
    764
    765	return err;
    766}
    767
    768static void crypt_iv_elephant_dtr(struct crypt_config *cc)
    769{
    770	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
    771
    772	crypto_free_skcipher(elephant->tfm);
    773	elephant->tfm = NULL;
    774}
    775
    776static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
    777			    const char *opts)
    778{
    779	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
    780	int r;
    781
    782	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
    783					      CRYPTO_ALG_ALLOCATES_MEMORY);
    784	if (IS_ERR(elephant->tfm)) {
    785		r = PTR_ERR(elephant->tfm);
    786		elephant->tfm = NULL;
    787		return r;
    788	}
    789
    790	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
    791	if (r)
    792		crypt_iv_elephant_dtr(cc);
    793	return r;
    794}
    795
    796static void diffuser_disk_to_cpu(u32 *d, size_t n)
    797{
    798#ifndef __LITTLE_ENDIAN
    799	int i;
    800
    801	for (i = 0; i < n; i++)
    802		d[i] = le32_to_cpu((__le32)d[i]);
    803#endif
    804}
    805
    806static void diffuser_cpu_to_disk(__le32 *d, size_t n)
    807{
    808#ifndef __LITTLE_ENDIAN
    809	int i;
    810
    811	for (i = 0; i < n; i++)
    812		d[i] = cpu_to_le32((u32)d[i]);
    813#endif
    814}
    815
    816static void diffuser_a_decrypt(u32 *d, size_t n)
    817{
    818	int i, i1, i2, i3;
    819
    820	for (i = 0; i < 5; i++) {
    821		i1 = 0;
    822		i2 = n - 2;
    823		i3 = n - 5;
    824
    825		while (i1 < (n - 1)) {
    826			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
    827			i1++; i2++; i3++;
    828
    829			if (i3 >= n)
    830				i3 -= n;
    831
    832			d[i1] += d[i2] ^ d[i3];
    833			i1++; i2++; i3++;
    834
    835			if (i2 >= n)
    836				i2 -= n;
    837
    838			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
    839			i1++; i2++; i3++;
    840
    841			d[i1] += d[i2] ^ d[i3];
    842			i1++; i2++; i3++;
    843		}
    844	}
    845}
    846
    847static void diffuser_a_encrypt(u32 *d, size_t n)
    848{
    849	int i, i1, i2, i3;
    850
    851	for (i = 0; i < 5; i++) {
    852		i1 = n - 1;
    853		i2 = n - 2 - 1;
    854		i3 = n - 5 - 1;
    855
    856		while (i1 > 0) {
    857			d[i1] -= d[i2] ^ d[i3];
    858			i1--; i2--; i3--;
    859
    860			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
    861			i1--; i2--; i3--;
    862
    863			if (i2 < 0)
    864				i2 += n;
    865
    866			d[i1] -= d[i2] ^ d[i3];
    867			i1--; i2--; i3--;
    868
    869			if (i3 < 0)
    870				i3 += n;
    871
    872			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
    873			i1--; i2--; i3--;
    874		}
    875	}
    876}
    877
    878static void diffuser_b_decrypt(u32 *d, size_t n)
    879{
    880	int i, i1, i2, i3;
    881
    882	for (i = 0; i < 3; i++) {
    883		i1 = 0;
    884		i2 = 2;
    885		i3 = 5;
    886
    887		while (i1 < (n - 1)) {
    888			d[i1] += d[i2] ^ d[i3];
    889			i1++; i2++; i3++;
    890
    891			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
    892			i1++; i2++; i3++;
    893
    894			if (i2 >= n)
    895				i2 -= n;
    896
    897			d[i1] += d[i2] ^ d[i3];
    898			i1++; i2++; i3++;
    899
    900			if (i3 >= n)
    901				i3 -= n;
    902
    903			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
    904			i1++; i2++; i3++;
    905		}
    906	}
    907}
    908
    909static void diffuser_b_encrypt(u32 *d, size_t n)
    910{
    911	int i, i1, i2, i3;
    912
    913	for (i = 0; i < 3; i++) {
    914		i1 = n - 1;
    915		i2 = 2 - 1;
    916		i3 = 5 - 1;
    917
    918		while (i1 > 0) {
    919			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
    920			i1--; i2--; i3--;
    921
    922			if (i3 < 0)
    923				i3 += n;
    924
    925			d[i1] -= d[i2] ^ d[i3];
    926			i1--; i2--; i3--;
    927
    928			if (i2 < 0)
    929				i2 += n;
    930
    931			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
    932			i1--; i2--; i3--;
    933
    934			d[i1] -= d[i2] ^ d[i3];
    935			i1--; i2--; i3--;
    936		}
    937	}
    938}
    939
    940static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
    941{
    942	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
    943	u8 *es, *ks, *data, *data2, *data_offset;
    944	struct skcipher_request *req;
    945	struct scatterlist *sg, *sg2, src, dst;
    946	DECLARE_CRYPTO_WAIT(wait);
    947	int i, r;
    948
    949	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
    950	es = kzalloc(16, GFP_NOIO); /* Key for AES */
    951	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
    952
    953	if (!req || !es || !ks) {
    954		r = -ENOMEM;
    955		goto out;
    956	}
    957
    958	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
    959
    960	/* E(Ks, e(s)) */
    961	sg_init_one(&src, es, 16);
    962	sg_init_one(&dst, ks, 16);
    963	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
    964	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
    965	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
    966	if (r)
    967		goto out;
    968
    969	/* E(Ks, e'(s)) */
    970	es[15] = 0x80;
    971	sg_init_one(&dst, &ks[16], 16);
    972	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
    973	if (r)
    974		goto out;
    975
    976	sg = crypt_get_sg_data(cc, dmreq->sg_out);
    977	data = kmap_atomic(sg_page(sg));
    978	data_offset = data + sg->offset;
    979
    980	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
    981	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
    982		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
    983		data2 = kmap_atomic(sg_page(sg2));
    984		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
    985		kunmap_atomic(data2);
    986	}
    987
    988	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
    989		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
    990		diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
    991		diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
    992		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
    993	}
    994
    995	for (i = 0; i < (cc->sector_size / 32); i++)
    996		crypto_xor(data_offset + i * 32, ks, 32);
    997
    998	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
    999		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
   1000		diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
   1001		diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
   1002		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
   1003	}
   1004
   1005	kunmap_atomic(data);
   1006out:
   1007	kfree_sensitive(ks);
   1008	kfree_sensitive(es);
   1009	skcipher_request_free(req);
   1010	return r;
   1011}
   1012
   1013static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
   1014			    struct dm_crypt_request *dmreq)
   1015{
   1016	int r;
   1017
   1018	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
   1019		r = crypt_iv_elephant(cc, dmreq);
   1020		if (r)
   1021			return r;
   1022	}
   1023
   1024	return crypt_iv_eboiv_gen(cc, iv, dmreq);
   1025}
   1026
   1027static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
   1028				  struct dm_crypt_request *dmreq)
   1029{
   1030	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
   1031		return crypt_iv_elephant(cc, dmreq);
   1032
   1033	return 0;
   1034}
   1035
   1036static int crypt_iv_elephant_init(struct crypt_config *cc)
   1037{
   1038	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
   1039	int key_offset = cc->key_size - cc->key_extra_size;
   1040
   1041	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
   1042}
   1043
   1044static int crypt_iv_elephant_wipe(struct crypt_config *cc)
   1045{
   1046	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
   1047	u8 key[ELEPHANT_MAX_KEY_SIZE];
   1048
   1049	memset(key, 0, cc->key_extra_size);
   1050	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
   1051}
   1052
   1053static const struct crypt_iv_operations crypt_iv_plain_ops = {
   1054	.generator = crypt_iv_plain_gen
   1055};
   1056
   1057static const struct crypt_iv_operations crypt_iv_plain64_ops = {
   1058	.generator = crypt_iv_plain64_gen
   1059};
   1060
   1061static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
   1062	.generator = crypt_iv_plain64be_gen
   1063};
   1064
   1065static const struct crypt_iv_operations crypt_iv_essiv_ops = {
   1066	.generator = crypt_iv_essiv_gen
   1067};
   1068
   1069static const struct crypt_iv_operations crypt_iv_benbi_ops = {
   1070	.ctr	   = crypt_iv_benbi_ctr,
   1071	.dtr	   = crypt_iv_benbi_dtr,
   1072	.generator = crypt_iv_benbi_gen
   1073};
   1074
   1075static const struct crypt_iv_operations crypt_iv_null_ops = {
   1076	.generator = crypt_iv_null_gen
   1077};
   1078
   1079static const struct crypt_iv_operations crypt_iv_lmk_ops = {
   1080	.ctr	   = crypt_iv_lmk_ctr,
   1081	.dtr	   = crypt_iv_lmk_dtr,
   1082	.init	   = crypt_iv_lmk_init,
   1083	.wipe	   = crypt_iv_lmk_wipe,
   1084	.generator = crypt_iv_lmk_gen,
   1085	.post	   = crypt_iv_lmk_post
   1086};
   1087
   1088static const struct crypt_iv_operations crypt_iv_tcw_ops = {
   1089	.ctr	   = crypt_iv_tcw_ctr,
   1090	.dtr	   = crypt_iv_tcw_dtr,
   1091	.init	   = crypt_iv_tcw_init,
   1092	.wipe	   = crypt_iv_tcw_wipe,
   1093	.generator = crypt_iv_tcw_gen,
   1094	.post	   = crypt_iv_tcw_post
   1095};
   1096
   1097static const struct crypt_iv_operations crypt_iv_random_ops = {
   1098	.generator = crypt_iv_random_gen
   1099};
   1100
   1101static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
   1102	.ctr	   = crypt_iv_eboiv_ctr,
   1103	.generator = crypt_iv_eboiv_gen
   1104};
   1105
   1106static const struct crypt_iv_operations crypt_iv_elephant_ops = {
   1107	.ctr	   = crypt_iv_elephant_ctr,
   1108	.dtr	   = crypt_iv_elephant_dtr,
   1109	.init	   = crypt_iv_elephant_init,
   1110	.wipe	   = crypt_iv_elephant_wipe,
   1111	.generator = crypt_iv_elephant_gen,
   1112	.post	   = crypt_iv_elephant_post
   1113};
   1114
   1115/*
   1116 * Integrity extensions
   1117 */
   1118static bool crypt_integrity_aead(struct crypt_config *cc)
   1119{
   1120	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
   1121}
   1122
   1123static bool crypt_integrity_hmac(struct crypt_config *cc)
   1124{
   1125	return crypt_integrity_aead(cc) && cc->key_mac_size;
   1126}
   1127
   1128/* Get sg containing data */
   1129static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
   1130					     struct scatterlist *sg)
   1131{
   1132	if (unlikely(crypt_integrity_aead(cc)))
   1133		return &sg[2];
   1134
   1135	return sg;
   1136}
   1137
   1138static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
   1139{
   1140	struct bio_integrity_payload *bip;
   1141	unsigned int tag_len;
   1142	int ret;
   1143
   1144	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
   1145		return 0;
   1146
   1147	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
   1148	if (IS_ERR(bip))
   1149		return PTR_ERR(bip);
   1150
   1151	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
   1152
   1153	bip->bip_iter.bi_size = tag_len;
   1154	bip->bip_iter.bi_sector = io->cc->start + io->sector;
   1155
   1156	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
   1157				     tag_len, offset_in_page(io->integrity_metadata));
   1158	if (unlikely(ret != tag_len))
   1159		return -ENOMEM;
   1160
   1161	return 0;
   1162}
   1163
   1164static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
   1165{
   1166#ifdef CONFIG_BLK_DEV_INTEGRITY
   1167	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
   1168	struct mapped_device *md = dm_table_get_md(ti->table);
   1169
   1170	/* From now we require underlying device with our integrity profile */
   1171	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
   1172		ti->error = "Integrity profile not supported.";
   1173		return -EINVAL;
   1174	}
   1175
   1176	if (bi->tag_size != cc->on_disk_tag_size ||
   1177	    bi->tuple_size != cc->on_disk_tag_size) {
   1178		ti->error = "Integrity profile tag size mismatch.";
   1179		return -EINVAL;
   1180	}
   1181	if (1 << bi->interval_exp != cc->sector_size) {
   1182		ti->error = "Integrity profile sector size mismatch.";
   1183		return -EINVAL;
   1184	}
   1185
   1186	if (crypt_integrity_aead(cc)) {
   1187		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
   1188		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
   1189		       cc->integrity_tag_size, cc->integrity_iv_size);
   1190
   1191		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
   1192			ti->error = "Integrity AEAD auth tag size is not supported.";
   1193			return -EINVAL;
   1194		}
   1195	} else if (cc->integrity_iv_size)
   1196		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
   1197		       cc->integrity_iv_size);
   1198
   1199	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
   1200		ti->error = "Not enough space for integrity tag in the profile.";
   1201		return -EINVAL;
   1202	}
   1203
   1204	return 0;
   1205#else
   1206	ti->error = "Integrity profile not supported.";
   1207	return -EINVAL;
   1208#endif
   1209}
   1210
   1211static void crypt_convert_init(struct crypt_config *cc,
   1212			       struct convert_context *ctx,
   1213			       struct bio *bio_out, struct bio *bio_in,
   1214			       sector_t sector)
   1215{
   1216	ctx->bio_in = bio_in;
   1217	ctx->bio_out = bio_out;
   1218	if (bio_in)
   1219		ctx->iter_in = bio_in->bi_iter;
   1220	if (bio_out)
   1221		ctx->iter_out = bio_out->bi_iter;
   1222	ctx->cc_sector = sector + cc->iv_offset;
   1223	init_completion(&ctx->restart);
   1224}
   1225
   1226static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
   1227					     void *req)
   1228{
   1229	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
   1230}
   1231
   1232static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
   1233{
   1234	return (void *)((char *)dmreq - cc->dmreq_start);
   1235}
   1236
   1237static u8 *iv_of_dmreq(struct crypt_config *cc,
   1238		       struct dm_crypt_request *dmreq)
   1239{
   1240	if (crypt_integrity_aead(cc))
   1241		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
   1242			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
   1243	else
   1244		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
   1245			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
   1246}
   1247
   1248static u8 *org_iv_of_dmreq(struct crypt_config *cc,
   1249		       struct dm_crypt_request *dmreq)
   1250{
   1251	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
   1252}
   1253
   1254static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
   1255		       struct dm_crypt_request *dmreq)
   1256{
   1257	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
   1258	return (__le64 *) ptr;
   1259}
   1260
   1261static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
   1262		       struct dm_crypt_request *dmreq)
   1263{
   1264	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
   1265		  cc->iv_size + sizeof(uint64_t);
   1266	return (unsigned int*)ptr;
   1267}
   1268
   1269static void *tag_from_dmreq(struct crypt_config *cc,
   1270				struct dm_crypt_request *dmreq)
   1271{
   1272	struct convert_context *ctx = dmreq->ctx;
   1273	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
   1274
   1275	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
   1276		cc->on_disk_tag_size];
   1277}
   1278
   1279static void *iv_tag_from_dmreq(struct crypt_config *cc,
   1280			       struct dm_crypt_request *dmreq)
   1281{
   1282	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
   1283}
   1284
   1285static int crypt_convert_block_aead(struct crypt_config *cc,
   1286				     struct convert_context *ctx,
   1287				     struct aead_request *req,
   1288				     unsigned int tag_offset)
   1289{
   1290	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
   1291	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
   1292	struct dm_crypt_request *dmreq;
   1293	u8 *iv, *org_iv, *tag_iv, *tag;
   1294	__le64 *sector;
   1295	int r = 0;
   1296
   1297	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
   1298
   1299	/* Reject unexpected unaligned bio. */
   1300	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
   1301		return -EIO;
   1302
   1303	dmreq = dmreq_of_req(cc, req);
   1304	dmreq->iv_sector = ctx->cc_sector;
   1305	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
   1306		dmreq->iv_sector >>= cc->sector_shift;
   1307	dmreq->ctx = ctx;
   1308
   1309	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
   1310
   1311	sector = org_sector_of_dmreq(cc, dmreq);
   1312	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
   1313
   1314	iv = iv_of_dmreq(cc, dmreq);
   1315	org_iv = org_iv_of_dmreq(cc, dmreq);
   1316	tag = tag_from_dmreq(cc, dmreq);
   1317	tag_iv = iv_tag_from_dmreq(cc, dmreq);
   1318
   1319	/* AEAD request:
   1320	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
   1321	 *  | (authenticated) | (auth+encryption) |              |
   1322	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
   1323	 */
   1324	sg_init_table(dmreq->sg_in, 4);
   1325	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
   1326	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
   1327	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
   1328	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
   1329
   1330	sg_init_table(dmreq->sg_out, 4);
   1331	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
   1332	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
   1333	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
   1334	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
   1335
   1336	if (cc->iv_gen_ops) {
   1337		/* For READs use IV stored in integrity metadata */
   1338		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
   1339			memcpy(org_iv, tag_iv, cc->iv_size);
   1340		} else {
   1341			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
   1342			if (r < 0)
   1343				return r;
   1344			/* Store generated IV in integrity metadata */
   1345			if (cc->integrity_iv_size)
   1346				memcpy(tag_iv, org_iv, cc->iv_size);
   1347		}
   1348		/* Working copy of IV, to be modified in crypto API */
   1349		memcpy(iv, org_iv, cc->iv_size);
   1350	}
   1351
   1352	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
   1353	if (bio_data_dir(ctx->bio_in) == WRITE) {
   1354		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
   1355				       cc->sector_size, iv);
   1356		r = crypto_aead_encrypt(req);
   1357		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
   1358			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
   1359			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
   1360	} else {
   1361		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
   1362				       cc->sector_size + cc->integrity_tag_size, iv);
   1363		r = crypto_aead_decrypt(req);
   1364	}
   1365
   1366	if (r == -EBADMSG) {
   1367		sector_t s = le64_to_cpu(*sector);
   1368
   1369		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
   1370			    ctx->bio_in->bi_bdev, s);
   1371		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
   1372				 ctx->bio_in, s, 0);
   1373	}
   1374
   1375	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
   1376		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
   1377
   1378	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
   1379	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
   1380
   1381	return r;
   1382}
   1383
   1384static int crypt_convert_block_skcipher(struct crypt_config *cc,
   1385					struct convert_context *ctx,
   1386					struct skcipher_request *req,
   1387					unsigned int tag_offset)
   1388{
   1389	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
   1390	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
   1391	struct scatterlist *sg_in, *sg_out;
   1392	struct dm_crypt_request *dmreq;
   1393	u8 *iv, *org_iv, *tag_iv;
   1394	__le64 *sector;
   1395	int r = 0;
   1396
   1397	/* Reject unexpected unaligned bio. */
   1398	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
   1399		return -EIO;
   1400
   1401	dmreq = dmreq_of_req(cc, req);
   1402	dmreq->iv_sector = ctx->cc_sector;
   1403	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
   1404		dmreq->iv_sector >>= cc->sector_shift;
   1405	dmreq->ctx = ctx;
   1406
   1407	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
   1408
   1409	iv = iv_of_dmreq(cc, dmreq);
   1410	org_iv = org_iv_of_dmreq(cc, dmreq);
   1411	tag_iv = iv_tag_from_dmreq(cc, dmreq);
   1412
   1413	sector = org_sector_of_dmreq(cc, dmreq);
   1414	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
   1415
   1416	/* For skcipher we use only the first sg item */
   1417	sg_in  = &dmreq->sg_in[0];
   1418	sg_out = &dmreq->sg_out[0];
   1419
   1420	sg_init_table(sg_in, 1);
   1421	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
   1422
   1423	sg_init_table(sg_out, 1);
   1424	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
   1425
   1426	if (cc->iv_gen_ops) {
   1427		/* For READs use IV stored in integrity metadata */
   1428		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
   1429			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
   1430		} else {
   1431			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
   1432			if (r < 0)
   1433				return r;
   1434			/* Data can be already preprocessed in generator */
   1435			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
   1436				sg_in = sg_out;
   1437			/* Store generated IV in integrity metadata */
   1438			if (cc->integrity_iv_size)
   1439				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
   1440		}
   1441		/* Working copy of IV, to be modified in crypto API */
   1442		memcpy(iv, org_iv, cc->iv_size);
   1443	}
   1444
   1445	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
   1446
   1447	if (bio_data_dir(ctx->bio_in) == WRITE)
   1448		r = crypto_skcipher_encrypt(req);
   1449	else
   1450		r = crypto_skcipher_decrypt(req);
   1451
   1452	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
   1453		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
   1454
   1455	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
   1456	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
   1457
   1458	return r;
   1459}
   1460
   1461static void kcryptd_async_done(struct crypto_async_request *async_req,
   1462			       int error);
   1463
   1464static int crypt_alloc_req_skcipher(struct crypt_config *cc,
   1465				     struct convert_context *ctx)
   1466{
   1467	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
   1468
   1469	if (!ctx->r.req) {
   1470		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
   1471		if (!ctx->r.req)
   1472			return -ENOMEM;
   1473	}
   1474
   1475	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
   1476
   1477	/*
   1478	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
   1479	 * requests if driver request queue is full.
   1480	 */
   1481	skcipher_request_set_callback(ctx->r.req,
   1482	    CRYPTO_TFM_REQ_MAY_BACKLOG,
   1483	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
   1484
   1485	return 0;
   1486}
   1487
   1488static int crypt_alloc_req_aead(struct crypt_config *cc,
   1489				 struct convert_context *ctx)
   1490{
   1491	if (!ctx->r.req_aead) {
   1492		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
   1493		if (!ctx->r.req_aead)
   1494			return -ENOMEM;
   1495	}
   1496
   1497	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
   1498
   1499	/*
   1500	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
   1501	 * requests if driver request queue is full.
   1502	 */
   1503	aead_request_set_callback(ctx->r.req_aead,
   1504	    CRYPTO_TFM_REQ_MAY_BACKLOG,
   1505	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
   1506
   1507	return 0;
   1508}
   1509
   1510static int crypt_alloc_req(struct crypt_config *cc,
   1511			    struct convert_context *ctx)
   1512{
   1513	if (crypt_integrity_aead(cc))
   1514		return crypt_alloc_req_aead(cc, ctx);
   1515	else
   1516		return crypt_alloc_req_skcipher(cc, ctx);
   1517}
   1518
   1519static void crypt_free_req_skcipher(struct crypt_config *cc,
   1520				    struct skcipher_request *req, struct bio *base_bio)
   1521{
   1522	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
   1523
   1524	if ((struct skcipher_request *)(io + 1) != req)
   1525		mempool_free(req, &cc->req_pool);
   1526}
   1527
   1528static void crypt_free_req_aead(struct crypt_config *cc,
   1529				struct aead_request *req, struct bio *base_bio)
   1530{
   1531	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
   1532
   1533	if ((struct aead_request *)(io + 1) != req)
   1534		mempool_free(req, &cc->req_pool);
   1535}
   1536
   1537static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
   1538{
   1539	if (crypt_integrity_aead(cc))
   1540		crypt_free_req_aead(cc, req, base_bio);
   1541	else
   1542		crypt_free_req_skcipher(cc, req, base_bio);
   1543}
   1544
   1545/*
   1546 * Encrypt / decrypt data from one bio to another one (can be the same one)
   1547 */
   1548static blk_status_t crypt_convert(struct crypt_config *cc,
   1549			 struct convert_context *ctx, bool atomic, bool reset_pending)
   1550{
   1551	unsigned int tag_offset = 0;
   1552	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
   1553	int r;
   1554
   1555	/*
   1556	 * if reset_pending is set we are dealing with the bio for the first time,
   1557	 * else we're continuing to work on the previous bio, so don't mess with
   1558	 * the cc_pending counter
   1559	 */
   1560	if (reset_pending)
   1561		atomic_set(&ctx->cc_pending, 1);
   1562
   1563	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
   1564
   1565		r = crypt_alloc_req(cc, ctx);
   1566		if (r) {
   1567			complete(&ctx->restart);
   1568			return BLK_STS_DEV_RESOURCE;
   1569		}
   1570
   1571		atomic_inc(&ctx->cc_pending);
   1572
   1573		if (crypt_integrity_aead(cc))
   1574			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
   1575		else
   1576			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
   1577
   1578		switch (r) {
   1579		/*
   1580		 * The request was queued by a crypto driver
   1581		 * but the driver request queue is full, let's wait.
   1582		 */
   1583		case -EBUSY:
   1584			if (in_interrupt()) {
   1585				if (try_wait_for_completion(&ctx->restart)) {
   1586					/*
   1587					 * we don't have to block to wait for completion,
   1588					 * so proceed
   1589					 */
   1590				} else {
   1591					/*
   1592					 * we can't wait for completion without blocking
   1593					 * exit and continue processing in a workqueue
   1594					 */
   1595					ctx->r.req = NULL;
   1596					ctx->cc_sector += sector_step;
   1597					tag_offset++;
   1598					return BLK_STS_DEV_RESOURCE;
   1599				}
   1600			} else {
   1601				wait_for_completion(&ctx->restart);
   1602			}
   1603			reinit_completion(&ctx->restart);
   1604			fallthrough;
   1605		/*
   1606		 * The request is queued and processed asynchronously,
   1607		 * completion function kcryptd_async_done() will be called.
   1608		 */
   1609		case -EINPROGRESS:
   1610			ctx->r.req = NULL;
   1611			ctx->cc_sector += sector_step;
   1612			tag_offset++;
   1613			continue;
   1614		/*
   1615		 * The request was already processed (synchronously).
   1616		 */
   1617		case 0:
   1618			atomic_dec(&ctx->cc_pending);
   1619			ctx->cc_sector += sector_step;
   1620			tag_offset++;
   1621			if (!atomic)
   1622				cond_resched();
   1623			continue;
   1624		/*
   1625		 * There was a data integrity error.
   1626		 */
   1627		case -EBADMSG:
   1628			atomic_dec(&ctx->cc_pending);
   1629			return BLK_STS_PROTECTION;
   1630		/*
   1631		 * There was an error while processing the request.
   1632		 */
   1633		default:
   1634			atomic_dec(&ctx->cc_pending);
   1635			return BLK_STS_IOERR;
   1636		}
   1637	}
   1638
   1639	return 0;
   1640}
   1641
   1642static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
   1643
   1644/*
   1645 * Generate a new unfragmented bio with the given size
   1646 * This should never violate the device limitations (but only because
   1647 * max_segment_size is being constrained to PAGE_SIZE).
   1648 *
   1649 * This function may be called concurrently. If we allocate from the mempool
   1650 * concurrently, there is a possibility of deadlock. For example, if we have
   1651 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
   1652 * the mempool concurrently, it may deadlock in a situation where both processes
   1653 * have allocated 128 pages and the mempool is exhausted.
   1654 *
   1655 * In order to avoid this scenario we allocate the pages under a mutex.
   1656 *
   1657 * In order to not degrade performance with excessive locking, we try
   1658 * non-blocking allocations without a mutex first but on failure we fallback
   1659 * to blocking allocations with a mutex.
   1660 */
   1661static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
   1662{
   1663	struct crypt_config *cc = io->cc;
   1664	struct bio *clone;
   1665	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
   1666	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
   1667	unsigned i, len, remaining_size;
   1668	struct page *page;
   1669
   1670retry:
   1671	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
   1672		mutex_lock(&cc->bio_alloc_lock);
   1673
   1674	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
   1675				 GFP_NOIO, &cc->bs);
   1676	clone->bi_private = io;
   1677	clone->bi_end_io = crypt_endio;
   1678
   1679	remaining_size = size;
   1680
   1681	for (i = 0; i < nr_iovecs; i++) {
   1682		page = mempool_alloc(&cc->page_pool, gfp_mask);
   1683		if (!page) {
   1684			crypt_free_buffer_pages(cc, clone);
   1685			bio_put(clone);
   1686			gfp_mask |= __GFP_DIRECT_RECLAIM;
   1687			goto retry;
   1688		}
   1689
   1690		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
   1691
   1692		bio_add_page(clone, page, len, 0);
   1693
   1694		remaining_size -= len;
   1695	}
   1696
   1697	/* Allocate space for integrity tags */
   1698	if (dm_crypt_integrity_io_alloc(io, clone)) {
   1699		crypt_free_buffer_pages(cc, clone);
   1700		bio_put(clone);
   1701		clone = NULL;
   1702	}
   1703
   1704	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
   1705		mutex_unlock(&cc->bio_alloc_lock);
   1706
   1707	return clone;
   1708}
   1709
   1710static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
   1711{
   1712	struct bio_vec *bv;
   1713	struct bvec_iter_all iter_all;
   1714
   1715	bio_for_each_segment_all(bv, clone, iter_all) {
   1716		BUG_ON(!bv->bv_page);
   1717		mempool_free(bv->bv_page, &cc->page_pool);
   1718	}
   1719}
   1720
   1721static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
   1722			  struct bio *bio, sector_t sector)
   1723{
   1724	io->cc = cc;
   1725	io->base_bio = bio;
   1726	io->sector = sector;
   1727	io->error = 0;
   1728	io->ctx.r.req = NULL;
   1729	io->integrity_metadata = NULL;
   1730	io->integrity_metadata_from_pool = false;
   1731	atomic_set(&io->io_pending, 0);
   1732}
   1733
   1734static void crypt_inc_pending(struct dm_crypt_io *io)
   1735{
   1736	atomic_inc(&io->io_pending);
   1737}
   1738
   1739static void kcryptd_io_bio_endio(struct work_struct *work)
   1740{
   1741	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
   1742	bio_endio(io->base_bio);
   1743}
   1744
   1745/*
   1746 * One of the bios was finished. Check for completion of
   1747 * the whole request and correctly clean up the buffer.
   1748 */
   1749static void crypt_dec_pending(struct dm_crypt_io *io)
   1750{
   1751	struct crypt_config *cc = io->cc;
   1752	struct bio *base_bio = io->base_bio;
   1753	blk_status_t error = io->error;
   1754
   1755	if (!atomic_dec_and_test(&io->io_pending))
   1756		return;
   1757
   1758	if (io->ctx.r.req)
   1759		crypt_free_req(cc, io->ctx.r.req, base_bio);
   1760
   1761	if (unlikely(io->integrity_metadata_from_pool))
   1762		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
   1763	else
   1764		kfree(io->integrity_metadata);
   1765
   1766	base_bio->bi_status = error;
   1767
   1768	/*
   1769	 * If we are running this function from our tasklet,
   1770	 * we can't call bio_endio() here, because it will call
   1771	 * clone_endio() from dm.c, which in turn will
   1772	 * free the current struct dm_crypt_io structure with
   1773	 * our tasklet. In this case we need to delay bio_endio()
   1774	 * execution to after the tasklet is done and dequeued.
   1775	 */
   1776	if (tasklet_trylock(&io->tasklet)) {
   1777		tasklet_unlock(&io->tasklet);
   1778		bio_endio(base_bio);
   1779		return;
   1780	}
   1781
   1782	INIT_WORK(&io->work, kcryptd_io_bio_endio);
   1783	queue_work(cc->io_queue, &io->work);
   1784}
   1785
   1786/*
   1787 * kcryptd/kcryptd_io:
   1788 *
   1789 * Needed because it would be very unwise to do decryption in an
   1790 * interrupt context.
   1791 *
   1792 * kcryptd performs the actual encryption or decryption.
   1793 *
   1794 * kcryptd_io performs the IO submission.
   1795 *
   1796 * They must be separated as otherwise the final stages could be
   1797 * starved by new requests which can block in the first stages due
   1798 * to memory allocation.
   1799 *
   1800 * The work is done per CPU global for all dm-crypt instances.
   1801 * They should not depend on each other and do not block.
   1802 */
   1803static void crypt_endio(struct bio *clone)
   1804{
   1805	struct dm_crypt_io *io = clone->bi_private;
   1806	struct crypt_config *cc = io->cc;
   1807	unsigned rw = bio_data_dir(clone);
   1808	blk_status_t error;
   1809
   1810	/*
   1811	 * free the processed pages
   1812	 */
   1813	if (rw == WRITE)
   1814		crypt_free_buffer_pages(cc, clone);
   1815
   1816	error = clone->bi_status;
   1817	bio_put(clone);
   1818
   1819	if (rw == READ && !error) {
   1820		kcryptd_queue_crypt(io);
   1821		return;
   1822	}
   1823
   1824	if (unlikely(error))
   1825		io->error = error;
   1826
   1827	crypt_dec_pending(io);
   1828}
   1829
   1830#define CRYPT_MAP_READ_GFP GFP_NOWAIT
   1831
   1832static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
   1833{
   1834	struct crypt_config *cc = io->cc;
   1835	struct bio *clone;
   1836
   1837	/*
   1838	 * We need the original biovec array in order to decrypt the whole bio
   1839	 * data *afterwards* -- thanks to immutable biovecs we don't need to
   1840	 * worry about the block layer modifying the biovec array; so leverage
   1841	 * bio_alloc_clone().
   1842	 */
   1843	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
   1844	if (!clone)
   1845		return 1;
   1846	clone->bi_private = io;
   1847	clone->bi_end_io = crypt_endio;
   1848
   1849	crypt_inc_pending(io);
   1850
   1851	clone->bi_iter.bi_sector = cc->start + io->sector;
   1852
   1853	if (dm_crypt_integrity_io_alloc(io, clone)) {
   1854		crypt_dec_pending(io);
   1855		bio_put(clone);
   1856		return 1;
   1857	}
   1858
   1859	dm_submit_bio_remap(io->base_bio, clone);
   1860	return 0;
   1861}
   1862
   1863static void kcryptd_io_read_work(struct work_struct *work)
   1864{
   1865	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
   1866
   1867	crypt_inc_pending(io);
   1868	if (kcryptd_io_read(io, GFP_NOIO))
   1869		io->error = BLK_STS_RESOURCE;
   1870	crypt_dec_pending(io);
   1871}
   1872
   1873static void kcryptd_queue_read(struct dm_crypt_io *io)
   1874{
   1875	struct crypt_config *cc = io->cc;
   1876
   1877	INIT_WORK(&io->work, kcryptd_io_read_work);
   1878	queue_work(cc->io_queue, &io->work);
   1879}
   1880
   1881static void kcryptd_io_write(struct dm_crypt_io *io)
   1882{
   1883	struct bio *clone = io->ctx.bio_out;
   1884
   1885	dm_submit_bio_remap(io->base_bio, clone);
   1886}
   1887
   1888#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
   1889
   1890static int dmcrypt_write(void *data)
   1891{
   1892	struct crypt_config *cc = data;
   1893	struct dm_crypt_io *io;
   1894
   1895	while (1) {
   1896		struct rb_root write_tree;
   1897		struct blk_plug plug;
   1898
   1899		spin_lock_irq(&cc->write_thread_lock);
   1900continue_locked:
   1901
   1902		if (!RB_EMPTY_ROOT(&cc->write_tree))
   1903			goto pop_from_list;
   1904
   1905		set_current_state(TASK_INTERRUPTIBLE);
   1906
   1907		spin_unlock_irq(&cc->write_thread_lock);
   1908
   1909		if (unlikely(kthread_should_stop())) {
   1910			set_current_state(TASK_RUNNING);
   1911			break;
   1912		}
   1913
   1914		schedule();
   1915
   1916		set_current_state(TASK_RUNNING);
   1917		spin_lock_irq(&cc->write_thread_lock);
   1918		goto continue_locked;
   1919
   1920pop_from_list:
   1921		write_tree = cc->write_tree;
   1922		cc->write_tree = RB_ROOT;
   1923		spin_unlock_irq(&cc->write_thread_lock);
   1924
   1925		BUG_ON(rb_parent(write_tree.rb_node));
   1926
   1927		/*
   1928		 * Note: we cannot walk the tree here with rb_next because
   1929		 * the structures may be freed when kcryptd_io_write is called.
   1930		 */
   1931		blk_start_plug(&plug);
   1932		do {
   1933			io = crypt_io_from_node(rb_first(&write_tree));
   1934			rb_erase(&io->rb_node, &write_tree);
   1935			kcryptd_io_write(io);
   1936		} while (!RB_EMPTY_ROOT(&write_tree));
   1937		blk_finish_plug(&plug);
   1938	}
   1939	return 0;
   1940}
   1941
   1942static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
   1943{
   1944	struct bio *clone = io->ctx.bio_out;
   1945	struct crypt_config *cc = io->cc;
   1946	unsigned long flags;
   1947	sector_t sector;
   1948	struct rb_node **rbp, *parent;
   1949
   1950	if (unlikely(io->error)) {
   1951		crypt_free_buffer_pages(cc, clone);
   1952		bio_put(clone);
   1953		crypt_dec_pending(io);
   1954		return;
   1955	}
   1956
   1957	/* crypt_convert should have filled the clone bio */
   1958	BUG_ON(io->ctx.iter_out.bi_size);
   1959
   1960	clone->bi_iter.bi_sector = cc->start + io->sector;
   1961
   1962	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
   1963	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
   1964		dm_submit_bio_remap(io->base_bio, clone);
   1965		return;
   1966	}
   1967
   1968	spin_lock_irqsave(&cc->write_thread_lock, flags);
   1969	if (RB_EMPTY_ROOT(&cc->write_tree))
   1970		wake_up_process(cc->write_thread);
   1971	rbp = &cc->write_tree.rb_node;
   1972	parent = NULL;
   1973	sector = io->sector;
   1974	while (*rbp) {
   1975		parent = *rbp;
   1976		if (sector < crypt_io_from_node(parent)->sector)
   1977			rbp = &(*rbp)->rb_left;
   1978		else
   1979			rbp = &(*rbp)->rb_right;
   1980	}
   1981	rb_link_node(&io->rb_node, parent, rbp);
   1982	rb_insert_color(&io->rb_node, &cc->write_tree);
   1983	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
   1984}
   1985
   1986static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
   1987				       struct convert_context *ctx)
   1988
   1989{
   1990	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
   1991		return false;
   1992
   1993	/*
   1994	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
   1995	 * constraints so they do not need to be issued inline by
   1996	 * kcryptd_crypt_write_convert().
   1997	 */
   1998	switch (bio_op(ctx->bio_in)) {
   1999	case REQ_OP_WRITE:
   2000	case REQ_OP_WRITE_ZEROES:
   2001		return true;
   2002	default:
   2003		return false;
   2004	}
   2005}
   2006
   2007static void kcryptd_crypt_write_continue(struct work_struct *work)
   2008{
   2009	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
   2010	struct crypt_config *cc = io->cc;
   2011	struct convert_context *ctx = &io->ctx;
   2012	int crypt_finished;
   2013	sector_t sector = io->sector;
   2014	blk_status_t r;
   2015
   2016	wait_for_completion(&ctx->restart);
   2017	reinit_completion(&ctx->restart);
   2018
   2019	r = crypt_convert(cc, &io->ctx, true, false);
   2020	if (r)
   2021		io->error = r;
   2022	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
   2023	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
   2024		/* Wait for completion signaled by kcryptd_async_done() */
   2025		wait_for_completion(&ctx->restart);
   2026		crypt_finished = 1;
   2027	}
   2028
   2029	/* Encryption was already finished, submit io now */
   2030	if (crypt_finished) {
   2031		kcryptd_crypt_write_io_submit(io, 0);
   2032		io->sector = sector;
   2033	}
   2034
   2035	crypt_dec_pending(io);
   2036}
   2037
   2038static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
   2039{
   2040	struct crypt_config *cc = io->cc;
   2041	struct convert_context *ctx = &io->ctx;
   2042	struct bio *clone;
   2043	int crypt_finished;
   2044	sector_t sector = io->sector;
   2045	blk_status_t r;
   2046
   2047	/*
   2048	 * Prevent io from disappearing until this function completes.
   2049	 */
   2050	crypt_inc_pending(io);
   2051	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
   2052
   2053	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
   2054	if (unlikely(!clone)) {
   2055		io->error = BLK_STS_IOERR;
   2056		goto dec;
   2057	}
   2058
   2059	io->ctx.bio_out = clone;
   2060	io->ctx.iter_out = clone->bi_iter;
   2061
   2062	sector += bio_sectors(clone);
   2063
   2064	crypt_inc_pending(io);
   2065	r = crypt_convert(cc, ctx,
   2066			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
   2067	/*
   2068	 * Crypto API backlogged the request, because its queue was full
   2069	 * and we're in softirq context, so continue from a workqueue
   2070	 * (TODO: is it actually possible to be in softirq in the write path?)
   2071	 */
   2072	if (r == BLK_STS_DEV_RESOURCE) {
   2073		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
   2074		queue_work(cc->crypt_queue, &io->work);
   2075		return;
   2076	}
   2077	if (r)
   2078		io->error = r;
   2079	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
   2080	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
   2081		/* Wait for completion signaled by kcryptd_async_done() */
   2082		wait_for_completion(&ctx->restart);
   2083		crypt_finished = 1;
   2084	}
   2085
   2086	/* Encryption was already finished, submit io now */
   2087	if (crypt_finished) {
   2088		kcryptd_crypt_write_io_submit(io, 0);
   2089		io->sector = sector;
   2090	}
   2091
   2092dec:
   2093	crypt_dec_pending(io);
   2094}
   2095
   2096static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
   2097{
   2098	crypt_dec_pending(io);
   2099}
   2100
   2101static void kcryptd_crypt_read_continue(struct work_struct *work)
   2102{
   2103	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
   2104	struct crypt_config *cc = io->cc;
   2105	blk_status_t r;
   2106
   2107	wait_for_completion(&io->ctx.restart);
   2108	reinit_completion(&io->ctx.restart);
   2109
   2110	r = crypt_convert(cc, &io->ctx, true, false);
   2111	if (r)
   2112		io->error = r;
   2113
   2114	if (atomic_dec_and_test(&io->ctx.cc_pending))
   2115		kcryptd_crypt_read_done(io);
   2116
   2117	crypt_dec_pending(io);
   2118}
   2119
   2120static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
   2121{
   2122	struct crypt_config *cc = io->cc;
   2123	blk_status_t r;
   2124
   2125	crypt_inc_pending(io);
   2126
   2127	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
   2128			   io->sector);
   2129
   2130	r = crypt_convert(cc, &io->ctx,
   2131			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
   2132	/*
   2133	 * Crypto API backlogged the request, because its queue was full
   2134	 * and we're in softirq context, so continue from a workqueue
   2135	 */
   2136	if (r == BLK_STS_DEV_RESOURCE) {
   2137		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
   2138		queue_work(cc->crypt_queue, &io->work);
   2139		return;
   2140	}
   2141	if (r)
   2142		io->error = r;
   2143
   2144	if (atomic_dec_and_test(&io->ctx.cc_pending))
   2145		kcryptd_crypt_read_done(io);
   2146
   2147	crypt_dec_pending(io);
   2148}
   2149
   2150static void kcryptd_async_done(struct crypto_async_request *async_req,
   2151			       int error)
   2152{
   2153	struct dm_crypt_request *dmreq = async_req->data;
   2154	struct convert_context *ctx = dmreq->ctx;
   2155	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
   2156	struct crypt_config *cc = io->cc;
   2157
   2158	/*
   2159	 * A request from crypto driver backlog is going to be processed now,
   2160	 * finish the completion and continue in crypt_convert().
   2161	 * (Callback will be called for the second time for this request.)
   2162	 */
   2163	if (error == -EINPROGRESS) {
   2164		complete(&ctx->restart);
   2165		return;
   2166	}
   2167
   2168	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
   2169		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
   2170
   2171	if (error == -EBADMSG) {
   2172		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
   2173
   2174		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
   2175			    ctx->bio_in->bi_bdev, s);
   2176		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
   2177				 ctx->bio_in, s, 0);
   2178		io->error = BLK_STS_PROTECTION;
   2179	} else if (error < 0)
   2180		io->error = BLK_STS_IOERR;
   2181
   2182	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
   2183
   2184	if (!atomic_dec_and_test(&ctx->cc_pending))
   2185		return;
   2186
   2187	/*
   2188	 * The request is fully completed: for inline writes, let
   2189	 * kcryptd_crypt_write_convert() do the IO submission.
   2190	 */
   2191	if (bio_data_dir(io->base_bio) == READ) {
   2192		kcryptd_crypt_read_done(io);
   2193		return;
   2194	}
   2195
   2196	if (kcryptd_crypt_write_inline(cc, ctx)) {
   2197		complete(&ctx->restart);
   2198		return;
   2199	}
   2200
   2201	kcryptd_crypt_write_io_submit(io, 1);
   2202}
   2203
   2204static void kcryptd_crypt(struct work_struct *work)
   2205{
   2206	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
   2207
   2208	if (bio_data_dir(io->base_bio) == READ)
   2209		kcryptd_crypt_read_convert(io);
   2210	else
   2211		kcryptd_crypt_write_convert(io);
   2212}
   2213
   2214static void kcryptd_crypt_tasklet(unsigned long work)
   2215{
   2216	kcryptd_crypt((struct work_struct *)work);
   2217}
   2218
   2219static void kcryptd_queue_crypt(struct dm_crypt_io *io)
   2220{
   2221	struct crypt_config *cc = io->cc;
   2222
   2223	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
   2224	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
   2225		/*
   2226		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
   2227		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
   2228		 * it is being executed with irqs disabled.
   2229		 */
   2230		if (in_hardirq() || irqs_disabled()) {
   2231			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
   2232			tasklet_schedule(&io->tasklet);
   2233			return;
   2234		}
   2235
   2236		kcryptd_crypt(&io->work);
   2237		return;
   2238	}
   2239
   2240	INIT_WORK(&io->work, kcryptd_crypt);
   2241	queue_work(cc->crypt_queue, &io->work);
   2242}
   2243
   2244static void crypt_free_tfms_aead(struct crypt_config *cc)
   2245{
   2246	if (!cc->cipher_tfm.tfms_aead)
   2247		return;
   2248
   2249	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
   2250		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
   2251		cc->cipher_tfm.tfms_aead[0] = NULL;
   2252	}
   2253
   2254	kfree(cc->cipher_tfm.tfms_aead);
   2255	cc->cipher_tfm.tfms_aead = NULL;
   2256}
   2257
   2258static void crypt_free_tfms_skcipher(struct crypt_config *cc)
   2259{
   2260	unsigned i;
   2261
   2262	if (!cc->cipher_tfm.tfms)
   2263		return;
   2264
   2265	for (i = 0; i < cc->tfms_count; i++)
   2266		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
   2267			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
   2268			cc->cipher_tfm.tfms[i] = NULL;
   2269		}
   2270
   2271	kfree(cc->cipher_tfm.tfms);
   2272	cc->cipher_tfm.tfms = NULL;
   2273}
   2274
   2275static void crypt_free_tfms(struct crypt_config *cc)
   2276{
   2277	if (crypt_integrity_aead(cc))
   2278		crypt_free_tfms_aead(cc);
   2279	else
   2280		crypt_free_tfms_skcipher(cc);
   2281}
   2282
   2283static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
   2284{
   2285	unsigned i;
   2286	int err;
   2287
   2288	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
   2289				      sizeof(struct crypto_skcipher *),
   2290				      GFP_KERNEL);
   2291	if (!cc->cipher_tfm.tfms)
   2292		return -ENOMEM;
   2293
   2294	for (i = 0; i < cc->tfms_count; i++) {
   2295		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
   2296						CRYPTO_ALG_ALLOCATES_MEMORY);
   2297		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
   2298			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
   2299			crypt_free_tfms(cc);
   2300			return err;
   2301		}
   2302	}
   2303
   2304	/*
   2305	 * dm-crypt performance can vary greatly depending on which crypto
   2306	 * algorithm implementation is used.  Help people debug performance
   2307	 * problems by logging the ->cra_driver_name.
   2308	 */
   2309	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
   2310	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
   2311	return 0;
   2312}
   2313
   2314static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
   2315{
   2316	int err;
   2317
   2318	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
   2319	if (!cc->cipher_tfm.tfms)
   2320		return -ENOMEM;
   2321
   2322	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
   2323						CRYPTO_ALG_ALLOCATES_MEMORY);
   2324	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
   2325		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
   2326		crypt_free_tfms(cc);
   2327		return err;
   2328	}
   2329
   2330	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
   2331	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
   2332	return 0;
   2333}
   2334
   2335static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
   2336{
   2337	if (crypt_integrity_aead(cc))
   2338		return crypt_alloc_tfms_aead(cc, ciphermode);
   2339	else
   2340		return crypt_alloc_tfms_skcipher(cc, ciphermode);
   2341}
   2342
   2343static unsigned crypt_subkey_size(struct crypt_config *cc)
   2344{
   2345	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
   2346}
   2347
   2348static unsigned crypt_authenckey_size(struct crypt_config *cc)
   2349{
   2350	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
   2351}
   2352
   2353/*
   2354 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
   2355 * the key must be for some reason in special format.
   2356 * This funcion converts cc->key to this special format.
   2357 */
   2358static void crypt_copy_authenckey(char *p, const void *key,
   2359				  unsigned enckeylen, unsigned authkeylen)
   2360{
   2361	struct crypto_authenc_key_param *param;
   2362	struct rtattr *rta;
   2363
   2364	rta = (struct rtattr *)p;
   2365	param = RTA_DATA(rta);
   2366	param->enckeylen = cpu_to_be32(enckeylen);
   2367	rta->rta_len = RTA_LENGTH(sizeof(*param));
   2368	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
   2369	p += RTA_SPACE(sizeof(*param));
   2370	memcpy(p, key + enckeylen, authkeylen);
   2371	p += authkeylen;
   2372	memcpy(p, key, enckeylen);
   2373}
   2374
   2375static int crypt_setkey(struct crypt_config *cc)
   2376{
   2377	unsigned subkey_size;
   2378	int err = 0, i, r;
   2379
   2380	/* Ignore extra keys (which are used for IV etc) */
   2381	subkey_size = crypt_subkey_size(cc);
   2382
   2383	if (crypt_integrity_hmac(cc)) {
   2384		if (subkey_size < cc->key_mac_size)
   2385			return -EINVAL;
   2386
   2387		crypt_copy_authenckey(cc->authenc_key, cc->key,
   2388				      subkey_size - cc->key_mac_size,
   2389				      cc->key_mac_size);
   2390	}
   2391
   2392	for (i = 0; i < cc->tfms_count; i++) {
   2393		if (crypt_integrity_hmac(cc))
   2394			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
   2395				cc->authenc_key, crypt_authenckey_size(cc));
   2396		else if (crypt_integrity_aead(cc))
   2397			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
   2398					       cc->key + (i * subkey_size),
   2399					       subkey_size);
   2400		else
   2401			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
   2402						   cc->key + (i * subkey_size),
   2403						   subkey_size);
   2404		if (r)
   2405			err = r;
   2406	}
   2407
   2408	if (crypt_integrity_hmac(cc))
   2409		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
   2410
   2411	return err;
   2412}
   2413
   2414#ifdef CONFIG_KEYS
   2415
   2416static bool contains_whitespace(const char *str)
   2417{
   2418	while (*str)
   2419		if (isspace(*str++))
   2420			return true;
   2421	return false;
   2422}
   2423
   2424static int set_key_user(struct crypt_config *cc, struct key *key)
   2425{
   2426	const struct user_key_payload *ukp;
   2427
   2428	ukp = user_key_payload_locked(key);
   2429	if (!ukp)
   2430		return -EKEYREVOKED;
   2431
   2432	if (cc->key_size != ukp->datalen)
   2433		return -EINVAL;
   2434
   2435	memcpy(cc->key, ukp->data, cc->key_size);
   2436
   2437	return 0;
   2438}
   2439
   2440static int set_key_encrypted(struct crypt_config *cc, struct key *key)
   2441{
   2442	const struct encrypted_key_payload *ekp;
   2443
   2444	ekp = key->payload.data[0];
   2445	if (!ekp)
   2446		return -EKEYREVOKED;
   2447
   2448	if (cc->key_size != ekp->decrypted_datalen)
   2449		return -EINVAL;
   2450
   2451	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
   2452
   2453	return 0;
   2454}
   2455
   2456static int set_key_trusted(struct crypt_config *cc, struct key *key)
   2457{
   2458	const struct trusted_key_payload *tkp;
   2459
   2460	tkp = key->payload.data[0];
   2461	if (!tkp)
   2462		return -EKEYREVOKED;
   2463
   2464	if (cc->key_size != tkp->key_len)
   2465		return -EINVAL;
   2466
   2467	memcpy(cc->key, tkp->key, cc->key_size);
   2468
   2469	return 0;
   2470}
   2471
   2472static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
   2473{
   2474	char *new_key_string, *key_desc;
   2475	int ret;
   2476	struct key_type *type;
   2477	struct key *key;
   2478	int (*set_key)(struct crypt_config *cc, struct key *key);
   2479
   2480	/*
   2481	 * Reject key_string with whitespace. dm core currently lacks code for
   2482	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
   2483	 */
   2484	if (contains_whitespace(key_string)) {
   2485		DMERR("whitespace chars not allowed in key string");
   2486		return -EINVAL;
   2487	}
   2488
   2489	/* look for next ':' separating key_type from key_description */
   2490	key_desc = strpbrk(key_string, ":");
   2491	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
   2492		return -EINVAL;
   2493
   2494	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
   2495		type = &key_type_logon;
   2496		set_key = set_key_user;
   2497	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
   2498		type = &key_type_user;
   2499		set_key = set_key_user;
   2500	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
   2501		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
   2502		type = &key_type_encrypted;
   2503		set_key = set_key_encrypted;
   2504	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
   2505	           !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
   2506		type = &key_type_trusted;
   2507		set_key = set_key_trusted;
   2508	} else {
   2509		return -EINVAL;
   2510	}
   2511
   2512	new_key_string = kstrdup(key_string, GFP_KERNEL);
   2513	if (!new_key_string)
   2514		return -ENOMEM;
   2515
   2516	key = request_key(type, key_desc + 1, NULL);
   2517	if (IS_ERR(key)) {
   2518		kfree_sensitive(new_key_string);
   2519		return PTR_ERR(key);
   2520	}
   2521
   2522	down_read(&key->sem);
   2523
   2524	ret = set_key(cc, key);
   2525	if (ret < 0) {
   2526		up_read(&key->sem);
   2527		key_put(key);
   2528		kfree_sensitive(new_key_string);
   2529		return ret;
   2530	}
   2531
   2532	up_read(&key->sem);
   2533	key_put(key);
   2534
   2535	/* clear the flag since following operations may invalidate previously valid key */
   2536	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
   2537
   2538	ret = crypt_setkey(cc);
   2539
   2540	if (!ret) {
   2541		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
   2542		kfree_sensitive(cc->key_string);
   2543		cc->key_string = new_key_string;
   2544	} else
   2545		kfree_sensitive(new_key_string);
   2546
   2547	return ret;
   2548}
   2549
   2550static int get_key_size(char **key_string)
   2551{
   2552	char *colon, dummy;
   2553	int ret;
   2554
   2555	if (*key_string[0] != ':')
   2556		return strlen(*key_string) >> 1;
   2557
   2558	/* look for next ':' in key string */
   2559	colon = strpbrk(*key_string + 1, ":");
   2560	if (!colon)
   2561		return -EINVAL;
   2562
   2563	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
   2564		return -EINVAL;
   2565
   2566	*key_string = colon;
   2567
   2568	/* remaining key string should be :<logon|user>:<key_desc> */
   2569
   2570	return ret;
   2571}
   2572
   2573#else
   2574
   2575static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
   2576{
   2577	return -EINVAL;
   2578}
   2579
   2580static int get_key_size(char **key_string)
   2581{
   2582	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
   2583}
   2584
   2585#endif /* CONFIG_KEYS */
   2586
   2587static int crypt_set_key(struct crypt_config *cc, char *key)
   2588{
   2589	int r = -EINVAL;
   2590	int key_string_len = strlen(key);
   2591
   2592	/* Hyphen (which gives a key_size of zero) means there is no key. */
   2593	if (!cc->key_size && strcmp(key, "-"))
   2594		goto out;
   2595
   2596	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
   2597	if (key[0] == ':') {
   2598		r = crypt_set_keyring_key(cc, key + 1);
   2599		goto out;
   2600	}
   2601
   2602	/* clear the flag since following operations may invalidate previously valid key */
   2603	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
   2604
   2605	/* wipe references to any kernel keyring key */
   2606	kfree_sensitive(cc->key_string);
   2607	cc->key_string = NULL;
   2608
   2609	/* Decode key from its hex representation. */
   2610	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
   2611		goto out;
   2612
   2613	r = crypt_setkey(cc);
   2614	if (!r)
   2615		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
   2616
   2617out:
   2618	/* Hex key string not needed after here, so wipe it. */
   2619	memset(key, '0', key_string_len);
   2620
   2621	return r;
   2622}
   2623
   2624static int crypt_wipe_key(struct crypt_config *cc)
   2625{
   2626	int r;
   2627
   2628	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
   2629	get_random_bytes(&cc->key, cc->key_size);
   2630
   2631	/* Wipe IV private keys */
   2632	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
   2633		r = cc->iv_gen_ops->wipe(cc);
   2634		if (r)
   2635			return r;
   2636	}
   2637
   2638	kfree_sensitive(cc->key_string);
   2639	cc->key_string = NULL;
   2640	r = crypt_setkey(cc);
   2641	memset(&cc->key, 0, cc->key_size * sizeof(u8));
   2642
   2643	return r;
   2644}
   2645
   2646static void crypt_calculate_pages_per_client(void)
   2647{
   2648	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
   2649
   2650	if (!dm_crypt_clients_n)
   2651		return;
   2652
   2653	pages /= dm_crypt_clients_n;
   2654	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
   2655		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
   2656	dm_crypt_pages_per_client = pages;
   2657}
   2658
   2659static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
   2660{
   2661	struct crypt_config *cc = pool_data;
   2662	struct page *page;
   2663
   2664	/*
   2665	 * Note, percpu_counter_read_positive() may over (and under) estimate
   2666	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
   2667	 * but avoids potential spinlock contention of an exact result.
   2668	 */
   2669	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
   2670	    likely(gfp_mask & __GFP_NORETRY))
   2671		return NULL;
   2672
   2673	page = alloc_page(gfp_mask);
   2674	if (likely(page != NULL))
   2675		percpu_counter_add(&cc->n_allocated_pages, 1);
   2676
   2677	return page;
   2678}
   2679
   2680static void crypt_page_free(void *page, void *pool_data)
   2681{
   2682	struct crypt_config *cc = pool_data;
   2683
   2684	__free_page(page);
   2685	percpu_counter_sub(&cc->n_allocated_pages, 1);
   2686}
   2687
   2688static void crypt_dtr(struct dm_target *ti)
   2689{
   2690	struct crypt_config *cc = ti->private;
   2691
   2692	ti->private = NULL;
   2693
   2694	if (!cc)
   2695		return;
   2696
   2697	if (cc->write_thread)
   2698		kthread_stop(cc->write_thread);
   2699
   2700	if (cc->io_queue)
   2701		destroy_workqueue(cc->io_queue);
   2702	if (cc->crypt_queue)
   2703		destroy_workqueue(cc->crypt_queue);
   2704
   2705	crypt_free_tfms(cc);
   2706
   2707	bioset_exit(&cc->bs);
   2708
   2709	mempool_exit(&cc->page_pool);
   2710	mempool_exit(&cc->req_pool);
   2711	mempool_exit(&cc->tag_pool);
   2712
   2713	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
   2714	percpu_counter_destroy(&cc->n_allocated_pages);
   2715
   2716	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
   2717		cc->iv_gen_ops->dtr(cc);
   2718
   2719	if (cc->dev)
   2720		dm_put_device(ti, cc->dev);
   2721
   2722	kfree_sensitive(cc->cipher_string);
   2723	kfree_sensitive(cc->key_string);
   2724	kfree_sensitive(cc->cipher_auth);
   2725	kfree_sensitive(cc->authenc_key);
   2726
   2727	mutex_destroy(&cc->bio_alloc_lock);
   2728
   2729	/* Must zero key material before freeing */
   2730	kfree_sensitive(cc);
   2731
   2732	spin_lock(&dm_crypt_clients_lock);
   2733	WARN_ON(!dm_crypt_clients_n);
   2734	dm_crypt_clients_n--;
   2735	crypt_calculate_pages_per_client();
   2736	spin_unlock(&dm_crypt_clients_lock);
   2737
   2738	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
   2739}
   2740
   2741static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
   2742{
   2743	struct crypt_config *cc = ti->private;
   2744
   2745	if (crypt_integrity_aead(cc))
   2746		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
   2747	else
   2748		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
   2749
   2750	if (cc->iv_size)
   2751		/* at least a 64 bit sector number should fit in our buffer */
   2752		cc->iv_size = max(cc->iv_size,
   2753				  (unsigned int)(sizeof(u64) / sizeof(u8)));
   2754	else if (ivmode) {
   2755		DMWARN("Selected cipher does not support IVs");
   2756		ivmode = NULL;
   2757	}
   2758
   2759	/* Choose ivmode, see comments at iv code. */
   2760	if (ivmode == NULL)
   2761		cc->iv_gen_ops = NULL;
   2762	else if (strcmp(ivmode, "plain") == 0)
   2763		cc->iv_gen_ops = &crypt_iv_plain_ops;
   2764	else if (strcmp(ivmode, "plain64") == 0)
   2765		cc->iv_gen_ops = &crypt_iv_plain64_ops;
   2766	else if (strcmp(ivmode, "plain64be") == 0)
   2767		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
   2768	else if (strcmp(ivmode, "essiv") == 0)
   2769		cc->iv_gen_ops = &crypt_iv_essiv_ops;
   2770	else if (strcmp(ivmode, "benbi") == 0)
   2771		cc->iv_gen_ops = &crypt_iv_benbi_ops;
   2772	else if (strcmp(ivmode, "null") == 0)
   2773		cc->iv_gen_ops = &crypt_iv_null_ops;
   2774	else if (strcmp(ivmode, "eboiv") == 0)
   2775		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
   2776	else if (strcmp(ivmode, "elephant") == 0) {
   2777		cc->iv_gen_ops = &crypt_iv_elephant_ops;
   2778		cc->key_parts = 2;
   2779		cc->key_extra_size = cc->key_size / 2;
   2780		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
   2781			return -EINVAL;
   2782		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
   2783	} else if (strcmp(ivmode, "lmk") == 0) {
   2784		cc->iv_gen_ops = &crypt_iv_lmk_ops;
   2785		/*
   2786		 * Version 2 and 3 is recognised according
   2787		 * to length of provided multi-key string.
   2788		 * If present (version 3), last key is used as IV seed.
   2789		 * All keys (including IV seed) are always the same size.
   2790		 */
   2791		if (cc->key_size % cc->key_parts) {
   2792			cc->key_parts++;
   2793			cc->key_extra_size = cc->key_size / cc->key_parts;
   2794		}
   2795	} else if (strcmp(ivmode, "tcw") == 0) {
   2796		cc->iv_gen_ops = &crypt_iv_tcw_ops;
   2797		cc->key_parts += 2; /* IV + whitening */
   2798		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
   2799	} else if (strcmp(ivmode, "random") == 0) {
   2800		cc->iv_gen_ops = &crypt_iv_random_ops;
   2801		/* Need storage space in integrity fields. */
   2802		cc->integrity_iv_size = cc->iv_size;
   2803	} else {
   2804		ti->error = "Invalid IV mode";
   2805		return -EINVAL;
   2806	}
   2807
   2808	return 0;
   2809}
   2810
   2811/*
   2812 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
   2813 * The HMAC is needed to calculate tag size (HMAC digest size).
   2814 * This should be probably done by crypto-api calls (once available...)
   2815 */
   2816static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
   2817{
   2818	char *start, *end, *mac_alg = NULL;
   2819	struct crypto_ahash *mac;
   2820
   2821	if (!strstarts(cipher_api, "authenc("))
   2822		return 0;
   2823
   2824	start = strchr(cipher_api, '(');
   2825	end = strchr(cipher_api, ',');
   2826	if (!start || !end || ++start > end)
   2827		return -EINVAL;
   2828
   2829	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
   2830	if (!mac_alg)
   2831		return -ENOMEM;
   2832	strncpy(mac_alg, start, end - start);
   2833
   2834	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
   2835	kfree(mac_alg);
   2836
   2837	if (IS_ERR(mac))
   2838		return PTR_ERR(mac);
   2839
   2840	cc->key_mac_size = crypto_ahash_digestsize(mac);
   2841	crypto_free_ahash(mac);
   2842
   2843	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
   2844	if (!cc->authenc_key)
   2845		return -ENOMEM;
   2846
   2847	return 0;
   2848}
   2849
   2850static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
   2851				char **ivmode, char **ivopts)
   2852{
   2853	struct crypt_config *cc = ti->private;
   2854	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
   2855	int ret = -EINVAL;
   2856
   2857	cc->tfms_count = 1;
   2858
   2859	/*
   2860	 * New format (capi: prefix)
   2861	 * capi:cipher_api_spec-iv:ivopts
   2862	 */
   2863	tmp = &cipher_in[strlen("capi:")];
   2864
   2865	/* Separate IV options if present, it can contain another '-' in hash name */
   2866	*ivopts = strrchr(tmp, ':');
   2867	if (*ivopts) {
   2868		**ivopts = '\0';
   2869		(*ivopts)++;
   2870	}
   2871	/* Parse IV mode */
   2872	*ivmode = strrchr(tmp, '-');
   2873	if (*ivmode) {
   2874		**ivmode = '\0';
   2875		(*ivmode)++;
   2876	}
   2877	/* The rest is crypto API spec */
   2878	cipher_api = tmp;
   2879
   2880	/* Alloc AEAD, can be used only in new format. */
   2881	if (crypt_integrity_aead(cc)) {
   2882		ret = crypt_ctr_auth_cipher(cc, cipher_api);
   2883		if (ret < 0) {
   2884			ti->error = "Invalid AEAD cipher spec";
   2885			return -ENOMEM;
   2886		}
   2887	}
   2888
   2889	if (*ivmode && !strcmp(*ivmode, "lmk"))
   2890		cc->tfms_count = 64;
   2891
   2892	if (*ivmode && !strcmp(*ivmode, "essiv")) {
   2893		if (!*ivopts) {
   2894			ti->error = "Digest algorithm missing for ESSIV mode";
   2895			return -EINVAL;
   2896		}
   2897		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
   2898			       cipher_api, *ivopts);
   2899		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
   2900			ti->error = "Cannot allocate cipher string";
   2901			return -ENOMEM;
   2902		}
   2903		cipher_api = buf;
   2904	}
   2905
   2906	cc->key_parts = cc->tfms_count;
   2907
   2908	/* Allocate cipher */
   2909	ret = crypt_alloc_tfms(cc, cipher_api);
   2910	if (ret < 0) {
   2911		ti->error = "Error allocating crypto tfm";
   2912		return ret;
   2913	}
   2914
   2915	if (crypt_integrity_aead(cc))
   2916		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
   2917	else
   2918		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
   2919
   2920	return 0;
   2921}
   2922
   2923static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
   2924				char **ivmode, char **ivopts)
   2925{
   2926	struct crypt_config *cc = ti->private;
   2927	char *tmp, *cipher, *chainmode, *keycount;
   2928	char *cipher_api = NULL;
   2929	int ret = -EINVAL;
   2930	char dummy;
   2931
   2932	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
   2933		ti->error = "Bad cipher specification";
   2934		return -EINVAL;
   2935	}
   2936
   2937	/*
   2938	 * Legacy dm-crypt cipher specification
   2939	 * cipher[:keycount]-mode-iv:ivopts
   2940	 */
   2941	tmp = cipher_in;
   2942	keycount = strsep(&tmp, "-");
   2943	cipher = strsep(&keycount, ":");
   2944
   2945	if (!keycount)
   2946		cc->tfms_count = 1;
   2947	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
   2948		 !is_power_of_2(cc->tfms_count)) {
   2949		ti->error = "Bad cipher key count specification";
   2950		return -EINVAL;
   2951	}
   2952	cc->key_parts = cc->tfms_count;
   2953
   2954	chainmode = strsep(&tmp, "-");
   2955	*ivmode = strsep(&tmp, ":");
   2956	*ivopts = tmp;
   2957
   2958	/*
   2959	 * For compatibility with the original dm-crypt mapping format, if
   2960	 * only the cipher name is supplied, use cbc-plain.
   2961	 */
   2962	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
   2963		chainmode = "cbc";
   2964		*ivmode = "plain";
   2965	}
   2966
   2967	if (strcmp(chainmode, "ecb") && !*ivmode) {
   2968		ti->error = "IV mechanism required";
   2969		return -EINVAL;
   2970	}
   2971
   2972	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
   2973	if (!cipher_api)
   2974		goto bad_mem;
   2975
   2976	if (*ivmode && !strcmp(*ivmode, "essiv")) {
   2977		if (!*ivopts) {
   2978			ti->error = "Digest algorithm missing for ESSIV mode";
   2979			kfree(cipher_api);
   2980			return -EINVAL;
   2981		}
   2982		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
   2983			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
   2984	} else {
   2985		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
   2986			       "%s(%s)", chainmode, cipher);
   2987	}
   2988	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
   2989		kfree(cipher_api);
   2990		goto bad_mem;
   2991	}
   2992
   2993	/* Allocate cipher */
   2994	ret = crypt_alloc_tfms(cc, cipher_api);
   2995	if (ret < 0) {
   2996		ti->error = "Error allocating crypto tfm";
   2997		kfree(cipher_api);
   2998		return ret;
   2999	}
   3000	kfree(cipher_api);
   3001
   3002	return 0;
   3003bad_mem:
   3004	ti->error = "Cannot allocate cipher strings";
   3005	return -ENOMEM;
   3006}
   3007
   3008static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
   3009{
   3010	struct crypt_config *cc = ti->private;
   3011	char *ivmode = NULL, *ivopts = NULL;
   3012	int ret;
   3013
   3014	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
   3015	if (!cc->cipher_string) {
   3016		ti->error = "Cannot allocate cipher strings";
   3017		return -ENOMEM;
   3018	}
   3019
   3020	if (strstarts(cipher_in, "capi:"))
   3021		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
   3022	else
   3023		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
   3024	if (ret)
   3025		return ret;
   3026
   3027	/* Initialize IV */
   3028	ret = crypt_ctr_ivmode(ti, ivmode);
   3029	if (ret < 0)
   3030		return ret;
   3031
   3032	/* Initialize and set key */
   3033	ret = crypt_set_key(cc, key);
   3034	if (ret < 0) {
   3035		ti->error = "Error decoding and setting key";
   3036		return ret;
   3037	}
   3038
   3039	/* Allocate IV */
   3040	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
   3041		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
   3042		if (ret < 0) {
   3043			ti->error = "Error creating IV";
   3044			return ret;
   3045		}
   3046	}
   3047
   3048	/* Initialize IV (set keys for ESSIV etc) */
   3049	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
   3050		ret = cc->iv_gen_ops->init(cc);
   3051		if (ret < 0) {
   3052			ti->error = "Error initialising IV";
   3053			return ret;
   3054		}
   3055	}
   3056
   3057	/* wipe the kernel key payload copy */
   3058	if (cc->key_string)
   3059		memset(cc->key, 0, cc->key_size * sizeof(u8));
   3060
   3061	return ret;
   3062}
   3063
   3064static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
   3065{
   3066	struct crypt_config *cc = ti->private;
   3067	struct dm_arg_set as;
   3068	static const struct dm_arg _args[] = {
   3069		{0, 8, "Invalid number of feature args"},
   3070	};
   3071	unsigned int opt_params, val;
   3072	const char *opt_string, *sval;
   3073	char dummy;
   3074	int ret;
   3075
   3076	/* Optional parameters */
   3077	as.argc = argc;
   3078	as.argv = argv;
   3079
   3080	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
   3081	if (ret)
   3082		return ret;
   3083
   3084	while (opt_params--) {
   3085		opt_string = dm_shift_arg(&as);
   3086		if (!opt_string) {
   3087			ti->error = "Not enough feature arguments";
   3088			return -EINVAL;
   3089		}
   3090
   3091		if (!strcasecmp(opt_string, "allow_discards"))
   3092			ti->num_discard_bios = 1;
   3093
   3094		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
   3095			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
   3096
   3097		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
   3098			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
   3099		else if (!strcasecmp(opt_string, "no_read_workqueue"))
   3100			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
   3101		else if (!strcasecmp(opt_string, "no_write_workqueue"))
   3102			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
   3103		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
   3104			if (val == 0 || val > MAX_TAG_SIZE) {
   3105				ti->error = "Invalid integrity arguments";
   3106				return -EINVAL;
   3107			}
   3108			cc->on_disk_tag_size = val;
   3109			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
   3110			if (!strcasecmp(sval, "aead")) {
   3111				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
   3112			} else  if (strcasecmp(sval, "none")) {
   3113				ti->error = "Unknown integrity profile";
   3114				return -EINVAL;
   3115			}
   3116
   3117			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
   3118			if (!cc->cipher_auth)
   3119				return -ENOMEM;
   3120		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
   3121			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
   3122			    cc->sector_size > 4096 ||
   3123			    (cc->sector_size & (cc->sector_size - 1))) {
   3124				ti->error = "Invalid feature value for sector_size";
   3125				return -EINVAL;
   3126			}
   3127			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
   3128				ti->error = "Device size is not multiple of sector_size feature";
   3129				return -EINVAL;
   3130			}
   3131			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
   3132		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
   3133			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
   3134		else {
   3135			ti->error = "Invalid feature arguments";
   3136			return -EINVAL;
   3137		}
   3138	}
   3139
   3140	return 0;
   3141}
   3142
   3143#ifdef CONFIG_BLK_DEV_ZONED
   3144static int crypt_report_zones(struct dm_target *ti,
   3145		struct dm_report_zones_args *args, unsigned int nr_zones)
   3146{
   3147	struct crypt_config *cc = ti->private;
   3148
   3149	return dm_report_zones(cc->dev->bdev, cc->start,
   3150			cc->start + dm_target_offset(ti, args->next_sector),
   3151			args, nr_zones);
   3152}
   3153#else
   3154#define crypt_report_zones NULL
   3155#endif
   3156
   3157/*
   3158 * Construct an encryption mapping:
   3159 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
   3160 */
   3161static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
   3162{
   3163	struct crypt_config *cc;
   3164	const char *devname = dm_table_device_name(ti->table);
   3165	int key_size;
   3166	unsigned int align_mask;
   3167	unsigned long long tmpll;
   3168	int ret;
   3169	size_t iv_size_padding, additional_req_size;
   3170	char dummy;
   3171
   3172	if (argc < 5) {
   3173		ti->error = "Not enough arguments";
   3174		return -EINVAL;
   3175	}
   3176
   3177	key_size = get_key_size(&argv[1]);
   3178	if (key_size < 0) {
   3179		ti->error = "Cannot parse key size";
   3180		return -EINVAL;
   3181	}
   3182
   3183	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
   3184	if (!cc) {
   3185		ti->error = "Cannot allocate encryption context";
   3186		return -ENOMEM;
   3187	}
   3188	cc->key_size = key_size;
   3189	cc->sector_size = (1 << SECTOR_SHIFT);
   3190	cc->sector_shift = 0;
   3191
   3192	ti->private = cc;
   3193
   3194	spin_lock(&dm_crypt_clients_lock);
   3195	dm_crypt_clients_n++;
   3196	crypt_calculate_pages_per_client();
   3197	spin_unlock(&dm_crypt_clients_lock);
   3198
   3199	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
   3200	if (ret < 0)
   3201		goto bad;
   3202
   3203	/* Optional parameters need to be read before cipher constructor */
   3204	if (argc > 5) {
   3205		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
   3206		if (ret)
   3207			goto bad;
   3208	}
   3209
   3210	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
   3211	if (ret < 0)
   3212		goto bad;
   3213
   3214	if (crypt_integrity_aead(cc)) {
   3215		cc->dmreq_start = sizeof(struct aead_request);
   3216		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
   3217		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
   3218	} else {
   3219		cc->dmreq_start = sizeof(struct skcipher_request);
   3220		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
   3221		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
   3222	}
   3223	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
   3224
   3225	if (align_mask < CRYPTO_MINALIGN) {
   3226		/* Allocate the padding exactly */
   3227		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
   3228				& align_mask;
   3229	} else {
   3230		/*
   3231		 * If the cipher requires greater alignment than kmalloc
   3232		 * alignment, we don't know the exact position of the
   3233		 * initialization vector. We must assume worst case.
   3234		 */
   3235		iv_size_padding = align_mask;
   3236	}
   3237
   3238	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
   3239	additional_req_size = sizeof(struct dm_crypt_request) +
   3240		iv_size_padding + cc->iv_size +
   3241		cc->iv_size +
   3242		sizeof(uint64_t) +
   3243		sizeof(unsigned int);
   3244
   3245	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
   3246	if (ret) {
   3247		ti->error = "Cannot allocate crypt request mempool";
   3248		goto bad;
   3249	}
   3250
   3251	cc->per_bio_data_size = ti->per_io_data_size =
   3252		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
   3253		      ARCH_KMALLOC_MINALIGN);
   3254
   3255	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
   3256	if (ret) {
   3257		ti->error = "Cannot allocate page mempool";
   3258		goto bad;
   3259	}
   3260
   3261	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
   3262	if (ret) {
   3263		ti->error = "Cannot allocate crypt bioset";
   3264		goto bad;
   3265	}
   3266
   3267	mutex_init(&cc->bio_alloc_lock);
   3268
   3269	ret = -EINVAL;
   3270	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
   3271	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
   3272		ti->error = "Invalid iv_offset sector";
   3273		goto bad;
   3274	}
   3275	cc->iv_offset = tmpll;
   3276
   3277	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
   3278	if (ret) {
   3279		ti->error = "Device lookup failed";
   3280		goto bad;
   3281	}
   3282
   3283	ret = -EINVAL;
   3284	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
   3285		ti->error = "Invalid device sector";
   3286		goto bad;
   3287	}
   3288	cc->start = tmpll;
   3289
   3290	if (bdev_is_zoned(cc->dev->bdev)) {
   3291		/*
   3292		 * For zoned block devices, we need to preserve the issuer write
   3293		 * ordering. To do so, disable write workqueues and force inline
   3294		 * encryption completion.
   3295		 */
   3296		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
   3297		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
   3298
   3299		/*
   3300		 * All zone append writes to a zone of a zoned block device will
   3301		 * have the same BIO sector, the start of the zone. When the
   3302		 * cypher IV mode uses sector values, all data targeting a
   3303		 * zone will be encrypted using the first sector numbers of the
   3304		 * zone. This will not result in write errors but will
   3305		 * cause most reads to fail as reads will use the sector values
   3306		 * for the actual data locations, resulting in IV mismatch.
   3307		 * To avoid this problem, ask DM core to emulate zone append
   3308		 * operations with regular writes.
   3309		 */
   3310		DMDEBUG("Zone append operations will be emulated");
   3311		ti->emulate_zone_append = true;
   3312	}
   3313
   3314	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
   3315		ret = crypt_integrity_ctr(cc, ti);
   3316		if (ret)
   3317			goto bad;
   3318
   3319		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
   3320		if (!cc->tag_pool_max_sectors)
   3321			cc->tag_pool_max_sectors = 1;
   3322
   3323		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
   3324			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
   3325		if (ret) {
   3326			ti->error = "Cannot allocate integrity tags mempool";
   3327			goto bad;
   3328		}
   3329
   3330		cc->tag_pool_max_sectors <<= cc->sector_shift;
   3331	}
   3332
   3333	ret = -ENOMEM;
   3334	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
   3335	if (!cc->io_queue) {
   3336		ti->error = "Couldn't create kcryptd io queue";
   3337		goto bad;
   3338	}
   3339
   3340	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
   3341		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
   3342						  1, devname);
   3343	else
   3344		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
   3345						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
   3346						  num_online_cpus(), devname);
   3347	if (!cc->crypt_queue) {
   3348		ti->error = "Couldn't create kcryptd queue";
   3349		goto bad;
   3350	}
   3351
   3352	spin_lock_init(&cc->write_thread_lock);
   3353	cc->write_tree = RB_ROOT;
   3354
   3355	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
   3356	if (IS_ERR(cc->write_thread)) {
   3357		ret = PTR_ERR(cc->write_thread);
   3358		cc->write_thread = NULL;
   3359		ti->error = "Couldn't spawn write thread";
   3360		goto bad;
   3361	}
   3362
   3363	ti->num_flush_bios = 1;
   3364	ti->limit_swap_bios = true;
   3365	ti->accounts_remapped_io = true;
   3366
   3367	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
   3368	return 0;
   3369
   3370bad:
   3371	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
   3372	crypt_dtr(ti);
   3373	return ret;
   3374}
   3375
   3376static int crypt_map(struct dm_target *ti, struct bio *bio)
   3377{
   3378	struct dm_crypt_io *io;
   3379	struct crypt_config *cc = ti->private;
   3380
   3381	/*
   3382	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
   3383	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
   3384	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
   3385	 */
   3386	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
   3387	    bio_op(bio) == REQ_OP_DISCARD)) {
   3388		bio_set_dev(bio, cc->dev->bdev);
   3389		if (bio_sectors(bio))
   3390			bio->bi_iter.bi_sector = cc->start +
   3391				dm_target_offset(ti, bio->bi_iter.bi_sector);
   3392		return DM_MAPIO_REMAPPED;
   3393	}
   3394
   3395	/*
   3396	 * Check if bio is too large, split as needed.
   3397	 */
   3398	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
   3399	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
   3400		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
   3401
   3402	/*
   3403	 * Ensure that bio is a multiple of internal sector encryption size
   3404	 * and is aligned to this size as defined in IO hints.
   3405	 */
   3406	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
   3407		return DM_MAPIO_KILL;
   3408
   3409	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
   3410		return DM_MAPIO_KILL;
   3411
   3412	io = dm_per_bio_data(bio, cc->per_bio_data_size);
   3413	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
   3414
   3415	if (cc->on_disk_tag_size) {
   3416		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
   3417
   3418		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
   3419		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
   3420				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
   3421			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
   3422				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
   3423			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
   3424			io->integrity_metadata_from_pool = true;
   3425		}
   3426	}
   3427
   3428	if (crypt_integrity_aead(cc))
   3429		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
   3430	else
   3431		io->ctx.r.req = (struct skcipher_request *)(io + 1);
   3432
   3433	if (bio_data_dir(io->base_bio) == READ) {
   3434		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
   3435			kcryptd_queue_read(io);
   3436	} else
   3437		kcryptd_queue_crypt(io);
   3438
   3439	return DM_MAPIO_SUBMITTED;
   3440}
   3441
   3442static char hex2asc(unsigned char c)
   3443{
   3444	return c + '0' + ((unsigned)(9 - c) >> 4 & 0x27);
   3445}
   3446
   3447static void crypt_status(struct dm_target *ti, status_type_t type,
   3448			 unsigned status_flags, char *result, unsigned maxlen)
   3449{
   3450	struct crypt_config *cc = ti->private;
   3451	unsigned i, sz = 0;
   3452	int num_feature_args = 0;
   3453
   3454	switch (type) {
   3455	case STATUSTYPE_INFO:
   3456		result[0] = '\0';
   3457		break;
   3458
   3459	case STATUSTYPE_TABLE:
   3460		DMEMIT("%s ", cc->cipher_string);
   3461
   3462		if (cc->key_size > 0) {
   3463			if (cc->key_string)
   3464				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
   3465			else {
   3466				for (i = 0; i < cc->key_size; i++) {
   3467					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
   3468					       hex2asc(cc->key[i] & 0xf));
   3469				}
   3470			}
   3471		} else
   3472			DMEMIT("-");
   3473
   3474		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
   3475				cc->dev->name, (unsigned long long)cc->start);
   3476
   3477		num_feature_args += !!ti->num_discard_bios;
   3478		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
   3479		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
   3480		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
   3481		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
   3482		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
   3483		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
   3484		if (cc->on_disk_tag_size)
   3485			num_feature_args++;
   3486		if (num_feature_args) {
   3487			DMEMIT(" %d", num_feature_args);
   3488			if (ti->num_discard_bios)
   3489				DMEMIT(" allow_discards");
   3490			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
   3491				DMEMIT(" same_cpu_crypt");
   3492			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
   3493				DMEMIT(" submit_from_crypt_cpus");
   3494			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
   3495				DMEMIT(" no_read_workqueue");
   3496			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
   3497				DMEMIT(" no_write_workqueue");
   3498			if (cc->on_disk_tag_size)
   3499				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
   3500			if (cc->sector_size != (1 << SECTOR_SHIFT))
   3501				DMEMIT(" sector_size:%d", cc->sector_size);
   3502			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
   3503				DMEMIT(" iv_large_sectors");
   3504		}
   3505		break;
   3506
   3507	case STATUSTYPE_IMA:
   3508		DMEMIT_TARGET_NAME_VERSION(ti->type);
   3509		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
   3510		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
   3511		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
   3512		       'y' : 'n');
   3513		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
   3514		       'y' : 'n');
   3515		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
   3516		       'y' : 'n');
   3517		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
   3518		       'y' : 'n');
   3519
   3520		if (cc->on_disk_tag_size)
   3521			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
   3522			       cc->on_disk_tag_size, cc->cipher_auth);
   3523		if (cc->sector_size != (1 << SECTOR_SHIFT))
   3524			DMEMIT(",sector_size=%d", cc->sector_size);
   3525		if (cc->cipher_string)
   3526			DMEMIT(",cipher_string=%s", cc->cipher_string);
   3527
   3528		DMEMIT(",key_size=%u", cc->key_size);
   3529		DMEMIT(",key_parts=%u", cc->key_parts);
   3530		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
   3531		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
   3532		DMEMIT(";");
   3533		break;
   3534	}
   3535}
   3536
   3537static void crypt_postsuspend(struct dm_target *ti)
   3538{
   3539	struct crypt_config *cc = ti->private;
   3540
   3541	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
   3542}
   3543
   3544static int crypt_preresume(struct dm_target *ti)
   3545{
   3546	struct crypt_config *cc = ti->private;
   3547
   3548	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
   3549		DMERR("aborting resume - crypt key is not set.");
   3550		return -EAGAIN;
   3551	}
   3552
   3553	return 0;
   3554}
   3555
   3556static void crypt_resume(struct dm_target *ti)
   3557{
   3558	struct crypt_config *cc = ti->private;
   3559
   3560	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
   3561}
   3562
   3563/* Message interface
   3564 *	key set <key>
   3565 *	key wipe
   3566 */
   3567static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
   3568			 char *result, unsigned maxlen)
   3569{
   3570	struct crypt_config *cc = ti->private;
   3571	int key_size, ret = -EINVAL;
   3572
   3573	if (argc < 2)
   3574		goto error;
   3575
   3576	if (!strcasecmp(argv[0], "key")) {
   3577		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
   3578			DMWARN("not suspended during key manipulation.");
   3579			return -EINVAL;
   3580		}
   3581		if (argc == 3 && !strcasecmp(argv[1], "set")) {
   3582			/* The key size may not be changed. */
   3583			key_size = get_key_size(&argv[2]);
   3584			if (key_size < 0 || cc->key_size != key_size) {
   3585				memset(argv[2], '0', strlen(argv[2]));
   3586				return -EINVAL;
   3587			}
   3588
   3589			ret = crypt_set_key(cc, argv[2]);
   3590			if (ret)
   3591				return ret;
   3592			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
   3593				ret = cc->iv_gen_ops->init(cc);
   3594			/* wipe the kernel key payload copy */
   3595			if (cc->key_string)
   3596				memset(cc->key, 0, cc->key_size * sizeof(u8));
   3597			return ret;
   3598		}
   3599		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
   3600			return crypt_wipe_key(cc);
   3601	}
   3602
   3603error:
   3604	DMWARN("unrecognised message received.");
   3605	return -EINVAL;
   3606}
   3607
   3608static int crypt_iterate_devices(struct dm_target *ti,
   3609				 iterate_devices_callout_fn fn, void *data)
   3610{
   3611	struct crypt_config *cc = ti->private;
   3612
   3613	return fn(ti, cc->dev, cc->start, ti->len, data);
   3614}
   3615
   3616static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
   3617{
   3618	struct crypt_config *cc = ti->private;
   3619
   3620	/*
   3621	 * Unfortunate constraint that is required to avoid the potential
   3622	 * for exceeding underlying device's max_segments limits -- due to
   3623	 * crypt_alloc_buffer() possibly allocating pages for the encryption
   3624	 * bio that are not as physically contiguous as the original bio.
   3625	 */
   3626	limits->max_segment_size = PAGE_SIZE;
   3627
   3628	limits->logical_block_size =
   3629		max_t(unsigned, limits->logical_block_size, cc->sector_size);
   3630	limits->physical_block_size =
   3631		max_t(unsigned, limits->physical_block_size, cc->sector_size);
   3632	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
   3633}
   3634
   3635static struct target_type crypt_target = {
   3636	.name   = "crypt",
   3637	.version = {1, 24, 0},
   3638	.module = THIS_MODULE,
   3639	.ctr    = crypt_ctr,
   3640	.dtr    = crypt_dtr,
   3641	.features = DM_TARGET_ZONED_HM,
   3642	.report_zones = crypt_report_zones,
   3643	.map    = crypt_map,
   3644	.status = crypt_status,
   3645	.postsuspend = crypt_postsuspend,
   3646	.preresume = crypt_preresume,
   3647	.resume = crypt_resume,
   3648	.message = crypt_message,
   3649	.iterate_devices = crypt_iterate_devices,
   3650	.io_hints = crypt_io_hints,
   3651};
   3652
   3653static int __init dm_crypt_init(void)
   3654{
   3655	int r;
   3656
   3657	r = dm_register_target(&crypt_target);
   3658	if (r < 0)
   3659		DMERR("register failed %d", r);
   3660
   3661	return r;
   3662}
   3663
   3664static void __exit dm_crypt_exit(void)
   3665{
   3666	dm_unregister_target(&crypt_target);
   3667}
   3668
   3669module_init(dm_crypt_init);
   3670module_exit(dm_crypt_exit);
   3671
   3672MODULE_AUTHOR("Jana Saout <jana@saout.de>");
   3673MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
   3674MODULE_LICENSE("GPL");