cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dm-btree-remove.c (18831B)


      1/*
      2 * Copyright (C) 2011 Red Hat, Inc.
      3 *
      4 * This file is released under the GPL.
      5 */
      6
      7#include "dm-btree.h"
      8#include "dm-btree-internal.h"
      9#include "dm-transaction-manager.h"
     10
     11#include <linux/export.h>
     12#include <linux/device-mapper.h>
     13
     14#define DM_MSG_PREFIX "btree"
     15
     16/*
     17 * Removing an entry from a btree
     18 * ==============================
     19 *
     20 * A very important constraint for our btree is that no node, except the
     21 * root, may have fewer than a certain number of entries.
     22 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
     23 *
     24 * Ensuring this is complicated by the way we want to only ever hold the
     25 * locks on 2 nodes concurrently, and only change nodes in a top to bottom
     26 * fashion.
     27 *
     28 * Each node may have a left or right sibling.  When decending the spine,
     29 * if a node contains only MIN_ENTRIES then we try and increase this to at
     30 * least MIN_ENTRIES + 1.  We do this in the following ways:
     31 *
     32 * [A] No siblings => this can only happen if the node is the root, in which
     33 *     case we copy the childs contents over the root.
     34 *
     35 * [B] No left sibling
     36 *     ==> rebalance(node, right sibling)
     37 *
     38 * [C] No right sibling
     39 *     ==> rebalance(left sibling, node)
     40 *
     41 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
     42 *     ==> delete node adding it's contents to left and right
     43 *
     44 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
     45 *     ==> rebalance(left, node, right)
     46 *
     47 * After these operations it's possible that the our original node no
     48 * longer contains the desired sub tree.  For this reason this rebalancing
     49 * is performed on the children of the current node.  This also avoids
     50 * having a special case for the root.
     51 *
     52 * Once this rebalancing has occurred we can then step into the child node
     53 * for internal nodes.  Or delete the entry for leaf nodes.
     54 */
     55
     56/*
     57 * Some little utilities for moving node data around.
     58 */
     59static void node_shift(struct btree_node *n, int shift)
     60{
     61	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
     62	uint32_t value_size = le32_to_cpu(n->header.value_size);
     63
     64	if (shift < 0) {
     65		shift = -shift;
     66		BUG_ON(shift > nr_entries);
     67		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
     68		memmove(key_ptr(n, 0),
     69			key_ptr(n, shift),
     70			(nr_entries - shift) * sizeof(__le64));
     71		memmove(value_ptr(n, 0),
     72			value_ptr(n, shift),
     73			(nr_entries - shift) * value_size);
     74	} else {
     75		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
     76		memmove(key_ptr(n, shift),
     77			key_ptr(n, 0),
     78			nr_entries * sizeof(__le64));
     79		memmove(value_ptr(n, shift),
     80			value_ptr(n, 0),
     81			nr_entries * value_size);
     82	}
     83}
     84
     85static int node_copy(struct btree_node *left, struct btree_node *right, int shift)
     86{
     87	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
     88	uint32_t value_size = le32_to_cpu(left->header.value_size);
     89	if (value_size != le32_to_cpu(right->header.value_size)) {
     90		DMERR("mismatched value size");
     91		return -EILSEQ;
     92	}
     93
     94	if (shift < 0) {
     95		shift = -shift;
     96
     97		if (nr_left + shift > le32_to_cpu(left->header.max_entries)) {
     98			DMERR("bad shift");
     99			return -EINVAL;
    100		}
    101
    102		memcpy(key_ptr(left, nr_left),
    103		       key_ptr(right, 0),
    104		       shift * sizeof(__le64));
    105		memcpy(value_ptr(left, nr_left),
    106		       value_ptr(right, 0),
    107		       shift * value_size);
    108	} else {
    109		if (shift > le32_to_cpu(right->header.max_entries)) {
    110			DMERR("bad shift");
    111			return -EINVAL;
    112		}
    113
    114		memcpy(key_ptr(right, 0),
    115		       key_ptr(left, nr_left - shift),
    116		       shift * sizeof(__le64));
    117		memcpy(value_ptr(right, 0),
    118		       value_ptr(left, nr_left - shift),
    119		       shift * value_size);
    120	}
    121	return 0;
    122}
    123
    124/*
    125 * Delete a specific entry from a leaf node.
    126 */
    127static void delete_at(struct btree_node *n, unsigned index)
    128{
    129	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
    130	unsigned nr_to_copy = nr_entries - (index + 1);
    131	uint32_t value_size = le32_to_cpu(n->header.value_size);
    132	BUG_ON(index >= nr_entries);
    133
    134	if (nr_to_copy) {
    135		memmove(key_ptr(n, index),
    136			key_ptr(n, index + 1),
    137			nr_to_copy * sizeof(__le64));
    138
    139		memmove(value_ptr(n, index),
    140			value_ptr(n, index + 1),
    141			nr_to_copy * value_size);
    142	}
    143
    144	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
    145}
    146
    147static unsigned merge_threshold(struct btree_node *n)
    148{
    149	return le32_to_cpu(n->header.max_entries) / 3;
    150}
    151
    152struct child {
    153	unsigned index;
    154	struct dm_block *block;
    155	struct btree_node *n;
    156};
    157
    158static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
    159		      struct btree_node *parent,
    160		      unsigned index, struct child *result)
    161{
    162	int r, inc;
    163	dm_block_t root;
    164
    165	result->index = index;
    166	root = value64(parent, index);
    167
    168	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
    169			       &result->block, &inc);
    170	if (r)
    171		return r;
    172
    173	result->n = dm_block_data(result->block);
    174
    175	if (inc)
    176		inc_children(info->tm, result->n, vt);
    177
    178	*((__le64 *) value_ptr(parent, index)) =
    179		cpu_to_le64(dm_block_location(result->block));
    180
    181	return 0;
    182}
    183
    184static void exit_child(struct dm_btree_info *info, struct child *c)
    185{
    186	dm_tm_unlock(info->tm, c->block);
    187}
    188
    189static int shift(struct btree_node *left, struct btree_node *right, int count)
    190{
    191	int r;
    192	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
    193	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
    194	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
    195	uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
    196
    197	if (max_entries != r_max_entries) {
    198		DMERR("node max_entries mismatch");
    199		return -EILSEQ;
    200	}
    201
    202	if (nr_left - count > max_entries) {
    203		DMERR("node shift out of bounds");
    204		return -EINVAL;
    205	}
    206
    207	if (nr_right + count > max_entries) {
    208		DMERR("node shift out of bounds");
    209		return -EINVAL;
    210	}
    211
    212	if (!count)
    213		return 0;
    214
    215	if (count > 0) {
    216		node_shift(right, count);
    217		r = node_copy(left, right, count);
    218		if (r)
    219			return r;
    220	} else {
    221		r = node_copy(left, right, count);
    222		if (r)
    223			return r;
    224		node_shift(right, count);
    225	}
    226
    227	left->header.nr_entries = cpu_to_le32(nr_left - count);
    228	right->header.nr_entries = cpu_to_le32(nr_right + count);
    229
    230	return 0;
    231}
    232
    233static int __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
    234			struct child *l, struct child *r)
    235{
    236	int ret;
    237	struct btree_node *left = l->n;
    238	struct btree_node *right = r->n;
    239	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
    240	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
    241	/*
    242	 * Ensure the number of entries in each child will be greater
    243	 * than or equal to (max_entries / 3 + 1), so no matter which
    244	 * child is used for removal, the number will still be not
    245	 * less than (max_entries / 3).
    246	 */
    247	unsigned int threshold = 2 * (merge_threshold(left) + 1);
    248
    249	if (nr_left + nr_right < threshold) {
    250		/*
    251		 * Merge
    252		 */
    253		node_copy(left, right, -nr_right);
    254		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
    255		delete_at(parent, r->index);
    256
    257		/*
    258		 * We need to decrement the right block, but not it's
    259		 * children, since they're still referenced by left.
    260		 */
    261		dm_tm_dec(info->tm, dm_block_location(r->block));
    262	} else {
    263		/*
    264		 * Rebalance.
    265		 */
    266		unsigned target_left = (nr_left + nr_right) / 2;
    267		ret = shift(left, right, nr_left - target_left);
    268		if (ret)
    269			return ret;
    270		*key_ptr(parent, r->index) = right->keys[0];
    271	}
    272	return 0;
    273}
    274
    275static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
    276		      struct dm_btree_value_type *vt, unsigned left_index)
    277{
    278	int r;
    279	struct btree_node *parent;
    280	struct child left, right;
    281
    282	parent = dm_block_data(shadow_current(s));
    283
    284	r = init_child(info, vt, parent, left_index, &left);
    285	if (r)
    286		return r;
    287
    288	r = init_child(info, vt, parent, left_index + 1, &right);
    289	if (r) {
    290		exit_child(info, &left);
    291		return r;
    292	}
    293
    294	r = __rebalance2(info, parent, &left, &right);
    295
    296	exit_child(info, &left);
    297	exit_child(info, &right);
    298
    299	return r;
    300}
    301
    302/*
    303 * We dump as many entries from center as possible into left, then the rest
    304 * in right, then rebalance2.  This wastes some cpu, but I want something
    305 * simple atm.
    306 */
    307static int delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
    308			      struct child *l, struct child *c, struct child *r,
    309			      struct btree_node *left, struct btree_node *center, struct btree_node *right,
    310			      uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
    311{
    312	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
    313	unsigned shift = min(max_entries - nr_left, nr_center);
    314
    315	if (nr_left + shift > max_entries) {
    316		DMERR("node shift out of bounds");
    317		return -EINVAL;
    318	}
    319
    320	node_copy(left, center, -shift);
    321	left->header.nr_entries = cpu_to_le32(nr_left + shift);
    322
    323	if (shift != nr_center) {
    324		shift = nr_center - shift;
    325
    326		if ((nr_right + shift) > max_entries) {
    327			DMERR("node shift out of bounds");
    328			return -EINVAL;
    329		}
    330
    331		node_shift(right, shift);
    332		node_copy(center, right, shift);
    333		right->header.nr_entries = cpu_to_le32(nr_right + shift);
    334	}
    335	*key_ptr(parent, r->index) = right->keys[0];
    336
    337	delete_at(parent, c->index);
    338	r->index--;
    339
    340	dm_tm_dec(info->tm, dm_block_location(c->block));
    341	return __rebalance2(info, parent, l, r);
    342}
    343
    344/*
    345 * Redistributes entries among 3 sibling nodes.
    346 */
    347static int redistribute3(struct dm_btree_info *info, struct btree_node *parent,
    348			 struct child *l, struct child *c, struct child *r,
    349			 struct btree_node *left, struct btree_node *center, struct btree_node *right,
    350			 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
    351{
    352	int s, ret;
    353	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
    354	unsigned total = nr_left + nr_center + nr_right;
    355	unsigned target_right = total / 3;
    356	unsigned remainder = (target_right * 3) != total;
    357	unsigned target_left = target_right + remainder;
    358
    359	BUG_ON(target_left > max_entries);
    360	BUG_ON(target_right > max_entries);
    361
    362	if (nr_left < nr_right) {
    363		s = nr_left - target_left;
    364
    365		if (s < 0 && nr_center < -s) {
    366			/* not enough in central node */
    367			ret = shift(left, center, -nr_center);
    368			if (ret)
    369				return ret;
    370
    371			s += nr_center;
    372			ret = shift(left, right, s);
    373			if (ret)
    374				return ret;
    375
    376			nr_right += s;
    377		} else {
    378			ret = shift(left, center, s);
    379			if (ret)
    380				return ret;
    381		}
    382
    383		ret = shift(center, right, target_right - nr_right);
    384		if (ret)
    385			return ret;
    386	} else {
    387		s = target_right - nr_right;
    388		if (s > 0 && nr_center < s) {
    389			/* not enough in central node */
    390			ret = shift(center, right, nr_center);
    391			if (ret)
    392				return ret;
    393			s -= nr_center;
    394			ret = shift(left, right, s);
    395			if (ret)
    396				return ret;
    397			nr_left -= s;
    398		} else {
    399			ret = shift(center, right, s);
    400			if (ret)
    401				return ret;
    402		}
    403
    404		ret = shift(left, center, nr_left - target_left);
    405		if (ret)
    406			return ret;
    407	}
    408
    409	*key_ptr(parent, c->index) = center->keys[0];
    410	*key_ptr(parent, r->index) = right->keys[0];
    411	return 0;
    412}
    413
    414static int __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
    415			struct child *l, struct child *c, struct child *r)
    416{
    417	struct btree_node *left = l->n;
    418	struct btree_node *center = c->n;
    419	struct btree_node *right = r->n;
    420
    421	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
    422	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
    423	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
    424
    425	unsigned threshold = merge_threshold(left) * 4 + 1;
    426
    427	if ((left->header.max_entries != center->header.max_entries) ||
    428	    (center->header.max_entries != right->header.max_entries)) {
    429		DMERR("bad btree metadata, max_entries differ");
    430		return -EILSEQ;
    431	}
    432
    433	if ((nr_left + nr_center + nr_right) < threshold) {
    434		return delete_center_node(info, parent, l, c, r, left, center, right,
    435					  nr_left, nr_center, nr_right);
    436	}
    437
    438	return redistribute3(info, parent, l, c, r, left, center, right,
    439			     nr_left, nr_center, nr_right);
    440}
    441
    442static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
    443		      struct dm_btree_value_type *vt, unsigned left_index)
    444{
    445	int r;
    446	struct btree_node *parent = dm_block_data(shadow_current(s));
    447	struct child left, center, right;
    448
    449	/*
    450	 * FIXME: fill out an array?
    451	 */
    452	r = init_child(info, vt, parent, left_index, &left);
    453	if (r)
    454		return r;
    455
    456	r = init_child(info, vt, parent, left_index + 1, &center);
    457	if (r) {
    458		exit_child(info, &left);
    459		return r;
    460	}
    461
    462	r = init_child(info, vt, parent, left_index + 2, &right);
    463	if (r) {
    464		exit_child(info, &left);
    465		exit_child(info, &center);
    466		return r;
    467	}
    468
    469	r = __rebalance3(info, parent, &left, &center, &right);
    470
    471	exit_child(info, &left);
    472	exit_child(info, &center);
    473	exit_child(info, &right);
    474
    475	return r;
    476}
    477
    478static int rebalance_children(struct shadow_spine *s,
    479			      struct dm_btree_info *info,
    480			      struct dm_btree_value_type *vt, uint64_t key)
    481{
    482	int i, r, has_left_sibling, has_right_sibling;
    483	struct btree_node *n;
    484
    485	n = dm_block_data(shadow_current(s));
    486
    487	if (le32_to_cpu(n->header.nr_entries) == 1) {
    488		struct dm_block *child;
    489		dm_block_t b = value64(n, 0);
    490
    491		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
    492		if (r)
    493			return r;
    494
    495		memcpy(n, dm_block_data(child),
    496		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
    497
    498		dm_tm_dec(info->tm, dm_block_location(child));
    499		dm_tm_unlock(info->tm, child);
    500		return 0;
    501	}
    502
    503	i = lower_bound(n, key);
    504	if (i < 0)
    505		return -ENODATA;
    506
    507	has_left_sibling = i > 0;
    508	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
    509
    510	if (!has_left_sibling)
    511		r = rebalance2(s, info, vt, i);
    512
    513	else if (!has_right_sibling)
    514		r = rebalance2(s, info, vt, i - 1);
    515
    516	else
    517		r = rebalance3(s, info, vt, i - 1);
    518
    519	return r;
    520}
    521
    522static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
    523{
    524	int i = lower_bound(n, key);
    525
    526	if ((i < 0) ||
    527	    (i >= le32_to_cpu(n->header.nr_entries)) ||
    528	    (le64_to_cpu(n->keys[i]) != key))
    529		return -ENODATA;
    530
    531	*index = i;
    532
    533	return 0;
    534}
    535
    536/*
    537 * Prepares for removal from one level of the hierarchy.  The caller must
    538 * call delete_at() to remove the entry at index.
    539 */
    540static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
    541		      struct dm_btree_value_type *vt, dm_block_t root,
    542		      uint64_t key, unsigned *index)
    543{
    544	int i = *index, r;
    545	struct btree_node *n;
    546
    547	for (;;) {
    548		r = shadow_step(s, root, vt);
    549		if (r < 0)
    550			break;
    551
    552		/*
    553		 * We have to patch up the parent node, ugly, but I don't
    554		 * see a way to do this automatically as part of the spine
    555		 * op.
    556		 */
    557		if (shadow_has_parent(s)) {
    558			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
    559			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
    560			       &location, sizeof(__le64));
    561		}
    562
    563		n = dm_block_data(shadow_current(s));
    564
    565		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
    566			return do_leaf(n, key, index);
    567
    568		r = rebalance_children(s, info, vt, key);
    569		if (r)
    570			break;
    571
    572		n = dm_block_data(shadow_current(s));
    573		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
    574			return do_leaf(n, key, index);
    575
    576		i = lower_bound(n, key);
    577
    578		/*
    579		 * We know the key is present, or else
    580		 * rebalance_children would have returned
    581		 * -ENODATA
    582		 */
    583		root = value64(n, i);
    584	}
    585
    586	return r;
    587}
    588
    589int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
    590		    uint64_t *keys, dm_block_t *new_root)
    591{
    592	unsigned level, last_level = info->levels - 1;
    593	int index = 0, r = 0;
    594	struct shadow_spine spine;
    595	struct btree_node *n;
    596	struct dm_btree_value_type le64_vt;
    597
    598	init_le64_type(info->tm, &le64_vt);
    599	init_shadow_spine(&spine, info);
    600	for (level = 0; level < info->levels; level++) {
    601		r = remove_raw(&spine, info,
    602			       (level == last_level ?
    603				&info->value_type : &le64_vt),
    604			       root, keys[level], (unsigned *)&index);
    605		if (r < 0)
    606			break;
    607
    608		n = dm_block_data(shadow_current(&spine));
    609		if (level != last_level) {
    610			root = value64(n, index);
    611			continue;
    612		}
    613
    614		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
    615
    616		if (info->value_type.dec)
    617			info->value_type.dec(info->value_type.context,
    618					     value_ptr(n, index), 1);
    619
    620		delete_at(n, index);
    621	}
    622
    623	if (!r)
    624		*new_root = shadow_root(&spine);
    625	exit_shadow_spine(&spine);
    626
    627	return r;
    628}
    629EXPORT_SYMBOL_GPL(dm_btree_remove);
    630
    631/*----------------------------------------------------------------*/
    632
    633static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
    634			  struct dm_btree_value_type *vt, dm_block_t root,
    635			  uint64_t key, int *index)
    636{
    637	int i = *index, r;
    638	struct btree_node *n;
    639
    640	for (;;) {
    641		r = shadow_step(s, root, vt);
    642		if (r < 0)
    643			break;
    644
    645		/*
    646		 * We have to patch up the parent node, ugly, but I don't
    647		 * see a way to do this automatically as part of the spine
    648		 * op.
    649		 */
    650		if (shadow_has_parent(s)) {
    651			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
    652			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
    653			       &location, sizeof(__le64));
    654		}
    655
    656		n = dm_block_data(shadow_current(s));
    657
    658		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
    659			*index = lower_bound(n, key);
    660			return 0;
    661		}
    662
    663		r = rebalance_children(s, info, vt, key);
    664		if (r)
    665			break;
    666
    667		n = dm_block_data(shadow_current(s));
    668		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
    669			*index = lower_bound(n, key);
    670			return 0;
    671		}
    672
    673		i = lower_bound(n, key);
    674
    675		/*
    676		 * We know the key is present, or else
    677		 * rebalance_children would have returned
    678		 * -ENODATA
    679		 */
    680		root = value64(n, i);
    681	}
    682
    683	return r;
    684}
    685
    686static int remove_one(struct dm_btree_info *info, dm_block_t root,
    687		      uint64_t *keys, uint64_t end_key,
    688		      dm_block_t *new_root, unsigned *nr_removed)
    689{
    690	unsigned level, last_level = info->levels - 1;
    691	int index = 0, r = 0;
    692	struct shadow_spine spine;
    693	struct btree_node *n;
    694	struct dm_btree_value_type le64_vt;
    695	uint64_t k;
    696
    697	init_le64_type(info->tm, &le64_vt);
    698	init_shadow_spine(&spine, info);
    699	for (level = 0; level < last_level; level++) {
    700		r = remove_raw(&spine, info, &le64_vt,
    701			       root, keys[level], (unsigned *) &index);
    702		if (r < 0)
    703			goto out;
    704
    705		n = dm_block_data(shadow_current(&spine));
    706		root = value64(n, index);
    707	}
    708
    709	r = remove_nearest(&spine, info, &info->value_type,
    710			   root, keys[last_level], &index);
    711	if (r < 0)
    712		goto out;
    713
    714	n = dm_block_data(shadow_current(&spine));
    715
    716	if (index < 0)
    717		index = 0;
    718
    719	if (index >= le32_to_cpu(n->header.nr_entries)) {
    720		r = -ENODATA;
    721		goto out;
    722	}
    723
    724	k = le64_to_cpu(n->keys[index]);
    725	if (k >= keys[last_level] && k < end_key) {
    726		if (info->value_type.dec)
    727			info->value_type.dec(info->value_type.context,
    728					     value_ptr(n, index), 1);
    729
    730		delete_at(n, index);
    731		keys[last_level] = k + 1ull;
    732
    733	} else
    734		r = -ENODATA;
    735
    736out:
    737	*new_root = shadow_root(&spine);
    738	exit_shadow_spine(&spine);
    739
    740	return r;
    741}
    742
    743int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
    744			   uint64_t *first_key, uint64_t end_key,
    745			   dm_block_t *new_root, unsigned *nr_removed)
    746{
    747	int r;
    748
    749	*nr_removed = 0;
    750	do {
    751		r = remove_one(info, root, first_key, end_key, &root, nr_removed);
    752		if (!r)
    753			(*nr_removed)++;
    754	} while (!r);
    755
    756	*new_root = root;
    757	return r == -ENODATA ? 0 : r;
    758}
    759EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);