raid1.c (94731B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26#include <linux/slab.h> 27#include <linux/delay.h> 28#include <linux/blkdev.h> 29#include <linux/module.h> 30#include <linux/seq_file.h> 31#include <linux/ratelimit.h> 32#include <linux/interval_tree_generic.h> 33 34#include <trace/events/block.h> 35 36#include "md.h" 37#include "raid1.h" 38#include "md-bitmap.h" 39 40#define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49#define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52#include "raid1-10.c" 53 54#define START(node) ((node)->start) 55#define LAST(node) ((node)->last) 56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61{ 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80} 81 82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83{ 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94} 95 96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97{ 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119} 120 121/* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126{ 127 return get_resync_pages(bio)->raid_bio; 128} 129 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131{ 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137} 138 139#define RESYNC_DEPTH 32 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147{ 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 169 if (!bio) 170 goto out_free_bio; 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 172 r1_bio->bios[j] = bio; 173 } 174 /* 175 * Allocate RESYNC_PAGES data pages and attach them to 176 * the first bio. 177 * If this is a user-requested check/repair, allocate 178 * RESYNC_PAGES for each bio. 179 */ 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 181 need_pages = pi->raid_disks; 182 else 183 need_pages = 1; 184 for (j = 0; j < pi->raid_disks; j++) { 185 struct resync_pages *rp = &rps[j]; 186 187 bio = r1_bio->bios[j]; 188 189 if (j < need_pages) { 190 if (resync_alloc_pages(rp, gfp_flags)) 191 goto out_free_pages; 192 } else { 193 memcpy(rp, &rps[0], sizeof(*rp)); 194 resync_get_all_pages(rp); 195 } 196 197 rp->raid_bio = r1_bio; 198 bio->bi_private = rp; 199 } 200 201 r1_bio->master_bio = NULL; 202 203 return r1_bio; 204 205out_free_pages: 206 while (--j >= 0) 207 resync_free_pages(&rps[j]); 208 209out_free_bio: 210 while (++j < pi->raid_disks) { 211 bio_uninit(r1_bio->bios[j]); 212 kfree(r1_bio->bios[j]); 213 } 214 kfree(rps); 215 216out_free_r1bio: 217 rbio_pool_free(r1_bio, data); 218 return NULL; 219} 220 221static void r1buf_pool_free(void *__r1_bio, void *data) 222{ 223 struct pool_info *pi = data; 224 int i; 225 struct r1bio *r1bio = __r1_bio; 226 struct resync_pages *rp = NULL; 227 228 for (i = pi->raid_disks; i--; ) { 229 rp = get_resync_pages(r1bio->bios[i]); 230 resync_free_pages(rp); 231 bio_uninit(r1bio->bios[i]); 232 kfree(r1bio->bios[i]); 233 } 234 235 /* resync pages array stored in the 1st bio's .bi_private */ 236 kfree(rp); 237 238 rbio_pool_free(r1bio, data); 239} 240 241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 242{ 243 int i; 244 245 for (i = 0; i < conf->raid_disks * 2; i++) { 246 struct bio **bio = r1_bio->bios + i; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251} 252 253static void free_r1bio(struct r1bio *r1_bio) 254{ 255 struct r1conf *conf = r1_bio->mddev->private; 256 257 put_all_bios(conf, r1_bio); 258 mempool_free(r1_bio, &conf->r1bio_pool); 259} 260 261static void put_buf(struct r1bio *r1_bio) 262{ 263 struct r1conf *conf = r1_bio->mddev->private; 264 sector_t sect = r1_bio->sector; 265 int i; 266 267 for (i = 0; i < conf->raid_disks * 2; i++) { 268 struct bio *bio = r1_bio->bios[i]; 269 if (bio->bi_end_io) 270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 271 } 272 273 mempool_free(r1_bio, &conf->r1buf_pool); 274 275 lower_barrier(conf, sect); 276} 277 278static void reschedule_retry(struct r1bio *r1_bio) 279{ 280 unsigned long flags; 281 struct mddev *mddev = r1_bio->mddev; 282 struct r1conf *conf = mddev->private; 283 int idx; 284 285 idx = sector_to_idx(r1_bio->sector); 286 spin_lock_irqsave(&conf->device_lock, flags); 287 list_add(&r1_bio->retry_list, &conf->retry_list); 288 atomic_inc(&conf->nr_queued[idx]); 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 291 wake_up(&conf->wait_barrier); 292 md_wakeup_thread(mddev->thread); 293} 294 295/* 296 * raid_end_bio_io() is called when we have finished servicing a mirrored 297 * operation and are ready to return a success/failure code to the buffer 298 * cache layer. 299 */ 300static void call_bio_endio(struct r1bio *r1_bio) 301{ 302 struct bio *bio = r1_bio->master_bio; 303 304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 305 bio->bi_status = BLK_STS_IOERR; 306 307 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 308 bio_end_io_acct(bio, r1_bio->start_time); 309 bio_endio(bio); 310} 311 312static void raid_end_bio_io(struct r1bio *r1_bio) 313{ 314 struct bio *bio = r1_bio->master_bio; 315 struct r1conf *conf = r1_bio->mddev->private; 316 317 /* if nobody has done the final endio yet, do it now */ 318 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 319 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 320 (bio_data_dir(bio) == WRITE) ? "write" : "read", 321 (unsigned long long) bio->bi_iter.bi_sector, 322 (unsigned long long) bio_end_sector(bio) - 1); 323 324 call_bio_endio(r1_bio); 325 } 326 /* 327 * Wake up any possible resync thread that waits for the device 328 * to go idle. All I/Os, even write-behind writes, are done. 329 */ 330 allow_barrier(conf, r1_bio->sector); 331 332 free_r1bio(r1_bio); 333} 334 335/* 336 * Update disk head position estimator based on IRQ completion info. 337 */ 338static inline void update_head_pos(int disk, struct r1bio *r1_bio) 339{ 340 struct r1conf *conf = r1_bio->mddev->private; 341 342 conf->mirrors[disk].head_position = 343 r1_bio->sector + (r1_bio->sectors); 344} 345 346/* 347 * Find the disk number which triggered given bio 348 */ 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 350{ 351 int mirror; 352 struct r1conf *conf = r1_bio->mddev->private; 353 int raid_disks = conf->raid_disks; 354 355 for (mirror = 0; mirror < raid_disks * 2; mirror++) 356 if (r1_bio->bios[mirror] == bio) 357 break; 358 359 BUG_ON(mirror == raid_disks * 2); 360 update_head_pos(mirror, r1_bio); 361 362 return mirror; 363} 364 365static void raid1_end_read_request(struct bio *bio) 366{ 367 int uptodate = !bio->bi_status; 368 struct r1bio *r1_bio = bio->bi_private; 369 struct r1conf *conf = r1_bio->mddev->private; 370 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 371 372 /* 373 * this branch is our 'one mirror IO has finished' event handler: 374 */ 375 update_head_pos(r1_bio->read_disk, r1_bio); 376 377 if (uptodate) 378 set_bit(R1BIO_Uptodate, &r1_bio->state); 379 else if (test_bit(FailFast, &rdev->flags) && 380 test_bit(R1BIO_FailFast, &r1_bio->state)) 381 /* This was a fail-fast read so we definitely 382 * want to retry */ 383 ; 384 else { 385 /* If all other devices have failed, we want to return 386 * the error upwards rather than fail the last device. 387 * Here we redefine "uptodate" to mean "Don't want to retry" 388 */ 389 unsigned long flags; 390 spin_lock_irqsave(&conf->device_lock, flags); 391 if (r1_bio->mddev->degraded == conf->raid_disks || 392 (r1_bio->mddev->degraded == conf->raid_disks-1 && 393 test_bit(In_sync, &rdev->flags))) 394 uptodate = 1; 395 spin_unlock_irqrestore(&conf->device_lock, flags); 396 } 397 398 if (uptodate) { 399 raid_end_bio_io(r1_bio); 400 rdev_dec_pending(rdev, conf->mddev); 401 } else { 402 /* 403 * oops, read error: 404 */ 405 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 406 mdname(conf->mddev), 407 rdev->bdev, 408 (unsigned long long)r1_bio->sector); 409 set_bit(R1BIO_ReadError, &r1_bio->state); 410 reschedule_retry(r1_bio); 411 /* don't drop the reference on read_disk yet */ 412 } 413} 414 415static void close_write(struct r1bio *r1_bio) 416{ 417 /* it really is the end of this request */ 418 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 419 bio_free_pages(r1_bio->behind_master_bio); 420 bio_put(r1_bio->behind_master_bio); 421 r1_bio->behind_master_bio = NULL; 422 } 423 /* clear the bitmap if all writes complete successfully */ 424 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 425 r1_bio->sectors, 426 !test_bit(R1BIO_Degraded, &r1_bio->state), 427 test_bit(R1BIO_BehindIO, &r1_bio->state)); 428 md_write_end(r1_bio->mddev); 429} 430 431static void r1_bio_write_done(struct r1bio *r1_bio) 432{ 433 if (!atomic_dec_and_test(&r1_bio->remaining)) 434 return; 435 436 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 437 reschedule_retry(r1_bio); 438 else { 439 close_write(r1_bio); 440 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 441 reschedule_retry(r1_bio); 442 else 443 raid_end_bio_io(r1_bio); 444 } 445} 446 447static void raid1_end_write_request(struct bio *bio) 448{ 449 struct r1bio *r1_bio = bio->bi_private; 450 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 451 struct r1conf *conf = r1_bio->mddev->private; 452 struct bio *to_put = NULL; 453 int mirror = find_bio_disk(r1_bio, bio); 454 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 455 bool discard_error; 456 sector_t lo = r1_bio->sector; 457 sector_t hi = r1_bio->sector + r1_bio->sectors; 458 459 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 460 461 /* 462 * 'one mirror IO has finished' event handler: 463 */ 464 if (bio->bi_status && !discard_error) { 465 set_bit(WriteErrorSeen, &rdev->flags); 466 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 467 set_bit(MD_RECOVERY_NEEDED, & 468 conf->mddev->recovery); 469 470 if (test_bit(FailFast, &rdev->flags) && 471 (bio->bi_opf & MD_FAILFAST) && 472 /* We never try FailFast to WriteMostly devices */ 473 !test_bit(WriteMostly, &rdev->flags)) { 474 md_error(r1_bio->mddev, rdev); 475 } 476 477 /* 478 * When the device is faulty, it is not necessary to 479 * handle write error. 480 */ 481 if (!test_bit(Faulty, &rdev->flags)) 482 set_bit(R1BIO_WriteError, &r1_bio->state); 483 else { 484 /* Fail the request */ 485 set_bit(R1BIO_Degraded, &r1_bio->state); 486 /* Finished with this branch */ 487 r1_bio->bios[mirror] = NULL; 488 to_put = bio; 489 } 490 } else { 491 /* 492 * Set R1BIO_Uptodate in our master bio, so that we 493 * will return a good error code for to the higher 494 * levels even if IO on some other mirrored buffer 495 * fails. 496 * 497 * The 'master' represents the composite IO operation 498 * to user-side. So if something waits for IO, then it 499 * will wait for the 'master' bio. 500 */ 501 sector_t first_bad; 502 int bad_sectors; 503 504 r1_bio->bios[mirror] = NULL; 505 to_put = bio; 506 /* 507 * Do not set R1BIO_Uptodate if the current device is 508 * rebuilding or Faulty. This is because we cannot use 509 * such device for properly reading the data back (we could 510 * potentially use it, if the current write would have felt 511 * before rdev->recovery_offset, but for simplicity we don't 512 * check this here. 513 */ 514 if (test_bit(In_sync, &rdev->flags) && 515 !test_bit(Faulty, &rdev->flags)) 516 set_bit(R1BIO_Uptodate, &r1_bio->state); 517 518 /* Maybe we can clear some bad blocks. */ 519 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 520 &first_bad, &bad_sectors) && !discard_error) { 521 r1_bio->bios[mirror] = IO_MADE_GOOD; 522 set_bit(R1BIO_MadeGood, &r1_bio->state); 523 } 524 } 525 526 if (behind) { 527 if (test_bit(CollisionCheck, &rdev->flags)) 528 remove_serial(rdev, lo, hi); 529 if (test_bit(WriteMostly, &rdev->flags)) 530 atomic_dec(&r1_bio->behind_remaining); 531 532 /* 533 * In behind mode, we ACK the master bio once the I/O 534 * has safely reached all non-writemostly 535 * disks. Setting the Returned bit ensures that this 536 * gets done only once -- we don't ever want to return 537 * -EIO here, instead we'll wait 538 */ 539 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 540 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 541 /* Maybe we can return now */ 542 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 543 struct bio *mbio = r1_bio->master_bio; 544 pr_debug("raid1: behind end write sectors" 545 " %llu-%llu\n", 546 (unsigned long long) mbio->bi_iter.bi_sector, 547 (unsigned long long) bio_end_sector(mbio) - 1); 548 call_bio_endio(r1_bio); 549 } 550 } 551 } else if (rdev->mddev->serialize_policy) 552 remove_serial(rdev, lo, hi); 553 if (r1_bio->bios[mirror] == NULL) 554 rdev_dec_pending(rdev, conf->mddev); 555 556 /* 557 * Let's see if all mirrored write operations have finished 558 * already. 559 */ 560 r1_bio_write_done(r1_bio); 561 562 if (to_put) 563 bio_put(to_put); 564} 565 566static sector_t align_to_barrier_unit_end(sector_t start_sector, 567 sector_t sectors) 568{ 569 sector_t len; 570 571 WARN_ON(sectors == 0); 572 /* 573 * len is the number of sectors from start_sector to end of the 574 * barrier unit which start_sector belongs to. 575 */ 576 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 577 start_sector; 578 579 if (len > sectors) 580 len = sectors; 581 582 return len; 583} 584 585/* 586 * This routine returns the disk from which the requested read should 587 * be done. There is a per-array 'next expected sequential IO' sector 588 * number - if this matches on the next IO then we use the last disk. 589 * There is also a per-disk 'last know head position' sector that is 590 * maintained from IRQ contexts, both the normal and the resync IO 591 * completion handlers update this position correctly. If there is no 592 * perfect sequential match then we pick the disk whose head is closest. 593 * 594 * If there are 2 mirrors in the same 2 devices, performance degrades 595 * because position is mirror, not device based. 596 * 597 * The rdev for the device selected will have nr_pending incremented. 598 */ 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 600{ 601 const sector_t this_sector = r1_bio->sector; 602 int sectors; 603 int best_good_sectors; 604 int best_disk, best_dist_disk, best_pending_disk; 605 int has_nonrot_disk; 606 int disk; 607 sector_t best_dist; 608 unsigned int min_pending; 609 struct md_rdev *rdev; 610 int choose_first; 611 int choose_next_idle; 612 613 rcu_read_lock(); 614 /* 615 * Check if we can balance. We can balance on the whole 616 * device if no resync is going on, or below the resync window. 617 * We take the first readable disk when above the resync window. 618 */ 619 retry: 620 sectors = r1_bio->sectors; 621 best_disk = -1; 622 best_dist_disk = -1; 623 best_dist = MaxSector; 624 best_pending_disk = -1; 625 min_pending = UINT_MAX; 626 best_good_sectors = 0; 627 has_nonrot_disk = 0; 628 choose_next_idle = 0; 629 clear_bit(R1BIO_FailFast, &r1_bio->state); 630 631 if ((conf->mddev->recovery_cp < this_sector + sectors) || 632 (mddev_is_clustered(conf->mddev) && 633 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 634 this_sector + sectors))) 635 choose_first = 1; 636 else 637 choose_first = 0; 638 639 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 640 sector_t dist; 641 sector_t first_bad; 642 int bad_sectors; 643 unsigned int pending; 644 bool nonrot; 645 646 rdev = rcu_dereference(conf->mirrors[disk].rdev); 647 if (r1_bio->bios[disk] == IO_BLOCKED 648 || rdev == NULL 649 || test_bit(Faulty, &rdev->flags)) 650 continue; 651 if (!test_bit(In_sync, &rdev->flags) && 652 rdev->recovery_offset < this_sector + sectors) 653 continue; 654 if (test_bit(WriteMostly, &rdev->flags)) { 655 /* Don't balance among write-mostly, just 656 * use the first as a last resort */ 657 if (best_dist_disk < 0) { 658 if (is_badblock(rdev, this_sector, sectors, 659 &first_bad, &bad_sectors)) { 660 if (first_bad <= this_sector) 661 /* Cannot use this */ 662 continue; 663 best_good_sectors = first_bad - this_sector; 664 } else 665 best_good_sectors = sectors; 666 best_dist_disk = disk; 667 best_pending_disk = disk; 668 } 669 continue; 670 } 671 /* This is a reasonable device to use. It might 672 * even be best. 673 */ 674 if (is_badblock(rdev, this_sector, sectors, 675 &first_bad, &bad_sectors)) { 676 if (best_dist < MaxSector) 677 /* already have a better device */ 678 continue; 679 if (first_bad <= this_sector) { 680 /* cannot read here. If this is the 'primary' 681 * device, then we must not read beyond 682 * bad_sectors from another device.. 683 */ 684 bad_sectors -= (this_sector - first_bad); 685 if (choose_first && sectors > bad_sectors) 686 sectors = bad_sectors; 687 if (best_good_sectors > sectors) 688 best_good_sectors = sectors; 689 690 } else { 691 sector_t good_sectors = first_bad - this_sector; 692 if (good_sectors > best_good_sectors) { 693 best_good_sectors = good_sectors; 694 best_disk = disk; 695 } 696 if (choose_first) 697 break; 698 } 699 continue; 700 } else { 701 if ((sectors > best_good_sectors) && (best_disk >= 0)) 702 best_disk = -1; 703 best_good_sectors = sectors; 704 } 705 706 if (best_disk >= 0) 707 /* At least two disks to choose from so failfast is OK */ 708 set_bit(R1BIO_FailFast, &r1_bio->state); 709 710 nonrot = bdev_nonrot(rdev->bdev); 711 has_nonrot_disk |= nonrot; 712 pending = atomic_read(&rdev->nr_pending); 713 dist = abs(this_sector - conf->mirrors[disk].head_position); 714 if (choose_first) { 715 best_disk = disk; 716 break; 717 } 718 /* Don't change to another disk for sequential reads */ 719 if (conf->mirrors[disk].next_seq_sect == this_sector 720 || dist == 0) { 721 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 722 struct raid1_info *mirror = &conf->mirrors[disk]; 723 724 best_disk = disk; 725 /* 726 * If buffered sequential IO size exceeds optimal 727 * iosize, check if there is idle disk. If yes, choose 728 * the idle disk. read_balance could already choose an 729 * idle disk before noticing it's a sequential IO in 730 * this disk. This doesn't matter because this disk 731 * will idle, next time it will be utilized after the 732 * first disk has IO size exceeds optimal iosize. In 733 * this way, iosize of the first disk will be optimal 734 * iosize at least. iosize of the second disk might be 735 * small, but not a big deal since when the second disk 736 * starts IO, the first disk is likely still busy. 737 */ 738 if (nonrot && opt_iosize > 0 && 739 mirror->seq_start != MaxSector && 740 mirror->next_seq_sect > opt_iosize && 741 mirror->next_seq_sect - opt_iosize >= 742 mirror->seq_start) { 743 choose_next_idle = 1; 744 continue; 745 } 746 break; 747 } 748 749 if (choose_next_idle) 750 continue; 751 752 if (min_pending > pending) { 753 min_pending = pending; 754 best_pending_disk = disk; 755 } 756 757 if (dist < best_dist) { 758 best_dist = dist; 759 best_dist_disk = disk; 760 } 761 } 762 763 /* 764 * If all disks are rotational, choose the closest disk. If any disk is 765 * non-rotational, choose the disk with less pending request even the 766 * disk is rotational, which might/might not be optimal for raids with 767 * mixed ratation/non-rotational disks depending on workload. 768 */ 769 if (best_disk == -1) { 770 if (has_nonrot_disk || min_pending == 0) 771 best_disk = best_pending_disk; 772 else 773 best_disk = best_dist_disk; 774 } 775 776 if (best_disk >= 0) { 777 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 778 if (!rdev) 779 goto retry; 780 atomic_inc(&rdev->nr_pending); 781 sectors = best_good_sectors; 782 783 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 784 conf->mirrors[best_disk].seq_start = this_sector; 785 786 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 787 } 788 rcu_read_unlock(); 789 *max_sectors = sectors; 790 791 return best_disk; 792} 793 794static void flush_bio_list(struct r1conf *conf, struct bio *bio) 795{ 796 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 797 md_bitmap_unplug(conf->mddev->bitmap); 798 wake_up(&conf->wait_barrier); 799 800 while (bio) { /* submit pending writes */ 801 struct bio *next = bio->bi_next; 802 struct md_rdev *rdev = (void *)bio->bi_bdev; 803 bio->bi_next = NULL; 804 bio_set_dev(bio, rdev->bdev); 805 if (test_bit(Faulty, &rdev->flags)) { 806 bio_io_error(bio); 807 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 808 !bdev_max_discard_sectors(bio->bi_bdev))) 809 /* Just ignore it */ 810 bio_endio(bio); 811 else 812 submit_bio_noacct(bio); 813 bio = next; 814 cond_resched(); 815 } 816} 817 818static void flush_pending_writes(struct r1conf *conf) 819{ 820 /* Any writes that have been queued but are awaiting 821 * bitmap updates get flushed here. 822 */ 823 spin_lock_irq(&conf->device_lock); 824 825 if (conf->pending_bio_list.head) { 826 struct blk_plug plug; 827 struct bio *bio; 828 829 bio = bio_list_get(&conf->pending_bio_list); 830 spin_unlock_irq(&conf->device_lock); 831 832 /* 833 * As this is called in a wait_event() loop (see freeze_array), 834 * current->state might be TASK_UNINTERRUPTIBLE which will 835 * cause a warning when we prepare to wait again. As it is 836 * rare that this path is taken, it is perfectly safe to force 837 * us to go around the wait_event() loop again, so the warning 838 * is a false-positive. Silence the warning by resetting 839 * thread state 840 */ 841 __set_current_state(TASK_RUNNING); 842 blk_start_plug(&plug); 843 flush_bio_list(conf, bio); 844 blk_finish_plug(&plug); 845 } else 846 spin_unlock_irq(&conf->device_lock); 847} 848 849/* Barriers.... 850 * Sometimes we need to suspend IO while we do something else, 851 * either some resync/recovery, or reconfigure the array. 852 * To do this we raise a 'barrier'. 853 * The 'barrier' is a counter that can be raised multiple times 854 * to count how many activities are happening which preclude 855 * normal IO. 856 * We can only raise the barrier if there is no pending IO. 857 * i.e. if nr_pending == 0. 858 * We choose only to raise the barrier if no-one is waiting for the 859 * barrier to go down. This means that as soon as an IO request 860 * is ready, no other operations which require a barrier will start 861 * until the IO request has had a chance. 862 * 863 * So: regular IO calls 'wait_barrier'. When that returns there 864 * is no backgroup IO happening, It must arrange to call 865 * allow_barrier when it has finished its IO. 866 * backgroup IO calls must call raise_barrier. Once that returns 867 * there is no normal IO happeing. It must arrange to call 868 * lower_barrier when the particular background IO completes. 869 * 870 * If resync/recovery is interrupted, returns -EINTR; 871 * Otherwise, returns 0. 872 */ 873static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 874{ 875 int idx = sector_to_idx(sector_nr); 876 877 spin_lock_irq(&conf->resync_lock); 878 879 /* Wait until no block IO is waiting */ 880 wait_event_lock_irq(conf->wait_barrier, 881 !atomic_read(&conf->nr_waiting[idx]), 882 conf->resync_lock); 883 884 /* block any new IO from starting */ 885 atomic_inc(&conf->barrier[idx]); 886 /* 887 * In raise_barrier() we firstly increase conf->barrier[idx] then 888 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 889 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 890 * A memory barrier here to make sure conf->nr_pending[idx] won't 891 * be fetched before conf->barrier[idx] is increased. Otherwise 892 * there will be a race between raise_barrier() and _wait_barrier(). 893 */ 894 smp_mb__after_atomic(); 895 896 /* For these conditions we must wait: 897 * A: while the array is in frozen state 898 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 899 * existing in corresponding I/O barrier bucket. 900 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 901 * max resync count which allowed on current I/O barrier bucket. 902 */ 903 wait_event_lock_irq(conf->wait_barrier, 904 (!conf->array_frozen && 905 !atomic_read(&conf->nr_pending[idx]) && 906 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 907 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 908 conf->resync_lock); 909 910 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 911 atomic_dec(&conf->barrier[idx]); 912 spin_unlock_irq(&conf->resync_lock); 913 wake_up(&conf->wait_barrier); 914 return -EINTR; 915 } 916 917 atomic_inc(&conf->nr_sync_pending); 918 spin_unlock_irq(&conf->resync_lock); 919 920 return 0; 921} 922 923static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 924{ 925 int idx = sector_to_idx(sector_nr); 926 927 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 928 929 atomic_dec(&conf->barrier[idx]); 930 atomic_dec(&conf->nr_sync_pending); 931 wake_up(&conf->wait_barrier); 932} 933 934static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 935{ 936 bool ret = true; 937 938 /* 939 * We need to increase conf->nr_pending[idx] very early here, 940 * then raise_barrier() can be blocked when it waits for 941 * conf->nr_pending[idx] to be 0. Then we can avoid holding 942 * conf->resync_lock when there is no barrier raised in same 943 * barrier unit bucket. Also if the array is frozen, I/O 944 * should be blocked until array is unfrozen. 945 */ 946 atomic_inc(&conf->nr_pending[idx]); 947 /* 948 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 949 * check conf->barrier[idx]. In raise_barrier() we firstly increase 950 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 951 * barrier is necessary here to make sure conf->barrier[idx] won't be 952 * fetched before conf->nr_pending[idx] is increased. Otherwise there 953 * will be a race between _wait_barrier() and raise_barrier(). 954 */ 955 smp_mb__after_atomic(); 956 957 /* 958 * Don't worry about checking two atomic_t variables at same time 959 * here. If during we check conf->barrier[idx], the array is 960 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 961 * 0, it is safe to return and make the I/O continue. Because the 962 * array is frozen, all I/O returned here will eventually complete 963 * or be queued, no race will happen. See code comment in 964 * frozen_array(). 965 */ 966 if (!READ_ONCE(conf->array_frozen) && 967 !atomic_read(&conf->barrier[idx])) 968 return ret; 969 970 /* 971 * After holding conf->resync_lock, conf->nr_pending[idx] 972 * should be decreased before waiting for barrier to drop. 973 * Otherwise, we may encounter a race condition because 974 * raise_barrer() might be waiting for conf->nr_pending[idx] 975 * to be 0 at same time. 976 */ 977 spin_lock_irq(&conf->resync_lock); 978 atomic_inc(&conf->nr_waiting[idx]); 979 atomic_dec(&conf->nr_pending[idx]); 980 /* 981 * In case freeze_array() is waiting for 982 * get_unqueued_pending() == extra 983 */ 984 wake_up(&conf->wait_barrier); 985 /* Wait for the barrier in same barrier unit bucket to drop. */ 986 987 /* Return false when nowait flag is set */ 988 if (nowait) { 989 ret = false; 990 } else { 991 wait_event_lock_irq(conf->wait_barrier, 992 !conf->array_frozen && 993 !atomic_read(&conf->barrier[idx]), 994 conf->resync_lock); 995 atomic_inc(&conf->nr_pending[idx]); 996 } 997 998 atomic_dec(&conf->nr_waiting[idx]); 999 spin_unlock_irq(&conf->resync_lock); 1000 return ret; 1001} 1002 1003static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1004{ 1005 int idx = sector_to_idx(sector_nr); 1006 bool ret = true; 1007 1008 /* 1009 * Very similar to _wait_barrier(). The difference is, for read 1010 * I/O we don't need wait for sync I/O, but if the whole array 1011 * is frozen, the read I/O still has to wait until the array is 1012 * unfrozen. Since there is no ordering requirement with 1013 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1014 */ 1015 atomic_inc(&conf->nr_pending[idx]); 1016 1017 if (!READ_ONCE(conf->array_frozen)) 1018 return ret; 1019 1020 spin_lock_irq(&conf->resync_lock); 1021 atomic_inc(&conf->nr_waiting[idx]); 1022 atomic_dec(&conf->nr_pending[idx]); 1023 /* 1024 * In case freeze_array() is waiting for 1025 * get_unqueued_pending() == extra 1026 */ 1027 wake_up(&conf->wait_barrier); 1028 /* Wait for array to be unfrozen */ 1029 1030 /* Return false when nowait flag is set */ 1031 if (nowait) { 1032 /* Return false when nowait flag is set */ 1033 ret = false; 1034 } else { 1035 wait_event_lock_irq(conf->wait_barrier, 1036 !conf->array_frozen, 1037 conf->resync_lock); 1038 atomic_inc(&conf->nr_pending[idx]); 1039 } 1040 1041 atomic_dec(&conf->nr_waiting[idx]); 1042 spin_unlock_irq(&conf->resync_lock); 1043 return ret; 1044} 1045 1046static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1047{ 1048 int idx = sector_to_idx(sector_nr); 1049 1050 return _wait_barrier(conf, idx, nowait); 1051} 1052 1053static void _allow_barrier(struct r1conf *conf, int idx) 1054{ 1055 atomic_dec(&conf->nr_pending[idx]); 1056 wake_up(&conf->wait_barrier); 1057} 1058 1059static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1060{ 1061 int idx = sector_to_idx(sector_nr); 1062 1063 _allow_barrier(conf, idx); 1064} 1065 1066/* conf->resync_lock should be held */ 1067static int get_unqueued_pending(struct r1conf *conf) 1068{ 1069 int idx, ret; 1070 1071 ret = atomic_read(&conf->nr_sync_pending); 1072 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1073 ret += atomic_read(&conf->nr_pending[idx]) - 1074 atomic_read(&conf->nr_queued[idx]); 1075 1076 return ret; 1077} 1078 1079static void freeze_array(struct r1conf *conf, int extra) 1080{ 1081 /* Stop sync I/O and normal I/O and wait for everything to 1082 * go quiet. 1083 * This is called in two situations: 1084 * 1) management command handlers (reshape, remove disk, quiesce). 1085 * 2) one normal I/O request failed. 1086 1087 * After array_frozen is set to 1, new sync IO will be blocked at 1088 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1089 * or wait_read_barrier(). The flying I/Os will either complete or be 1090 * queued. When everything goes quite, there are only queued I/Os left. 1091 1092 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1093 * barrier bucket index which this I/O request hits. When all sync and 1094 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1095 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1096 * in handle_read_error(), we may call freeze_array() before trying to 1097 * fix the read error. In this case, the error read I/O is not queued, 1098 * so get_unqueued_pending() == 1. 1099 * 1100 * Therefore before this function returns, we need to wait until 1101 * get_unqueued_pendings(conf) gets equal to extra. For 1102 * normal I/O context, extra is 1, in rested situations extra is 0. 1103 */ 1104 spin_lock_irq(&conf->resync_lock); 1105 conf->array_frozen = 1; 1106 raid1_log(conf->mddev, "wait freeze"); 1107 wait_event_lock_irq_cmd( 1108 conf->wait_barrier, 1109 get_unqueued_pending(conf) == extra, 1110 conf->resync_lock, 1111 flush_pending_writes(conf)); 1112 spin_unlock_irq(&conf->resync_lock); 1113} 1114static void unfreeze_array(struct r1conf *conf) 1115{ 1116 /* reverse the effect of the freeze */ 1117 spin_lock_irq(&conf->resync_lock); 1118 conf->array_frozen = 0; 1119 spin_unlock_irq(&conf->resync_lock); 1120 wake_up(&conf->wait_barrier); 1121} 1122 1123static void alloc_behind_master_bio(struct r1bio *r1_bio, 1124 struct bio *bio) 1125{ 1126 int size = bio->bi_iter.bi_size; 1127 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1128 int i = 0; 1129 struct bio *behind_bio = NULL; 1130 1131 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1132 &r1_bio->mddev->bio_set); 1133 if (!behind_bio) 1134 return; 1135 1136 /* discard op, we don't support writezero/writesame yet */ 1137 if (!bio_has_data(bio)) { 1138 behind_bio->bi_iter.bi_size = size; 1139 goto skip_copy; 1140 } 1141 1142 while (i < vcnt && size) { 1143 struct page *page; 1144 int len = min_t(int, PAGE_SIZE, size); 1145 1146 page = alloc_page(GFP_NOIO); 1147 if (unlikely(!page)) 1148 goto free_pages; 1149 1150 bio_add_page(behind_bio, page, len, 0); 1151 1152 size -= len; 1153 i++; 1154 } 1155 1156 bio_copy_data(behind_bio, bio); 1157skip_copy: 1158 r1_bio->behind_master_bio = behind_bio; 1159 set_bit(R1BIO_BehindIO, &r1_bio->state); 1160 1161 return; 1162 1163free_pages: 1164 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1165 bio->bi_iter.bi_size); 1166 bio_free_pages(behind_bio); 1167 bio_put(behind_bio); 1168} 1169 1170static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1171{ 1172 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1173 cb); 1174 struct mddev *mddev = plug->cb.data; 1175 struct r1conf *conf = mddev->private; 1176 struct bio *bio; 1177 1178 if (from_schedule || current->bio_list) { 1179 spin_lock_irq(&conf->device_lock); 1180 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1181 spin_unlock_irq(&conf->device_lock); 1182 wake_up(&conf->wait_barrier); 1183 md_wakeup_thread(mddev->thread); 1184 kfree(plug); 1185 return; 1186 } 1187 1188 /* we aren't scheduling, so we can do the write-out directly. */ 1189 bio = bio_list_get(&plug->pending); 1190 flush_bio_list(conf, bio); 1191 kfree(plug); 1192} 1193 1194static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1195{ 1196 r1_bio->master_bio = bio; 1197 r1_bio->sectors = bio_sectors(bio); 1198 r1_bio->state = 0; 1199 r1_bio->mddev = mddev; 1200 r1_bio->sector = bio->bi_iter.bi_sector; 1201} 1202 1203static inline struct r1bio * 1204alloc_r1bio(struct mddev *mddev, struct bio *bio) 1205{ 1206 struct r1conf *conf = mddev->private; 1207 struct r1bio *r1_bio; 1208 1209 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1210 /* Ensure no bio records IO_BLOCKED */ 1211 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1212 init_r1bio(r1_bio, mddev, bio); 1213 return r1_bio; 1214} 1215 1216static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1217 int max_read_sectors, struct r1bio *r1_bio) 1218{ 1219 struct r1conf *conf = mddev->private; 1220 struct raid1_info *mirror; 1221 struct bio *read_bio; 1222 struct bitmap *bitmap = mddev->bitmap; 1223 const int op = bio_op(bio); 1224 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1225 int max_sectors; 1226 int rdisk; 1227 bool r1bio_existed = !!r1_bio; 1228 char b[BDEVNAME_SIZE]; 1229 1230 /* 1231 * If r1_bio is set, we are blocking the raid1d thread 1232 * so there is a tiny risk of deadlock. So ask for 1233 * emergency memory if needed. 1234 */ 1235 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1236 1237 if (r1bio_existed) { 1238 /* Need to get the block device name carefully */ 1239 struct md_rdev *rdev; 1240 rcu_read_lock(); 1241 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1242 if (rdev) 1243 bdevname(rdev->bdev, b); 1244 else 1245 strcpy(b, "???"); 1246 rcu_read_unlock(); 1247 } 1248 1249 /* 1250 * Still need barrier for READ in case that whole 1251 * array is frozen. 1252 */ 1253 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1254 bio->bi_opf & REQ_NOWAIT)) { 1255 bio_wouldblock_error(bio); 1256 return; 1257 } 1258 1259 if (!r1_bio) 1260 r1_bio = alloc_r1bio(mddev, bio); 1261 else 1262 init_r1bio(r1_bio, mddev, bio); 1263 r1_bio->sectors = max_read_sectors; 1264 1265 /* 1266 * make_request() can abort the operation when read-ahead is being 1267 * used and no empty request is available. 1268 */ 1269 rdisk = read_balance(conf, r1_bio, &max_sectors); 1270 1271 if (rdisk < 0) { 1272 /* couldn't find anywhere to read from */ 1273 if (r1bio_existed) { 1274 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1275 mdname(mddev), 1276 b, 1277 (unsigned long long)r1_bio->sector); 1278 } 1279 raid_end_bio_io(r1_bio); 1280 return; 1281 } 1282 mirror = conf->mirrors + rdisk; 1283 1284 if (r1bio_existed) 1285 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1286 mdname(mddev), 1287 (unsigned long long)r1_bio->sector, 1288 mirror->rdev->bdev); 1289 1290 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1291 bitmap) { 1292 /* 1293 * Reading from a write-mostly device must take care not to 1294 * over-take any writes that are 'behind' 1295 */ 1296 raid1_log(mddev, "wait behind writes"); 1297 wait_event(bitmap->behind_wait, 1298 atomic_read(&bitmap->behind_writes) == 0); 1299 } 1300 1301 if (max_sectors < bio_sectors(bio)) { 1302 struct bio *split = bio_split(bio, max_sectors, 1303 gfp, &conf->bio_split); 1304 bio_chain(split, bio); 1305 submit_bio_noacct(bio); 1306 bio = split; 1307 r1_bio->master_bio = bio; 1308 r1_bio->sectors = max_sectors; 1309 } 1310 1311 r1_bio->read_disk = rdisk; 1312 1313 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1314 r1_bio->start_time = bio_start_io_acct(bio); 1315 1316 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1317 &mddev->bio_set); 1318 1319 r1_bio->bios[rdisk] = read_bio; 1320 1321 read_bio->bi_iter.bi_sector = r1_bio->sector + 1322 mirror->rdev->data_offset; 1323 read_bio->bi_end_io = raid1_end_read_request; 1324 bio_set_op_attrs(read_bio, op, do_sync); 1325 if (test_bit(FailFast, &mirror->rdev->flags) && 1326 test_bit(R1BIO_FailFast, &r1_bio->state)) 1327 read_bio->bi_opf |= MD_FAILFAST; 1328 read_bio->bi_private = r1_bio; 1329 1330 if (mddev->gendisk) 1331 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1332 r1_bio->sector); 1333 1334 submit_bio_noacct(read_bio); 1335} 1336 1337static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1338 int max_write_sectors) 1339{ 1340 struct r1conf *conf = mddev->private; 1341 struct r1bio *r1_bio; 1342 int i, disks; 1343 struct bitmap *bitmap = mddev->bitmap; 1344 unsigned long flags; 1345 struct md_rdev *blocked_rdev; 1346 struct blk_plug_cb *cb; 1347 struct raid1_plug_cb *plug = NULL; 1348 int first_clone; 1349 int max_sectors; 1350 bool write_behind = false; 1351 1352 if (mddev_is_clustered(mddev) && 1353 md_cluster_ops->area_resyncing(mddev, WRITE, 1354 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1355 1356 DEFINE_WAIT(w); 1357 if (bio->bi_opf & REQ_NOWAIT) { 1358 bio_wouldblock_error(bio); 1359 return; 1360 } 1361 for (;;) { 1362 prepare_to_wait(&conf->wait_barrier, 1363 &w, TASK_IDLE); 1364 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1365 bio->bi_iter.bi_sector, 1366 bio_end_sector(bio))) 1367 break; 1368 schedule(); 1369 } 1370 finish_wait(&conf->wait_barrier, &w); 1371 } 1372 1373 /* 1374 * Register the new request and wait if the reconstruction 1375 * thread has put up a bar for new requests. 1376 * Continue immediately if no resync is active currently. 1377 */ 1378 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1379 bio->bi_opf & REQ_NOWAIT)) { 1380 bio_wouldblock_error(bio); 1381 return; 1382 } 1383 1384 r1_bio = alloc_r1bio(mddev, bio); 1385 r1_bio->sectors = max_write_sectors; 1386 1387 /* first select target devices under rcu_lock and 1388 * inc refcount on their rdev. Record them by setting 1389 * bios[x] to bio 1390 * If there are known/acknowledged bad blocks on any device on 1391 * which we have seen a write error, we want to avoid writing those 1392 * blocks. 1393 * This potentially requires several writes to write around 1394 * the bad blocks. Each set of writes gets it's own r1bio 1395 * with a set of bios attached. 1396 */ 1397 1398 disks = conf->raid_disks * 2; 1399 retry_write: 1400 blocked_rdev = NULL; 1401 rcu_read_lock(); 1402 max_sectors = r1_bio->sectors; 1403 for (i = 0; i < disks; i++) { 1404 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1405 1406 /* 1407 * The write-behind io is only attempted on drives marked as 1408 * write-mostly, which means we could allocate write behind 1409 * bio later. 1410 */ 1411 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1412 write_behind = true; 1413 1414 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1415 atomic_inc(&rdev->nr_pending); 1416 blocked_rdev = rdev; 1417 break; 1418 } 1419 r1_bio->bios[i] = NULL; 1420 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1421 if (i < conf->raid_disks) 1422 set_bit(R1BIO_Degraded, &r1_bio->state); 1423 continue; 1424 } 1425 1426 atomic_inc(&rdev->nr_pending); 1427 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1428 sector_t first_bad; 1429 int bad_sectors; 1430 int is_bad; 1431 1432 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1433 &first_bad, &bad_sectors); 1434 if (is_bad < 0) { 1435 /* mustn't write here until the bad block is 1436 * acknowledged*/ 1437 set_bit(BlockedBadBlocks, &rdev->flags); 1438 blocked_rdev = rdev; 1439 break; 1440 } 1441 if (is_bad && first_bad <= r1_bio->sector) { 1442 /* Cannot write here at all */ 1443 bad_sectors -= (r1_bio->sector - first_bad); 1444 if (bad_sectors < max_sectors) 1445 /* mustn't write more than bad_sectors 1446 * to other devices yet 1447 */ 1448 max_sectors = bad_sectors; 1449 rdev_dec_pending(rdev, mddev); 1450 /* We don't set R1BIO_Degraded as that 1451 * only applies if the disk is 1452 * missing, so it might be re-added, 1453 * and we want to know to recover this 1454 * chunk. 1455 * In this case the device is here, 1456 * and the fact that this chunk is not 1457 * in-sync is recorded in the bad 1458 * block log 1459 */ 1460 continue; 1461 } 1462 if (is_bad) { 1463 int good_sectors = first_bad - r1_bio->sector; 1464 if (good_sectors < max_sectors) 1465 max_sectors = good_sectors; 1466 } 1467 } 1468 r1_bio->bios[i] = bio; 1469 } 1470 rcu_read_unlock(); 1471 1472 if (unlikely(blocked_rdev)) { 1473 /* Wait for this device to become unblocked */ 1474 int j; 1475 1476 for (j = 0; j < i; j++) 1477 if (r1_bio->bios[j]) 1478 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1479 r1_bio->state = 0; 1480 allow_barrier(conf, bio->bi_iter.bi_sector); 1481 1482 if (bio->bi_opf & REQ_NOWAIT) { 1483 bio_wouldblock_error(bio); 1484 return; 1485 } 1486 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1487 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1488 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1489 goto retry_write; 1490 } 1491 1492 /* 1493 * When using a bitmap, we may call alloc_behind_master_bio below. 1494 * alloc_behind_master_bio allocates a copy of the data payload a page 1495 * at a time and thus needs a new bio that can fit the whole payload 1496 * this bio in page sized chunks. 1497 */ 1498 if (write_behind && bitmap) 1499 max_sectors = min_t(int, max_sectors, 1500 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1501 if (max_sectors < bio_sectors(bio)) { 1502 struct bio *split = bio_split(bio, max_sectors, 1503 GFP_NOIO, &conf->bio_split); 1504 bio_chain(split, bio); 1505 submit_bio_noacct(bio); 1506 bio = split; 1507 r1_bio->master_bio = bio; 1508 r1_bio->sectors = max_sectors; 1509 } 1510 1511 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1512 r1_bio->start_time = bio_start_io_acct(bio); 1513 atomic_set(&r1_bio->remaining, 1); 1514 atomic_set(&r1_bio->behind_remaining, 0); 1515 1516 first_clone = 1; 1517 1518 for (i = 0; i < disks; i++) { 1519 struct bio *mbio = NULL; 1520 struct md_rdev *rdev = conf->mirrors[i].rdev; 1521 if (!r1_bio->bios[i]) 1522 continue; 1523 1524 if (first_clone) { 1525 /* do behind I/O ? 1526 * Not if there are too many, or cannot 1527 * allocate memory, or a reader on WriteMostly 1528 * is waiting for behind writes to flush */ 1529 if (bitmap && 1530 test_bit(WriteMostly, &rdev->flags) && 1531 (atomic_read(&bitmap->behind_writes) 1532 < mddev->bitmap_info.max_write_behind) && 1533 !waitqueue_active(&bitmap->behind_wait)) { 1534 alloc_behind_master_bio(r1_bio, bio); 1535 } 1536 1537 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1538 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1539 first_clone = 0; 1540 } 1541 1542 if (r1_bio->behind_master_bio) { 1543 mbio = bio_alloc_clone(rdev->bdev, 1544 r1_bio->behind_master_bio, 1545 GFP_NOIO, &mddev->bio_set); 1546 if (test_bit(CollisionCheck, &rdev->flags)) 1547 wait_for_serialization(rdev, r1_bio); 1548 if (test_bit(WriteMostly, &rdev->flags)) 1549 atomic_inc(&r1_bio->behind_remaining); 1550 } else { 1551 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1552 &mddev->bio_set); 1553 1554 if (mddev->serialize_policy) 1555 wait_for_serialization(rdev, r1_bio); 1556 } 1557 1558 r1_bio->bios[i] = mbio; 1559 1560 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1561 mbio->bi_end_io = raid1_end_write_request; 1562 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1563 if (test_bit(FailFast, &rdev->flags) && 1564 !test_bit(WriteMostly, &rdev->flags) && 1565 conf->raid_disks - mddev->degraded > 1) 1566 mbio->bi_opf |= MD_FAILFAST; 1567 mbio->bi_private = r1_bio; 1568 1569 atomic_inc(&r1_bio->remaining); 1570 1571 if (mddev->gendisk) 1572 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1573 r1_bio->sector); 1574 /* flush_pending_writes() needs access to the rdev so...*/ 1575 mbio->bi_bdev = (void *)rdev; 1576 1577 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1578 if (cb) 1579 plug = container_of(cb, struct raid1_plug_cb, cb); 1580 else 1581 plug = NULL; 1582 if (plug) { 1583 bio_list_add(&plug->pending, mbio); 1584 } else { 1585 spin_lock_irqsave(&conf->device_lock, flags); 1586 bio_list_add(&conf->pending_bio_list, mbio); 1587 spin_unlock_irqrestore(&conf->device_lock, flags); 1588 md_wakeup_thread(mddev->thread); 1589 } 1590 } 1591 1592 r1_bio_write_done(r1_bio); 1593 1594 /* In case raid1d snuck in to freeze_array */ 1595 wake_up(&conf->wait_barrier); 1596} 1597 1598static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1599{ 1600 sector_t sectors; 1601 1602 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1603 && md_flush_request(mddev, bio)) 1604 return true; 1605 1606 /* 1607 * There is a limit to the maximum size, but 1608 * the read/write handler might find a lower limit 1609 * due to bad blocks. To avoid multiple splits, 1610 * we pass the maximum number of sectors down 1611 * and let the lower level perform the split. 1612 */ 1613 sectors = align_to_barrier_unit_end( 1614 bio->bi_iter.bi_sector, bio_sectors(bio)); 1615 1616 if (bio_data_dir(bio) == READ) 1617 raid1_read_request(mddev, bio, sectors, NULL); 1618 else { 1619 if (!md_write_start(mddev,bio)) 1620 return false; 1621 raid1_write_request(mddev, bio, sectors); 1622 } 1623 return true; 1624} 1625 1626static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1627{ 1628 struct r1conf *conf = mddev->private; 1629 int i; 1630 1631 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1632 conf->raid_disks - mddev->degraded); 1633 rcu_read_lock(); 1634 for (i = 0; i < conf->raid_disks; i++) { 1635 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1636 seq_printf(seq, "%s", 1637 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1638 } 1639 rcu_read_unlock(); 1640 seq_printf(seq, "]"); 1641} 1642 1643/** 1644 * raid1_error() - RAID1 error handler. 1645 * @mddev: affected md device. 1646 * @rdev: member device to fail. 1647 * 1648 * The routine acknowledges &rdev failure and determines new @mddev state. 1649 * If it failed, then: 1650 * - &MD_BROKEN flag is set in &mddev->flags. 1651 * - recovery is disabled. 1652 * Otherwise, it must be degraded: 1653 * - recovery is interrupted. 1654 * - &mddev->degraded is bumped. 1655 * 1656 * @rdev is marked as &Faulty excluding case when array is failed and 1657 * &mddev->fail_last_dev is off. 1658 */ 1659static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1660{ 1661 struct r1conf *conf = mddev->private; 1662 unsigned long flags; 1663 1664 spin_lock_irqsave(&conf->device_lock, flags); 1665 1666 if (test_bit(In_sync, &rdev->flags) && 1667 (conf->raid_disks - mddev->degraded) == 1) { 1668 set_bit(MD_BROKEN, &mddev->flags); 1669 1670 if (!mddev->fail_last_dev) { 1671 conf->recovery_disabled = mddev->recovery_disabled; 1672 spin_unlock_irqrestore(&conf->device_lock, flags); 1673 return; 1674 } 1675 } 1676 set_bit(Blocked, &rdev->flags); 1677 if (test_and_clear_bit(In_sync, &rdev->flags)) 1678 mddev->degraded++; 1679 set_bit(Faulty, &rdev->flags); 1680 spin_unlock_irqrestore(&conf->device_lock, flags); 1681 /* 1682 * if recovery is running, make sure it aborts. 1683 */ 1684 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1685 set_mask_bits(&mddev->sb_flags, 0, 1686 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1687 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1688 "md/raid1:%s: Operation continuing on %d devices.\n", 1689 mdname(mddev), rdev->bdev, 1690 mdname(mddev), conf->raid_disks - mddev->degraded); 1691} 1692 1693static void print_conf(struct r1conf *conf) 1694{ 1695 int i; 1696 1697 pr_debug("RAID1 conf printout:\n"); 1698 if (!conf) { 1699 pr_debug("(!conf)\n"); 1700 return; 1701 } 1702 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1703 conf->raid_disks); 1704 1705 rcu_read_lock(); 1706 for (i = 0; i < conf->raid_disks; i++) { 1707 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1708 if (rdev) 1709 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1710 i, !test_bit(In_sync, &rdev->flags), 1711 !test_bit(Faulty, &rdev->flags), 1712 rdev->bdev); 1713 } 1714 rcu_read_unlock(); 1715} 1716 1717static void close_sync(struct r1conf *conf) 1718{ 1719 int idx; 1720 1721 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1722 _wait_barrier(conf, idx, false); 1723 _allow_barrier(conf, idx); 1724 } 1725 1726 mempool_exit(&conf->r1buf_pool); 1727} 1728 1729static int raid1_spare_active(struct mddev *mddev) 1730{ 1731 int i; 1732 struct r1conf *conf = mddev->private; 1733 int count = 0; 1734 unsigned long flags; 1735 1736 /* 1737 * Find all failed disks within the RAID1 configuration 1738 * and mark them readable. 1739 * Called under mddev lock, so rcu protection not needed. 1740 * device_lock used to avoid races with raid1_end_read_request 1741 * which expects 'In_sync' flags and ->degraded to be consistent. 1742 */ 1743 spin_lock_irqsave(&conf->device_lock, flags); 1744 for (i = 0; i < conf->raid_disks; i++) { 1745 struct md_rdev *rdev = conf->mirrors[i].rdev; 1746 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1747 if (repl 1748 && !test_bit(Candidate, &repl->flags) 1749 && repl->recovery_offset == MaxSector 1750 && !test_bit(Faulty, &repl->flags) 1751 && !test_and_set_bit(In_sync, &repl->flags)) { 1752 /* replacement has just become active */ 1753 if (!rdev || 1754 !test_and_clear_bit(In_sync, &rdev->flags)) 1755 count++; 1756 if (rdev) { 1757 /* Replaced device not technically 1758 * faulty, but we need to be sure 1759 * it gets removed and never re-added 1760 */ 1761 set_bit(Faulty, &rdev->flags); 1762 sysfs_notify_dirent_safe( 1763 rdev->sysfs_state); 1764 } 1765 } 1766 if (rdev 1767 && rdev->recovery_offset == MaxSector 1768 && !test_bit(Faulty, &rdev->flags) 1769 && !test_and_set_bit(In_sync, &rdev->flags)) { 1770 count++; 1771 sysfs_notify_dirent_safe(rdev->sysfs_state); 1772 } 1773 } 1774 mddev->degraded -= count; 1775 spin_unlock_irqrestore(&conf->device_lock, flags); 1776 1777 print_conf(conf); 1778 return count; 1779} 1780 1781static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1782{ 1783 struct r1conf *conf = mddev->private; 1784 int err = -EEXIST; 1785 int mirror = 0; 1786 struct raid1_info *p; 1787 int first = 0; 1788 int last = conf->raid_disks - 1; 1789 1790 if (mddev->recovery_disabled == conf->recovery_disabled) 1791 return -EBUSY; 1792 1793 if (md_integrity_add_rdev(rdev, mddev)) 1794 return -ENXIO; 1795 1796 if (rdev->raid_disk >= 0) 1797 first = last = rdev->raid_disk; 1798 1799 /* 1800 * find the disk ... but prefer rdev->saved_raid_disk 1801 * if possible. 1802 */ 1803 if (rdev->saved_raid_disk >= 0 && 1804 rdev->saved_raid_disk >= first && 1805 rdev->saved_raid_disk < conf->raid_disks && 1806 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1807 first = last = rdev->saved_raid_disk; 1808 1809 for (mirror = first; mirror <= last; mirror++) { 1810 p = conf->mirrors + mirror; 1811 if (!p->rdev) { 1812 if (mddev->gendisk) 1813 disk_stack_limits(mddev->gendisk, rdev->bdev, 1814 rdev->data_offset << 9); 1815 1816 p->head_position = 0; 1817 rdev->raid_disk = mirror; 1818 err = 0; 1819 /* As all devices are equivalent, we don't need a full recovery 1820 * if this was recently any drive of the array 1821 */ 1822 if (rdev->saved_raid_disk < 0) 1823 conf->fullsync = 1; 1824 rcu_assign_pointer(p->rdev, rdev); 1825 break; 1826 } 1827 if (test_bit(WantReplacement, &p->rdev->flags) && 1828 p[conf->raid_disks].rdev == NULL) { 1829 /* Add this device as a replacement */ 1830 clear_bit(In_sync, &rdev->flags); 1831 set_bit(Replacement, &rdev->flags); 1832 rdev->raid_disk = mirror; 1833 err = 0; 1834 conf->fullsync = 1; 1835 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1836 break; 1837 } 1838 } 1839 print_conf(conf); 1840 return err; 1841} 1842 1843static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1844{ 1845 struct r1conf *conf = mddev->private; 1846 int err = 0; 1847 int number = rdev->raid_disk; 1848 struct raid1_info *p = conf->mirrors + number; 1849 1850 if (rdev != p->rdev) 1851 p = conf->mirrors + conf->raid_disks + number; 1852 1853 print_conf(conf); 1854 if (rdev == p->rdev) { 1855 if (test_bit(In_sync, &rdev->flags) || 1856 atomic_read(&rdev->nr_pending)) { 1857 err = -EBUSY; 1858 goto abort; 1859 } 1860 /* Only remove non-faulty devices if recovery 1861 * is not possible. 1862 */ 1863 if (!test_bit(Faulty, &rdev->flags) && 1864 mddev->recovery_disabled != conf->recovery_disabled && 1865 mddev->degraded < conf->raid_disks) { 1866 err = -EBUSY; 1867 goto abort; 1868 } 1869 p->rdev = NULL; 1870 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1871 synchronize_rcu(); 1872 if (atomic_read(&rdev->nr_pending)) { 1873 /* lost the race, try later */ 1874 err = -EBUSY; 1875 p->rdev = rdev; 1876 goto abort; 1877 } 1878 } 1879 if (conf->mirrors[conf->raid_disks + number].rdev) { 1880 /* We just removed a device that is being replaced. 1881 * Move down the replacement. We drain all IO before 1882 * doing this to avoid confusion. 1883 */ 1884 struct md_rdev *repl = 1885 conf->mirrors[conf->raid_disks + number].rdev; 1886 freeze_array(conf, 0); 1887 if (atomic_read(&repl->nr_pending)) { 1888 /* It means that some queued IO of retry_list 1889 * hold repl. Thus, we cannot set replacement 1890 * as NULL, avoiding rdev NULL pointer 1891 * dereference in sync_request_write and 1892 * handle_write_finished. 1893 */ 1894 err = -EBUSY; 1895 unfreeze_array(conf); 1896 goto abort; 1897 } 1898 clear_bit(Replacement, &repl->flags); 1899 p->rdev = repl; 1900 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1901 unfreeze_array(conf); 1902 } 1903 1904 clear_bit(WantReplacement, &rdev->flags); 1905 err = md_integrity_register(mddev); 1906 } 1907abort: 1908 1909 print_conf(conf); 1910 return err; 1911} 1912 1913static void end_sync_read(struct bio *bio) 1914{ 1915 struct r1bio *r1_bio = get_resync_r1bio(bio); 1916 1917 update_head_pos(r1_bio->read_disk, r1_bio); 1918 1919 /* 1920 * we have read a block, now it needs to be re-written, 1921 * or re-read if the read failed. 1922 * We don't do much here, just schedule handling by raid1d 1923 */ 1924 if (!bio->bi_status) 1925 set_bit(R1BIO_Uptodate, &r1_bio->state); 1926 1927 if (atomic_dec_and_test(&r1_bio->remaining)) 1928 reschedule_retry(r1_bio); 1929} 1930 1931static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1932{ 1933 sector_t sync_blocks = 0; 1934 sector_t s = r1_bio->sector; 1935 long sectors_to_go = r1_bio->sectors; 1936 1937 /* make sure these bits don't get cleared. */ 1938 do { 1939 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1940 s += sync_blocks; 1941 sectors_to_go -= sync_blocks; 1942 } while (sectors_to_go > 0); 1943} 1944 1945static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1946{ 1947 if (atomic_dec_and_test(&r1_bio->remaining)) { 1948 struct mddev *mddev = r1_bio->mddev; 1949 int s = r1_bio->sectors; 1950 1951 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1952 test_bit(R1BIO_WriteError, &r1_bio->state)) 1953 reschedule_retry(r1_bio); 1954 else { 1955 put_buf(r1_bio); 1956 md_done_sync(mddev, s, uptodate); 1957 } 1958 } 1959} 1960 1961static void end_sync_write(struct bio *bio) 1962{ 1963 int uptodate = !bio->bi_status; 1964 struct r1bio *r1_bio = get_resync_r1bio(bio); 1965 struct mddev *mddev = r1_bio->mddev; 1966 struct r1conf *conf = mddev->private; 1967 sector_t first_bad; 1968 int bad_sectors; 1969 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1970 1971 if (!uptodate) { 1972 abort_sync_write(mddev, r1_bio); 1973 set_bit(WriteErrorSeen, &rdev->flags); 1974 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1975 set_bit(MD_RECOVERY_NEEDED, & 1976 mddev->recovery); 1977 set_bit(R1BIO_WriteError, &r1_bio->state); 1978 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1979 &first_bad, &bad_sectors) && 1980 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1981 r1_bio->sector, 1982 r1_bio->sectors, 1983 &first_bad, &bad_sectors) 1984 ) 1985 set_bit(R1BIO_MadeGood, &r1_bio->state); 1986 1987 put_sync_write_buf(r1_bio, uptodate); 1988} 1989 1990static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1991 int sectors, struct page *page, int rw) 1992{ 1993 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1994 /* success */ 1995 return 1; 1996 if (rw == WRITE) { 1997 set_bit(WriteErrorSeen, &rdev->flags); 1998 if (!test_and_set_bit(WantReplacement, 1999 &rdev->flags)) 2000 set_bit(MD_RECOVERY_NEEDED, & 2001 rdev->mddev->recovery); 2002 } 2003 /* need to record an error - either for the block or the device */ 2004 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2005 md_error(rdev->mddev, rdev); 2006 return 0; 2007} 2008 2009static int fix_sync_read_error(struct r1bio *r1_bio) 2010{ 2011 /* Try some synchronous reads of other devices to get 2012 * good data, much like with normal read errors. Only 2013 * read into the pages we already have so we don't 2014 * need to re-issue the read request. 2015 * We don't need to freeze the array, because being in an 2016 * active sync request, there is no normal IO, and 2017 * no overlapping syncs. 2018 * We don't need to check is_badblock() again as we 2019 * made sure that anything with a bad block in range 2020 * will have bi_end_io clear. 2021 */ 2022 struct mddev *mddev = r1_bio->mddev; 2023 struct r1conf *conf = mddev->private; 2024 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2025 struct page **pages = get_resync_pages(bio)->pages; 2026 sector_t sect = r1_bio->sector; 2027 int sectors = r1_bio->sectors; 2028 int idx = 0; 2029 struct md_rdev *rdev; 2030 2031 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2032 if (test_bit(FailFast, &rdev->flags)) { 2033 /* Don't try recovering from here - just fail it 2034 * ... unless it is the last working device of course */ 2035 md_error(mddev, rdev); 2036 if (test_bit(Faulty, &rdev->flags)) 2037 /* Don't try to read from here, but make sure 2038 * put_buf does it's thing 2039 */ 2040 bio->bi_end_io = end_sync_write; 2041 } 2042 2043 while(sectors) { 2044 int s = sectors; 2045 int d = r1_bio->read_disk; 2046 int success = 0; 2047 int start; 2048 2049 if (s > (PAGE_SIZE>>9)) 2050 s = PAGE_SIZE >> 9; 2051 do { 2052 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2053 /* No rcu protection needed here devices 2054 * can only be removed when no resync is 2055 * active, and resync is currently active 2056 */ 2057 rdev = conf->mirrors[d].rdev; 2058 if (sync_page_io(rdev, sect, s<<9, 2059 pages[idx], 2060 REQ_OP_READ, 0, false)) { 2061 success = 1; 2062 break; 2063 } 2064 } 2065 d++; 2066 if (d == conf->raid_disks * 2) 2067 d = 0; 2068 } while (!success && d != r1_bio->read_disk); 2069 2070 if (!success) { 2071 int abort = 0; 2072 /* Cannot read from anywhere, this block is lost. 2073 * Record a bad block on each device. If that doesn't 2074 * work just disable and interrupt the recovery. 2075 * Don't fail devices as that won't really help. 2076 */ 2077 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2078 mdname(mddev), bio->bi_bdev, 2079 (unsigned long long)r1_bio->sector); 2080 for (d = 0; d < conf->raid_disks * 2; d++) { 2081 rdev = conf->mirrors[d].rdev; 2082 if (!rdev || test_bit(Faulty, &rdev->flags)) 2083 continue; 2084 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2085 abort = 1; 2086 } 2087 if (abort) { 2088 conf->recovery_disabled = 2089 mddev->recovery_disabled; 2090 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2091 md_done_sync(mddev, r1_bio->sectors, 0); 2092 put_buf(r1_bio); 2093 return 0; 2094 } 2095 /* Try next page */ 2096 sectors -= s; 2097 sect += s; 2098 idx++; 2099 continue; 2100 } 2101 2102 start = d; 2103 /* write it back and re-read */ 2104 while (d != r1_bio->read_disk) { 2105 if (d == 0) 2106 d = conf->raid_disks * 2; 2107 d--; 2108 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2109 continue; 2110 rdev = conf->mirrors[d].rdev; 2111 if (r1_sync_page_io(rdev, sect, s, 2112 pages[idx], 2113 WRITE) == 0) { 2114 r1_bio->bios[d]->bi_end_io = NULL; 2115 rdev_dec_pending(rdev, mddev); 2116 } 2117 } 2118 d = start; 2119 while (d != r1_bio->read_disk) { 2120 if (d == 0) 2121 d = conf->raid_disks * 2; 2122 d--; 2123 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2124 continue; 2125 rdev = conf->mirrors[d].rdev; 2126 if (r1_sync_page_io(rdev, sect, s, 2127 pages[idx], 2128 READ) != 0) 2129 atomic_add(s, &rdev->corrected_errors); 2130 } 2131 sectors -= s; 2132 sect += s; 2133 idx ++; 2134 } 2135 set_bit(R1BIO_Uptodate, &r1_bio->state); 2136 bio->bi_status = 0; 2137 return 1; 2138} 2139 2140static void process_checks(struct r1bio *r1_bio) 2141{ 2142 /* We have read all readable devices. If we haven't 2143 * got the block, then there is no hope left. 2144 * If we have, then we want to do a comparison 2145 * and skip the write if everything is the same. 2146 * If any blocks failed to read, then we need to 2147 * attempt an over-write 2148 */ 2149 struct mddev *mddev = r1_bio->mddev; 2150 struct r1conf *conf = mddev->private; 2151 int primary; 2152 int i; 2153 int vcnt; 2154 2155 /* Fix variable parts of all bios */ 2156 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2157 for (i = 0; i < conf->raid_disks * 2; i++) { 2158 blk_status_t status; 2159 struct bio *b = r1_bio->bios[i]; 2160 struct resync_pages *rp = get_resync_pages(b); 2161 if (b->bi_end_io != end_sync_read) 2162 continue; 2163 /* fixup the bio for reuse, but preserve errno */ 2164 status = b->bi_status; 2165 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2166 b->bi_status = status; 2167 b->bi_iter.bi_sector = r1_bio->sector + 2168 conf->mirrors[i].rdev->data_offset; 2169 b->bi_end_io = end_sync_read; 2170 rp->raid_bio = r1_bio; 2171 b->bi_private = rp; 2172 2173 /* initialize bvec table again */ 2174 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2175 } 2176 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2177 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2178 !r1_bio->bios[primary]->bi_status) { 2179 r1_bio->bios[primary]->bi_end_io = NULL; 2180 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2181 break; 2182 } 2183 r1_bio->read_disk = primary; 2184 for (i = 0; i < conf->raid_disks * 2; i++) { 2185 int j = 0; 2186 struct bio *pbio = r1_bio->bios[primary]; 2187 struct bio *sbio = r1_bio->bios[i]; 2188 blk_status_t status = sbio->bi_status; 2189 struct page **ppages = get_resync_pages(pbio)->pages; 2190 struct page **spages = get_resync_pages(sbio)->pages; 2191 struct bio_vec *bi; 2192 int page_len[RESYNC_PAGES] = { 0 }; 2193 struct bvec_iter_all iter_all; 2194 2195 if (sbio->bi_end_io != end_sync_read) 2196 continue; 2197 /* Now we can 'fixup' the error value */ 2198 sbio->bi_status = 0; 2199 2200 bio_for_each_segment_all(bi, sbio, iter_all) 2201 page_len[j++] = bi->bv_len; 2202 2203 if (!status) { 2204 for (j = vcnt; j-- ; ) { 2205 if (memcmp(page_address(ppages[j]), 2206 page_address(spages[j]), 2207 page_len[j])) 2208 break; 2209 } 2210 } else 2211 j = 0; 2212 if (j >= 0) 2213 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2214 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2215 && !status)) { 2216 /* No need to write to this device. */ 2217 sbio->bi_end_io = NULL; 2218 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2219 continue; 2220 } 2221 2222 bio_copy_data(sbio, pbio); 2223 } 2224} 2225 2226static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2227{ 2228 struct r1conf *conf = mddev->private; 2229 int i; 2230 int disks = conf->raid_disks * 2; 2231 struct bio *wbio; 2232 2233 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2234 /* ouch - failed to read all of that. */ 2235 if (!fix_sync_read_error(r1_bio)) 2236 return; 2237 2238 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2239 process_checks(r1_bio); 2240 2241 /* 2242 * schedule writes 2243 */ 2244 atomic_set(&r1_bio->remaining, 1); 2245 for (i = 0; i < disks ; i++) { 2246 wbio = r1_bio->bios[i]; 2247 if (wbio->bi_end_io == NULL || 2248 (wbio->bi_end_io == end_sync_read && 2249 (i == r1_bio->read_disk || 2250 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2251 continue; 2252 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2253 abort_sync_write(mddev, r1_bio); 2254 continue; 2255 } 2256 2257 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2258 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2259 wbio->bi_opf |= MD_FAILFAST; 2260 2261 wbio->bi_end_io = end_sync_write; 2262 atomic_inc(&r1_bio->remaining); 2263 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2264 2265 submit_bio_noacct(wbio); 2266 } 2267 2268 put_sync_write_buf(r1_bio, 1); 2269} 2270 2271/* 2272 * This is a kernel thread which: 2273 * 2274 * 1. Retries failed read operations on working mirrors. 2275 * 2. Updates the raid superblock when problems encounter. 2276 * 3. Performs writes following reads for array synchronising. 2277 */ 2278 2279static void fix_read_error(struct r1conf *conf, int read_disk, 2280 sector_t sect, int sectors) 2281{ 2282 struct mddev *mddev = conf->mddev; 2283 while(sectors) { 2284 int s = sectors; 2285 int d = read_disk; 2286 int success = 0; 2287 int start; 2288 struct md_rdev *rdev; 2289 2290 if (s > (PAGE_SIZE>>9)) 2291 s = PAGE_SIZE >> 9; 2292 2293 do { 2294 sector_t first_bad; 2295 int bad_sectors; 2296 2297 rcu_read_lock(); 2298 rdev = rcu_dereference(conf->mirrors[d].rdev); 2299 if (rdev && 2300 (test_bit(In_sync, &rdev->flags) || 2301 (!test_bit(Faulty, &rdev->flags) && 2302 rdev->recovery_offset >= sect + s)) && 2303 is_badblock(rdev, sect, s, 2304 &first_bad, &bad_sectors) == 0) { 2305 atomic_inc(&rdev->nr_pending); 2306 rcu_read_unlock(); 2307 if (sync_page_io(rdev, sect, s<<9, 2308 conf->tmppage, REQ_OP_READ, 0, false)) 2309 success = 1; 2310 rdev_dec_pending(rdev, mddev); 2311 if (success) 2312 break; 2313 } else 2314 rcu_read_unlock(); 2315 d++; 2316 if (d == conf->raid_disks * 2) 2317 d = 0; 2318 } while (!success && d != read_disk); 2319 2320 if (!success) { 2321 /* Cannot read from anywhere - mark it bad */ 2322 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2323 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2324 md_error(mddev, rdev); 2325 break; 2326 } 2327 /* write it back and re-read */ 2328 start = d; 2329 while (d != read_disk) { 2330 if (d==0) 2331 d = conf->raid_disks * 2; 2332 d--; 2333 rcu_read_lock(); 2334 rdev = rcu_dereference(conf->mirrors[d].rdev); 2335 if (rdev && 2336 !test_bit(Faulty, &rdev->flags)) { 2337 atomic_inc(&rdev->nr_pending); 2338 rcu_read_unlock(); 2339 r1_sync_page_io(rdev, sect, s, 2340 conf->tmppage, WRITE); 2341 rdev_dec_pending(rdev, mddev); 2342 } else 2343 rcu_read_unlock(); 2344 } 2345 d = start; 2346 while (d != read_disk) { 2347 if (d==0) 2348 d = conf->raid_disks * 2; 2349 d--; 2350 rcu_read_lock(); 2351 rdev = rcu_dereference(conf->mirrors[d].rdev); 2352 if (rdev && 2353 !test_bit(Faulty, &rdev->flags)) { 2354 atomic_inc(&rdev->nr_pending); 2355 rcu_read_unlock(); 2356 if (r1_sync_page_io(rdev, sect, s, 2357 conf->tmppage, READ)) { 2358 atomic_add(s, &rdev->corrected_errors); 2359 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2360 mdname(mddev), s, 2361 (unsigned long long)(sect + 2362 rdev->data_offset), 2363 rdev->bdev); 2364 } 2365 rdev_dec_pending(rdev, mddev); 2366 } else 2367 rcu_read_unlock(); 2368 } 2369 sectors -= s; 2370 sect += s; 2371 } 2372} 2373 2374static int narrow_write_error(struct r1bio *r1_bio, int i) 2375{ 2376 struct mddev *mddev = r1_bio->mddev; 2377 struct r1conf *conf = mddev->private; 2378 struct md_rdev *rdev = conf->mirrors[i].rdev; 2379 2380 /* bio has the data to be written to device 'i' where 2381 * we just recently had a write error. 2382 * We repeatedly clone the bio and trim down to one block, 2383 * then try the write. Where the write fails we record 2384 * a bad block. 2385 * It is conceivable that the bio doesn't exactly align with 2386 * blocks. We must handle this somehow. 2387 * 2388 * We currently own a reference on the rdev. 2389 */ 2390 2391 int block_sectors; 2392 sector_t sector; 2393 int sectors; 2394 int sect_to_write = r1_bio->sectors; 2395 int ok = 1; 2396 2397 if (rdev->badblocks.shift < 0) 2398 return 0; 2399 2400 block_sectors = roundup(1 << rdev->badblocks.shift, 2401 bdev_logical_block_size(rdev->bdev) >> 9); 2402 sector = r1_bio->sector; 2403 sectors = ((sector + block_sectors) 2404 & ~(sector_t)(block_sectors - 1)) 2405 - sector; 2406 2407 while (sect_to_write) { 2408 struct bio *wbio; 2409 if (sectors > sect_to_write) 2410 sectors = sect_to_write; 2411 /* Write at 'sector' for 'sectors'*/ 2412 2413 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2414 wbio = bio_alloc_clone(rdev->bdev, 2415 r1_bio->behind_master_bio, 2416 GFP_NOIO, &mddev->bio_set); 2417 } else { 2418 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2419 GFP_NOIO, &mddev->bio_set); 2420 } 2421 2422 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2423 wbio->bi_iter.bi_sector = r1_bio->sector; 2424 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2425 2426 bio_trim(wbio, sector - r1_bio->sector, sectors); 2427 wbio->bi_iter.bi_sector += rdev->data_offset; 2428 2429 if (submit_bio_wait(wbio) < 0) 2430 /* failure! */ 2431 ok = rdev_set_badblocks(rdev, sector, 2432 sectors, 0) 2433 && ok; 2434 2435 bio_put(wbio); 2436 sect_to_write -= sectors; 2437 sector += sectors; 2438 sectors = block_sectors; 2439 } 2440 return ok; 2441} 2442 2443static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2444{ 2445 int m; 2446 int s = r1_bio->sectors; 2447 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2448 struct md_rdev *rdev = conf->mirrors[m].rdev; 2449 struct bio *bio = r1_bio->bios[m]; 2450 if (bio->bi_end_io == NULL) 2451 continue; 2452 if (!bio->bi_status && 2453 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2454 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2455 } 2456 if (bio->bi_status && 2457 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2458 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2459 md_error(conf->mddev, rdev); 2460 } 2461 } 2462 put_buf(r1_bio); 2463 md_done_sync(conf->mddev, s, 1); 2464} 2465 2466static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2467{ 2468 int m, idx; 2469 bool fail = false; 2470 2471 for (m = 0; m < conf->raid_disks * 2 ; m++) 2472 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2473 struct md_rdev *rdev = conf->mirrors[m].rdev; 2474 rdev_clear_badblocks(rdev, 2475 r1_bio->sector, 2476 r1_bio->sectors, 0); 2477 rdev_dec_pending(rdev, conf->mddev); 2478 } else if (r1_bio->bios[m] != NULL) { 2479 /* This drive got a write error. We need to 2480 * narrow down and record precise write 2481 * errors. 2482 */ 2483 fail = true; 2484 if (!narrow_write_error(r1_bio, m)) { 2485 md_error(conf->mddev, 2486 conf->mirrors[m].rdev); 2487 /* an I/O failed, we can't clear the bitmap */ 2488 set_bit(R1BIO_Degraded, &r1_bio->state); 2489 } 2490 rdev_dec_pending(conf->mirrors[m].rdev, 2491 conf->mddev); 2492 } 2493 if (fail) { 2494 spin_lock_irq(&conf->device_lock); 2495 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2496 idx = sector_to_idx(r1_bio->sector); 2497 atomic_inc(&conf->nr_queued[idx]); 2498 spin_unlock_irq(&conf->device_lock); 2499 /* 2500 * In case freeze_array() is waiting for condition 2501 * get_unqueued_pending() == extra to be true. 2502 */ 2503 wake_up(&conf->wait_barrier); 2504 md_wakeup_thread(conf->mddev->thread); 2505 } else { 2506 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2507 close_write(r1_bio); 2508 raid_end_bio_io(r1_bio); 2509 } 2510} 2511 2512static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2513{ 2514 struct mddev *mddev = conf->mddev; 2515 struct bio *bio; 2516 struct md_rdev *rdev; 2517 2518 clear_bit(R1BIO_ReadError, &r1_bio->state); 2519 /* we got a read error. Maybe the drive is bad. Maybe just 2520 * the block and we can fix it. 2521 * We freeze all other IO, and try reading the block from 2522 * other devices. When we find one, we re-write 2523 * and check it that fixes the read error. 2524 * This is all done synchronously while the array is 2525 * frozen 2526 */ 2527 2528 bio = r1_bio->bios[r1_bio->read_disk]; 2529 bio_put(bio); 2530 r1_bio->bios[r1_bio->read_disk] = NULL; 2531 2532 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2533 if (mddev->ro == 0 2534 && !test_bit(FailFast, &rdev->flags)) { 2535 freeze_array(conf, 1); 2536 fix_read_error(conf, r1_bio->read_disk, 2537 r1_bio->sector, r1_bio->sectors); 2538 unfreeze_array(conf); 2539 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2540 md_error(mddev, rdev); 2541 } else { 2542 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2543 } 2544 2545 rdev_dec_pending(rdev, conf->mddev); 2546 allow_barrier(conf, r1_bio->sector); 2547 bio = r1_bio->master_bio; 2548 2549 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2550 r1_bio->state = 0; 2551 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2552} 2553 2554static void raid1d(struct md_thread *thread) 2555{ 2556 struct mddev *mddev = thread->mddev; 2557 struct r1bio *r1_bio; 2558 unsigned long flags; 2559 struct r1conf *conf = mddev->private; 2560 struct list_head *head = &conf->retry_list; 2561 struct blk_plug plug; 2562 int idx; 2563 2564 md_check_recovery(mddev); 2565 2566 if (!list_empty_careful(&conf->bio_end_io_list) && 2567 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2568 LIST_HEAD(tmp); 2569 spin_lock_irqsave(&conf->device_lock, flags); 2570 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2571 list_splice_init(&conf->bio_end_io_list, &tmp); 2572 spin_unlock_irqrestore(&conf->device_lock, flags); 2573 while (!list_empty(&tmp)) { 2574 r1_bio = list_first_entry(&tmp, struct r1bio, 2575 retry_list); 2576 list_del(&r1_bio->retry_list); 2577 idx = sector_to_idx(r1_bio->sector); 2578 atomic_dec(&conf->nr_queued[idx]); 2579 if (mddev->degraded) 2580 set_bit(R1BIO_Degraded, &r1_bio->state); 2581 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2582 close_write(r1_bio); 2583 raid_end_bio_io(r1_bio); 2584 } 2585 } 2586 2587 blk_start_plug(&plug); 2588 for (;;) { 2589 2590 flush_pending_writes(conf); 2591 2592 spin_lock_irqsave(&conf->device_lock, flags); 2593 if (list_empty(head)) { 2594 spin_unlock_irqrestore(&conf->device_lock, flags); 2595 break; 2596 } 2597 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2598 list_del(head->prev); 2599 idx = sector_to_idx(r1_bio->sector); 2600 atomic_dec(&conf->nr_queued[idx]); 2601 spin_unlock_irqrestore(&conf->device_lock, flags); 2602 2603 mddev = r1_bio->mddev; 2604 conf = mddev->private; 2605 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2606 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2607 test_bit(R1BIO_WriteError, &r1_bio->state)) 2608 handle_sync_write_finished(conf, r1_bio); 2609 else 2610 sync_request_write(mddev, r1_bio); 2611 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2612 test_bit(R1BIO_WriteError, &r1_bio->state)) 2613 handle_write_finished(conf, r1_bio); 2614 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2615 handle_read_error(conf, r1_bio); 2616 else 2617 WARN_ON_ONCE(1); 2618 2619 cond_resched(); 2620 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2621 md_check_recovery(mddev); 2622 } 2623 blk_finish_plug(&plug); 2624} 2625 2626static int init_resync(struct r1conf *conf) 2627{ 2628 int buffs; 2629 2630 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2631 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2632 2633 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2634 r1buf_pool_free, conf->poolinfo); 2635} 2636 2637static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2638{ 2639 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2640 struct resync_pages *rps; 2641 struct bio *bio; 2642 int i; 2643 2644 for (i = conf->poolinfo->raid_disks; i--; ) { 2645 bio = r1bio->bios[i]; 2646 rps = bio->bi_private; 2647 bio_reset(bio, NULL, 0); 2648 bio->bi_private = rps; 2649 } 2650 r1bio->master_bio = NULL; 2651 return r1bio; 2652} 2653 2654/* 2655 * perform a "sync" on one "block" 2656 * 2657 * We need to make sure that no normal I/O request - particularly write 2658 * requests - conflict with active sync requests. 2659 * 2660 * This is achieved by tracking pending requests and a 'barrier' concept 2661 * that can be installed to exclude normal IO requests. 2662 */ 2663 2664static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2665 int *skipped) 2666{ 2667 struct r1conf *conf = mddev->private; 2668 struct r1bio *r1_bio; 2669 struct bio *bio; 2670 sector_t max_sector, nr_sectors; 2671 int disk = -1; 2672 int i; 2673 int wonly = -1; 2674 int write_targets = 0, read_targets = 0; 2675 sector_t sync_blocks; 2676 int still_degraded = 0; 2677 int good_sectors = RESYNC_SECTORS; 2678 int min_bad = 0; /* number of sectors that are bad in all devices */ 2679 int idx = sector_to_idx(sector_nr); 2680 int page_idx = 0; 2681 2682 if (!mempool_initialized(&conf->r1buf_pool)) 2683 if (init_resync(conf)) 2684 return 0; 2685 2686 max_sector = mddev->dev_sectors; 2687 if (sector_nr >= max_sector) { 2688 /* If we aborted, we need to abort the 2689 * sync on the 'current' bitmap chunk (there will 2690 * only be one in raid1 resync. 2691 * We can find the current addess in mddev->curr_resync 2692 */ 2693 if (mddev->curr_resync < max_sector) /* aborted */ 2694 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2695 &sync_blocks, 1); 2696 else /* completed sync */ 2697 conf->fullsync = 0; 2698 2699 md_bitmap_close_sync(mddev->bitmap); 2700 close_sync(conf); 2701 2702 if (mddev_is_clustered(mddev)) { 2703 conf->cluster_sync_low = 0; 2704 conf->cluster_sync_high = 0; 2705 } 2706 return 0; 2707 } 2708 2709 if (mddev->bitmap == NULL && 2710 mddev->recovery_cp == MaxSector && 2711 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2712 conf->fullsync == 0) { 2713 *skipped = 1; 2714 return max_sector - sector_nr; 2715 } 2716 /* before building a request, check if we can skip these blocks.. 2717 * This call the bitmap_start_sync doesn't actually record anything 2718 */ 2719 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2720 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2721 /* We can skip this block, and probably several more */ 2722 *skipped = 1; 2723 return sync_blocks; 2724 } 2725 2726 /* 2727 * If there is non-resync activity waiting for a turn, then let it 2728 * though before starting on this new sync request. 2729 */ 2730 if (atomic_read(&conf->nr_waiting[idx])) 2731 schedule_timeout_uninterruptible(1); 2732 2733 /* we are incrementing sector_nr below. To be safe, we check against 2734 * sector_nr + two times RESYNC_SECTORS 2735 */ 2736 2737 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2738 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2739 2740 2741 if (raise_barrier(conf, sector_nr)) 2742 return 0; 2743 2744 r1_bio = raid1_alloc_init_r1buf(conf); 2745 2746 rcu_read_lock(); 2747 /* 2748 * If we get a correctably read error during resync or recovery, 2749 * we might want to read from a different device. So we 2750 * flag all drives that could conceivably be read from for READ, 2751 * and any others (which will be non-In_sync devices) for WRITE. 2752 * If a read fails, we try reading from something else for which READ 2753 * is OK. 2754 */ 2755 2756 r1_bio->mddev = mddev; 2757 r1_bio->sector = sector_nr; 2758 r1_bio->state = 0; 2759 set_bit(R1BIO_IsSync, &r1_bio->state); 2760 /* make sure good_sectors won't go across barrier unit boundary */ 2761 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2762 2763 for (i = 0; i < conf->raid_disks * 2; i++) { 2764 struct md_rdev *rdev; 2765 bio = r1_bio->bios[i]; 2766 2767 rdev = rcu_dereference(conf->mirrors[i].rdev); 2768 if (rdev == NULL || 2769 test_bit(Faulty, &rdev->flags)) { 2770 if (i < conf->raid_disks) 2771 still_degraded = 1; 2772 } else if (!test_bit(In_sync, &rdev->flags)) { 2773 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2774 bio->bi_end_io = end_sync_write; 2775 write_targets ++; 2776 } else { 2777 /* may need to read from here */ 2778 sector_t first_bad = MaxSector; 2779 int bad_sectors; 2780 2781 if (is_badblock(rdev, sector_nr, good_sectors, 2782 &first_bad, &bad_sectors)) { 2783 if (first_bad > sector_nr) 2784 good_sectors = first_bad - sector_nr; 2785 else { 2786 bad_sectors -= (sector_nr - first_bad); 2787 if (min_bad == 0 || 2788 min_bad > bad_sectors) 2789 min_bad = bad_sectors; 2790 } 2791 } 2792 if (sector_nr < first_bad) { 2793 if (test_bit(WriteMostly, &rdev->flags)) { 2794 if (wonly < 0) 2795 wonly = i; 2796 } else { 2797 if (disk < 0) 2798 disk = i; 2799 } 2800 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2801 bio->bi_end_io = end_sync_read; 2802 read_targets++; 2803 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2804 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2805 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2806 /* 2807 * The device is suitable for reading (InSync), 2808 * but has bad block(s) here. Let's try to correct them, 2809 * if we are doing resync or repair. Otherwise, leave 2810 * this device alone for this sync request. 2811 */ 2812 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2813 bio->bi_end_io = end_sync_write; 2814 write_targets++; 2815 } 2816 } 2817 if (rdev && bio->bi_end_io) { 2818 atomic_inc(&rdev->nr_pending); 2819 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2820 bio_set_dev(bio, rdev->bdev); 2821 if (test_bit(FailFast, &rdev->flags)) 2822 bio->bi_opf |= MD_FAILFAST; 2823 } 2824 } 2825 rcu_read_unlock(); 2826 if (disk < 0) 2827 disk = wonly; 2828 r1_bio->read_disk = disk; 2829 2830 if (read_targets == 0 && min_bad > 0) { 2831 /* These sectors are bad on all InSync devices, so we 2832 * need to mark them bad on all write targets 2833 */ 2834 int ok = 1; 2835 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2836 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2837 struct md_rdev *rdev = conf->mirrors[i].rdev; 2838 ok = rdev_set_badblocks(rdev, sector_nr, 2839 min_bad, 0 2840 ) && ok; 2841 } 2842 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2843 *skipped = 1; 2844 put_buf(r1_bio); 2845 2846 if (!ok) { 2847 /* Cannot record the badblocks, so need to 2848 * abort the resync. 2849 * If there are multiple read targets, could just 2850 * fail the really bad ones ??? 2851 */ 2852 conf->recovery_disabled = mddev->recovery_disabled; 2853 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2854 return 0; 2855 } else 2856 return min_bad; 2857 2858 } 2859 if (min_bad > 0 && min_bad < good_sectors) { 2860 /* only resync enough to reach the next bad->good 2861 * transition */ 2862 good_sectors = min_bad; 2863 } 2864 2865 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2866 /* extra read targets are also write targets */ 2867 write_targets += read_targets-1; 2868 2869 if (write_targets == 0 || read_targets == 0) { 2870 /* There is nowhere to write, so all non-sync 2871 * drives must be failed - so we are finished 2872 */ 2873 sector_t rv; 2874 if (min_bad > 0) 2875 max_sector = sector_nr + min_bad; 2876 rv = max_sector - sector_nr; 2877 *skipped = 1; 2878 put_buf(r1_bio); 2879 return rv; 2880 } 2881 2882 if (max_sector > mddev->resync_max) 2883 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2884 if (max_sector > sector_nr + good_sectors) 2885 max_sector = sector_nr + good_sectors; 2886 nr_sectors = 0; 2887 sync_blocks = 0; 2888 do { 2889 struct page *page; 2890 int len = PAGE_SIZE; 2891 if (sector_nr + (len>>9) > max_sector) 2892 len = (max_sector - sector_nr) << 9; 2893 if (len == 0) 2894 break; 2895 if (sync_blocks == 0) { 2896 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2897 &sync_blocks, still_degraded) && 2898 !conf->fullsync && 2899 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2900 break; 2901 if ((len >> 9) > sync_blocks) 2902 len = sync_blocks<<9; 2903 } 2904 2905 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2906 struct resync_pages *rp; 2907 2908 bio = r1_bio->bios[i]; 2909 rp = get_resync_pages(bio); 2910 if (bio->bi_end_io) { 2911 page = resync_fetch_page(rp, page_idx); 2912 2913 /* 2914 * won't fail because the vec table is big 2915 * enough to hold all these pages 2916 */ 2917 bio_add_page(bio, page, len, 0); 2918 } 2919 } 2920 nr_sectors += len>>9; 2921 sector_nr += len>>9; 2922 sync_blocks -= (len>>9); 2923 } while (++page_idx < RESYNC_PAGES); 2924 2925 r1_bio->sectors = nr_sectors; 2926 2927 if (mddev_is_clustered(mddev) && 2928 conf->cluster_sync_high < sector_nr + nr_sectors) { 2929 conf->cluster_sync_low = mddev->curr_resync_completed; 2930 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2931 /* Send resync message */ 2932 md_cluster_ops->resync_info_update(mddev, 2933 conf->cluster_sync_low, 2934 conf->cluster_sync_high); 2935 } 2936 2937 /* For a user-requested sync, we read all readable devices and do a 2938 * compare 2939 */ 2940 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2941 atomic_set(&r1_bio->remaining, read_targets); 2942 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2943 bio = r1_bio->bios[i]; 2944 if (bio->bi_end_io == end_sync_read) { 2945 read_targets--; 2946 md_sync_acct_bio(bio, nr_sectors); 2947 if (read_targets == 1) 2948 bio->bi_opf &= ~MD_FAILFAST; 2949 submit_bio_noacct(bio); 2950 } 2951 } 2952 } else { 2953 atomic_set(&r1_bio->remaining, 1); 2954 bio = r1_bio->bios[r1_bio->read_disk]; 2955 md_sync_acct_bio(bio, nr_sectors); 2956 if (read_targets == 1) 2957 bio->bi_opf &= ~MD_FAILFAST; 2958 submit_bio_noacct(bio); 2959 } 2960 return nr_sectors; 2961} 2962 2963static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2964{ 2965 if (sectors) 2966 return sectors; 2967 2968 return mddev->dev_sectors; 2969} 2970 2971static struct r1conf *setup_conf(struct mddev *mddev) 2972{ 2973 struct r1conf *conf; 2974 int i; 2975 struct raid1_info *disk; 2976 struct md_rdev *rdev; 2977 int err = -ENOMEM; 2978 2979 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2980 if (!conf) 2981 goto abort; 2982 2983 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2984 sizeof(atomic_t), GFP_KERNEL); 2985 if (!conf->nr_pending) 2986 goto abort; 2987 2988 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2989 sizeof(atomic_t), GFP_KERNEL); 2990 if (!conf->nr_waiting) 2991 goto abort; 2992 2993 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2994 sizeof(atomic_t), GFP_KERNEL); 2995 if (!conf->nr_queued) 2996 goto abort; 2997 2998 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2999 sizeof(atomic_t), GFP_KERNEL); 3000 if (!conf->barrier) 3001 goto abort; 3002 3003 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3004 mddev->raid_disks, 2), 3005 GFP_KERNEL); 3006 if (!conf->mirrors) 3007 goto abort; 3008 3009 conf->tmppage = alloc_page(GFP_KERNEL); 3010 if (!conf->tmppage) 3011 goto abort; 3012 3013 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3014 if (!conf->poolinfo) 3015 goto abort; 3016 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3017 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3018 rbio_pool_free, conf->poolinfo); 3019 if (err) 3020 goto abort; 3021 3022 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3023 if (err) 3024 goto abort; 3025 3026 conf->poolinfo->mddev = mddev; 3027 3028 err = -EINVAL; 3029 spin_lock_init(&conf->device_lock); 3030 rdev_for_each(rdev, mddev) { 3031 int disk_idx = rdev->raid_disk; 3032 if (disk_idx >= mddev->raid_disks 3033 || disk_idx < 0) 3034 continue; 3035 if (test_bit(Replacement, &rdev->flags)) 3036 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3037 else 3038 disk = conf->mirrors + disk_idx; 3039 3040 if (disk->rdev) 3041 goto abort; 3042 disk->rdev = rdev; 3043 disk->head_position = 0; 3044 disk->seq_start = MaxSector; 3045 } 3046 conf->raid_disks = mddev->raid_disks; 3047 conf->mddev = mddev; 3048 INIT_LIST_HEAD(&conf->retry_list); 3049 INIT_LIST_HEAD(&conf->bio_end_io_list); 3050 3051 spin_lock_init(&conf->resync_lock); 3052 init_waitqueue_head(&conf->wait_barrier); 3053 3054 bio_list_init(&conf->pending_bio_list); 3055 conf->recovery_disabled = mddev->recovery_disabled - 1; 3056 3057 err = -EIO; 3058 for (i = 0; i < conf->raid_disks * 2; i++) { 3059 3060 disk = conf->mirrors + i; 3061 3062 if (i < conf->raid_disks && 3063 disk[conf->raid_disks].rdev) { 3064 /* This slot has a replacement. */ 3065 if (!disk->rdev) { 3066 /* No original, just make the replacement 3067 * a recovering spare 3068 */ 3069 disk->rdev = 3070 disk[conf->raid_disks].rdev; 3071 disk[conf->raid_disks].rdev = NULL; 3072 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3073 /* Original is not in_sync - bad */ 3074 goto abort; 3075 } 3076 3077 if (!disk->rdev || 3078 !test_bit(In_sync, &disk->rdev->flags)) { 3079 disk->head_position = 0; 3080 if (disk->rdev && 3081 (disk->rdev->saved_raid_disk < 0)) 3082 conf->fullsync = 1; 3083 } 3084 } 3085 3086 err = -ENOMEM; 3087 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3088 if (!conf->thread) 3089 goto abort; 3090 3091 return conf; 3092 3093 abort: 3094 if (conf) { 3095 mempool_exit(&conf->r1bio_pool); 3096 kfree(conf->mirrors); 3097 safe_put_page(conf->tmppage); 3098 kfree(conf->poolinfo); 3099 kfree(conf->nr_pending); 3100 kfree(conf->nr_waiting); 3101 kfree(conf->nr_queued); 3102 kfree(conf->barrier); 3103 bioset_exit(&conf->bio_split); 3104 kfree(conf); 3105 } 3106 return ERR_PTR(err); 3107} 3108 3109static void raid1_free(struct mddev *mddev, void *priv); 3110static int raid1_run(struct mddev *mddev) 3111{ 3112 struct r1conf *conf; 3113 int i; 3114 struct md_rdev *rdev; 3115 int ret; 3116 3117 if (mddev->level != 1) { 3118 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3119 mdname(mddev), mddev->level); 3120 return -EIO; 3121 } 3122 if (mddev->reshape_position != MaxSector) { 3123 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3124 mdname(mddev)); 3125 return -EIO; 3126 } 3127 if (mddev_init_writes_pending(mddev) < 0) 3128 return -ENOMEM; 3129 /* 3130 * copy the already verified devices into our private RAID1 3131 * bookkeeping area. [whatever we allocate in run(), 3132 * should be freed in raid1_free()] 3133 */ 3134 if (mddev->private == NULL) 3135 conf = setup_conf(mddev); 3136 else 3137 conf = mddev->private; 3138 3139 if (IS_ERR(conf)) 3140 return PTR_ERR(conf); 3141 3142 if (mddev->queue) 3143 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3144 3145 rdev_for_each(rdev, mddev) { 3146 if (!mddev->gendisk) 3147 continue; 3148 disk_stack_limits(mddev->gendisk, rdev->bdev, 3149 rdev->data_offset << 9); 3150 } 3151 3152 mddev->degraded = 0; 3153 for (i = 0; i < conf->raid_disks; i++) 3154 if (conf->mirrors[i].rdev == NULL || 3155 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3156 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3157 mddev->degraded++; 3158 /* 3159 * RAID1 needs at least one disk in active 3160 */ 3161 if (conf->raid_disks - mddev->degraded < 1) { 3162 ret = -EINVAL; 3163 goto abort; 3164 } 3165 3166 if (conf->raid_disks - mddev->degraded == 1) 3167 mddev->recovery_cp = MaxSector; 3168 3169 if (mddev->recovery_cp != MaxSector) 3170 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3171 mdname(mddev)); 3172 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3173 mdname(mddev), mddev->raid_disks - mddev->degraded, 3174 mddev->raid_disks); 3175 3176 /* 3177 * Ok, everything is just fine now 3178 */ 3179 mddev->thread = conf->thread; 3180 conf->thread = NULL; 3181 mddev->private = conf; 3182 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3183 3184 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3185 3186 ret = md_integrity_register(mddev); 3187 if (ret) { 3188 md_unregister_thread(&mddev->thread); 3189 goto abort; 3190 } 3191 return 0; 3192 3193abort: 3194 raid1_free(mddev, conf); 3195 return ret; 3196} 3197 3198static void raid1_free(struct mddev *mddev, void *priv) 3199{ 3200 struct r1conf *conf = priv; 3201 3202 mempool_exit(&conf->r1bio_pool); 3203 kfree(conf->mirrors); 3204 safe_put_page(conf->tmppage); 3205 kfree(conf->poolinfo); 3206 kfree(conf->nr_pending); 3207 kfree(conf->nr_waiting); 3208 kfree(conf->nr_queued); 3209 kfree(conf->barrier); 3210 bioset_exit(&conf->bio_split); 3211 kfree(conf); 3212} 3213 3214static int raid1_resize(struct mddev *mddev, sector_t sectors) 3215{ 3216 /* no resync is happening, and there is enough space 3217 * on all devices, so we can resize. 3218 * We need to make sure resync covers any new space. 3219 * If the array is shrinking we should possibly wait until 3220 * any io in the removed space completes, but it hardly seems 3221 * worth it. 3222 */ 3223 sector_t newsize = raid1_size(mddev, sectors, 0); 3224 if (mddev->external_size && 3225 mddev->array_sectors > newsize) 3226 return -EINVAL; 3227 if (mddev->bitmap) { 3228 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3229 if (ret) 3230 return ret; 3231 } 3232 md_set_array_sectors(mddev, newsize); 3233 if (sectors > mddev->dev_sectors && 3234 mddev->recovery_cp > mddev->dev_sectors) { 3235 mddev->recovery_cp = mddev->dev_sectors; 3236 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3237 } 3238 mddev->dev_sectors = sectors; 3239 mddev->resync_max_sectors = sectors; 3240 return 0; 3241} 3242 3243static int raid1_reshape(struct mddev *mddev) 3244{ 3245 /* We need to: 3246 * 1/ resize the r1bio_pool 3247 * 2/ resize conf->mirrors 3248 * 3249 * We allocate a new r1bio_pool if we can. 3250 * Then raise a device barrier and wait until all IO stops. 3251 * Then resize conf->mirrors and swap in the new r1bio pool. 3252 * 3253 * At the same time, we "pack" the devices so that all the missing 3254 * devices have the higher raid_disk numbers. 3255 */ 3256 mempool_t newpool, oldpool; 3257 struct pool_info *newpoolinfo; 3258 struct raid1_info *newmirrors; 3259 struct r1conf *conf = mddev->private; 3260 int cnt, raid_disks; 3261 unsigned long flags; 3262 int d, d2; 3263 int ret; 3264 3265 memset(&newpool, 0, sizeof(newpool)); 3266 memset(&oldpool, 0, sizeof(oldpool)); 3267 3268 /* Cannot change chunk_size, layout, or level */ 3269 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3270 mddev->layout != mddev->new_layout || 3271 mddev->level != mddev->new_level) { 3272 mddev->new_chunk_sectors = mddev->chunk_sectors; 3273 mddev->new_layout = mddev->layout; 3274 mddev->new_level = mddev->level; 3275 return -EINVAL; 3276 } 3277 3278 if (!mddev_is_clustered(mddev)) 3279 md_allow_write(mddev); 3280 3281 raid_disks = mddev->raid_disks + mddev->delta_disks; 3282 3283 if (raid_disks < conf->raid_disks) { 3284 cnt=0; 3285 for (d= 0; d < conf->raid_disks; d++) 3286 if (conf->mirrors[d].rdev) 3287 cnt++; 3288 if (cnt > raid_disks) 3289 return -EBUSY; 3290 } 3291 3292 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3293 if (!newpoolinfo) 3294 return -ENOMEM; 3295 newpoolinfo->mddev = mddev; 3296 newpoolinfo->raid_disks = raid_disks * 2; 3297 3298 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3299 rbio_pool_free, newpoolinfo); 3300 if (ret) { 3301 kfree(newpoolinfo); 3302 return ret; 3303 } 3304 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3305 raid_disks, 2), 3306 GFP_KERNEL); 3307 if (!newmirrors) { 3308 kfree(newpoolinfo); 3309 mempool_exit(&newpool); 3310 return -ENOMEM; 3311 } 3312 3313 freeze_array(conf, 0); 3314 3315 /* ok, everything is stopped */ 3316 oldpool = conf->r1bio_pool; 3317 conf->r1bio_pool = newpool; 3318 3319 for (d = d2 = 0; d < conf->raid_disks; d++) { 3320 struct md_rdev *rdev = conf->mirrors[d].rdev; 3321 if (rdev && rdev->raid_disk != d2) { 3322 sysfs_unlink_rdev(mddev, rdev); 3323 rdev->raid_disk = d2; 3324 sysfs_unlink_rdev(mddev, rdev); 3325 if (sysfs_link_rdev(mddev, rdev)) 3326 pr_warn("md/raid1:%s: cannot register rd%d\n", 3327 mdname(mddev), rdev->raid_disk); 3328 } 3329 if (rdev) 3330 newmirrors[d2++].rdev = rdev; 3331 } 3332 kfree(conf->mirrors); 3333 conf->mirrors = newmirrors; 3334 kfree(conf->poolinfo); 3335 conf->poolinfo = newpoolinfo; 3336 3337 spin_lock_irqsave(&conf->device_lock, flags); 3338 mddev->degraded += (raid_disks - conf->raid_disks); 3339 spin_unlock_irqrestore(&conf->device_lock, flags); 3340 conf->raid_disks = mddev->raid_disks = raid_disks; 3341 mddev->delta_disks = 0; 3342 3343 unfreeze_array(conf); 3344 3345 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3346 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3347 md_wakeup_thread(mddev->thread); 3348 3349 mempool_exit(&oldpool); 3350 return 0; 3351} 3352 3353static void raid1_quiesce(struct mddev *mddev, int quiesce) 3354{ 3355 struct r1conf *conf = mddev->private; 3356 3357 if (quiesce) 3358 freeze_array(conf, 0); 3359 else 3360 unfreeze_array(conf); 3361} 3362 3363static void *raid1_takeover(struct mddev *mddev) 3364{ 3365 /* raid1 can take over: 3366 * raid5 with 2 devices, any layout or chunk size 3367 */ 3368 if (mddev->level == 5 && mddev->raid_disks == 2) { 3369 struct r1conf *conf; 3370 mddev->new_level = 1; 3371 mddev->new_layout = 0; 3372 mddev->new_chunk_sectors = 0; 3373 conf = setup_conf(mddev); 3374 if (!IS_ERR(conf)) { 3375 /* Array must appear to be quiesced */ 3376 conf->array_frozen = 1; 3377 mddev_clear_unsupported_flags(mddev, 3378 UNSUPPORTED_MDDEV_FLAGS); 3379 } 3380 return conf; 3381 } 3382 return ERR_PTR(-EINVAL); 3383} 3384 3385static struct md_personality raid1_personality = 3386{ 3387 .name = "raid1", 3388 .level = 1, 3389 .owner = THIS_MODULE, 3390 .make_request = raid1_make_request, 3391 .run = raid1_run, 3392 .free = raid1_free, 3393 .status = raid1_status, 3394 .error_handler = raid1_error, 3395 .hot_add_disk = raid1_add_disk, 3396 .hot_remove_disk= raid1_remove_disk, 3397 .spare_active = raid1_spare_active, 3398 .sync_request = raid1_sync_request, 3399 .resize = raid1_resize, 3400 .size = raid1_size, 3401 .check_reshape = raid1_reshape, 3402 .quiesce = raid1_quiesce, 3403 .takeover = raid1_takeover, 3404}; 3405 3406static int __init raid_init(void) 3407{ 3408 return register_md_personality(&raid1_personality); 3409} 3410 3411static void raid_exit(void) 3412{ 3413 unregister_md_personality(&raid1_personality); 3414} 3415 3416module_init(raid_init); 3417module_exit(raid_exit); 3418MODULE_LICENSE("GPL"); 3419MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3420MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3421MODULE_ALIAS("md-raid1"); 3422MODULE_ALIAS("md-level-1");