cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dm-verity-target.c (33312B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2012 Red Hat, Inc.
      4 *
      5 * Author: Mikulas Patocka <mpatocka@redhat.com>
      6 *
      7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
      8 *
      9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
     10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
     11 * hash device. Setting this greatly improves performance when data and hash
     12 * are on the same disk on different partitions on devices with poor random
     13 * access behavior.
     14 */
     15
     16#include "dm-verity.h"
     17#include "dm-verity-fec.h"
     18#include "dm-verity-verify-sig.h"
     19#include <linux/module.h>
     20#include <linux/reboot.h>
     21#include <linux/scatterlist.h>
     22
     23#define DM_MSG_PREFIX			"verity"
     24
     25#define DM_VERITY_ENV_LENGTH		42
     26#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
     27
     28#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
     29
     30#define DM_VERITY_MAX_CORRUPTED_ERRS	100
     31
     32#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
     33#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
     34#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
     35#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
     36#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
     37
     38#define DM_VERITY_OPTS_MAX		(3 + DM_VERITY_OPTS_FEC + \
     39					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
     40
     41static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
     42
     43module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
     44
     45struct dm_verity_prefetch_work {
     46	struct work_struct work;
     47	struct dm_verity *v;
     48	sector_t block;
     49	unsigned n_blocks;
     50};
     51
     52/*
     53 * Auxiliary structure appended to each dm-bufio buffer. If the value
     54 * hash_verified is nonzero, hash of the block has been verified.
     55 *
     56 * The variable hash_verified is set to 0 when allocating the buffer, then
     57 * it can be changed to 1 and it is never reset to 0 again.
     58 *
     59 * There is no lock around this value, a race condition can at worst cause
     60 * that multiple processes verify the hash of the same buffer simultaneously
     61 * and write 1 to hash_verified simultaneously.
     62 * This condition is harmless, so we don't need locking.
     63 */
     64struct buffer_aux {
     65	int hash_verified;
     66};
     67
     68/*
     69 * Initialize struct buffer_aux for a freshly created buffer.
     70 */
     71static void dm_bufio_alloc_callback(struct dm_buffer *buf)
     72{
     73	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
     74
     75	aux->hash_verified = 0;
     76}
     77
     78/*
     79 * Translate input sector number to the sector number on the target device.
     80 */
     81static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
     82{
     83	return v->data_start + dm_target_offset(v->ti, bi_sector);
     84}
     85
     86/*
     87 * Return hash position of a specified block at a specified tree level
     88 * (0 is the lowest level).
     89 * The lowest "hash_per_block_bits"-bits of the result denote hash position
     90 * inside a hash block. The remaining bits denote location of the hash block.
     91 */
     92static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
     93					 int level)
     94{
     95	return block >> (level * v->hash_per_block_bits);
     96}
     97
     98static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
     99				const u8 *data, size_t len,
    100				struct crypto_wait *wait)
    101{
    102	struct scatterlist sg;
    103
    104	if (likely(!is_vmalloc_addr(data))) {
    105		sg_init_one(&sg, data, len);
    106		ahash_request_set_crypt(req, &sg, NULL, len);
    107		return crypto_wait_req(crypto_ahash_update(req), wait);
    108	} else {
    109		do {
    110			int r;
    111			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
    112			flush_kernel_vmap_range((void *)data, this_step);
    113			sg_init_table(&sg, 1);
    114			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
    115			ahash_request_set_crypt(req, &sg, NULL, this_step);
    116			r = crypto_wait_req(crypto_ahash_update(req), wait);
    117			if (unlikely(r))
    118				return r;
    119			data += this_step;
    120			len -= this_step;
    121		} while (len);
    122		return 0;
    123	}
    124}
    125
    126/*
    127 * Wrapper for crypto_ahash_init, which handles verity salting.
    128 */
    129static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
    130				struct crypto_wait *wait)
    131{
    132	int r;
    133
    134	ahash_request_set_tfm(req, v->tfm);
    135	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
    136					CRYPTO_TFM_REQ_MAY_BACKLOG,
    137					crypto_req_done, (void *)wait);
    138	crypto_init_wait(wait);
    139
    140	r = crypto_wait_req(crypto_ahash_init(req), wait);
    141
    142	if (unlikely(r < 0)) {
    143		DMERR("crypto_ahash_init failed: %d", r);
    144		return r;
    145	}
    146
    147	if (likely(v->salt_size && (v->version >= 1)))
    148		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
    149
    150	return r;
    151}
    152
    153static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
    154			     u8 *digest, struct crypto_wait *wait)
    155{
    156	int r;
    157
    158	if (unlikely(v->salt_size && (!v->version))) {
    159		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
    160
    161		if (r < 0) {
    162			DMERR("verity_hash_final failed updating salt: %d", r);
    163			goto out;
    164		}
    165	}
    166
    167	ahash_request_set_crypt(req, NULL, digest, 0);
    168	r = crypto_wait_req(crypto_ahash_final(req), wait);
    169out:
    170	return r;
    171}
    172
    173int verity_hash(struct dm_verity *v, struct ahash_request *req,
    174		const u8 *data, size_t len, u8 *digest)
    175{
    176	int r;
    177	struct crypto_wait wait;
    178
    179	r = verity_hash_init(v, req, &wait);
    180	if (unlikely(r < 0))
    181		goto out;
    182
    183	r = verity_hash_update(v, req, data, len, &wait);
    184	if (unlikely(r < 0))
    185		goto out;
    186
    187	r = verity_hash_final(v, req, digest, &wait);
    188
    189out:
    190	return r;
    191}
    192
    193static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
    194				 sector_t *hash_block, unsigned *offset)
    195{
    196	sector_t position = verity_position_at_level(v, block, level);
    197	unsigned idx;
    198
    199	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
    200
    201	if (!offset)
    202		return;
    203
    204	idx = position & ((1 << v->hash_per_block_bits) - 1);
    205	if (!v->version)
    206		*offset = idx * v->digest_size;
    207	else
    208		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
    209}
    210
    211/*
    212 * Handle verification errors.
    213 */
    214static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
    215			     unsigned long long block)
    216{
    217	char verity_env[DM_VERITY_ENV_LENGTH];
    218	char *envp[] = { verity_env, NULL };
    219	const char *type_str = "";
    220	struct mapped_device *md = dm_table_get_md(v->ti->table);
    221
    222	/* Corruption should be visible in device status in all modes */
    223	v->hash_failed = 1;
    224
    225	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
    226		goto out;
    227
    228	v->corrupted_errs++;
    229
    230	switch (type) {
    231	case DM_VERITY_BLOCK_TYPE_DATA:
    232		type_str = "data";
    233		break;
    234	case DM_VERITY_BLOCK_TYPE_METADATA:
    235		type_str = "metadata";
    236		break;
    237	default:
    238		BUG();
    239	}
    240
    241	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
    242		    type_str, block);
    243
    244	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
    245		DMERR("%s: reached maximum errors", v->data_dev->name);
    246
    247	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
    248		DM_VERITY_ENV_VAR_NAME, type, block);
    249
    250	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
    251
    252out:
    253	if (v->mode == DM_VERITY_MODE_LOGGING)
    254		return 0;
    255
    256	if (v->mode == DM_VERITY_MODE_RESTART)
    257		kernel_restart("dm-verity device corrupted");
    258
    259	if (v->mode == DM_VERITY_MODE_PANIC)
    260		panic("dm-verity device corrupted");
    261
    262	return 1;
    263}
    264
    265/*
    266 * Verify hash of a metadata block pertaining to the specified data block
    267 * ("block" argument) at a specified level ("level" argument).
    268 *
    269 * On successful return, verity_io_want_digest(v, io) contains the hash value
    270 * for a lower tree level or for the data block (if we're at the lowest level).
    271 *
    272 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
    273 * If "skip_unverified" is false, unverified buffer is hashed and verified
    274 * against current value of verity_io_want_digest(v, io).
    275 */
    276static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
    277			       sector_t block, int level, bool skip_unverified,
    278			       u8 *want_digest)
    279{
    280	struct dm_buffer *buf;
    281	struct buffer_aux *aux;
    282	u8 *data;
    283	int r;
    284	sector_t hash_block;
    285	unsigned offset;
    286
    287	verity_hash_at_level(v, block, level, &hash_block, &offset);
    288
    289	data = dm_bufio_read(v->bufio, hash_block, &buf);
    290	if (IS_ERR(data))
    291		return PTR_ERR(data);
    292
    293	aux = dm_bufio_get_aux_data(buf);
    294
    295	if (!aux->hash_verified) {
    296		if (skip_unverified) {
    297			r = 1;
    298			goto release_ret_r;
    299		}
    300
    301		r = verity_hash(v, verity_io_hash_req(v, io),
    302				data, 1 << v->hash_dev_block_bits,
    303				verity_io_real_digest(v, io));
    304		if (unlikely(r < 0))
    305			goto release_ret_r;
    306
    307		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
    308				  v->digest_size) == 0))
    309			aux->hash_verified = 1;
    310		else if (verity_fec_decode(v, io,
    311					   DM_VERITY_BLOCK_TYPE_METADATA,
    312					   hash_block, data, NULL) == 0)
    313			aux->hash_verified = 1;
    314		else if (verity_handle_err(v,
    315					   DM_VERITY_BLOCK_TYPE_METADATA,
    316					   hash_block)) {
    317			r = -EIO;
    318			goto release_ret_r;
    319		}
    320	}
    321
    322	data += offset;
    323	memcpy(want_digest, data, v->digest_size);
    324	r = 0;
    325
    326release_ret_r:
    327	dm_bufio_release(buf);
    328	return r;
    329}
    330
    331/*
    332 * Find a hash for a given block, write it to digest and verify the integrity
    333 * of the hash tree if necessary.
    334 */
    335int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
    336			  sector_t block, u8 *digest, bool *is_zero)
    337{
    338	int r = 0, i;
    339
    340	if (likely(v->levels)) {
    341		/*
    342		 * First, we try to get the requested hash for
    343		 * the current block. If the hash block itself is
    344		 * verified, zero is returned. If it isn't, this
    345		 * function returns 1 and we fall back to whole
    346		 * chain verification.
    347		 */
    348		r = verity_verify_level(v, io, block, 0, true, digest);
    349		if (likely(r <= 0))
    350			goto out;
    351	}
    352
    353	memcpy(digest, v->root_digest, v->digest_size);
    354
    355	for (i = v->levels - 1; i >= 0; i--) {
    356		r = verity_verify_level(v, io, block, i, false, digest);
    357		if (unlikely(r))
    358			goto out;
    359	}
    360out:
    361	if (!r && v->zero_digest)
    362		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
    363	else
    364		*is_zero = false;
    365
    366	return r;
    367}
    368
    369/*
    370 * Calculates the digest for the given bio
    371 */
    372static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
    373			       struct bvec_iter *iter, struct crypto_wait *wait)
    374{
    375	unsigned int todo = 1 << v->data_dev_block_bits;
    376	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
    377	struct scatterlist sg;
    378	struct ahash_request *req = verity_io_hash_req(v, io);
    379
    380	do {
    381		int r;
    382		unsigned int len;
    383		struct bio_vec bv = bio_iter_iovec(bio, *iter);
    384
    385		sg_init_table(&sg, 1);
    386
    387		len = bv.bv_len;
    388
    389		if (likely(len >= todo))
    390			len = todo;
    391		/*
    392		 * Operating on a single page at a time looks suboptimal
    393		 * until you consider the typical block size is 4,096B.
    394		 * Going through this loops twice should be very rare.
    395		 */
    396		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
    397		ahash_request_set_crypt(req, &sg, NULL, len);
    398		r = crypto_wait_req(crypto_ahash_update(req), wait);
    399
    400		if (unlikely(r < 0)) {
    401			DMERR("verity_for_io_block crypto op failed: %d", r);
    402			return r;
    403		}
    404
    405		bio_advance_iter(bio, iter, len);
    406		todo -= len;
    407	} while (todo);
    408
    409	return 0;
    410}
    411
    412/*
    413 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
    414 * starting from iter.
    415 */
    416int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
    417			struct bvec_iter *iter,
    418			int (*process)(struct dm_verity *v,
    419				       struct dm_verity_io *io, u8 *data,
    420				       size_t len))
    421{
    422	unsigned todo = 1 << v->data_dev_block_bits;
    423	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
    424
    425	do {
    426		int r;
    427		u8 *page;
    428		unsigned len;
    429		struct bio_vec bv = bio_iter_iovec(bio, *iter);
    430
    431		page = bvec_kmap_local(&bv);
    432		len = bv.bv_len;
    433
    434		if (likely(len >= todo))
    435			len = todo;
    436
    437		r = process(v, io, page, len);
    438		kunmap_local(page);
    439
    440		if (r < 0)
    441			return r;
    442
    443		bio_advance_iter(bio, iter, len);
    444		todo -= len;
    445	} while (todo);
    446
    447	return 0;
    448}
    449
    450static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
    451			  u8 *data, size_t len)
    452{
    453	memset(data, 0, len);
    454	return 0;
    455}
    456
    457/*
    458 * Moves the bio iter one data block forward.
    459 */
    460static inline void verity_bv_skip_block(struct dm_verity *v,
    461					struct dm_verity_io *io,
    462					struct bvec_iter *iter)
    463{
    464	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
    465
    466	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
    467}
    468
    469/*
    470 * Verify one "dm_verity_io" structure.
    471 */
    472static int verity_verify_io(struct dm_verity_io *io)
    473{
    474	bool is_zero;
    475	struct dm_verity *v = io->v;
    476	struct bvec_iter start;
    477	unsigned b;
    478	struct crypto_wait wait;
    479	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
    480
    481	for (b = 0; b < io->n_blocks; b++) {
    482		int r;
    483		sector_t cur_block = io->block + b;
    484		struct ahash_request *req = verity_io_hash_req(v, io);
    485
    486		if (v->validated_blocks &&
    487		    likely(test_bit(cur_block, v->validated_blocks))) {
    488			verity_bv_skip_block(v, io, &io->iter);
    489			continue;
    490		}
    491
    492		r = verity_hash_for_block(v, io, cur_block,
    493					  verity_io_want_digest(v, io),
    494					  &is_zero);
    495		if (unlikely(r < 0))
    496			return r;
    497
    498		if (is_zero) {
    499			/*
    500			 * If we expect a zero block, don't validate, just
    501			 * return zeros.
    502			 */
    503			r = verity_for_bv_block(v, io, &io->iter,
    504						verity_bv_zero);
    505			if (unlikely(r < 0))
    506				return r;
    507
    508			continue;
    509		}
    510
    511		r = verity_hash_init(v, req, &wait);
    512		if (unlikely(r < 0))
    513			return r;
    514
    515		start = io->iter;
    516		r = verity_for_io_block(v, io, &io->iter, &wait);
    517		if (unlikely(r < 0))
    518			return r;
    519
    520		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
    521					&wait);
    522		if (unlikely(r < 0))
    523			return r;
    524
    525		if (likely(memcmp(verity_io_real_digest(v, io),
    526				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
    527			if (v->validated_blocks)
    528				set_bit(cur_block, v->validated_blocks);
    529			continue;
    530		}
    531		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
    532					   cur_block, NULL, &start) == 0)
    533			continue;
    534		else {
    535			if (bio->bi_status) {
    536				/*
    537				 * Error correction failed; Just return error
    538				 */
    539				return -EIO;
    540			}
    541			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
    542					      cur_block))
    543				return -EIO;
    544		}
    545	}
    546
    547	return 0;
    548}
    549
    550/*
    551 * Skip verity work in response to I/O error when system is shutting down.
    552 */
    553static inline bool verity_is_system_shutting_down(void)
    554{
    555	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
    556		|| system_state == SYSTEM_RESTART;
    557}
    558
    559/*
    560 * End one "io" structure with a given error.
    561 */
    562static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
    563{
    564	struct dm_verity *v = io->v;
    565	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
    566
    567	bio->bi_end_io = io->orig_bi_end_io;
    568	bio->bi_status = status;
    569
    570	verity_fec_finish_io(io);
    571
    572	bio_endio(bio);
    573}
    574
    575static void verity_work(struct work_struct *w)
    576{
    577	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
    578
    579	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
    580}
    581
    582static void verity_end_io(struct bio *bio)
    583{
    584	struct dm_verity_io *io = bio->bi_private;
    585
    586	if (bio->bi_status &&
    587	    (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
    588		verity_finish_io(io, bio->bi_status);
    589		return;
    590	}
    591
    592	INIT_WORK(&io->work, verity_work);
    593	queue_work(io->v->verify_wq, &io->work);
    594}
    595
    596/*
    597 * Prefetch buffers for the specified io.
    598 * The root buffer is not prefetched, it is assumed that it will be cached
    599 * all the time.
    600 */
    601static void verity_prefetch_io(struct work_struct *work)
    602{
    603	struct dm_verity_prefetch_work *pw =
    604		container_of(work, struct dm_verity_prefetch_work, work);
    605	struct dm_verity *v = pw->v;
    606	int i;
    607
    608	for (i = v->levels - 2; i >= 0; i--) {
    609		sector_t hash_block_start;
    610		sector_t hash_block_end;
    611		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
    612		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
    613		if (!i) {
    614			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
    615
    616			cluster >>= v->data_dev_block_bits;
    617			if (unlikely(!cluster))
    618				goto no_prefetch_cluster;
    619
    620			if (unlikely(cluster & (cluster - 1)))
    621				cluster = 1 << __fls(cluster);
    622
    623			hash_block_start &= ~(sector_t)(cluster - 1);
    624			hash_block_end |= cluster - 1;
    625			if (unlikely(hash_block_end >= v->hash_blocks))
    626				hash_block_end = v->hash_blocks - 1;
    627		}
    628no_prefetch_cluster:
    629		dm_bufio_prefetch(v->bufio, hash_block_start,
    630				  hash_block_end - hash_block_start + 1);
    631	}
    632
    633	kfree(pw);
    634}
    635
    636static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
    637{
    638	sector_t block = io->block;
    639	unsigned int n_blocks = io->n_blocks;
    640	struct dm_verity_prefetch_work *pw;
    641
    642	if (v->validated_blocks) {
    643		while (n_blocks && test_bit(block, v->validated_blocks)) {
    644			block++;
    645			n_blocks--;
    646		}
    647		while (n_blocks && test_bit(block + n_blocks - 1,
    648					    v->validated_blocks))
    649			n_blocks--;
    650		if (!n_blocks)
    651			return;
    652	}
    653
    654	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
    655		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
    656
    657	if (!pw)
    658		return;
    659
    660	INIT_WORK(&pw->work, verity_prefetch_io);
    661	pw->v = v;
    662	pw->block = block;
    663	pw->n_blocks = n_blocks;
    664	queue_work(v->verify_wq, &pw->work);
    665}
    666
    667/*
    668 * Bio map function. It allocates dm_verity_io structure and bio vector and
    669 * fills them. Then it issues prefetches and the I/O.
    670 */
    671static int verity_map(struct dm_target *ti, struct bio *bio)
    672{
    673	struct dm_verity *v = ti->private;
    674	struct dm_verity_io *io;
    675
    676	bio_set_dev(bio, v->data_dev->bdev);
    677	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
    678
    679	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
    680	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
    681		DMERR_LIMIT("unaligned io");
    682		return DM_MAPIO_KILL;
    683	}
    684
    685	if (bio_end_sector(bio) >>
    686	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
    687		DMERR_LIMIT("io out of range");
    688		return DM_MAPIO_KILL;
    689	}
    690
    691	if (bio_data_dir(bio) == WRITE)
    692		return DM_MAPIO_KILL;
    693
    694	io = dm_per_bio_data(bio, ti->per_io_data_size);
    695	io->v = v;
    696	io->orig_bi_end_io = bio->bi_end_io;
    697	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
    698	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
    699
    700	bio->bi_end_io = verity_end_io;
    701	bio->bi_private = io;
    702	io->iter = bio->bi_iter;
    703
    704	verity_fec_init_io(io);
    705
    706	verity_submit_prefetch(v, io);
    707
    708	submit_bio_noacct(bio);
    709
    710	return DM_MAPIO_SUBMITTED;
    711}
    712
    713/*
    714 * Status: V (valid) or C (corruption found)
    715 */
    716static void verity_status(struct dm_target *ti, status_type_t type,
    717			  unsigned status_flags, char *result, unsigned maxlen)
    718{
    719	struct dm_verity *v = ti->private;
    720	unsigned args = 0;
    721	unsigned sz = 0;
    722	unsigned x;
    723
    724	switch (type) {
    725	case STATUSTYPE_INFO:
    726		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
    727		break;
    728	case STATUSTYPE_TABLE:
    729		DMEMIT("%u %s %s %u %u %llu %llu %s ",
    730			v->version,
    731			v->data_dev->name,
    732			v->hash_dev->name,
    733			1 << v->data_dev_block_bits,
    734			1 << v->hash_dev_block_bits,
    735			(unsigned long long)v->data_blocks,
    736			(unsigned long long)v->hash_start,
    737			v->alg_name
    738			);
    739		for (x = 0; x < v->digest_size; x++)
    740			DMEMIT("%02x", v->root_digest[x]);
    741		DMEMIT(" ");
    742		if (!v->salt_size)
    743			DMEMIT("-");
    744		else
    745			for (x = 0; x < v->salt_size; x++)
    746				DMEMIT("%02x", v->salt[x]);
    747		if (v->mode != DM_VERITY_MODE_EIO)
    748			args++;
    749		if (verity_fec_is_enabled(v))
    750			args += DM_VERITY_OPTS_FEC;
    751		if (v->zero_digest)
    752			args++;
    753		if (v->validated_blocks)
    754			args++;
    755		if (v->signature_key_desc)
    756			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
    757		if (!args)
    758			return;
    759		DMEMIT(" %u", args);
    760		if (v->mode != DM_VERITY_MODE_EIO) {
    761			DMEMIT(" ");
    762			switch (v->mode) {
    763			case DM_VERITY_MODE_LOGGING:
    764				DMEMIT(DM_VERITY_OPT_LOGGING);
    765				break;
    766			case DM_VERITY_MODE_RESTART:
    767				DMEMIT(DM_VERITY_OPT_RESTART);
    768				break;
    769			case DM_VERITY_MODE_PANIC:
    770				DMEMIT(DM_VERITY_OPT_PANIC);
    771				break;
    772			default:
    773				BUG();
    774			}
    775		}
    776		if (v->zero_digest)
    777			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
    778		if (v->validated_blocks)
    779			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
    780		sz = verity_fec_status_table(v, sz, result, maxlen);
    781		if (v->signature_key_desc)
    782			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
    783				" %s", v->signature_key_desc);
    784		break;
    785
    786	case STATUSTYPE_IMA:
    787		DMEMIT_TARGET_NAME_VERSION(ti->type);
    788		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
    789		DMEMIT(",verity_version=%u", v->version);
    790		DMEMIT(",data_device_name=%s", v->data_dev->name);
    791		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
    792		DMEMIT(",verity_algorithm=%s", v->alg_name);
    793
    794		DMEMIT(",root_digest=");
    795		for (x = 0; x < v->digest_size; x++)
    796			DMEMIT("%02x", v->root_digest[x]);
    797
    798		DMEMIT(",salt=");
    799		if (!v->salt_size)
    800			DMEMIT("-");
    801		else
    802			for (x = 0; x < v->salt_size; x++)
    803				DMEMIT("%02x", v->salt[x]);
    804
    805		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
    806		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
    807		if (v->signature_key_desc)
    808			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
    809
    810		if (v->mode != DM_VERITY_MODE_EIO) {
    811			DMEMIT(",verity_mode=");
    812			switch (v->mode) {
    813			case DM_VERITY_MODE_LOGGING:
    814				DMEMIT(DM_VERITY_OPT_LOGGING);
    815				break;
    816			case DM_VERITY_MODE_RESTART:
    817				DMEMIT(DM_VERITY_OPT_RESTART);
    818				break;
    819			case DM_VERITY_MODE_PANIC:
    820				DMEMIT(DM_VERITY_OPT_PANIC);
    821				break;
    822			default:
    823				DMEMIT("invalid");
    824			}
    825		}
    826		DMEMIT(";");
    827		break;
    828	}
    829}
    830
    831static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
    832{
    833	struct dm_verity *v = ti->private;
    834
    835	*bdev = v->data_dev->bdev;
    836
    837	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
    838		return 1;
    839	return 0;
    840}
    841
    842static int verity_iterate_devices(struct dm_target *ti,
    843				  iterate_devices_callout_fn fn, void *data)
    844{
    845	struct dm_verity *v = ti->private;
    846
    847	return fn(ti, v->data_dev, v->data_start, ti->len, data);
    848}
    849
    850static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
    851{
    852	struct dm_verity *v = ti->private;
    853
    854	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
    855		limits->logical_block_size = 1 << v->data_dev_block_bits;
    856
    857	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
    858		limits->physical_block_size = 1 << v->data_dev_block_bits;
    859
    860	blk_limits_io_min(limits, limits->logical_block_size);
    861}
    862
    863static void verity_dtr(struct dm_target *ti)
    864{
    865	struct dm_verity *v = ti->private;
    866
    867	if (v->verify_wq)
    868		destroy_workqueue(v->verify_wq);
    869
    870	if (v->bufio)
    871		dm_bufio_client_destroy(v->bufio);
    872
    873	kvfree(v->validated_blocks);
    874	kfree(v->salt);
    875	kfree(v->root_digest);
    876	kfree(v->zero_digest);
    877
    878	if (v->tfm)
    879		crypto_free_ahash(v->tfm);
    880
    881	kfree(v->alg_name);
    882
    883	if (v->hash_dev)
    884		dm_put_device(ti, v->hash_dev);
    885
    886	if (v->data_dev)
    887		dm_put_device(ti, v->data_dev);
    888
    889	verity_fec_dtr(v);
    890
    891	kfree(v->signature_key_desc);
    892
    893	kfree(v);
    894}
    895
    896static int verity_alloc_most_once(struct dm_verity *v)
    897{
    898	struct dm_target *ti = v->ti;
    899
    900	/* the bitset can only handle INT_MAX blocks */
    901	if (v->data_blocks > INT_MAX) {
    902		ti->error = "device too large to use check_at_most_once";
    903		return -E2BIG;
    904	}
    905
    906	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
    907				       sizeof(unsigned long),
    908				       GFP_KERNEL);
    909	if (!v->validated_blocks) {
    910		ti->error = "failed to allocate bitset for check_at_most_once";
    911		return -ENOMEM;
    912	}
    913
    914	return 0;
    915}
    916
    917static int verity_alloc_zero_digest(struct dm_verity *v)
    918{
    919	int r = -ENOMEM;
    920	struct ahash_request *req;
    921	u8 *zero_data;
    922
    923	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
    924
    925	if (!v->zero_digest)
    926		return r;
    927
    928	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
    929
    930	if (!req)
    931		return r; /* verity_dtr will free zero_digest */
    932
    933	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
    934
    935	if (!zero_data)
    936		goto out;
    937
    938	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
    939			v->zero_digest);
    940
    941out:
    942	kfree(req);
    943	kfree(zero_data);
    944
    945	return r;
    946}
    947
    948static inline bool verity_is_verity_mode(const char *arg_name)
    949{
    950	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
    951		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
    952		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
    953}
    954
    955static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
    956{
    957	if (v->mode)
    958		return -EINVAL;
    959
    960	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
    961		v->mode = DM_VERITY_MODE_LOGGING;
    962	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
    963		v->mode = DM_VERITY_MODE_RESTART;
    964	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
    965		v->mode = DM_VERITY_MODE_PANIC;
    966
    967	return 0;
    968}
    969
    970static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
    971				 struct dm_verity_sig_opts *verify_args)
    972{
    973	int r;
    974	unsigned argc;
    975	struct dm_target *ti = v->ti;
    976	const char *arg_name;
    977
    978	static const struct dm_arg _args[] = {
    979		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
    980	};
    981
    982	r = dm_read_arg_group(_args, as, &argc, &ti->error);
    983	if (r)
    984		return -EINVAL;
    985
    986	if (!argc)
    987		return 0;
    988
    989	do {
    990		arg_name = dm_shift_arg(as);
    991		argc--;
    992
    993		if (verity_is_verity_mode(arg_name)) {
    994			r = verity_parse_verity_mode(v, arg_name);
    995			if (r) {
    996				ti->error = "Conflicting error handling parameters";
    997				return r;
    998			}
    999			continue;
   1000
   1001		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
   1002			r = verity_alloc_zero_digest(v);
   1003			if (r) {
   1004				ti->error = "Cannot allocate zero digest";
   1005				return r;
   1006			}
   1007			continue;
   1008
   1009		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
   1010			r = verity_alloc_most_once(v);
   1011			if (r)
   1012				return r;
   1013			continue;
   1014
   1015		} else if (verity_is_fec_opt_arg(arg_name)) {
   1016			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
   1017			if (r)
   1018				return r;
   1019			continue;
   1020		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
   1021			r = verity_verify_sig_parse_opt_args(as, v,
   1022							     verify_args,
   1023							     &argc, arg_name);
   1024			if (r)
   1025				return r;
   1026			continue;
   1027
   1028		}
   1029
   1030		ti->error = "Unrecognized verity feature request";
   1031		return -EINVAL;
   1032	} while (argc && !r);
   1033
   1034	return r;
   1035}
   1036
   1037/*
   1038 * Target parameters:
   1039 *	<version>	The current format is version 1.
   1040 *			Vsn 0 is compatible with original Chromium OS releases.
   1041 *	<data device>
   1042 *	<hash device>
   1043 *	<data block size>
   1044 *	<hash block size>
   1045 *	<the number of data blocks>
   1046 *	<hash start block>
   1047 *	<algorithm>
   1048 *	<digest>
   1049 *	<salt>		Hex string or "-" if no salt.
   1050 */
   1051static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
   1052{
   1053	struct dm_verity *v;
   1054	struct dm_verity_sig_opts verify_args = {0};
   1055	struct dm_arg_set as;
   1056	unsigned int num;
   1057	unsigned long long num_ll;
   1058	int r;
   1059	int i;
   1060	sector_t hash_position;
   1061	char dummy;
   1062	char *root_hash_digest_to_validate;
   1063
   1064	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
   1065	if (!v) {
   1066		ti->error = "Cannot allocate verity structure";
   1067		return -ENOMEM;
   1068	}
   1069	ti->private = v;
   1070	v->ti = ti;
   1071
   1072	r = verity_fec_ctr_alloc(v);
   1073	if (r)
   1074		goto bad;
   1075
   1076	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
   1077		ti->error = "Device must be readonly";
   1078		r = -EINVAL;
   1079		goto bad;
   1080	}
   1081
   1082	if (argc < 10) {
   1083		ti->error = "Not enough arguments";
   1084		r = -EINVAL;
   1085		goto bad;
   1086	}
   1087
   1088	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
   1089	    num > 1) {
   1090		ti->error = "Invalid version";
   1091		r = -EINVAL;
   1092		goto bad;
   1093	}
   1094	v->version = num;
   1095
   1096	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
   1097	if (r) {
   1098		ti->error = "Data device lookup failed";
   1099		goto bad;
   1100	}
   1101
   1102	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
   1103	if (r) {
   1104		ti->error = "Hash device lookup failed";
   1105		goto bad;
   1106	}
   1107
   1108	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
   1109	    !num || (num & (num - 1)) ||
   1110	    num < bdev_logical_block_size(v->data_dev->bdev) ||
   1111	    num > PAGE_SIZE) {
   1112		ti->error = "Invalid data device block size";
   1113		r = -EINVAL;
   1114		goto bad;
   1115	}
   1116	v->data_dev_block_bits = __ffs(num);
   1117
   1118	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
   1119	    !num || (num & (num - 1)) ||
   1120	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
   1121	    num > INT_MAX) {
   1122		ti->error = "Invalid hash device block size";
   1123		r = -EINVAL;
   1124		goto bad;
   1125	}
   1126	v->hash_dev_block_bits = __ffs(num);
   1127
   1128	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
   1129	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
   1130	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
   1131		ti->error = "Invalid data blocks";
   1132		r = -EINVAL;
   1133		goto bad;
   1134	}
   1135	v->data_blocks = num_ll;
   1136
   1137	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
   1138		ti->error = "Data device is too small";
   1139		r = -EINVAL;
   1140		goto bad;
   1141	}
   1142
   1143	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
   1144	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
   1145	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
   1146		ti->error = "Invalid hash start";
   1147		r = -EINVAL;
   1148		goto bad;
   1149	}
   1150	v->hash_start = num_ll;
   1151
   1152	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
   1153	if (!v->alg_name) {
   1154		ti->error = "Cannot allocate algorithm name";
   1155		r = -ENOMEM;
   1156		goto bad;
   1157	}
   1158
   1159	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
   1160	if (IS_ERR(v->tfm)) {
   1161		ti->error = "Cannot initialize hash function";
   1162		r = PTR_ERR(v->tfm);
   1163		v->tfm = NULL;
   1164		goto bad;
   1165	}
   1166
   1167	/*
   1168	 * dm-verity performance can vary greatly depending on which hash
   1169	 * algorithm implementation is used.  Help people debug performance
   1170	 * problems by logging the ->cra_driver_name.
   1171	 */
   1172	DMINFO("%s using implementation \"%s\"", v->alg_name,
   1173	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
   1174
   1175	v->digest_size = crypto_ahash_digestsize(v->tfm);
   1176	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
   1177		ti->error = "Digest size too big";
   1178		r = -EINVAL;
   1179		goto bad;
   1180	}
   1181	v->ahash_reqsize = sizeof(struct ahash_request) +
   1182		crypto_ahash_reqsize(v->tfm);
   1183
   1184	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
   1185	if (!v->root_digest) {
   1186		ti->error = "Cannot allocate root digest";
   1187		r = -ENOMEM;
   1188		goto bad;
   1189	}
   1190	if (strlen(argv[8]) != v->digest_size * 2 ||
   1191	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
   1192		ti->error = "Invalid root digest";
   1193		r = -EINVAL;
   1194		goto bad;
   1195	}
   1196	root_hash_digest_to_validate = argv[8];
   1197
   1198	if (strcmp(argv[9], "-")) {
   1199		v->salt_size = strlen(argv[9]) / 2;
   1200		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
   1201		if (!v->salt) {
   1202			ti->error = "Cannot allocate salt";
   1203			r = -ENOMEM;
   1204			goto bad;
   1205		}
   1206		if (strlen(argv[9]) != v->salt_size * 2 ||
   1207		    hex2bin(v->salt, argv[9], v->salt_size)) {
   1208			ti->error = "Invalid salt";
   1209			r = -EINVAL;
   1210			goto bad;
   1211		}
   1212	}
   1213
   1214	argv += 10;
   1215	argc -= 10;
   1216
   1217	/* Optional parameters */
   1218	if (argc) {
   1219		as.argc = argc;
   1220		as.argv = argv;
   1221
   1222		r = verity_parse_opt_args(&as, v, &verify_args);
   1223		if (r < 0)
   1224			goto bad;
   1225	}
   1226
   1227	/* Root hash signature is  a optional parameter*/
   1228	r = verity_verify_root_hash(root_hash_digest_to_validate,
   1229				    strlen(root_hash_digest_to_validate),
   1230				    verify_args.sig,
   1231				    verify_args.sig_size);
   1232	if (r < 0) {
   1233		ti->error = "Root hash verification failed";
   1234		goto bad;
   1235	}
   1236	v->hash_per_block_bits =
   1237		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
   1238
   1239	v->levels = 0;
   1240	if (v->data_blocks)
   1241		while (v->hash_per_block_bits * v->levels < 64 &&
   1242		       (unsigned long long)(v->data_blocks - 1) >>
   1243		       (v->hash_per_block_bits * v->levels))
   1244			v->levels++;
   1245
   1246	if (v->levels > DM_VERITY_MAX_LEVELS) {
   1247		ti->error = "Too many tree levels";
   1248		r = -E2BIG;
   1249		goto bad;
   1250	}
   1251
   1252	hash_position = v->hash_start;
   1253	for (i = v->levels - 1; i >= 0; i--) {
   1254		sector_t s;
   1255		v->hash_level_block[i] = hash_position;
   1256		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
   1257					>> ((i + 1) * v->hash_per_block_bits);
   1258		if (hash_position + s < hash_position) {
   1259			ti->error = "Hash device offset overflow";
   1260			r = -E2BIG;
   1261			goto bad;
   1262		}
   1263		hash_position += s;
   1264	}
   1265	v->hash_blocks = hash_position;
   1266
   1267	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
   1268		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
   1269		dm_bufio_alloc_callback, NULL);
   1270	if (IS_ERR(v->bufio)) {
   1271		ti->error = "Cannot initialize dm-bufio";
   1272		r = PTR_ERR(v->bufio);
   1273		v->bufio = NULL;
   1274		goto bad;
   1275	}
   1276
   1277	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
   1278		ti->error = "Hash device is too small";
   1279		r = -E2BIG;
   1280		goto bad;
   1281	}
   1282
   1283	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
   1284	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
   1285	if (!v->verify_wq) {
   1286		ti->error = "Cannot allocate workqueue";
   1287		r = -ENOMEM;
   1288		goto bad;
   1289	}
   1290
   1291	ti->per_io_data_size = sizeof(struct dm_verity_io) +
   1292				v->ahash_reqsize + v->digest_size * 2;
   1293
   1294	r = verity_fec_ctr(v);
   1295	if (r)
   1296		goto bad;
   1297
   1298	ti->per_io_data_size = roundup(ti->per_io_data_size,
   1299				       __alignof__(struct dm_verity_io));
   1300
   1301	verity_verify_sig_opts_cleanup(&verify_args);
   1302
   1303	return 0;
   1304
   1305bad:
   1306
   1307	verity_verify_sig_opts_cleanup(&verify_args);
   1308	verity_dtr(ti);
   1309
   1310	return r;
   1311}
   1312
   1313static struct target_type verity_target = {
   1314	.name		= "verity",
   1315	.features	= DM_TARGET_IMMUTABLE,
   1316	.version	= {1, 8, 0},
   1317	.module		= THIS_MODULE,
   1318	.ctr		= verity_ctr,
   1319	.dtr		= verity_dtr,
   1320	.map		= verity_map,
   1321	.status		= verity_status,
   1322	.prepare_ioctl	= verity_prepare_ioctl,
   1323	.iterate_devices = verity_iterate_devices,
   1324	.io_hints	= verity_io_hints,
   1325};
   1326
   1327static int __init dm_verity_init(void)
   1328{
   1329	int r;
   1330
   1331	r = dm_register_target(&verity_target);
   1332	if (r < 0)
   1333		DMERR("register failed %d", r);
   1334
   1335	return r;
   1336}
   1337
   1338static void __exit dm_verity_exit(void)
   1339{
   1340	dm_unregister_target(&verity_target);
   1341}
   1342
   1343module_init(dm_verity_init);
   1344module_exit(dm_verity_exit);
   1345
   1346MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
   1347MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
   1348MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
   1349MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
   1350MODULE_LICENSE("GPL");