cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dm-verity-fec.c (21049B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2015 Google, Inc.
      4 *
      5 * Author: Sami Tolvanen <samitolvanen@google.com>
      6 */
      7
      8#include "dm-verity-fec.h"
      9#include <linux/math64.h>
     10
     11#define DM_MSG_PREFIX	"verity-fec"
     12
     13/*
     14 * If error correction has been configured, returns true.
     15 */
     16bool verity_fec_is_enabled(struct dm_verity *v)
     17{
     18	return v->fec && v->fec->dev;
     19}
     20
     21/*
     22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
     23 * length fields.
     24 */
     25static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
     26{
     27	return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
     28}
     29
     30/*
     31 * Return an interleaved offset for a byte in RS block.
     32 */
     33static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
     34{
     35	u32 mod;
     36
     37	mod = do_div(offset, v->fec->rsn);
     38	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
     39}
     40
     41/*
     42 * Decode an RS block using Reed-Solomon.
     43 */
     44static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
     45			  u8 *data, u8 *fec, int neras)
     46{
     47	int i;
     48	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
     49
     50	for (i = 0; i < v->fec->roots; i++)
     51		par[i] = fec[i];
     52
     53	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
     54			  fio->erasures, 0, NULL);
     55}
     56
     57/*
     58 * Read error-correcting codes for the requested RS block. Returns a pointer
     59 * to the data block. Caller is responsible for releasing buf.
     60 */
     61static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
     62			   unsigned *offset, struct dm_buffer **buf)
     63{
     64	u64 position, block, rem;
     65	u8 *res;
     66
     67	position = (index + rsb) * v->fec->roots;
     68	block = div64_u64_rem(position, v->fec->io_size, &rem);
     69	*offset = (unsigned)rem;
     70
     71	res = dm_bufio_read(v->fec->bufio, block, buf);
     72	if (IS_ERR(res)) {
     73		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
     74		      v->data_dev->name, (unsigned long long)rsb,
     75		      (unsigned long long)block, PTR_ERR(res));
     76		*buf = NULL;
     77	}
     78
     79	return res;
     80}
     81
     82/* Loop over each preallocated buffer slot. */
     83#define fec_for_each_prealloc_buffer(__i) \
     84	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
     85
     86/* Loop over each extra buffer slot. */
     87#define fec_for_each_extra_buffer(io, __i) \
     88	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
     89
     90/* Loop over each allocated buffer. */
     91#define fec_for_each_buffer(io, __i) \
     92	for (__i = 0; __i < (io)->nbufs; __i++)
     93
     94/* Loop over each RS block in each allocated buffer. */
     95#define fec_for_each_buffer_rs_block(io, __i, __j) \
     96	fec_for_each_buffer(io, __i) \
     97		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
     98
     99/*
    100 * Return a pointer to the current RS block when called inside
    101 * fec_for_each_buffer_rs_block.
    102 */
    103static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
    104				      struct dm_verity_fec_io *fio,
    105				      unsigned i, unsigned j)
    106{
    107	return &fio->bufs[i][j * v->fec->rsn];
    108}
    109
    110/*
    111 * Return an index to the current RS block when called inside
    112 * fec_for_each_buffer_rs_block.
    113 */
    114static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
    115{
    116	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
    117}
    118
    119/*
    120 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
    121 * starting from block_offset.
    122 */
    123static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
    124			   u64 rsb, int byte_index, unsigned block_offset,
    125			   int neras)
    126{
    127	int r, corrected = 0, res;
    128	struct dm_buffer *buf;
    129	unsigned n, i, offset;
    130	u8 *par, *block;
    131
    132	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
    133	if (IS_ERR(par))
    134		return PTR_ERR(par);
    135
    136	/*
    137	 * Decode the RS blocks we have in bufs. Each RS block results in
    138	 * one corrected target byte and consumes fec->roots parity bytes.
    139	 */
    140	fec_for_each_buffer_rs_block(fio, n, i) {
    141		block = fec_buffer_rs_block(v, fio, n, i);
    142		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
    143		if (res < 0) {
    144			r = res;
    145			goto error;
    146		}
    147
    148		corrected += res;
    149		fio->output[block_offset] = block[byte_index];
    150
    151		block_offset++;
    152		if (block_offset >= 1 << v->data_dev_block_bits)
    153			goto done;
    154
    155		/* read the next block when we run out of parity bytes */
    156		offset += v->fec->roots;
    157		if (offset >= v->fec->io_size) {
    158			dm_bufio_release(buf);
    159
    160			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
    161			if (IS_ERR(par))
    162				return PTR_ERR(par);
    163		}
    164	}
    165done:
    166	r = corrected;
    167error:
    168	dm_bufio_release(buf);
    169
    170	if (r < 0 && neras)
    171		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
    172			    v->data_dev->name, (unsigned long long)rsb, r);
    173	else if (r > 0)
    174		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
    175			     v->data_dev->name, (unsigned long long)rsb, r);
    176
    177	return r;
    178}
    179
    180/*
    181 * Locate data block erasures using verity hashes.
    182 */
    183static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
    184			  u8 *want_digest, u8 *data)
    185{
    186	if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
    187				 data, 1 << v->data_dev_block_bits,
    188				 verity_io_real_digest(v, io))))
    189		return 0;
    190
    191	return memcmp(verity_io_real_digest(v, io), want_digest,
    192		      v->digest_size) != 0;
    193}
    194
    195/*
    196 * Read data blocks that are part of the RS block and deinterleave as much as
    197 * fits into buffers. Check for erasure locations if @neras is non-NULL.
    198 */
    199static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
    200			 u64 rsb, u64 target, unsigned block_offset,
    201			 int *neras)
    202{
    203	bool is_zero;
    204	int i, j, target_index = -1;
    205	struct dm_buffer *buf;
    206	struct dm_bufio_client *bufio;
    207	struct dm_verity_fec_io *fio = fec_io(io);
    208	u64 block, ileaved;
    209	u8 *bbuf, *rs_block;
    210	u8 want_digest[HASH_MAX_DIGESTSIZE];
    211	unsigned n, k;
    212
    213	if (neras)
    214		*neras = 0;
    215
    216	if (WARN_ON(v->digest_size > sizeof(want_digest)))
    217		return -EINVAL;
    218
    219	/*
    220	 * read each of the rsn data blocks that are part of the RS block, and
    221	 * interleave contents to available bufs
    222	 */
    223	for (i = 0; i < v->fec->rsn; i++) {
    224		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
    225
    226		/*
    227		 * target is the data block we want to correct, target_index is
    228		 * the index of this block within the rsn RS blocks
    229		 */
    230		if (ileaved == target)
    231			target_index = i;
    232
    233		block = ileaved >> v->data_dev_block_bits;
    234		bufio = v->fec->data_bufio;
    235
    236		if (block >= v->data_blocks) {
    237			block -= v->data_blocks;
    238
    239			/*
    240			 * blocks outside the area were assumed to contain
    241			 * zeros when encoding data was generated
    242			 */
    243			if (unlikely(block >= v->fec->hash_blocks))
    244				continue;
    245
    246			block += v->hash_start;
    247			bufio = v->bufio;
    248		}
    249
    250		bbuf = dm_bufio_read(bufio, block, &buf);
    251		if (IS_ERR(bbuf)) {
    252			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
    253				     v->data_dev->name,
    254				     (unsigned long long)rsb,
    255				     (unsigned long long)block, PTR_ERR(bbuf));
    256
    257			/* assume the block is corrupted */
    258			if (neras && *neras <= v->fec->roots)
    259				fio->erasures[(*neras)++] = i;
    260
    261			continue;
    262		}
    263
    264		/* locate erasures if the block is on the data device */
    265		if (bufio == v->fec->data_bufio &&
    266		    verity_hash_for_block(v, io, block, want_digest,
    267					  &is_zero) == 0) {
    268			/* skip known zero blocks entirely */
    269			if (is_zero)
    270				goto done;
    271
    272			/*
    273			 * skip if we have already found the theoretical
    274			 * maximum number (i.e. fec->roots) of erasures
    275			 */
    276			if (neras && *neras <= v->fec->roots &&
    277			    fec_is_erasure(v, io, want_digest, bbuf))
    278				fio->erasures[(*neras)++] = i;
    279		}
    280
    281		/*
    282		 * deinterleave and copy the bytes that fit into bufs,
    283		 * starting from block_offset
    284		 */
    285		fec_for_each_buffer_rs_block(fio, n, j) {
    286			k = fec_buffer_rs_index(n, j) + block_offset;
    287
    288			if (k >= 1 << v->data_dev_block_bits)
    289				goto done;
    290
    291			rs_block = fec_buffer_rs_block(v, fio, n, j);
    292			rs_block[i] = bbuf[k];
    293		}
    294done:
    295		dm_bufio_release(buf);
    296	}
    297
    298	return target_index;
    299}
    300
    301/*
    302 * Allocate RS control structure and FEC buffers from preallocated mempools,
    303 * and attempt to allocate as many extra buffers as available.
    304 */
    305static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
    306{
    307	unsigned n;
    308
    309	if (!fio->rs)
    310		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
    311
    312	fec_for_each_prealloc_buffer(n) {
    313		if (fio->bufs[n])
    314			continue;
    315
    316		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
    317		if (unlikely(!fio->bufs[n])) {
    318			DMERR("failed to allocate FEC buffer");
    319			return -ENOMEM;
    320		}
    321	}
    322
    323	/* try to allocate the maximum number of buffers */
    324	fec_for_each_extra_buffer(fio, n) {
    325		if (fio->bufs[n])
    326			continue;
    327
    328		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
    329		/* we can manage with even one buffer if necessary */
    330		if (unlikely(!fio->bufs[n]))
    331			break;
    332	}
    333	fio->nbufs = n;
    334
    335	if (!fio->output)
    336		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
    337
    338	return 0;
    339}
    340
    341/*
    342 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
    343 * zeroed before deinterleaving.
    344 */
    345static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
    346{
    347	unsigned n;
    348
    349	fec_for_each_buffer(fio, n)
    350		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
    351
    352	memset(fio->erasures, 0, sizeof(fio->erasures));
    353}
    354
    355/*
    356 * Decode all RS blocks in a single data block and return the target block
    357 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
    358 * hashes to locate erasures.
    359 */
    360static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
    361			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
    362			  bool use_erasures)
    363{
    364	int r, neras = 0;
    365	unsigned pos;
    366
    367	r = fec_alloc_bufs(v, fio);
    368	if (unlikely(r < 0))
    369		return r;
    370
    371	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
    372		fec_init_bufs(v, fio);
    373
    374		r = fec_read_bufs(v, io, rsb, offset, pos,
    375				  use_erasures ? &neras : NULL);
    376		if (unlikely(r < 0))
    377			return r;
    378
    379		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
    380		if (r < 0)
    381			return r;
    382
    383		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
    384	}
    385
    386	/* Always re-validate the corrected block against the expected hash */
    387	r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
    388			1 << v->data_dev_block_bits,
    389			verity_io_real_digest(v, io));
    390	if (unlikely(r < 0))
    391		return r;
    392
    393	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
    394		   v->digest_size)) {
    395		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
    396			    v->data_dev->name, (unsigned long long)rsb, neras);
    397		return -EILSEQ;
    398	}
    399
    400	return 0;
    401}
    402
    403static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
    404		       size_t len)
    405{
    406	struct dm_verity_fec_io *fio = fec_io(io);
    407
    408	memcpy(data, &fio->output[fio->output_pos], len);
    409	fio->output_pos += len;
    410
    411	return 0;
    412}
    413
    414/*
    415 * Correct errors in a block. Copies corrected block to dest if non-NULL,
    416 * otherwise to a bio_vec starting from iter.
    417 */
    418int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
    419		      enum verity_block_type type, sector_t block, u8 *dest,
    420		      struct bvec_iter *iter)
    421{
    422	int r;
    423	struct dm_verity_fec_io *fio = fec_io(io);
    424	u64 offset, res, rsb;
    425
    426	if (!verity_fec_is_enabled(v))
    427		return -EOPNOTSUPP;
    428
    429	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
    430		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
    431		return -EIO;
    432	}
    433
    434	fio->level++;
    435
    436	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
    437		block = block - v->hash_start + v->data_blocks;
    438
    439	/*
    440	 * For RS(M, N), the continuous FEC data is divided into blocks of N
    441	 * bytes. Since block size may not be divisible by N, the last block
    442	 * is zero padded when decoding.
    443	 *
    444	 * Each byte of the block is covered by a different RS(M, N) code,
    445	 * and each code is interleaved over N blocks to make it less likely
    446	 * that bursty corruption will leave us in unrecoverable state.
    447	 */
    448
    449	offset = block << v->data_dev_block_bits;
    450	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
    451
    452	/*
    453	 * The base RS block we can feed to the interleaver to find out all
    454	 * blocks required for decoding.
    455	 */
    456	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
    457
    458	/*
    459	 * Locating erasures is slow, so attempt to recover the block without
    460	 * them first. Do a second attempt with erasures if the corruption is
    461	 * bad enough.
    462	 */
    463	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
    464	if (r < 0) {
    465		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
    466		if (r < 0)
    467			goto done;
    468	}
    469
    470	if (dest)
    471		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
    472	else if (iter) {
    473		fio->output_pos = 0;
    474		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
    475	}
    476
    477done:
    478	fio->level--;
    479	return r;
    480}
    481
    482/*
    483 * Clean up per-bio data.
    484 */
    485void verity_fec_finish_io(struct dm_verity_io *io)
    486{
    487	unsigned n;
    488	struct dm_verity_fec *f = io->v->fec;
    489	struct dm_verity_fec_io *fio = fec_io(io);
    490
    491	if (!verity_fec_is_enabled(io->v))
    492		return;
    493
    494	mempool_free(fio->rs, &f->rs_pool);
    495
    496	fec_for_each_prealloc_buffer(n)
    497		mempool_free(fio->bufs[n], &f->prealloc_pool);
    498
    499	fec_for_each_extra_buffer(fio, n)
    500		mempool_free(fio->bufs[n], &f->extra_pool);
    501
    502	mempool_free(fio->output, &f->output_pool);
    503}
    504
    505/*
    506 * Initialize per-bio data.
    507 */
    508void verity_fec_init_io(struct dm_verity_io *io)
    509{
    510	struct dm_verity_fec_io *fio = fec_io(io);
    511
    512	if (!verity_fec_is_enabled(io->v))
    513		return;
    514
    515	fio->rs = NULL;
    516	memset(fio->bufs, 0, sizeof(fio->bufs));
    517	fio->nbufs = 0;
    518	fio->output = NULL;
    519	fio->level = 0;
    520}
    521
    522/*
    523 * Append feature arguments and values to the status table.
    524 */
    525unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
    526				 char *result, unsigned maxlen)
    527{
    528	if (!verity_fec_is_enabled(v))
    529		return sz;
    530
    531	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
    532	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
    533	       DM_VERITY_OPT_FEC_START " %llu "
    534	       DM_VERITY_OPT_FEC_ROOTS " %d",
    535	       v->fec->dev->name,
    536	       (unsigned long long)v->fec->blocks,
    537	       (unsigned long long)v->fec->start,
    538	       v->fec->roots);
    539
    540	return sz;
    541}
    542
    543void verity_fec_dtr(struct dm_verity *v)
    544{
    545	struct dm_verity_fec *f = v->fec;
    546
    547	if (!verity_fec_is_enabled(v))
    548		goto out;
    549
    550	mempool_exit(&f->rs_pool);
    551	mempool_exit(&f->prealloc_pool);
    552	mempool_exit(&f->extra_pool);
    553	mempool_exit(&f->output_pool);
    554	kmem_cache_destroy(f->cache);
    555
    556	if (f->data_bufio)
    557		dm_bufio_client_destroy(f->data_bufio);
    558	if (f->bufio)
    559		dm_bufio_client_destroy(f->bufio);
    560
    561	if (f->dev)
    562		dm_put_device(v->ti, f->dev);
    563out:
    564	kfree(f);
    565	v->fec = NULL;
    566}
    567
    568static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
    569{
    570	struct dm_verity *v = (struct dm_verity *)pool_data;
    571
    572	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
    573}
    574
    575static void fec_rs_free(void *element, void *pool_data)
    576{
    577	struct rs_control *rs = (struct rs_control *)element;
    578
    579	if (rs)
    580		free_rs(rs);
    581}
    582
    583bool verity_is_fec_opt_arg(const char *arg_name)
    584{
    585	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
    586		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
    587		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
    588		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
    589}
    590
    591int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
    592			      unsigned *argc, const char *arg_name)
    593{
    594	int r;
    595	struct dm_target *ti = v->ti;
    596	const char *arg_value;
    597	unsigned long long num_ll;
    598	unsigned char num_c;
    599	char dummy;
    600
    601	if (!*argc) {
    602		ti->error = "FEC feature arguments require a value";
    603		return -EINVAL;
    604	}
    605
    606	arg_value = dm_shift_arg(as);
    607	(*argc)--;
    608
    609	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
    610		r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
    611		if (r) {
    612			ti->error = "FEC device lookup failed";
    613			return r;
    614		}
    615
    616	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
    617		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
    618		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
    619		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
    620			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
    621			return -EINVAL;
    622		}
    623		v->fec->blocks = num_ll;
    624
    625	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
    626		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
    627		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
    628		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
    629			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
    630			return -EINVAL;
    631		}
    632		v->fec->start = num_ll;
    633
    634	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
    635		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
    636		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
    637		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
    638			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
    639			return -EINVAL;
    640		}
    641		v->fec->roots = num_c;
    642
    643	} else {
    644		ti->error = "Unrecognized verity FEC feature request";
    645		return -EINVAL;
    646	}
    647
    648	return 0;
    649}
    650
    651/*
    652 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
    653 */
    654int verity_fec_ctr_alloc(struct dm_verity *v)
    655{
    656	struct dm_verity_fec *f;
    657
    658	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
    659	if (!f) {
    660		v->ti->error = "Cannot allocate FEC structure";
    661		return -ENOMEM;
    662	}
    663	v->fec = f;
    664
    665	return 0;
    666}
    667
    668/*
    669 * Validate arguments and preallocate memory. Must be called after arguments
    670 * have been parsed using verity_fec_parse_opt_args.
    671 */
    672int verity_fec_ctr(struct dm_verity *v)
    673{
    674	struct dm_verity_fec *f = v->fec;
    675	struct dm_target *ti = v->ti;
    676	u64 hash_blocks, fec_blocks;
    677	int ret;
    678
    679	if (!verity_fec_is_enabled(v)) {
    680		verity_fec_dtr(v);
    681		return 0;
    682	}
    683
    684	/*
    685	 * FEC is computed over data blocks, possible metadata, and
    686	 * hash blocks. In other words, FEC covers total of fec_blocks
    687	 * blocks consisting of the following:
    688	 *
    689	 *  data blocks | hash blocks | metadata (optional)
    690	 *
    691	 * We allow metadata after hash blocks to support a use case
    692	 * where all data is stored on the same device and FEC covers
    693	 * the entire area.
    694	 *
    695	 * If metadata is included, we require it to be available on the
    696	 * hash device after the hash blocks.
    697	 */
    698
    699	hash_blocks = v->hash_blocks - v->hash_start;
    700
    701	/*
    702	 * Require matching block sizes for data and hash devices for
    703	 * simplicity.
    704	 */
    705	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
    706		ti->error = "Block sizes must match to use FEC";
    707		return -EINVAL;
    708	}
    709
    710	if (!f->roots) {
    711		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
    712		return -EINVAL;
    713	}
    714	f->rsn = DM_VERITY_FEC_RSM - f->roots;
    715
    716	if (!f->blocks) {
    717		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
    718		return -EINVAL;
    719	}
    720
    721	f->rounds = f->blocks;
    722	if (sector_div(f->rounds, f->rsn))
    723		f->rounds++;
    724
    725	/*
    726	 * Due to optional metadata, f->blocks can be larger than
    727	 * data_blocks and hash_blocks combined.
    728	 */
    729	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
    730		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
    731		return -EINVAL;
    732	}
    733
    734	/*
    735	 * Metadata is accessed through the hash device, so we require
    736	 * it to be large enough.
    737	 */
    738	f->hash_blocks = f->blocks - v->data_blocks;
    739	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
    740		ti->error = "Hash device is too small for "
    741			DM_VERITY_OPT_FEC_BLOCKS;
    742		return -E2BIG;
    743	}
    744
    745	if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1))
    746		f->io_size = 1 << v->data_dev_block_bits;
    747	else
    748		f->io_size = v->fec->roots << SECTOR_SHIFT;
    749
    750	f->bufio = dm_bufio_client_create(f->dev->bdev,
    751					  f->io_size,
    752					  1, 0, NULL, NULL);
    753	if (IS_ERR(f->bufio)) {
    754		ti->error = "Cannot initialize FEC bufio client";
    755		return PTR_ERR(f->bufio);
    756	}
    757
    758	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
    759
    760	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
    761	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
    762		ti->error = "FEC device is too small";
    763		return -E2BIG;
    764	}
    765
    766	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
    767					       1 << v->data_dev_block_bits,
    768					       1, 0, NULL, NULL);
    769	if (IS_ERR(f->data_bufio)) {
    770		ti->error = "Cannot initialize FEC data bufio client";
    771		return PTR_ERR(f->data_bufio);
    772	}
    773
    774	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
    775		ti->error = "Data device is too small";
    776		return -E2BIG;
    777	}
    778
    779	/* Preallocate an rs_control structure for each worker thread */
    780	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
    781			   fec_rs_free, (void *) v);
    782	if (ret) {
    783		ti->error = "Cannot allocate RS pool";
    784		return ret;
    785	}
    786
    787	f->cache = kmem_cache_create("dm_verity_fec_buffers",
    788				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
    789				     0, 0, NULL);
    790	if (!f->cache) {
    791		ti->error = "Cannot create FEC buffer cache";
    792		return -ENOMEM;
    793	}
    794
    795	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
    796	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
    797				     DM_VERITY_FEC_BUF_PREALLOC,
    798				     f->cache);
    799	if (ret) {
    800		ti->error = "Cannot allocate FEC buffer prealloc pool";
    801		return ret;
    802	}
    803
    804	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
    805	if (ret) {
    806		ti->error = "Cannot allocate FEC buffer extra pool";
    807		return ret;
    808	}
    809
    810	/* Preallocate an output buffer for each thread */
    811	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
    812					1 << v->data_dev_block_bits);
    813	if (ret) {
    814		ti->error = "Cannot allocate FEC output pool";
    815		return ret;
    816	}
    817
    818	/* Reserve space for our per-bio data */
    819	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
    820
    821	return 0;
    822}