cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dm-kcopyd.c (21953B)


      1/*
      2 * Copyright (C) 2002 Sistina Software (UK) Limited.
      3 * Copyright (C) 2006 Red Hat GmbH
      4 *
      5 * This file is released under the GPL.
      6 *
      7 * Kcopyd provides a simple interface for copying an area of one
      8 * block-device to one or more other block-devices, with an asynchronous
      9 * completion notification.
     10 */
     11
     12#include <linux/types.h>
     13#include <linux/atomic.h>
     14#include <linux/blkdev.h>
     15#include <linux/fs.h>
     16#include <linux/init.h>
     17#include <linux/list.h>
     18#include <linux/mempool.h>
     19#include <linux/module.h>
     20#include <linux/pagemap.h>
     21#include <linux/slab.h>
     22#include <linux/vmalloc.h>
     23#include <linux/workqueue.h>
     24#include <linux/mutex.h>
     25#include <linux/delay.h>
     26#include <linux/device-mapper.h>
     27#include <linux/dm-kcopyd.h>
     28
     29#include "dm-core.h"
     30
     31#define SPLIT_COUNT	8
     32#define MIN_JOBS	8
     33
     34#define DEFAULT_SUB_JOB_SIZE_KB 512
     35#define MAX_SUB_JOB_SIZE_KB     1024
     36
     37static unsigned kcopyd_subjob_size_kb = DEFAULT_SUB_JOB_SIZE_KB;
     38
     39module_param(kcopyd_subjob_size_kb, uint, S_IRUGO | S_IWUSR);
     40MODULE_PARM_DESC(kcopyd_subjob_size_kb, "Sub-job size for dm-kcopyd clients");
     41
     42static unsigned dm_get_kcopyd_subjob_size(void)
     43{
     44	unsigned sub_job_size_kb;
     45
     46	sub_job_size_kb = __dm_get_module_param(&kcopyd_subjob_size_kb,
     47						DEFAULT_SUB_JOB_SIZE_KB,
     48						MAX_SUB_JOB_SIZE_KB);
     49
     50	return sub_job_size_kb << 1;
     51}
     52
     53/*-----------------------------------------------------------------
     54 * Each kcopyd client has its own little pool of preallocated
     55 * pages for kcopyd io.
     56 *---------------------------------------------------------------*/
     57struct dm_kcopyd_client {
     58	struct page_list *pages;
     59	unsigned nr_reserved_pages;
     60	unsigned nr_free_pages;
     61	unsigned sub_job_size;
     62
     63	struct dm_io_client *io_client;
     64
     65	wait_queue_head_t destroyq;
     66
     67	mempool_t job_pool;
     68
     69	struct workqueue_struct *kcopyd_wq;
     70	struct work_struct kcopyd_work;
     71
     72	struct dm_kcopyd_throttle *throttle;
     73
     74	atomic_t nr_jobs;
     75
     76/*
     77 * We maintain four lists of jobs:
     78 *
     79 * i)   jobs waiting for pages
     80 * ii)  jobs that have pages, and are waiting for the io to be issued.
     81 * iii) jobs that don't need to do any IO and just run a callback
     82 * iv) jobs that have completed.
     83 *
     84 * All four of these are protected by job_lock.
     85 */
     86	spinlock_t job_lock;
     87	struct list_head callback_jobs;
     88	struct list_head complete_jobs;
     89	struct list_head io_jobs;
     90	struct list_head pages_jobs;
     91};
     92
     93static struct page_list zero_page_list;
     94
     95static DEFINE_SPINLOCK(throttle_spinlock);
     96
     97/*
     98 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
     99 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
    100 * by 2.
    101 */
    102#define ACCOUNT_INTERVAL_SHIFT		SHIFT_HZ
    103
    104/*
    105 * Sleep this number of milliseconds.
    106 *
    107 * The value was decided experimentally.
    108 * Smaller values seem to cause an increased copy rate above the limit.
    109 * The reason for this is unknown but possibly due to jiffies rounding errors
    110 * or read/write cache inside the disk.
    111 */
    112#define SLEEP_MSEC			100
    113
    114/*
    115 * Maximum number of sleep events. There is a theoretical livelock if more
    116 * kcopyd clients do work simultaneously which this limit avoids.
    117 */
    118#define MAX_SLEEPS			10
    119
    120static void io_job_start(struct dm_kcopyd_throttle *t)
    121{
    122	unsigned throttle, now, difference;
    123	int slept = 0, skew;
    124
    125	if (unlikely(!t))
    126		return;
    127
    128try_again:
    129	spin_lock_irq(&throttle_spinlock);
    130
    131	throttle = READ_ONCE(t->throttle);
    132
    133	if (likely(throttle >= 100))
    134		goto skip_limit;
    135
    136	now = jiffies;
    137	difference = now - t->last_jiffies;
    138	t->last_jiffies = now;
    139	if (t->num_io_jobs)
    140		t->io_period += difference;
    141	t->total_period += difference;
    142
    143	/*
    144	 * Maintain sane values if we got a temporary overflow.
    145	 */
    146	if (unlikely(t->io_period > t->total_period))
    147		t->io_period = t->total_period;
    148
    149	if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
    150		int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
    151		t->total_period >>= shift;
    152		t->io_period >>= shift;
    153	}
    154
    155	skew = t->io_period - throttle * t->total_period / 100;
    156
    157	if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
    158		slept++;
    159		spin_unlock_irq(&throttle_spinlock);
    160		msleep(SLEEP_MSEC);
    161		goto try_again;
    162	}
    163
    164skip_limit:
    165	t->num_io_jobs++;
    166
    167	spin_unlock_irq(&throttle_spinlock);
    168}
    169
    170static void io_job_finish(struct dm_kcopyd_throttle *t)
    171{
    172	unsigned long flags;
    173
    174	if (unlikely(!t))
    175		return;
    176
    177	spin_lock_irqsave(&throttle_spinlock, flags);
    178
    179	t->num_io_jobs--;
    180
    181	if (likely(READ_ONCE(t->throttle) >= 100))
    182		goto skip_limit;
    183
    184	if (!t->num_io_jobs) {
    185		unsigned now, difference;
    186
    187		now = jiffies;
    188		difference = now - t->last_jiffies;
    189		t->last_jiffies = now;
    190
    191		t->io_period += difference;
    192		t->total_period += difference;
    193
    194		/*
    195		 * Maintain sane values if we got a temporary overflow.
    196		 */
    197		if (unlikely(t->io_period > t->total_period))
    198			t->io_period = t->total_period;
    199	}
    200
    201skip_limit:
    202	spin_unlock_irqrestore(&throttle_spinlock, flags);
    203}
    204
    205
    206static void wake(struct dm_kcopyd_client *kc)
    207{
    208	queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
    209}
    210
    211/*
    212 * Obtain one page for the use of kcopyd.
    213 */
    214static struct page_list *alloc_pl(gfp_t gfp)
    215{
    216	struct page_list *pl;
    217
    218	pl = kmalloc(sizeof(*pl), gfp);
    219	if (!pl)
    220		return NULL;
    221
    222	pl->page = alloc_page(gfp);
    223	if (!pl->page) {
    224		kfree(pl);
    225		return NULL;
    226	}
    227
    228	return pl;
    229}
    230
    231static void free_pl(struct page_list *pl)
    232{
    233	__free_page(pl->page);
    234	kfree(pl);
    235}
    236
    237/*
    238 * Add the provided pages to a client's free page list, releasing
    239 * back to the system any beyond the reserved_pages limit.
    240 */
    241static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
    242{
    243	struct page_list *next;
    244
    245	do {
    246		next = pl->next;
    247
    248		if (kc->nr_free_pages >= kc->nr_reserved_pages)
    249			free_pl(pl);
    250		else {
    251			pl->next = kc->pages;
    252			kc->pages = pl;
    253			kc->nr_free_pages++;
    254		}
    255
    256		pl = next;
    257	} while (pl);
    258}
    259
    260static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
    261			    unsigned int nr, struct page_list **pages)
    262{
    263	struct page_list *pl;
    264
    265	*pages = NULL;
    266
    267	do {
    268		pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
    269		if (unlikely(!pl)) {
    270			/* Use reserved pages */
    271			pl = kc->pages;
    272			if (unlikely(!pl))
    273				goto out_of_memory;
    274			kc->pages = pl->next;
    275			kc->nr_free_pages--;
    276		}
    277		pl->next = *pages;
    278		*pages = pl;
    279	} while (--nr);
    280
    281	return 0;
    282
    283out_of_memory:
    284	if (*pages)
    285		kcopyd_put_pages(kc, *pages);
    286	return -ENOMEM;
    287}
    288
    289/*
    290 * These three functions resize the page pool.
    291 */
    292static void drop_pages(struct page_list *pl)
    293{
    294	struct page_list *next;
    295
    296	while (pl) {
    297		next = pl->next;
    298		free_pl(pl);
    299		pl = next;
    300	}
    301}
    302
    303/*
    304 * Allocate and reserve nr_pages for the use of a specific client.
    305 */
    306static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
    307{
    308	unsigned i;
    309	struct page_list *pl = NULL, *next;
    310
    311	for (i = 0; i < nr_pages; i++) {
    312		next = alloc_pl(GFP_KERNEL);
    313		if (!next) {
    314			if (pl)
    315				drop_pages(pl);
    316			return -ENOMEM;
    317		}
    318		next->next = pl;
    319		pl = next;
    320	}
    321
    322	kc->nr_reserved_pages += nr_pages;
    323	kcopyd_put_pages(kc, pl);
    324
    325	return 0;
    326}
    327
    328static void client_free_pages(struct dm_kcopyd_client *kc)
    329{
    330	BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
    331	drop_pages(kc->pages);
    332	kc->pages = NULL;
    333	kc->nr_free_pages = kc->nr_reserved_pages = 0;
    334}
    335
    336/*-----------------------------------------------------------------
    337 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
    338 * for this reason we use a mempool to prevent the client from
    339 * ever having to do io (which could cause a deadlock).
    340 *---------------------------------------------------------------*/
    341struct kcopyd_job {
    342	struct dm_kcopyd_client *kc;
    343	struct list_head list;
    344	unsigned flags;
    345
    346	/*
    347	 * Error state of the job.
    348	 */
    349	int read_err;
    350	unsigned long write_err;
    351
    352	/*
    353	 * Either READ or WRITE
    354	 */
    355	int rw;
    356	struct dm_io_region source;
    357
    358	/*
    359	 * The destinations for the transfer.
    360	 */
    361	unsigned int num_dests;
    362	struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
    363
    364	struct page_list *pages;
    365
    366	/*
    367	 * Set this to ensure you are notified when the job has
    368	 * completed.  'context' is for callback to use.
    369	 */
    370	dm_kcopyd_notify_fn fn;
    371	void *context;
    372
    373	/*
    374	 * These fields are only used if the job has been split
    375	 * into more manageable parts.
    376	 */
    377	struct mutex lock;
    378	atomic_t sub_jobs;
    379	sector_t progress;
    380	sector_t write_offset;
    381
    382	struct kcopyd_job *master_job;
    383};
    384
    385static struct kmem_cache *_job_cache;
    386
    387int __init dm_kcopyd_init(void)
    388{
    389	_job_cache = kmem_cache_create("kcopyd_job",
    390				sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
    391				__alignof__(struct kcopyd_job), 0, NULL);
    392	if (!_job_cache)
    393		return -ENOMEM;
    394
    395	zero_page_list.next = &zero_page_list;
    396	zero_page_list.page = ZERO_PAGE(0);
    397
    398	return 0;
    399}
    400
    401void dm_kcopyd_exit(void)
    402{
    403	kmem_cache_destroy(_job_cache);
    404	_job_cache = NULL;
    405}
    406
    407/*
    408 * Functions to push and pop a job onto the head of a given job
    409 * list.
    410 */
    411static struct kcopyd_job *pop_io_job(struct list_head *jobs,
    412				     struct dm_kcopyd_client *kc)
    413{
    414	struct kcopyd_job *job;
    415
    416	/*
    417	 * For I/O jobs, pop any read, any write without sequential write
    418	 * constraint and sequential writes that are at the right position.
    419	 */
    420	list_for_each_entry(job, jobs, list) {
    421		if (job->rw == READ || !(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
    422			list_del(&job->list);
    423			return job;
    424		}
    425
    426		if (job->write_offset == job->master_job->write_offset) {
    427			job->master_job->write_offset += job->source.count;
    428			list_del(&job->list);
    429			return job;
    430		}
    431	}
    432
    433	return NULL;
    434}
    435
    436static struct kcopyd_job *pop(struct list_head *jobs,
    437			      struct dm_kcopyd_client *kc)
    438{
    439	struct kcopyd_job *job = NULL;
    440
    441	spin_lock_irq(&kc->job_lock);
    442
    443	if (!list_empty(jobs)) {
    444		if (jobs == &kc->io_jobs)
    445			job = pop_io_job(jobs, kc);
    446		else {
    447			job = list_entry(jobs->next, struct kcopyd_job, list);
    448			list_del(&job->list);
    449		}
    450	}
    451	spin_unlock_irq(&kc->job_lock);
    452
    453	return job;
    454}
    455
    456static void push(struct list_head *jobs, struct kcopyd_job *job)
    457{
    458	unsigned long flags;
    459	struct dm_kcopyd_client *kc = job->kc;
    460
    461	spin_lock_irqsave(&kc->job_lock, flags);
    462	list_add_tail(&job->list, jobs);
    463	spin_unlock_irqrestore(&kc->job_lock, flags);
    464}
    465
    466
    467static void push_head(struct list_head *jobs, struct kcopyd_job *job)
    468{
    469	struct dm_kcopyd_client *kc = job->kc;
    470
    471	spin_lock_irq(&kc->job_lock);
    472	list_add(&job->list, jobs);
    473	spin_unlock_irq(&kc->job_lock);
    474}
    475
    476/*
    477 * These three functions process 1 item from the corresponding
    478 * job list.
    479 *
    480 * They return:
    481 * < 0: error
    482 *   0: success
    483 * > 0: can't process yet.
    484 */
    485static int run_complete_job(struct kcopyd_job *job)
    486{
    487	void *context = job->context;
    488	int read_err = job->read_err;
    489	unsigned long write_err = job->write_err;
    490	dm_kcopyd_notify_fn fn = job->fn;
    491	struct dm_kcopyd_client *kc = job->kc;
    492
    493	if (job->pages && job->pages != &zero_page_list)
    494		kcopyd_put_pages(kc, job->pages);
    495	/*
    496	 * If this is the master job, the sub jobs have already
    497	 * completed so we can free everything.
    498	 */
    499	if (job->master_job == job) {
    500		mutex_destroy(&job->lock);
    501		mempool_free(job, &kc->job_pool);
    502	}
    503	fn(read_err, write_err, context);
    504
    505	if (atomic_dec_and_test(&kc->nr_jobs))
    506		wake_up(&kc->destroyq);
    507
    508	cond_resched();
    509
    510	return 0;
    511}
    512
    513static void complete_io(unsigned long error, void *context)
    514{
    515	struct kcopyd_job *job = (struct kcopyd_job *) context;
    516	struct dm_kcopyd_client *kc = job->kc;
    517
    518	io_job_finish(kc->throttle);
    519
    520	if (error) {
    521		if (op_is_write(job->rw))
    522			job->write_err |= error;
    523		else
    524			job->read_err = 1;
    525
    526		if (!(job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))) {
    527			push(&kc->complete_jobs, job);
    528			wake(kc);
    529			return;
    530		}
    531	}
    532
    533	if (op_is_write(job->rw))
    534		push(&kc->complete_jobs, job);
    535
    536	else {
    537		job->rw = WRITE;
    538		push(&kc->io_jobs, job);
    539	}
    540
    541	wake(kc);
    542}
    543
    544/*
    545 * Request io on as many buffer heads as we can currently get for
    546 * a particular job.
    547 */
    548static int run_io_job(struct kcopyd_job *job)
    549{
    550	int r;
    551	struct dm_io_request io_req = {
    552		.bi_op = job->rw,
    553		.bi_op_flags = 0,
    554		.mem.type = DM_IO_PAGE_LIST,
    555		.mem.ptr.pl = job->pages,
    556		.mem.offset = 0,
    557		.notify.fn = complete_io,
    558		.notify.context = job,
    559		.client = job->kc->io_client,
    560	};
    561
    562	/*
    563	 * If we need to write sequentially and some reads or writes failed,
    564	 * no point in continuing.
    565	 */
    566	if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
    567	    job->master_job->write_err) {
    568		job->write_err = job->master_job->write_err;
    569		return -EIO;
    570	}
    571
    572	io_job_start(job->kc->throttle);
    573
    574	if (job->rw == READ)
    575		r = dm_io(&io_req, 1, &job->source, NULL);
    576	else
    577		r = dm_io(&io_req, job->num_dests, job->dests, NULL);
    578
    579	return r;
    580}
    581
    582static int run_pages_job(struct kcopyd_job *job)
    583{
    584	int r;
    585	unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
    586
    587	r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
    588	if (!r) {
    589		/* this job is ready for io */
    590		push(&job->kc->io_jobs, job);
    591		return 0;
    592	}
    593
    594	if (r == -ENOMEM)
    595		/* can't complete now */
    596		return 1;
    597
    598	return r;
    599}
    600
    601/*
    602 * Run through a list for as long as possible.  Returns the count
    603 * of successful jobs.
    604 */
    605static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
    606			int (*fn) (struct kcopyd_job *))
    607{
    608	struct kcopyd_job *job;
    609	int r, count = 0;
    610
    611	while ((job = pop(jobs, kc))) {
    612
    613		r = fn(job);
    614
    615		if (r < 0) {
    616			/* error this rogue job */
    617			if (op_is_write(job->rw))
    618				job->write_err = (unsigned long) -1L;
    619			else
    620				job->read_err = 1;
    621			push(&kc->complete_jobs, job);
    622			wake(kc);
    623			break;
    624		}
    625
    626		if (r > 0) {
    627			/*
    628			 * We couldn't service this job ATM, so
    629			 * push this job back onto the list.
    630			 */
    631			push_head(jobs, job);
    632			break;
    633		}
    634
    635		count++;
    636	}
    637
    638	return count;
    639}
    640
    641/*
    642 * kcopyd does this every time it's woken up.
    643 */
    644static void do_work(struct work_struct *work)
    645{
    646	struct dm_kcopyd_client *kc = container_of(work,
    647					struct dm_kcopyd_client, kcopyd_work);
    648	struct blk_plug plug;
    649
    650	/*
    651	 * The order that these are called is *very* important.
    652	 * complete jobs can free some pages for pages jobs.
    653	 * Pages jobs when successful will jump onto the io jobs
    654	 * list.  io jobs call wake when they complete and it all
    655	 * starts again.
    656	 */
    657	spin_lock_irq(&kc->job_lock);
    658	list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
    659	spin_unlock_irq(&kc->job_lock);
    660
    661	blk_start_plug(&plug);
    662	process_jobs(&kc->complete_jobs, kc, run_complete_job);
    663	process_jobs(&kc->pages_jobs, kc, run_pages_job);
    664	process_jobs(&kc->io_jobs, kc, run_io_job);
    665	blk_finish_plug(&plug);
    666}
    667
    668/*
    669 * If we are copying a small region we just dispatch a single job
    670 * to do the copy, otherwise the io has to be split up into many
    671 * jobs.
    672 */
    673static void dispatch_job(struct kcopyd_job *job)
    674{
    675	struct dm_kcopyd_client *kc = job->kc;
    676	atomic_inc(&kc->nr_jobs);
    677	if (unlikely(!job->source.count))
    678		push(&kc->callback_jobs, job);
    679	else if (job->pages == &zero_page_list)
    680		push(&kc->io_jobs, job);
    681	else
    682		push(&kc->pages_jobs, job);
    683	wake(kc);
    684}
    685
    686static void segment_complete(int read_err, unsigned long write_err,
    687			     void *context)
    688{
    689	/* FIXME: tidy this function */
    690	sector_t progress = 0;
    691	sector_t count = 0;
    692	struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
    693	struct kcopyd_job *job = sub_job->master_job;
    694	struct dm_kcopyd_client *kc = job->kc;
    695
    696	mutex_lock(&job->lock);
    697
    698	/* update the error */
    699	if (read_err)
    700		job->read_err = 1;
    701
    702	if (write_err)
    703		job->write_err |= write_err;
    704
    705	/*
    706	 * Only dispatch more work if there hasn't been an error.
    707	 */
    708	if ((!job->read_err && !job->write_err) ||
    709	    job->flags & BIT(DM_KCOPYD_IGNORE_ERROR)) {
    710		/* get the next chunk of work */
    711		progress = job->progress;
    712		count = job->source.count - progress;
    713		if (count) {
    714			if (count > kc->sub_job_size)
    715				count = kc->sub_job_size;
    716
    717			job->progress += count;
    718		}
    719	}
    720	mutex_unlock(&job->lock);
    721
    722	if (count) {
    723		int i;
    724
    725		*sub_job = *job;
    726		sub_job->write_offset = progress;
    727		sub_job->source.sector += progress;
    728		sub_job->source.count = count;
    729
    730		for (i = 0; i < job->num_dests; i++) {
    731			sub_job->dests[i].sector += progress;
    732			sub_job->dests[i].count = count;
    733		}
    734
    735		sub_job->fn = segment_complete;
    736		sub_job->context = sub_job;
    737		dispatch_job(sub_job);
    738
    739	} else if (atomic_dec_and_test(&job->sub_jobs)) {
    740
    741		/*
    742		 * Queue the completion callback to the kcopyd thread.
    743		 *
    744		 * Some callers assume that all the completions are called
    745		 * from a single thread and don't race with each other.
    746		 *
    747		 * We must not call the callback directly here because this
    748		 * code may not be executing in the thread.
    749		 */
    750		push(&kc->complete_jobs, job);
    751		wake(kc);
    752	}
    753}
    754
    755/*
    756 * Create some sub jobs to share the work between them.
    757 */
    758static void split_job(struct kcopyd_job *master_job)
    759{
    760	int i;
    761
    762	atomic_inc(&master_job->kc->nr_jobs);
    763
    764	atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
    765	for (i = 0; i < SPLIT_COUNT; i++) {
    766		master_job[i + 1].master_job = master_job;
    767		segment_complete(0, 0u, &master_job[i + 1]);
    768	}
    769}
    770
    771void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
    772		    unsigned int num_dests, struct dm_io_region *dests,
    773		    unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
    774{
    775	struct kcopyd_job *job;
    776	int i;
    777
    778	/*
    779	 * Allocate an array of jobs consisting of one master job
    780	 * followed by SPLIT_COUNT sub jobs.
    781	 */
    782	job = mempool_alloc(&kc->job_pool, GFP_NOIO);
    783	mutex_init(&job->lock);
    784
    785	/*
    786	 * set up for the read.
    787	 */
    788	job->kc = kc;
    789	job->flags = flags;
    790	job->read_err = 0;
    791	job->write_err = 0;
    792
    793	job->num_dests = num_dests;
    794	memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
    795
    796	/*
    797	 * If one of the destination is a host-managed zoned block device,
    798	 * we need to write sequentially. If one of the destination is a
    799	 * host-aware device, then leave it to the caller to choose what to do.
    800	 */
    801	if (!(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
    802		for (i = 0; i < job->num_dests; i++) {
    803			if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
    804				job->flags |= BIT(DM_KCOPYD_WRITE_SEQ);
    805				break;
    806			}
    807		}
    808	}
    809
    810	/*
    811	 * If we need to write sequentially, errors cannot be ignored.
    812	 */
    813	if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
    814	    job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))
    815		job->flags &= ~BIT(DM_KCOPYD_IGNORE_ERROR);
    816
    817	if (from) {
    818		job->source = *from;
    819		job->pages = NULL;
    820		job->rw = READ;
    821	} else {
    822		memset(&job->source, 0, sizeof job->source);
    823		job->source.count = job->dests[0].count;
    824		job->pages = &zero_page_list;
    825
    826		/*
    827		 * Use WRITE ZEROES to optimize zeroing if all dests support it.
    828		 */
    829		job->rw = REQ_OP_WRITE_ZEROES;
    830		for (i = 0; i < job->num_dests; i++)
    831			if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
    832				job->rw = WRITE;
    833				break;
    834			}
    835	}
    836
    837	job->fn = fn;
    838	job->context = context;
    839	job->master_job = job;
    840	job->write_offset = 0;
    841
    842	if (job->source.count <= kc->sub_job_size)
    843		dispatch_job(job);
    844	else {
    845		job->progress = 0;
    846		split_job(job);
    847	}
    848}
    849EXPORT_SYMBOL(dm_kcopyd_copy);
    850
    851void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
    852		    unsigned num_dests, struct dm_io_region *dests,
    853		    unsigned flags, dm_kcopyd_notify_fn fn, void *context)
    854{
    855	dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
    856}
    857EXPORT_SYMBOL(dm_kcopyd_zero);
    858
    859void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
    860				 dm_kcopyd_notify_fn fn, void *context)
    861{
    862	struct kcopyd_job *job;
    863
    864	job = mempool_alloc(&kc->job_pool, GFP_NOIO);
    865
    866	memset(job, 0, sizeof(struct kcopyd_job));
    867	job->kc = kc;
    868	job->fn = fn;
    869	job->context = context;
    870	job->master_job = job;
    871
    872	atomic_inc(&kc->nr_jobs);
    873
    874	return job;
    875}
    876EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
    877
    878void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
    879{
    880	struct kcopyd_job *job = j;
    881	struct dm_kcopyd_client *kc = job->kc;
    882
    883	job->read_err = read_err;
    884	job->write_err = write_err;
    885
    886	push(&kc->callback_jobs, job);
    887	wake(kc);
    888}
    889EXPORT_SYMBOL(dm_kcopyd_do_callback);
    890
    891/*
    892 * Cancels a kcopyd job, eg. someone might be deactivating a
    893 * mirror.
    894 */
    895#if 0
    896int kcopyd_cancel(struct kcopyd_job *job, int block)
    897{
    898	/* FIXME: finish */
    899	return -1;
    900}
    901#endif  /*  0  */
    902
    903/*-----------------------------------------------------------------
    904 * Client setup
    905 *---------------------------------------------------------------*/
    906struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
    907{
    908	int r;
    909	unsigned reserve_pages;
    910	struct dm_kcopyd_client *kc;
    911
    912	kc = kzalloc(sizeof(*kc), GFP_KERNEL);
    913	if (!kc)
    914		return ERR_PTR(-ENOMEM);
    915
    916	spin_lock_init(&kc->job_lock);
    917	INIT_LIST_HEAD(&kc->callback_jobs);
    918	INIT_LIST_HEAD(&kc->complete_jobs);
    919	INIT_LIST_HEAD(&kc->io_jobs);
    920	INIT_LIST_HEAD(&kc->pages_jobs);
    921	kc->throttle = throttle;
    922
    923	r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
    924	if (r)
    925		goto bad_slab;
    926
    927	INIT_WORK(&kc->kcopyd_work, do_work);
    928	kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
    929	if (!kc->kcopyd_wq) {
    930		r = -ENOMEM;
    931		goto bad_workqueue;
    932	}
    933
    934	kc->sub_job_size = dm_get_kcopyd_subjob_size();
    935	reserve_pages = DIV_ROUND_UP(kc->sub_job_size << SECTOR_SHIFT, PAGE_SIZE);
    936
    937	kc->pages = NULL;
    938	kc->nr_reserved_pages = kc->nr_free_pages = 0;
    939	r = client_reserve_pages(kc, reserve_pages);
    940	if (r)
    941		goto bad_client_pages;
    942
    943	kc->io_client = dm_io_client_create();
    944	if (IS_ERR(kc->io_client)) {
    945		r = PTR_ERR(kc->io_client);
    946		goto bad_io_client;
    947	}
    948
    949	init_waitqueue_head(&kc->destroyq);
    950	atomic_set(&kc->nr_jobs, 0);
    951
    952	return kc;
    953
    954bad_io_client:
    955	client_free_pages(kc);
    956bad_client_pages:
    957	destroy_workqueue(kc->kcopyd_wq);
    958bad_workqueue:
    959	mempool_exit(&kc->job_pool);
    960bad_slab:
    961	kfree(kc);
    962
    963	return ERR_PTR(r);
    964}
    965EXPORT_SYMBOL(dm_kcopyd_client_create);
    966
    967void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
    968{
    969	/* Wait for completion of all jobs submitted by this client. */
    970	wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
    971
    972	BUG_ON(!list_empty(&kc->callback_jobs));
    973	BUG_ON(!list_empty(&kc->complete_jobs));
    974	BUG_ON(!list_empty(&kc->io_jobs));
    975	BUG_ON(!list_empty(&kc->pages_jobs));
    976	destroy_workqueue(kc->kcopyd_wq);
    977	dm_io_client_destroy(kc->io_client);
    978	client_free_pages(kc);
    979	mempool_exit(&kc->job_pool);
    980	kfree(kc);
    981}
    982EXPORT_SYMBOL(dm_kcopyd_client_destroy);
    983
    984void dm_kcopyd_client_flush(struct dm_kcopyd_client *kc)
    985{
    986	flush_workqueue(kc->kcopyd_wq);
    987}
    988EXPORT_SYMBOL(dm_kcopyd_client_flush);