cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

raid5.c (255892B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * raid5.c : Multiple Devices driver for Linux
      4 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
      5 *	   Copyright (C) 1999, 2000 Ingo Molnar
      6 *	   Copyright (C) 2002, 2003 H. Peter Anvin
      7 *
      8 * RAID-4/5/6 management functions.
      9 * Thanks to Penguin Computing for making the RAID-6 development possible
     10 * by donating a test server!
     11 */
     12
     13/*
     14 * BITMAP UNPLUGGING:
     15 *
     16 * The sequencing for updating the bitmap reliably is a little
     17 * subtle (and I got it wrong the first time) so it deserves some
     18 * explanation.
     19 *
     20 * We group bitmap updates into batches.  Each batch has a number.
     21 * We may write out several batches at once, but that isn't very important.
     22 * conf->seq_write is the number of the last batch successfully written.
     23 * conf->seq_flush is the number of the last batch that was closed to
     24 *    new additions.
     25 * When we discover that we will need to write to any block in a stripe
     26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
     27 * the number of the batch it will be in. This is seq_flush+1.
     28 * When we are ready to do a write, if that batch hasn't been written yet,
     29 *   we plug the array and queue the stripe for later.
     30 * When an unplug happens, we increment bm_flush, thus closing the current
     31 *   batch.
     32 * When we notice that bm_flush > bm_write, we write out all pending updates
     33 * to the bitmap, and advance bm_write to where bm_flush was.
     34 * This may occasionally write a bit out twice, but is sure never to
     35 * miss any bits.
     36 */
     37
     38#include <linux/blkdev.h>
     39#include <linux/kthread.h>
     40#include <linux/raid/pq.h>
     41#include <linux/async_tx.h>
     42#include <linux/module.h>
     43#include <linux/async.h>
     44#include <linux/seq_file.h>
     45#include <linux/cpu.h>
     46#include <linux/slab.h>
     47#include <linux/ratelimit.h>
     48#include <linux/nodemask.h>
     49
     50#include <trace/events/block.h>
     51#include <linux/list_sort.h>
     52
     53#include "md.h"
     54#include "raid5.h"
     55#include "raid0.h"
     56#include "md-bitmap.h"
     57#include "raid5-log.h"
     58
     59#define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
     60
     61#define cpu_to_group(cpu) cpu_to_node(cpu)
     62#define ANY_GROUP NUMA_NO_NODE
     63
     64static bool devices_handle_discard_safely = false;
     65module_param(devices_handle_discard_safely, bool, 0644);
     66MODULE_PARM_DESC(devices_handle_discard_safely,
     67		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
     68static struct workqueue_struct *raid5_wq;
     69
     70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
     71{
     72	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
     73	return &conf->stripe_hashtbl[hash];
     74}
     75
     76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
     77{
     78	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
     79}
     80
     81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
     82	__acquires(&conf->device_lock)
     83{
     84	spin_lock_irq(conf->hash_locks + hash);
     85	spin_lock(&conf->device_lock);
     86}
     87
     88static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
     89	__releases(&conf->device_lock)
     90{
     91	spin_unlock(&conf->device_lock);
     92	spin_unlock_irq(conf->hash_locks + hash);
     93}
     94
     95static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
     96	__acquires(&conf->device_lock)
     97{
     98	int i;
     99	spin_lock_irq(conf->hash_locks);
    100	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
    101		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
    102	spin_lock(&conf->device_lock);
    103}
    104
    105static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
    106	__releases(&conf->device_lock)
    107{
    108	int i;
    109	spin_unlock(&conf->device_lock);
    110	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
    111		spin_unlock(conf->hash_locks + i);
    112	spin_unlock_irq(conf->hash_locks);
    113}
    114
    115/* Find first data disk in a raid6 stripe */
    116static inline int raid6_d0(struct stripe_head *sh)
    117{
    118	if (sh->ddf_layout)
    119		/* ddf always start from first device */
    120		return 0;
    121	/* md starts just after Q block */
    122	if (sh->qd_idx == sh->disks - 1)
    123		return 0;
    124	else
    125		return sh->qd_idx + 1;
    126}
    127static inline int raid6_next_disk(int disk, int raid_disks)
    128{
    129	disk++;
    130	return (disk < raid_disks) ? disk : 0;
    131}
    132
    133/* When walking through the disks in a raid5, starting at raid6_d0,
    134 * We need to map each disk to a 'slot', where the data disks are slot
    135 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
    136 * is raid_disks-1.  This help does that mapping.
    137 */
    138static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
    139			     int *count, int syndrome_disks)
    140{
    141	int slot = *count;
    142
    143	if (sh->ddf_layout)
    144		(*count)++;
    145	if (idx == sh->pd_idx)
    146		return syndrome_disks;
    147	if (idx == sh->qd_idx)
    148		return syndrome_disks + 1;
    149	if (!sh->ddf_layout)
    150		(*count)++;
    151	return slot;
    152}
    153
    154static void print_raid5_conf (struct r5conf *conf);
    155
    156static int stripe_operations_active(struct stripe_head *sh)
    157{
    158	return sh->check_state || sh->reconstruct_state ||
    159	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
    160	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
    161}
    162
    163static bool stripe_is_lowprio(struct stripe_head *sh)
    164{
    165	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
    166		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
    167	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
    168}
    169
    170static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
    171	__must_hold(&sh->raid_conf->device_lock)
    172{
    173	struct r5conf *conf = sh->raid_conf;
    174	struct r5worker_group *group;
    175	int thread_cnt;
    176	int i, cpu = sh->cpu;
    177
    178	if (!cpu_online(cpu)) {
    179		cpu = cpumask_any(cpu_online_mask);
    180		sh->cpu = cpu;
    181	}
    182
    183	if (list_empty(&sh->lru)) {
    184		struct r5worker_group *group;
    185		group = conf->worker_groups + cpu_to_group(cpu);
    186		if (stripe_is_lowprio(sh))
    187			list_add_tail(&sh->lru, &group->loprio_list);
    188		else
    189			list_add_tail(&sh->lru, &group->handle_list);
    190		group->stripes_cnt++;
    191		sh->group = group;
    192	}
    193
    194	if (conf->worker_cnt_per_group == 0) {
    195		md_wakeup_thread(conf->mddev->thread);
    196		return;
    197	}
    198
    199	group = conf->worker_groups + cpu_to_group(sh->cpu);
    200
    201	group->workers[0].working = true;
    202	/* at least one worker should run to avoid race */
    203	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
    204
    205	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
    206	/* wakeup more workers */
    207	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
    208		if (group->workers[i].working == false) {
    209			group->workers[i].working = true;
    210			queue_work_on(sh->cpu, raid5_wq,
    211				      &group->workers[i].work);
    212			thread_cnt--;
    213		}
    214	}
    215}
    216
    217static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
    218			      struct list_head *temp_inactive_list)
    219	__must_hold(&conf->device_lock)
    220{
    221	int i;
    222	int injournal = 0;	/* number of date pages with R5_InJournal */
    223
    224	BUG_ON(!list_empty(&sh->lru));
    225	BUG_ON(atomic_read(&conf->active_stripes)==0);
    226
    227	if (r5c_is_writeback(conf->log))
    228		for (i = sh->disks; i--; )
    229			if (test_bit(R5_InJournal, &sh->dev[i].flags))
    230				injournal++;
    231	/*
    232	 * In the following cases, the stripe cannot be released to cached
    233	 * lists. Therefore, we make the stripe write out and set
    234	 * STRIPE_HANDLE:
    235	 *   1. when quiesce in r5c write back;
    236	 *   2. when resync is requested fot the stripe.
    237	 */
    238	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
    239	    (conf->quiesce && r5c_is_writeback(conf->log) &&
    240	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
    241		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
    242			r5c_make_stripe_write_out(sh);
    243		set_bit(STRIPE_HANDLE, &sh->state);
    244	}
    245
    246	if (test_bit(STRIPE_HANDLE, &sh->state)) {
    247		if (test_bit(STRIPE_DELAYED, &sh->state) &&
    248		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
    249			list_add_tail(&sh->lru, &conf->delayed_list);
    250		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
    251			   sh->bm_seq - conf->seq_write > 0)
    252			list_add_tail(&sh->lru, &conf->bitmap_list);
    253		else {
    254			clear_bit(STRIPE_DELAYED, &sh->state);
    255			clear_bit(STRIPE_BIT_DELAY, &sh->state);
    256			if (conf->worker_cnt_per_group == 0) {
    257				if (stripe_is_lowprio(sh))
    258					list_add_tail(&sh->lru,
    259							&conf->loprio_list);
    260				else
    261					list_add_tail(&sh->lru,
    262							&conf->handle_list);
    263			} else {
    264				raid5_wakeup_stripe_thread(sh);
    265				return;
    266			}
    267		}
    268		md_wakeup_thread(conf->mddev->thread);
    269	} else {
    270		BUG_ON(stripe_operations_active(sh));
    271		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
    272			if (atomic_dec_return(&conf->preread_active_stripes)
    273			    < IO_THRESHOLD)
    274				md_wakeup_thread(conf->mddev->thread);
    275		atomic_dec(&conf->active_stripes);
    276		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
    277			if (!r5c_is_writeback(conf->log))
    278				list_add_tail(&sh->lru, temp_inactive_list);
    279			else {
    280				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
    281				if (injournal == 0)
    282					list_add_tail(&sh->lru, temp_inactive_list);
    283				else if (injournal == conf->raid_disks - conf->max_degraded) {
    284					/* full stripe */
    285					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
    286						atomic_inc(&conf->r5c_cached_full_stripes);
    287					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
    288						atomic_dec(&conf->r5c_cached_partial_stripes);
    289					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
    290					r5c_check_cached_full_stripe(conf);
    291				} else
    292					/*
    293					 * STRIPE_R5C_PARTIAL_STRIPE is set in
    294					 * r5c_try_caching_write(). No need to
    295					 * set it again.
    296					 */
    297					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
    298			}
    299		}
    300	}
    301}
    302
    303static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
    304			     struct list_head *temp_inactive_list)
    305	__must_hold(&conf->device_lock)
    306{
    307	if (atomic_dec_and_test(&sh->count))
    308		do_release_stripe(conf, sh, temp_inactive_list);
    309}
    310
    311/*
    312 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
    313 *
    314 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
    315 * given time. Adding stripes only takes device lock, while deleting stripes
    316 * only takes hash lock.
    317 */
    318static void release_inactive_stripe_list(struct r5conf *conf,
    319					 struct list_head *temp_inactive_list,
    320					 int hash)
    321{
    322	int size;
    323	bool do_wakeup = false;
    324	unsigned long flags;
    325
    326	if (hash == NR_STRIPE_HASH_LOCKS) {
    327		size = NR_STRIPE_HASH_LOCKS;
    328		hash = NR_STRIPE_HASH_LOCKS - 1;
    329	} else
    330		size = 1;
    331	while (size) {
    332		struct list_head *list = &temp_inactive_list[size - 1];
    333
    334		/*
    335		 * We don't hold any lock here yet, raid5_get_active_stripe() might
    336		 * remove stripes from the list
    337		 */
    338		if (!list_empty_careful(list)) {
    339			spin_lock_irqsave(conf->hash_locks + hash, flags);
    340			if (list_empty(conf->inactive_list + hash) &&
    341			    !list_empty(list))
    342				atomic_dec(&conf->empty_inactive_list_nr);
    343			list_splice_tail_init(list, conf->inactive_list + hash);
    344			do_wakeup = true;
    345			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
    346		}
    347		size--;
    348		hash--;
    349	}
    350
    351	if (do_wakeup) {
    352		wake_up(&conf->wait_for_stripe);
    353		if (atomic_read(&conf->active_stripes) == 0)
    354			wake_up(&conf->wait_for_quiescent);
    355		if (conf->retry_read_aligned)
    356			md_wakeup_thread(conf->mddev->thread);
    357	}
    358}
    359
    360static int release_stripe_list(struct r5conf *conf,
    361			       struct list_head *temp_inactive_list)
    362	__must_hold(&conf->device_lock)
    363{
    364	struct stripe_head *sh, *t;
    365	int count = 0;
    366	struct llist_node *head;
    367
    368	head = llist_del_all(&conf->released_stripes);
    369	head = llist_reverse_order(head);
    370	llist_for_each_entry_safe(sh, t, head, release_list) {
    371		int hash;
    372
    373		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
    374		smp_mb();
    375		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
    376		/*
    377		 * Don't worry the bit is set here, because if the bit is set
    378		 * again, the count is always > 1. This is true for
    379		 * STRIPE_ON_UNPLUG_LIST bit too.
    380		 */
    381		hash = sh->hash_lock_index;
    382		__release_stripe(conf, sh, &temp_inactive_list[hash]);
    383		count++;
    384	}
    385
    386	return count;
    387}
    388
    389void raid5_release_stripe(struct stripe_head *sh)
    390{
    391	struct r5conf *conf = sh->raid_conf;
    392	unsigned long flags;
    393	struct list_head list;
    394	int hash;
    395	bool wakeup;
    396
    397	/* Avoid release_list until the last reference.
    398	 */
    399	if (atomic_add_unless(&sh->count, -1, 1))
    400		return;
    401
    402	if (unlikely(!conf->mddev->thread) ||
    403		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
    404		goto slow_path;
    405	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
    406	if (wakeup)
    407		md_wakeup_thread(conf->mddev->thread);
    408	return;
    409slow_path:
    410	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
    411	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
    412		INIT_LIST_HEAD(&list);
    413		hash = sh->hash_lock_index;
    414		do_release_stripe(conf, sh, &list);
    415		spin_unlock_irqrestore(&conf->device_lock, flags);
    416		release_inactive_stripe_list(conf, &list, hash);
    417	}
    418}
    419
    420static inline void remove_hash(struct stripe_head *sh)
    421{
    422	pr_debug("remove_hash(), stripe %llu\n",
    423		(unsigned long long)sh->sector);
    424
    425	hlist_del_init(&sh->hash);
    426}
    427
    428static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
    429{
    430	struct hlist_head *hp = stripe_hash(conf, sh->sector);
    431
    432	pr_debug("insert_hash(), stripe %llu\n",
    433		(unsigned long long)sh->sector);
    434
    435	hlist_add_head(&sh->hash, hp);
    436}
    437
    438/* find an idle stripe, make sure it is unhashed, and return it. */
    439static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
    440{
    441	struct stripe_head *sh = NULL;
    442	struct list_head *first;
    443
    444	if (list_empty(conf->inactive_list + hash))
    445		goto out;
    446	first = (conf->inactive_list + hash)->next;
    447	sh = list_entry(first, struct stripe_head, lru);
    448	list_del_init(first);
    449	remove_hash(sh);
    450	atomic_inc(&conf->active_stripes);
    451	BUG_ON(hash != sh->hash_lock_index);
    452	if (list_empty(conf->inactive_list + hash))
    453		atomic_inc(&conf->empty_inactive_list_nr);
    454out:
    455	return sh;
    456}
    457
    458#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
    459static void free_stripe_pages(struct stripe_head *sh)
    460{
    461	int i;
    462	struct page *p;
    463
    464	/* Have not allocate page pool */
    465	if (!sh->pages)
    466		return;
    467
    468	for (i = 0; i < sh->nr_pages; i++) {
    469		p = sh->pages[i];
    470		if (p)
    471			put_page(p);
    472		sh->pages[i] = NULL;
    473	}
    474}
    475
    476static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
    477{
    478	int i;
    479	struct page *p;
    480
    481	for (i = 0; i < sh->nr_pages; i++) {
    482		/* The page have allocated. */
    483		if (sh->pages[i])
    484			continue;
    485
    486		p = alloc_page(gfp);
    487		if (!p) {
    488			free_stripe_pages(sh);
    489			return -ENOMEM;
    490		}
    491		sh->pages[i] = p;
    492	}
    493	return 0;
    494}
    495
    496static int
    497init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
    498{
    499	int nr_pages, cnt;
    500
    501	if (sh->pages)
    502		return 0;
    503
    504	/* Each of the sh->dev[i] need one conf->stripe_size */
    505	cnt = PAGE_SIZE / conf->stripe_size;
    506	nr_pages = (disks + cnt - 1) / cnt;
    507
    508	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
    509	if (!sh->pages)
    510		return -ENOMEM;
    511	sh->nr_pages = nr_pages;
    512	sh->stripes_per_page = cnt;
    513	return 0;
    514}
    515#endif
    516
    517static void shrink_buffers(struct stripe_head *sh)
    518{
    519	int i;
    520	int num = sh->raid_conf->pool_size;
    521
    522#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
    523	for (i = 0; i < num ; i++) {
    524		struct page *p;
    525
    526		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
    527		p = sh->dev[i].page;
    528		if (!p)
    529			continue;
    530		sh->dev[i].page = NULL;
    531		put_page(p);
    532	}
    533#else
    534	for (i = 0; i < num; i++)
    535		sh->dev[i].page = NULL;
    536	free_stripe_pages(sh); /* Free pages */
    537#endif
    538}
    539
    540static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
    541{
    542	int i;
    543	int num = sh->raid_conf->pool_size;
    544
    545#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
    546	for (i = 0; i < num; i++) {
    547		struct page *page;
    548
    549		if (!(page = alloc_page(gfp))) {
    550			return 1;
    551		}
    552		sh->dev[i].page = page;
    553		sh->dev[i].orig_page = page;
    554		sh->dev[i].offset = 0;
    555	}
    556#else
    557	if (alloc_stripe_pages(sh, gfp))
    558		return -ENOMEM;
    559
    560	for (i = 0; i < num; i++) {
    561		sh->dev[i].page = raid5_get_dev_page(sh, i);
    562		sh->dev[i].orig_page = sh->dev[i].page;
    563		sh->dev[i].offset = raid5_get_page_offset(sh, i);
    564	}
    565#endif
    566	return 0;
    567}
    568
    569static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
    570			    struct stripe_head *sh);
    571
    572static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
    573{
    574	struct r5conf *conf = sh->raid_conf;
    575	int i, seq;
    576
    577	BUG_ON(atomic_read(&sh->count) != 0);
    578	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
    579	BUG_ON(stripe_operations_active(sh));
    580	BUG_ON(sh->batch_head);
    581
    582	pr_debug("init_stripe called, stripe %llu\n",
    583		(unsigned long long)sector);
    584retry:
    585	seq = read_seqcount_begin(&conf->gen_lock);
    586	sh->generation = conf->generation - previous;
    587	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
    588	sh->sector = sector;
    589	stripe_set_idx(sector, conf, previous, sh);
    590	sh->state = 0;
    591
    592	for (i = sh->disks; i--; ) {
    593		struct r5dev *dev = &sh->dev[i];
    594
    595		if (dev->toread || dev->read || dev->towrite || dev->written ||
    596		    test_bit(R5_LOCKED, &dev->flags)) {
    597			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
    598			       (unsigned long long)sh->sector, i, dev->toread,
    599			       dev->read, dev->towrite, dev->written,
    600			       test_bit(R5_LOCKED, &dev->flags));
    601			WARN_ON(1);
    602		}
    603		dev->flags = 0;
    604		dev->sector = raid5_compute_blocknr(sh, i, previous);
    605	}
    606	if (read_seqcount_retry(&conf->gen_lock, seq))
    607		goto retry;
    608	sh->overwrite_disks = 0;
    609	insert_hash(conf, sh);
    610	sh->cpu = smp_processor_id();
    611	set_bit(STRIPE_BATCH_READY, &sh->state);
    612}
    613
    614static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
    615					 short generation)
    616{
    617	struct stripe_head *sh;
    618
    619	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
    620	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
    621		if (sh->sector == sector && sh->generation == generation)
    622			return sh;
    623	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
    624	return NULL;
    625}
    626
    627/*
    628 * Need to check if array has failed when deciding whether to:
    629 *  - start an array
    630 *  - remove non-faulty devices
    631 *  - add a spare
    632 *  - allow a reshape
    633 * This determination is simple when no reshape is happening.
    634 * However if there is a reshape, we need to carefully check
    635 * both the before and after sections.
    636 * This is because some failed devices may only affect one
    637 * of the two sections, and some non-in_sync devices may
    638 * be insync in the section most affected by failed devices.
    639 *
    640 * Most calls to this function hold &conf->device_lock. Calls
    641 * in raid5_run() do not require the lock as no other threads
    642 * have been started yet.
    643 */
    644int raid5_calc_degraded(struct r5conf *conf)
    645{
    646	int degraded, degraded2;
    647	int i;
    648
    649	rcu_read_lock();
    650	degraded = 0;
    651	for (i = 0; i < conf->previous_raid_disks; i++) {
    652		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
    653		if (rdev && test_bit(Faulty, &rdev->flags))
    654			rdev = rcu_dereference(conf->disks[i].replacement);
    655		if (!rdev || test_bit(Faulty, &rdev->flags))
    656			degraded++;
    657		else if (test_bit(In_sync, &rdev->flags))
    658			;
    659		else
    660			/* not in-sync or faulty.
    661			 * If the reshape increases the number of devices,
    662			 * this is being recovered by the reshape, so
    663			 * this 'previous' section is not in_sync.
    664			 * If the number of devices is being reduced however,
    665			 * the device can only be part of the array if
    666			 * we are reverting a reshape, so this section will
    667			 * be in-sync.
    668			 */
    669			if (conf->raid_disks >= conf->previous_raid_disks)
    670				degraded++;
    671	}
    672	rcu_read_unlock();
    673	if (conf->raid_disks == conf->previous_raid_disks)
    674		return degraded;
    675	rcu_read_lock();
    676	degraded2 = 0;
    677	for (i = 0; i < conf->raid_disks; i++) {
    678		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
    679		if (rdev && test_bit(Faulty, &rdev->flags))
    680			rdev = rcu_dereference(conf->disks[i].replacement);
    681		if (!rdev || test_bit(Faulty, &rdev->flags))
    682			degraded2++;
    683		else if (test_bit(In_sync, &rdev->flags))
    684			;
    685		else
    686			/* not in-sync or faulty.
    687			 * If reshape increases the number of devices, this
    688			 * section has already been recovered, else it
    689			 * almost certainly hasn't.
    690			 */
    691			if (conf->raid_disks <= conf->previous_raid_disks)
    692				degraded2++;
    693	}
    694	rcu_read_unlock();
    695	if (degraded2 > degraded)
    696		return degraded2;
    697	return degraded;
    698}
    699
    700static bool has_failed(struct r5conf *conf)
    701{
    702	int degraded = conf->mddev->degraded;
    703
    704	if (test_bit(MD_BROKEN, &conf->mddev->flags))
    705		return true;
    706
    707	if (conf->mddev->reshape_position != MaxSector)
    708		degraded = raid5_calc_degraded(conf);
    709
    710	return degraded > conf->max_degraded;
    711}
    712
    713struct stripe_head *
    714raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
    715			int previous, int noblock, int noquiesce)
    716{
    717	struct stripe_head *sh;
    718	int hash = stripe_hash_locks_hash(conf, sector);
    719	int inc_empty_inactive_list_flag;
    720
    721	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
    722
    723	spin_lock_irq(conf->hash_locks + hash);
    724
    725	do {
    726		wait_event_lock_irq(conf->wait_for_quiescent,
    727				    conf->quiesce == 0 || noquiesce,
    728				    *(conf->hash_locks + hash));
    729		sh = __find_stripe(conf, sector, conf->generation - previous);
    730		if (!sh) {
    731			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
    732				sh = get_free_stripe(conf, hash);
    733				if (!sh && !test_bit(R5_DID_ALLOC,
    734						     &conf->cache_state))
    735					set_bit(R5_ALLOC_MORE,
    736						&conf->cache_state);
    737			}
    738			if (noblock && sh == NULL)
    739				break;
    740
    741			r5c_check_stripe_cache_usage(conf);
    742			if (!sh) {
    743				set_bit(R5_INACTIVE_BLOCKED,
    744					&conf->cache_state);
    745				r5l_wake_reclaim(conf->log, 0);
    746				wait_event_lock_irq(
    747					conf->wait_for_stripe,
    748					!list_empty(conf->inactive_list + hash) &&
    749					(atomic_read(&conf->active_stripes)
    750					 < (conf->max_nr_stripes * 3 / 4)
    751					 || !test_bit(R5_INACTIVE_BLOCKED,
    752						      &conf->cache_state)),
    753					*(conf->hash_locks + hash));
    754				clear_bit(R5_INACTIVE_BLOCKED,
    755					  &conf->cache_state);
    756			} else {
    757				init_stripe(sh, sector, previous);
    758				atomic_inc(&sh->count);
    759			}
    760		} else if (!atomic_inc_not_zero(&sh->count)) {
    761			spin_lock(&conf->device_lock);
    762			if (!atomic_read(&sh->count)) {
    763				if (!test_bit(STRIPE_HANDLE, &sh->state))
    764					atomic_inc(&conf->active_stripes);
    765				BUG_ON(list_empty(&sh->lru) &&
    766				       !test_bit(STRIPE_EXPANDING, &sh->state));
    767				inc_empty_inactive_list_flag = 0;
    768				if (!list_empty(conf->inactive_list + hash))
    769					inc_empty_inactive_list_flag = 1;
    770				list_del_init(&sh->lru);
    771				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
    772					atomic_inc(&conf->empty_inactive_list_nr);
    773				if (sh->group) {
    774					sh->group->stripes_cnt--;
    775					sh->group = NULL;
    776				}
    777			}
    778			atomic_inc(&sh->count);
    779			spin_unlock(&conf->device_lock);
    780		}
    781	} while (sh == NULL);
    782
    783	spin_unlock_irq(conf->hash_locks + hash);
    784	return sh;
    785}
    786
    787static bool is_full_stripe_write(struct stripe_head *sh)
    788{
    789	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
    790	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
    791}
    792
    793static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
    794		__acquires(&sh1->stripe_lock)
    795		__acquires(&sh2->stripe_lock)
    796{
    797	if (sh1 > sh2) {
    798		spin_lock_irq(&sh2->stripe_lock);
    799		spin_lock_nested(&sh1->stripe_lock, 1);
    800	} else {
    801		spin_lock_irq(&sh1->stripe_lock);
    802		spin_lock_nested(&sh2->stripe_lock, 1);
    803	}
    804}
    805
    806static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
    807		__releases(&sh1->stripe_lock)
    808		__releases(&sh2->stripe_lock)
    809{
    810	spin_unlock(&sh1->stripe_lock);
    811	spin_unlock_irq(&sh2->stripe_lock);
    812}
    813
    814/* Only freshly new full stripe normal write stripe can be added to a batch list */
    815static bool stripe_can_batch(struct stripe_head *sh)
    816{
    817	struct r5conf *conf = sh->raid_conf;
    818
    819	if (raid5_has_log(conf) || raid5_has_ppl(conf))
    820		return false;
    821	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
    822		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
    823		is_full_stripe_write(sh);
    824}
    825
    826/* we only do back search */
    827static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
    828{
    829	struct stripe_head *head;
    830	sector_t head_sector, tmp_sec;
    831	int hash;
    832	int dd_idx;
    833	int inc_empty_inactive_list_flag;
    834
    835	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
    836	tmp_sec = sh->sector;
    837	if (!sector_div(tmp_sec, conf->chunk_sectors))
    838		return;
    839	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
    840
    841	hash = stripe_hash_locks_hash(conf, head_sector);
    842	spin_lock_irq(conf->hash_locks + hash);
    843	head = __find_stripe(conf, head_sector, conf->generation);
    844	if (head && !atomic_inc_not_zero(&head->count)) {
    845		spin_lock(&conf->device_lock);
    846		if (!atomic_read(&head->count)) {
    847			if (!test_bit(STRIPE_HANDLE, &head->state))
    848				atomic_inc(&conf->active_stripes);
    849			BUG_ON(list_empty(&head->lru) &&
    850			       !test_bit(STRIPE_EXPANDING, &head->state));
    851			inc_empty_inactive_list_flag = 0;
    852			if (!list_empty(conf->inactive_list + hash))
    853				inc_empty_inactive_list_flag = 1;
    854			list_del_init(&head->lru);
    855			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
    856				atomic_inc(&conf->empty_inactive_list_nr);
    857			if (head->group) {
    858				head->group->stripes_cnt--;
    859				head->group = NULL;
    860			}
    861		}
    862		atomic_inc(&head->count);
    863		spin_unlock(&conf->device_lock);
    864	}
    865	spin_unlock_irq(conf->hash_locks + hash);
    866
    867	if (!head)
    868		return;
    869	if (!stripe_can_batch(head))
    870		goto out;
    871
    872	lock_two_stripes(head, sh);
    873	/* clear_batch_ready clear the flag */
    874	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
    875		goto unlock_out;
    876
    877	if (sh->batch_head)
    878		goto unlock_out;
    879
    880	dd_idx = 0;
    881	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
    882		dd_idx++;
    883	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
    884	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
    885		goto unlock_out;
    886
    887	if (head->batch_head) {
    888		spin_lock(&head->batch_head->batch_lock);
    889		/* This batch list is already running */
    890		if (!stripe_can_batch(head)) {
    891			spin_unlock(&head->batch_head->batch_lock);
    892			goto unlock_out;
    893		}
    894		/*
    895		 * We must assign batch_head of this stripe within the
    896		 * batch_lock, otherwise clear_batch_ready of batch head
    897		 * stripe could clear BATCH_READY bit of this stripe and
    898		 * this stripe->batch_head doesn't get assigned, which
    899		 * could confuse clear_batch_ready for this stripe
    900		 */
    901		sh->batch_head = head->batch_head;
    902
    903		/*
    904		 * at this point, head's BATCH_READY could be cleared, but we
    905		 * can still add the stripe to batch list
    906		 */
    907		list_add(&sh->batch_list, &head->batch_list);
    908		spin_unlock(&head->batch_head->batch_lock);
    909	} else {
    910		head->batch_head = head;
    911		sh->batch_head = head->batch_head;
    912		spin_lock(&head->batch_lock);
    913		list_add_tail(&sh->batch_list, &head->batch_list);
    914		spin_unlock(&head->batch_lock);
    915	}
    916
    917	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
    918		if (atomic_dec_return(&conf->preread_active_stripes)
    919		    < IO_THRESHOLD)
    920			md_wakeup_thread(conf->mddev->thread);
    921
    922	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
    923		int seq = sh->bm_seq;
    924		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
    925		    sh->batch_head->bm_seq > seq)
    926			seq = sh->batch_head->bm_seq;
    927		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
    928		sh->batch_head->bm_seq = seq;
    929	}
    930
    931	atomic_inc(&sh->count);
    932unlock_out:
    933	unlock_two_stripes(head, sh);
    934out:
    935	raid5_release_stripe(head);
    936}
    937
    938/* Determine if 'data_offset' or 'new_data_offset' should be used
    939 * in this stripe_head.
    940 */
    941static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
    942{
    943	sector_t progress = conf->reshape_progress;
    944	/* Need a memory barrier to make sure we see the value
    945	 * of conf->generation, or ->data_offset that was set before
    946	 * reshape_progress was updated.
    947	 */
    948	smp_rmb();
    949	if (progress == MaxSector)
    950		return 0;
    951	if (sh->generation == conf->generation - 1)
    952		return 0;
    953	/* We are in a reshape, and this is a new-generation stripe,
    954	 * so use new_data_offset.
    955	 */
    956	return 1;
    957}
    958
    959static void dispatch_bio_list(struct bio_list *tmp)
    960{
    961	struct bio *bio;
    962
    963	while ((bio = bio_list_pop(tmp)))
    964		submit_bio_noacct(bio);
    965}
    966
    967static int cmp_stripe(void *priv, const struct list_head *a,
    968		      const struct list_head *b)
    969{
    970	const struct r5pending_data *da = list_entry(a,
    971				struct r5pending_data, sibling);
    972	const struct r5pending_data *db = list_entry(b,
    973				struct r5pending_data, sibling);
    974	if (da->sector > db->sector)
    975		return 1;
    976	if (da->sector < db->sector)
    977		return -1;
    978	return 0;
    979}
    980
    981static void dispatch_defer_bios(struct r5conf *conf, int target,
    982				struct bio_list *list)
    983{
    984	struct r5pending_data *data;
    985	struct list_head *first, *next = NULL;
    986	int cnt = 0;
    987
    988	if (conf->pending_data_cnt == 0)
    989		return;
    990
    991	list_sort(NULL, &conf->pending_list, cmp_stripe);
    992
    993	first = conf->pending_list.next;
    994
    995	/* temporarily move the head */
    996	if (conf->next_pending_data)
    997		list_move_tail(&conf->pending_list,
    998				&conf->next_pending_data->sibling);
    999
   1000	while (!list_empty(&conf->pending_list)) {
   1001		data = list_first_entry(&conf->pending_list,
   1002			struct r5pending_data, sibling);
   1003		if (&data->sibling == first)
   1004			first = data->sibling.next;
   1005		next = data->sibling.next;
   1006
   1007		bio_list_merge(list, &data->bios);
   1008		list_move(&data->sibling, &conf->free_list);
   1009		cnt++;
   1010		if (cnt >= target)
   1011			break;
   1012	}
   1013	conf->pending_data_cnt -= cnt;
   1014	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
   1015
   1016	if (next != &conf->pending_list)
   1017		conf->next_pending_data = list_entry(next,
   1018				struct r5pending_data, sibling);
   1019	else
   1020		conf->next_pending_data = NULL;
   1021	/* list isn't empty */
   1022	if (first != &conf->pending_list)
   1023		list_move_tail(&conf->pending_list, first);
   1024}
   1025
   1026static void flush_deferred_bios(struct r5conf *conf)
   1027{
   1028	struct bio_list tmp = BIO_EMPTY_LIST;
   1029
   1030	if (conf->pending_data_cnt == 0)
   1031		return;
   1032
   1033	spin_lock(&conf->pending_bios_lock);
   1034	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
   1035	BUG_ON(conf->pending_data_cnt != 0);
   1036	spin_unlock(&conf->pending_bios_lock);
   1037
   1038	dispatch_bio_list(&tmp);
   1039}
   1040
   1041static void defer_issue_bios(struct r5conf *conf, sector_t sector,
   1042				struct bio_list *bios)
   1043{
   1044	struct bio_list tmp = BIO_EMPTY_LIST;
   1045	struct r5pending_data *ent;
   1046
   1047	spin_lock(&conf->pending_bios_lock);
   1048	ent = list_first_entry(&conf->free_list, struct r5pending_data,
   1049							sibling);
   1050	list_move_tail(&ent->sibling, &conf->pending_list);
   1051	ent->sector = sector;
   1052	bio_list_init(&ent->bios);
   1053	bio_list_merge(&ent->bios, bios);
   1054	conf->pending_data_cnt++;
   1055	if (conf->pending_data_cnt >= PENDING_IO_MAX)
   1056		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
   1057
   1058	spin_unlock(&conf->pending_bios_lock);
   1059
   1060	dispatch_bio_list(&tmp);
   1061}
   1062
   1063static void
   1064raid5_end_read_request(struct bio *bi);
   1065static void
   1066raid5_end_write_request(struct bio *bi);
   1067
   1068static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
   1069{
   1070	struct r5conf *conf = sh->raid_conf;
   1071	int i, disks = sh->disks;
   1072	struct stripe_head *head_sh = sh;
   1073	struct bio_list pending_bios = BIO_EMPTY_LIST;
   1074	struct r5dev *dev;
   1075	bool should_defer;
   1076
   1077	might_sleep();
   1078
   1079	if (log_stripe(sh, s) == 0)
   1080		return;
   1081
   1082	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
   1083
   1084	for (i = disks; i--; ) {
   1085		int op, op_flags = 0;
   1086		int replace_only = 0;
   1087		struct bio *bi, *rbi;
   1088		struct md_rdev *rdev, *rrdev = NULL;
   1089
   1090		sh = head_sh;
   1091		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
   1092			op = REQ_OP_WRITE;
   1093			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
   1094				op_flags = REQ_FUA;
   1095			if (test_bit(R5_Discard, &sh->dev[i].flags))
   1096				op = REQ_OP_DISCARD;
   1097		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
   1098			op = REQ_OP_READ;
   1099		else if (test_and_clear_bit(R5_WantReplace,
   1100					    &sh->dev[i].flags)) {
   1101			op = REQ_OP_WRITE;
   1102			replace_only = 1;
   1103		} else
   1104			continue;
   1105		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
   1106			op_flags |= REQ_SYNC;
   1107
   1108again:
   1109		dev = &sh->dev[i];
   1110		bi = &dev->req;
   1111		rbi = &dev->rreq; /* For writing to replacement */
   1112
   1113		rcu_read_lock();
   1114		rrdev = rcu_dereference(conf->disks[i].replacement);
   1115		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
   1116		rdev = rcu_dereference(conf->disks[i].rdev);
   1117		if (!rdev) {
   1118			rdev = rrdev;
   1119			rrdev = NULL;
   1120		}
   1121		if (op_is_write(op)) {
   1122			if (replace_only)
   1123				rdev = NULL;
   1124			if (rdev == rrdev)
   1125				/* We raced and saw duplicates */
   1126				rrdev = NULL;
   1127		} else {
   1128			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
   1129				rdev = rrdev;
   1130			rrdev = NULL;
   1131		}
   1132
   1133		if (rdev && test_bit(Faulty, &rdev->flags))
   1134			rdev = NULL;
   1135		if (rdev)
   1136			atomic_inc(&rdev->nr_pending);
   1137		if (rrdev && test_bit(Faulty, &rrdev->flags))
   1138			rrdev = NULL;
   1139		if (rrdev)
   1140			atomic_inc(&rrdev->nr_pending);
   1141		rcu_read_unlock();
   1142
   1143		/* We have already checked bad blocks for reads.  Now
   1144		 * need to check for writes.  We never accept write errors
   1145		 * on the replacement, so we don't to check rrdev.
   1146		 */
   1147		while (op_is_write(op) && rdev &&
   1148		       test_bit(WriteErrorSeen, &rdev->flags)) {
   1149			sector_t first_bad;
   1150			int bad_sectors;
   1151			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
   1152					      &first_bad, &bad_sectors);
   1153			if (!bad)
   1154				break;
   1155
   1156			if (bad < 0) {
   1157				set_bit(BlockedBadBlocks, &rdev->flags);
   1158				if (!conf->mddev->external &&
   1159				    conf->mddev->sb_flags) {
   1160					/* It is very unlikely, but we might
   1161					 * still need to write out the
   1162					 * bad block log - better give it
   1163					 * a chance*/
   1164					md_check_recovery(conf->mddev);
   1165				}
   1166				/*
   1167				 * Because md_wait_for_blocked_rdev
   1168				 * will dec nr_pending, we must
   1169				 * increment it first.
   1170				 */
   1171				atomic_inc(&rdev->nr_pending);
   1172				md_wait_for_blocked_rdev(rdev, conf->mddev);
   1173			} else {
   1174				/* Acknowledged bad block - skip the write */
   1175				rdev_dec_pending(rdev, conf->mddev);
   1176				rdev = NULL;
   1177			}
   1178		}
   1179
   1180		if (rdev) {
   1181			if (s->syncing || s->expanding || s->expanded
   1182			    || s->replacing)
   1183				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
   1184
   1185			set_bit(STRIPE_IO_STARTED, &sh->state);
   1186
   1187			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
   1188			bi->bi_end_io = op_is_write(op)
   1189				? raid5_end_write_request
   1190				: raid5_end_read_request;
   1191			bi->bi_private = sh;
   1192
   1193			pr_debug("%s: for %llu schedule op %d on disc %d\n",
   1194				__func__, (unsigned long long)sh->sector,
   1195				bi->bi_opf, i);
   1196			atomic_inc(&sh->count);
   1197			if (sh != head_sh)
   1198				atomic_inc(&head_sh->count);
   1199			if (use_new_offset(conf, sh))
   1200				bi->bi_iter.bi_sector = (sh->sector
   1201						 + rdev->new_data_offset);
   1202			else
   1203				bi->bi_iter.bi_sector = (sh->sector
   1204						 + rdev->data_offset);
   1205			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
   1206				bi->bi_opf |= REQ_NOMERGE;
   1207
   1208			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
   1209				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
   1210
   1211			if (!op_is_write(op) &&
   1212			    test_bit(R5_InJournal, &sh->dev[i].flags))
   1213				/*
   1214				 * issuing read for a page in journal, this
   1215				 * must be preparing for prexor in rmw; read
   1216				 * the data into orig_page
   1217				 */
   1218				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
   1219			else
   1220				sh->dev[i].vec.bv_page = sh->dev[i].page;
   1221			bi->bi_vcnt = 1;
   1222			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
   1223			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
   1224			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
   1225			/*
   1226			 * If this is discard request, set bi_vcnt 0. We don't
   1227			 * want to confuse SCSI because SCSI will replace payload
   1228			 */
   1229			if (op == REQ_OP_DISCARD)
   1230				bi->bi_vcnt = 0;
   1231			if (rrdev)
   1232				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
   1233
   1234			if (conf->mddev->gendisk)
   1235				trace_block_bio_remap(bi,
   1236						disk_devt(conf->mddev->gendisk),
   1237						sh->dev[i].sector);
   1238			if (should_defer && op_is_write(op))
   1239				bio_list_add(&pending_bios, bi);
   1240			else
   1241				submit_bio_noacct(bi);
   1242		}
   1243		if (rrdev) {
   1244			if (s->syncing || s->expanding || s->expanded
   1245			    || s->replacing)
   1246				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
   1247
   1248			set_bit(STRIPE_IO_STARTED, &sh->state);
   1249
   1250			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
   1251			BUG_ON(!op_is_write(op));
   1252			rbi->bi_end_io = raid5_end_write_request;
   1253			rbi->bi_private = sh;
   1254
   1255			pr_debug("%s: for %llu schedule op %d on "
   1256				 "replacement disc %d\n",
   1257				__func__, (unsigned long long)sh->sector,
   1258				rbi->bi_opf, i);
   1259			atomic_inc(&sh->count);
   1260			if (sh != head_sh)
   1261				atomic_inc(&head_sh->count);
   1262			if (use_new_offset(conf, sh))
   1263				rbi->bi_iter.bi_sector = (sh->sector
   1264						  + rrdev->new_data_offset);
   1265			else
   1266				rbi->bi_iter.bi_sector = (sh->sector
   1267						  + rrdev->data_offset);
   1268			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
   1269				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
   1270			sh->dev[i].rvec.bv_page = sh->dev[i].page;
   1271			rbi->bi_vcnt = 1;
   1272			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
   1273			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
   1274			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
   1275			/*
   1276			 * If this is discard request, set bi_vcnt 0. We don't
   1277			 * want to confuse SCSI because SCSI will replace payload
   1278			 */
   1279			if (op == REQ_OP_DISCARD)
   1280				rbi->bi_vcnt = 0;
   1281			if (conf->mddev->gendisk)
   1282				trace_block_bio_remap(rbi,
   1283						disk_devt(conf->mddev->gendisk),
   1284						sh->dev[i].sector);
   1285			if (should_defer && op_is_write(op))
   1286				bio_list_add(&pending_bios, rbi);
   1287			else
   1288				submit_bio_noacct(rbi);
   1289		}
   1290		if (!rdev && !rrdev) {
   1291			if (op_is_write(op))
   1292				set_bit(STRIPE_DEGRADED, &sh->state);
   1293			pr_debug("skip op %d on disc %d for sector %llu\n",
   1294				bi->bi_opf, i, (unsigned long long)sh->sector);
   1295			clear_bit(R5_LOCKED, &sh->dev[i].flags);
   1296			set_bit(STRIPE_HANDLE, &sh->state);
   1297		}
   1298
   1299		if (!head_sh->batch_head)
   1300			continue;
   1301		sh = list_first_entry(&sh->batch_list, struct stripe_head,
   1302				      batch_list);
   1303		if (sh != head_sh)
   1304			goto again;
   1305	}
   1306
   1307	if (should_defer && !bio_list_empty(&pending_bios))
   1308		defer_issue_bios(conf, head_sh->sector, &pending_bios);
   1309}
   1310
   1311static struct dma_async_tx_descriptor *
   1312async_copy_data(int frombio, struct bio *bio, struct page **page,
   1313	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
   1314	struct stripe_head *sh, int no_skipcopy)
   1315{
   1316	struct bio_vec bvl;
   1317	struct bvec_iter iter;
   1318	struct page *bio_page;
   1319	int page_offset;
   1320	struct async_submit_ctl submit;
   1321	enum async_tx_flags flags = 0;
   1322	struct r5conf *conf = sh->raid_conf;
   1323
   1324	if (bio->bi_iter.bi_sector >= sector)
   1325		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
   1326	else
   1327		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
   1328
   1329	if (frombio)
   1330		flags |= ASYNC_TX_FENCE;
   1331	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
   1332
   1333	bio_for_each_segment(bvl, bio, iter) {
   1334		int len = bvl.bv_len;
   1335		int clen;
   1336		int b_offset = 0;
   1337
   1338		if (page_offset < 0) {
   1339			b_offset = -page_offset;
   1340			page_offset += b_offset;
   1341			len -= b_offset;
   1342		}
   1343
   1344		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
   1345			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
   1346		else
   1347			clen = len;
   1348
   1349		if (clen > 0) {
   1350			b_offset += bvl.bv_offset;
   1351			bio_page = bvl.bv_page;
   1352			if (frombio) {
   1353				if (conf->skip_copy &&
   1354				    b_offset == 0 && page_offset == 0 &&
   1355				    clen == RAID5_STRIPE_SIZE(conf) &&
   1356				    !no_skipcopy)
   1357					*page = bio_page;
   1358				else
   1359					tx = async_memcpy(*page, bio_page, page_offset + poff,
   1360						  b_offset, clen, &submit);
   1361			} else
   1362				tx = async_memcpy(bio_page, *page, b_offset,
   1363						  page_offset + poff, clen, &submit);
   1364		}
   1365		/* chain the operations */
   1366		submit.depend_tx = tx;
   1367
   1368		if (clen < len) /* hit end of page */
   1369			break;
   1370		page_offset +=  len;
   1371	}
   1372
   1373	return tx;
   1374}
   1375
   1376static void ops_complete_biofill(void *stripe_head_ref)
   1377{
   1378	struct stripe_head *sh = stripe_head_ref;
   1379	int i;
   1380	struct r5conf *conf = sh->raid_conf;
   1381
   1382	pr_debug("%s: stripe %llu\n", __func__,
   1383		(unsigned long long)sh->sector);
   1384
   1385	/* clear completed biofills */
   1386	for (i = sh->disks; i--; ) {
   1387		struct r5dev *dev = &sh->dev[i];
   1388
   1389		/* acknowledge completion of a biofill operation */
   1390		/* and check if we need to reply to a read request,
   1391		 * new R5_Wantfill requests are held off until
   1392		 * !STRIPE_BIOFILL_RUN
   1393		 */
   1394		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
   1395			struct bio *rbi, *rbi2;
   1396
   1397			BUG_ON(!dev->read);
   1398			rbi = dev->read;
   1399			dev->read = NULL;
   1400			while (rbi && rbi->bi_iter.bi_sector <
   1401				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
   1402				rbi2 = r5_next_bio(conf, rbi, dev->sector);
   1403				bio_endio(rbi);
   1404				rbi = rbi2;
   1405			}
   1406		}
   1407	}
   1408	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
   1409
   1410	set_bit(STRIPE_HANDLE, &sh->state);
   1411	raid5_release_stripe(sh);
   1412}
   1413
   1414static void ops_run_biofill(struct stripe_head *sh)
   1415{
   1416	struct dma_async_tx_descriptor *tx = NULL;
   1417	struct async_submit_ctl submit;
   1418	int i;
   1419	struct r5conf *conf = sh->raid_conf;
   1420
   1421	BUG_ON(sh->batch_head);
   1422	pr_debug("%s: stripe %llu\n", __func__,
   1423		(unsigned long long)sh->sector);
   1424
   1425	for (i = sh->disks; i--; ) {
   1426		struct r5dev *dev = &sh->dev[i];
   1427		if (test_bit(R5_Wantfill, &dev->flags)) {
   1428			struct bio *rbi;
   1429			spin_lock_irq(&sh->stripe_lock);
   1430			dev->read = rbi = dev->toread;
   1431			dev->toread = NULL;
   1432			spin_unlock_irq(&sh->stripe_lock);
   1433			while (rbi && rbi->bi_iter.bi_sector <
   1434				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
   1435				tx = async_copy_data(0, rbi, &dev->page,
   1436						     dev->offset,
   1437						     dev->sector, tx, sh, 0);
   1438				rbi = r5_next_bio(conf, rbi, dev->sector);
   1439			}
   1440		}
   1441	}
   1442
   1443	atomic_inc(&sh->count);
   1444	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
   1445	async_trigger_callback(&submit);
   1446}
   1447
   1448static void mark_target_uptodate(struct stripe_head *sh, int target)
   1449{
   1450	struct r5dev *tgt;
   1451
   1452	if (target < 0)
   1453		return;
   1454
   1455	tgt = &sh->dev[target];
   1456	set_bit(R5_UPTODATE, &tgt->flags);
   1457	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
   1458	clear_bit(R5_Wantcompute, &tgt->flags);
   1459}
   1460
   1461static void ops_complete_compute(void *stripe_head_ref)
   1462{
   1463	struct stripe_head *sh = stripe_head_ref;
   1464
   1465	pr_debug("%s: stripe %llu\n", __func__,
   1466		(unsigned long long)sh->sector);
   1467
   1468	/* mark the computed target(s) as uptodate */
   1469	mark_target_uptodate(sh, sh->ops.target);
   1470	mark_target_uptodate(sh, sh->ops.target2);
   1471
   1472	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
   1473	if (sh->check_state == check_state_compute_run)
   1474		sh->check_state = check_state_compute_result;
   1475	set_bit(STRIPE_HANDLE, &sh->state);
   1476	raid5_release_stripe(sh);
   1477}
   1478
   1479/* return a pointer to the address conversion region of the scribble buffer */
   1480static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
   1481{
   1482	return percpu->scribble + i * percpu->scribble_obj_size;
   1483}
   1484
   1485/* return a pointer to the address conversion region of the scribble buffer */
   1486static addr_conv_t *to_addr_conv(struct stripe_head *sh,
   1487				 struct raid5_percpu *percpu, int i)
   1488{
   1489	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
   1490}
   1491
   1492/*
   1493 * Return a pointer to record offset address.
   1494 */
   1495static unsigned int *
   1496to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
   1497{
   1498	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
   1499}
   1500
   1501static struct dma_async_tx_descriptor *
   1502ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
   1503{
   1504	int disks = sh->disks;
   1505	struct page **xor_srcs = to_addr_page(percpu, 0);
   1506	unsigned int *off_srcs = to_addr_offs(sh, percpu);
   1507	int target = sh->ops.target;
   1508	struct r5dev *tgt = &sh->dev[target];
   1509	struct page *xor_dest = tgt->page;
   1510	unsigned int off_dest = tgt->offset;
   1511	int count = 0;
   1512	struct dma_async_tx_descriptor *tx;
   1513	struct async_submit_ctl submit;
   1514	int i;
   1515
   1516	BUG_ON(sh->batch_head);
   1517
   1518	pr_debug("%s: stripe %llu block: %d\n",
   1519		__func__, (unsigned long long)sh->sector, target);
   1520	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
   1521
   1522	for (i = disks; i--; ) {
   1523		if (i != target) {
   1524			off_srcs[count] = sh->dev[i].offset;
   1525			xor_srcs[count++] = sh->dev[i].page;
   1526		}
   1527	}
   1528
   1529	atomic_inc(&sh->count);
   1530
   1531	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
   1532			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
   1533	if (unlikely(count == 1))
   1534		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
   1535				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
   1536	else
   1537		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
   1538				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
   1539
   1540	return tx;
   1541}
   1542
   1543/* set_syndrome_sources - populate source buffers for gen_syndrome
   1544 * @srcs - (struct page *) array of size sh->disks
   1545 * @offs - (unsigned int) array of offset for each page
   1546 * @sh - stripe_head to parse
   1547 *
   1548 * Populates srcs in proper layout order for the stripe and returns the
   1549 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
   1550 * destination buffer is recorded in srcs[count] and the Q destination
   1551 * is recorded in srcs[count+1]].
   1552 */
   1553static int set_syndrome_sources(struct page **srcs,
   1554				unsigned int *offs,
   1555				struct stripe_head *sh,
   1556				int srctype)
   1557{
   1558	int disks = sh->disks;
   1559	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
   1560	int d0_idx = raid6_d0(sh);
   1561	int count;
   1562	int i;
   1563
   1564	for (i = 0; i < disks; i++)
   1565		srcs[i] = NULL;
   1566
   1567	count = 0;
   1568	i = d0_idx;
   1569	do {
   1570		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
   1571		struct r5dev *dev = &sh->dev[i];
   1572
   1573		if (i == sh->qd_idx || i == sh->pd_idx ||
   1574		    (srctype == SYNDROME_SRC_ALL) ||
   1575		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
   1576		     (test_bit(R5_Wantdrain, &dev->flags) ||
   1577		      test_bit(R5_InJournal, &dev->flags))) ||
   1578		    (srctype == SYNDROME_SRC_WRITTEN &&
   1579		     (dev->written ||
   1580		      test_bit(R5_InJournal, &dev->flags)))) {
   1581			if (test_bit(R5_InJournal, &dev->flags))
   1582				srcs[slot] = sh->dev[i].orig_page;
   1583			else
   1584				srcs[slot] = sh->dev[i].page;
   1585			/*
   1586			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
   1587			 * not shared page. In that case, dev[i].offset
   1588			 * is 0.
   1589			 */
   1590			offs[slot] = sh->dev[i].offset;
   1591		}
   1592		i = raid6_next_disk(i, disks);
   1593	} while (i != d0_idx);
   1594
   1595	return syndrome_disks;
   1596}
   1597
   1598static struct dma_async_tx_descriptor *
   1599ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
   1600{
   1601	int disks = sh->disks;
   1602	struct page **blocks = to_addr_page(percpu, 0);
   1603	unsigned int *offs = to_addr_offs(sh, percpu);
   1604	int target;
   1605	int qd_idx = sh->qd_idx;
   1606	struct dma_async_tx_descriptor *tx;
   1607	struct async_submit_ctl submit;
   1608	struct r5dev *tgt;
   1609	struct page *dest;
   1610	unsigned int dest_off;
   1611	int i;
   1612	int count;
   1613
   1614	BUG_ON(sh->batch_head);
   1615	if (sh->ops.target < 0)
   1616		target = sh->ops.target2;
   1617	else if (sh->ops.target2 < 0)
   1618		target = sh->ops.target;
   1619	else
   1620		/* we should only have one valid target */
   1621		BUG();
   1622	BUG_ON(target < 0);
   1623	pr_debug("%s: stripe %llu block: %d\n",
   1624		__func__, (unsigned long long)sh->sector, target);
   1625
   1626	tgt = &sh->dev[target];
   1627	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
   1628	dest = tgt->page;
   1629	dest_off = tgt->offset;
   1630
   1631	atomic_inc(&sh->count);
   1632
   1633	if (target == qd_idx) {
   1634		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
   1635		blocks[count] = NULL; /* regenerating p is not necessary */
   1636		BUG_ON(blocks[count+1] != dest); /* q should already be set */
   1637		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
   1638				  ops_complete_compute, sh,
   1639				  to_addr_conv(sh, percpu, 0));
   1640		tx = async_gen_syndrome(blocks, offs, count+2,
   1641				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
   1642	} else {
   1643		/* Compute any data- or p-drive using XOR */
   1644		count = 0;
   1645		for (i = disks; i-- ; ) {
   1646			if (i == target || i == qd_idx)
   1647				continue;
   1648			offs[count] = sh->dev[i].offset;
   1649			blocks[count++] = sh->dev[i].page;
   1650		}
   1651
   1652		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
   1653				  NULL, ops_complete_compute, sh,
   1654				  to_addr_conv(sh, percpu, 0));
   1655		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
   1656				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
   1657	}
   1658
   1659	return tx;
   1660}
   1661
   1662static struct dma_async_tx_descriptor *
   1663ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
   1664{
   1665	int i, count, disks = sh->disks;
   1666	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
   1667	int d0_idx = raid6_d0(sh);
   1668	int faila = -1, failb = -1;
   1669	int target = sh->ops.target;
   1670	int target2 = sh->ops.target2;
   1671	struct r5dev *tgt = &sh->dev[target];
   1672	struct r5dev *tgt2 = &sh->dev[target2];
   1673	struct dma_async_tx_descriptor *tx;
   1674	struct page **blocks = to_addr_page(percpu, 0);
   1675	unsigned int *offs = to_addr_offs(sh, percpu);
   1676	struct async_submit_ctl submit;
   1677
   1678	BUG_ON(sh->batch_head);
   1679	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
   1680		 __func__, (unsigned long long)sh->sector, target, target2);
   1681	BUG_ON(target < 0 || target2 < 0);
   1682	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
   1683	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
   1684
   1685	/* we need to open-code set_syndrome_sources to handle the
   1686	 * slot number conversion for 'faila' and 'failb'
   1687	 */
   1688	for (i = 0; i < disks ; i++) {
   1689		offs[i] = 0;
   1690		blocks[i] = NULL;
   1691	}
   1692	count = 0;
   1693	i = d0_idx;
   1694	do {
   1695		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
   1696
   1697		offs[slot] = sh->dev[i].offset;
   1698		blocks[slot] = sh->dev[i].page;
   1699
   1700		if (i == target)
   1701			faila = slot;
   1702		if (i == target2)
   1703			failb = slot;
   1704		i = raid6_next_disk(i, disks);
   1705	} while (i != d0_idx);
   1706
   1707	BUG_ON(faila == failb);
   1708	if (failb < faila)
   1709		swap(faila, failb);
   1710	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
   1711		 __func__, (unsigned long long)sh->sector, faila, failb);
   1712
   1713	atomic_inc(&sh->count);
   1714
   1715	if (failb == syndrome_disks+1) {
   1716		/* Q disk is one of the missing disks */
   1717		if (faila == syndrome_disks) {
   1718			/* Missing P+Q, just recompute */
   1719			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
   1720					  ops_complete_compute, sh,
   1721					  to_addr_conv(sh, percpu, 0));
   1722			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
   1723						  RAID5_STRIPE_SIZE(sh->raid_conf),
   1724						  &submit);
   1725		} else {
   1726			struct page *dest;
   1727			unsigned int dest_off;
   1728			int data_target;
   1729			int qd_idx = sh->qd_idx;
   1730
   1731			/* Missing D+Q: recompute D from P, then recompute Q */
   1732			if (target == qd_idx)
   1733				data_target = target2;
   1734			else
   1735				data_target = target;
   1736
   1737			count = 0;
   1738			for (i = disks; i-- ; ) {
   1739				if (i == data_target || i == qd_idx)
   1740					continue;
   1741				offs[count] = sh->dev[i].offset;
   1742				blocks[count++] = sh->dev[i].page;
   1743			}
   1744			dest = sh->dev[data_target].page;
   1745			dest_off = sh->dev[data_target].offset;
   1746			init_async_submit(&submit,
   1747					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
   1748					  NULL, NULL, NULL,
   1749					  to_addr_conv(sh, percpu, 0));
   1750			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
   1751				       RAID5_STRIPE_SIZE(sh->raid_conf),
   1752				       &submit);
   1753
   1754			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
   1755			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
   1756					  ops_complete_compute, sh,
   1757					  to_addr_conv(sh, percpu, 0));
   1758			return async_gen_syndrome(blocks, offs, count+2,
   1759						  RAID5_STRIPE_SIZE(sh->raid_conf),
   1760						  &submit);
   1761		}
   1762	} else {
   1763		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
   1764				  ops_complete_compute, sh,
   1765				  to_addr_conv(sh, percpu, 0));
   1766		if (failb == syndrome_disks) {
   1767			/* We're missing D+P. */
   1768			return async_raid6_datap_recov(syndrome_disks+2,
   1769						RAID5_STRIPE_SIZE(sh->raid_conf),
   1770						faila,
   1771						blocks, offs, &submit);
   1772		} else {
   1773			/* We're missing D+D. */
   1774			return async_raid6_2data_recov(syndrome_disks+2,
   1775						RAID5_STRIPE_SIZE(sh->raid_conf),
   1776						faila, failb,
   1777						blocks, offs, &submit);
   1778		}
   1779	}
   1780}
   1781
   1782static void ops_complete_prexor(void *stripe_head_ref)
   1783{
   1784	struct stripe_head *sh = stripe_head_ref;
   1785
   1786	pr_debug("%s: stripe %llu\n", __func__,
   1787		(unsigned long long)sh->sector);
   1788
   1789	if (r5c_is_writeback(sh->raid_conf->log))
   1790		/*
   1791		 * raid5-cache write back uses orig_page during prexor.
   1792		 * After prexor, it is time to free orig_page
   1793		 */
   1794		r5c_release_extra_page(sh);
   1795}
   1796
   1797static struct dma_async_tx_descriptor *
   1798ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
   1799		struct dma_async_tx_descriptor *tx)
   1800{
   1801	int disks = sh->disks;
   1802	struct page **xor_srcs = to_addr_page(percpu, 0);
   1803	unsigned int *off_srcs = to_addr_offs(sh, percpu);
   1804	int count = 0, pd_idx = sh->pd_idx, i;
   1805	struct async_submit_ctl submit;
   1806
   1807	/* existing parity data subtracted */
   1808	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
   1809	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
   1810
   1811	BUG_ON(sh->batch_head);
   1812	pr_debug("%s: stripe %llu\n", __func__,
   1813		(unsigned long long)sh->sector);
   1814
   1815	for (i = disks; i--; ) {
   1816		struct r5dev *dev = &sh->dev[i];
   1817		/* Only process blocks that are known to be uptodate */
   1818		if (test_bit(R5_InJournal, &dev->flags)) {
   1819			/*
   1820			 * For this case, PAGE_SIZE must be equal to 4KB and
   1821			 * page offset is zero.
   1822			 */
   1823			off_srcs[count] = dev->offset;
   1824			xor_srcs[count++] = dev->orig_page;
   1825		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
   1826			off_srcs[count] = dev->offset;
   1827			xor_srcs[count++] = dev->page;
   1828		}
   1829	}
   1830
   1831	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
   1832			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
   1833	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
   1834			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
   1835
   1836	return tx;
   1837}
   1838
   1839static struct dma_async_tx_descriptor *
   1840ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
   1841		struct dma_async_tx_descriptor *tx)
   1842{
   1843	struct page **blocks = to_addr_page(percpu, 0);
   1844	unsigned int *offs = to_addr_offs(sh, percpu);
   1845	int count;
   1846	struct async_submit_ctl submit;
   1847
   1848	pr_debug("%s: stripe %llu\n", __func__,
   1849		(unsigned long long)sh->sector);
   1850
   1851	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
   1852
   1853	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
   1854			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
   1855	tx = async_gen_syndrome(blocks, offs, count+2,
   1856			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
   1857
   1858	return tx;
   1859}
   1860
   1861static struct dma_async_tx_descriptor *
   1862ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
   1863{
   1864	struct r5conf *conf = sh->raid_conf;
   1865	int disks = sh->disks;
   1866	int i;
   1867	struct stripe_head *head_sh = sh;
   1868
   1869	pr_debug("%s: stripe %llu\n", __func__,
   1870		(unsigned long long)sh->sector);
   1871
   1872	for (i = disks; i--; ) {
   1873		struct r5dev *dev;
   1874		struct bio *chosen;
   1875
   1876		sh = head_sh;
   1877		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
   1878			struct bio *wbi;
   1879
   1880again:
   1881			dev = &sh->dev[i];
   1882			/*
   1883			 * clear R5_InJournal, so when rewriting a page in
   1884			 * journal, it is not skipped by r5l_log_stripe()
   1885			 */
   1886			clear_bit(R5_InJournal, &dev->flags);
   1887			spin_lock_irq(&sh->stripe_lock);
   1888			chosen = dev->towrite;
   1889			dev->towrite = NULL;
   1890			sh->overwrite_disks = 0;
   1891			BUG_ON(dev->written);
   1892			wbi = dev->written = chosen;
   1893			spin_unlock_irq(&sh->stripe_lock);
   1894			WARN_ON(dev->page != dev->orig_page);
   1895
   1896			while (wbi && wbi->bi_iter.bi_sector <
   1897				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
   1898				if (wbi->bi_opf & REQ_FUA)
   1899					set_bit(R5_WantFUA, &dev->flags);
   1900				if (wbi->bi_opf & REQ_SYNC)
   1901					set_bit(R5_SyncIO, &dev->flags);
   1902				if (bio_op(wbi) == REQ_OP_DISCARD)
   1903					set_bit(R5_Discard, &dev->flags);
   1904				else {
   1905					tx = async_copy_data(1, wbi, &dev->page,
   1906							     dev->offset,
   1907							     dev->sector, tx, sh,
   1908							     r5c_is_writeback(conf->log));
   1909					if (dev->page != dev->orig_page &&
   1910					    !r5c_is_writeback(conf->log)) {
   1911						set_bit(R5_SkipCopy, &dev->flags);
   1912						clear_bit(R5_UPTODATE, &dev->flags);
   1913						clear_bit(R5_OVERWRITE, &dev->flags);
   1914					}
   1915				}
   1916				wbi = r5_next_bio(conf, wbi, dev->sector);
   1917			}
   1918
   1919			if (head_sh->batch_head) {
   1920				sh = list_first_entry(&sh->batch_list,
   1921						      struct stripe_head,
   1922						      batch_list);
   1923				if (sh == head_sh)
   1924					continue;
   1925				goto again;
   1926			}
   1927		}
   1928	}
   1929
   1930	return tx;
   1931}
   1932
   1933static void ops_complete_reconstruct(void *stripe_head_ref)
   1934{
   1935	struct stripe_head *sh = stripe_head_ref;
   1936	int disks = sh->disks;
   1937	int pd_idx = sh->pd_idx;
   1938	int qd_idx = sh->qd_idx;
   1939	int i;
   1940	bool fua = false, sync = false, discard = false;
   1941
   1942	pr_debug("%s: stripe %llu\n", __func__,
   1943		(unsigned long long)sh->sector);
   1944
   1945	for (i = disks; i--; ) {
   1946		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
   1947		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
   1948		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
   1949	}
   1950
   1951	for (i = disks; i--; ) {
   1952		struct r5dev *dev = &sh->dev[i];
   1953
   1954		if (dev->written || i == pd_idx || i == qd_idx) {
   1955			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
   1956				set_bit(R5_UPTODATE, &dev->flags);
   1957				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
   1958					set_bit(R5_Expanded, &dev->flags);
   1959			}
   1960			if (fua)
   1961				set_bit(R5_WantFUA, &dev->flags);
   1962			if (sync)
   1963				set_bit(R5_SyncIO, &dev->flags);
   1964		}
   1965	}
   1966
   1967	if (sh->reconstruct_state == reconstruct_state_drain_run)
   1968		sh->reconstruct_state = reconstruct_state_drain_result;
   1969	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
   1970		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
   1971	else {
   1972		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
   1973		sh->reconstruct_state = reconstruct_state_result;
   1974	}
   1975
   1976	set_bit(STRIPE_HANDLE, &sh->state);
   1977	raid5_release_stripe(sh);
   1978}
   1979
   1980static void
   1981ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
   1982		     struct dma_async_tx_descriptor *tx)
   1983{
   1984	int disks = sh->disks;
   1985	struct page **xor_srcs;
   1986	unsigned int *off_srcs;
   1987	struct async_submit_ctl submit;
   1988	int count, pd_idx = sh->pd_idx, i;
   1989	struct page *xor_dest;
   1990	unsigned int off_dest;
   1991	int prexor = 0;
   1992	unsigned long flags;
   1993	int j = 0;
   1994	struct stripe_head *head_sh = sh;
   1995	int last_stripe;
   1996
   1997	pr_debug("%s: stripe %llu\n", __func__,
   1998		(unsigned long long)sh->sector);
   1999
   2000	for (i = 0; i < sh->disks; i++) {
   2001		if (pd_idx == i)
   2002			continue;
   2003		if (!test_bit(R5_Discard, &sh->dev[i].flags))
   2004			break;
   2005	}
   2006	if (i >= sh->disks) {
   2007		atomic_inc(&sh->count);
   2008		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
   2009		ops_complete_reconstruct(sh);
   2010		return;
   2011	}
   2012again:
   2013	count = 0;
   2014	xor_srcs = to_addr_page(percpu, j);
   2015	off_srcs = to_addr_offs(sh, percpu);
   2016	/* check if prexor is active which means only process blocks
   2017	 * that are part of a read-modify-write (written)
   2018	 */
   2019	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
   2020		prexor = 1;
   2021		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
   2022		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
   2023		for (i = disks; i--; ) {
   2024			struct r5dev *dev = &sh->dev[i];
   2025			if (head_sh->dev[i].written ||
   2026			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
   2027				off_srcs[count] = dev->offset;
   2028				xor_srcs[count++] = dev->page;
   2029			}
   2030		}
   2031	} else {
   2032		xor_dest = sh->dev[pd_idx].page;
   2033		off_dest = sh->dev[pd_idx].offset;
   2034		for (i = disks; i--; ) {
   2035			struct r5dev *dev = &sh->dev[i];
   2036			if (i != pd_idx) {
   2037				off_srcs[count] = dev->offset;
   2038				xor_srcs[count++] = dev->page;
   2039			}
   2040		}
   2041	}
   2042
   2043	/* 1/ if we prexor'd then the dest is reused as a source
   2044	 * 2/ if we did not prexor then we are redoing the parity
   2045	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
   2046	 * for the synchronous xor case
   2047	 */
   2048	last_stripe = !head_sh->batch_head ||
   2049		list_first_entry(&sh->batch_list,
   2050				 struct stripe_head, batch_list) == head_sh;
   2051	if (last_stripe) {
   2052		flags = ASYNC_TX_ACK |
   2053			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
   2054
   2055		atomic_inc(&head_sh->count);
   2056		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
   2057				  to_addr_conv(sh, percpu, j));
   2058	} else {
   2059		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
   2060		init_async_submit(&submit, flags, tx, NULL, NULL,
   2061				  to_addr_conv(sh, percpu, j));
   2062	}
   2063
   2064	if (unlikely(count == 1))
   2065		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
   2066				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
   2067	else
   2068		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
   2069				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
   2070	if (!last_stripe) {
   2071		j++;
   2072		sh = list_first_entry(&sh->batch_list, struct stripe_head,
   2073				      batch_list);
   2074		goto again;
   2075	}
   2076}
   2077
   2078static void
   2079ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
   2080		     struct dma_async_tx_descriptor *tx)
   2081{
   2082	struct async_submit_ctl submit;
   2083	struct page **blocks;
   2084	unsigned int *offs;
   2085	int count, i, j = 0;
   2086	struct stripe_head *head_sh = sh;
   2087	int last_stripe;
   2088	int synflags;
   2089	unsigned long txflags;
   2090
   2091	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
   2092
   2093	for (i = 0; i < sh->disks; i++) {
   2094		if (sh->pd_idx == i || sh->qd_idx == i)
   2095			continue;
   2096		if (!test_bit(R5_Discard, &sh->dev[i].flags))
   2097			break;
   2098	}
   2099	if (i >= sh->disks) {
   2100		atomic_inc(&sh->count);
   2101		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
   2102		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
   2103		ops_complete_reconstruct(sh);
   2104		return;
   2105	}
   2106
   2107again:
   2108	blocks = to_addr_page(percpu, j);
   2109	offs = to_addr_offs(sh, percpu);
   2110
   2111	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
   2112		synflags = SYNDROME_SRC_WRITTEN;
   2113		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
   2114	} else {
   2115		synflags = SYNDROME_SRC_ALL;
   2116		txflags = ASYNC_TX_ACK;
   2117	}
   2118
   2119	count = set_syndrome_sources(blocks, offs, sh, synflags);
   2120	last_stripe = !head_sh->batch_head ||
   2121		list_first_entry(&sh->batch_list,
   2122				 struct stripe_head, batch_list) == head_sh;
   2123
   2124	if (last_stripe) {
   2125		atomic_inc(&head_sh->count);
   2126		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
   2127				  head_sh, to_addr_conv(sh, percpu, j));
   2128	} else
   2129		init_async_submit(&submit, 0, tx, NULL, NULL,
   2130				  to_addr_conv(sh, percpu, j));
   2131	tx = async_gen_syndrome(blocks, offs, count+2,
   2132			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
   2133	if (!last_stripe) {
   2134		j++;
   2135		sh = list_first_entry(&sh->batch_list, struct stripe_head,
   2136				      batch_list);
   2137		goto again;
   2138	}
   2139}
   2140
   2141static void ops_complete_check(void *stripe_head_ref)
   2142{
   2143	struct stripe_head *sh = stripe_head_ref;
   2144
   2145	pr_debug("%s: stripe %llu\n", __func__,
   2146		(unsigned long long)sh->sector);
   2147
   2148	sh->check_state = check_state_check_result;
   2149	set_bit(STRIPE_HANDLE, &sh->state);
   2150	raid5_release_stripe(sh);
   2151}
   2152
   2153static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
   2154{
   2155	int disks = sh->disks;
   2156	int pd_idx = sh->pd_idx;
   2157	int qd_idx = sh->qd_idx;
   2158	struct page *xor_dest;
   2159	unsigned int off_dest;
   2160	struct page **xor_srcs = to_addr_page(percpu, 0);
   2161	unsigned int *off_srcs = to_addr_offs(sh, percpu);
   2162	struct dma_async_tx_descriptor *tx;
   2163	struct async_submit_ctl submit;
   2164	int count;
   2165	int i;
   2166
   2167	pr_debug("%s: stripe %llu\n", __func__,
   2168		(unsigned long long)sh->sector);
   2169
   2170	BUG_ON(sh->batch_head);
   2171	count = 0;
   2172	xor_dest = sh->dev[pd_idx].page;
   2173	off_dest = sh->dev[pd_idx].offset;
   2174	off_srcs[count] = off_dest;
   2175	xor_srcs[count++] = xor_dest;
   2176	for (i = disks; i--; ) {
   2177		if (i == pd_idx || i == qd_idx)
   2178			continue;
   2179		off_srcs[count] = sh->dev[i].offset;
   2180		xor_srcs[count++] = sh->dev[i].page;
   2181	}
   2182
   2183	init_async_submit(&submit, 0, NULL, NULL, NULL,
   2184			  to_addr_conv(sh, percpu, 0));
   2185	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
   2186			   RAID5_STRIPE_SIZE(sh->raid_conf),
   2187			   &sh->ops.zero_sum_result, &submit);
   2188
   2189	atomic_inc(&sh->count);
   2190	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
   2191	tx = async_trigger_callback(&submit);
   2192}
   2193
   2194static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
   2195{
   2196	struct page **srcs = to_addr_page(percpu, 0);
   2197	unsigned int *offs = to_addr_offs(sh, percpu);
   2198	struct async_submit_ctl submit;
   2199	int count;
   2200
   2201	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
   2202		(unsigned long long)sh->sector, checkp);
   2203
   2204	BUG_ON(sh->batch_head);
   2205	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
   2206	if (!checkp)
   2207		srcs[count] = NULL;
   2208
   2209	atomic_inc(&sh->count);
   2210	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
   2211			  sh, to_addr_conv(sh, percpu, 0));
   2212	async_syndrome_val(srcs, offs, count+2,
   2213			   RAID5_STRIPE_SIZE(sh->raid_conf),
   2214			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
   2215}
   2216
   2217static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
   2218{
   2219	int overlap_clear = 0, i, disks = sh->disks;
   2220	struct dma_async_tx_descriptor *tx = NULL;
   2221	struct r5conf *conf = sh->raid_conf;
   2222	int level = conf->level;
   2223	struct raid5_percpu *percpu;
   2224
   2225	local_lock(&conf->percpu->lock);
   2226	percpu = this_cpu_ptr(conf->percpu);
   2227	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
   2228		ops_run_biofill(sh);
   2229		overlap_clear++;
   2230	}
   2231
   2232	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
   2233		if (level < 6)
   2234			tx = ops_run_compute5(sh, percpu);
   2235		else {
   2236			if (sh->ops.target2 < 0 || sh->ops.target < 0)
   2237				tx = ops_run_compute6_1(sh, percpu);
   2238			else
   2239				tx = ops_run_compute6_2(sh, percpu);
   2240		}
   2241		/* terminate the chain if reconstruct is not set to be run */
   2242		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
   2243			async_tx_ack(tx);
   2244	}
   2245
   2246	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
   2247		if (level < 6)
   2248			tx = ops_run_prexor5(sh, percpu, tx);
   2249		else
   2250			tx = ops_run_prexor6(sh, percpu, tx);
   2251	}
   2252
   2253	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
   2254		tx = ops_run_partial_parity(sh, percpu, tx);
   2255
   2256	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
   2257		tx = ops_run_biodrain(sh, tx);
   2258		overlap_clear++;
   2259	}
   2260
   2261	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
   2262		if (level < 6)
   2263			ops_run_reconstruct5(sh, percpu, tx);
   2264		else
   2265			ops_run_reconstruct6(sh, percpu, tx);
   2266	}
   2267
   2268	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
   2269		if (sh->check_state == check_state_run)
   2270			ops_run_check_p(sh, percpu);
   2271		else if (sh->check_state == check_state_run_q)
   2272			ops_run_check_pq(sh, percpu, 0);
   2273		else if (sh->check_state == check_state_run_pq)
   2274			ops_run_check_pq(sh, percpu, 1);
   2275		else
   2276			BUG();
   2277	}
   2278
   2279	if (overlap_clear && !sh->batch_head) {
   2280		for (i = disks; i--; ) {
   2281			struct r5dev *dev = &sh->dev[i];
   2282			if (test_and_clear_bit(R5_Overlap, &dev->flags))
   2283				wake_up(&sh->raid_conf->wait_for_overlap);
   2284		}
   2285	}
   2286	local_unlock(&conf->percpu->lock);
   2287}
   2288
   2289static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
   2290{
   2291#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
   2292	kfree(sh->pages);
   2293#endif
   2294	if (sh->ppl_page)
   2295		__free_page(sh->ppl_page);
   2296	kmem_cache_free(sc, sh);
   2297}
   2298
   2299static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
   2300	int disks, struct r5conf *conf)
   2301{
   2302	struct stripe_head *sh;
   2303
   2304	sh = kmem_cache_zalloc(sc, gfp);
   2305	if (sh) {
   2306		spin_lock_init(&sh->stripe_lock);
   2307		spin_lock_init(&sh->batch_lock);
   2308		INIT_LIST_HEAD(&sh->batch_list);
   2309		INIT_LIST_HEAD(&sh->lru);
   2310		INIT_LIST_HEAD(&sh->r5c);
   2311		INIT_LIST_HEAD(&sh->log_list);
   2312		atomic_set(&sh->count, 1);
   2313		sh->raid_conf = conf;
   2314		sh->log_start = MaxSector;
   2315
   2316		if (raid5_has_ppl(conf)) {
   2317			sh->ppl_page = alloc_page(gfp);
   2318			if (!sh->ppl_page) {
   2319				free_stripe(sc, sh);
   2320				return NULL;
   2321			}
   2322		}
   2323#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
   2324		if (init_stripe_shared_pages(sh, conf, disks)) {
   2325			free_stripe(sc, sh);
   2326			return NULL;
   2327		}
   2328#endif
   2329	}
   2330	return sh;
   2331}
   2332static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
   2333{
   2334	struct stripe_head *sh;
   2335
   2336	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
   2337	if (!sh)
   2338		return 0;
   2339
   2340	if (grow_buffers(sh, gfp)) {
   2341		shrink_buffers(sh);
   2342		free_stripe(conf->slab_cache, sh);
   2343		return 0;
   2344	}
   2345	sh->hash_lock_index =
   2346		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
   2347	/* we just created an active stripe so... */
   2348	atomic_inc(&conf->active_stripes);
   2349
   2350	raid5_release_stripe(sh);
   2351	conf->max_nr_stripes++;
   2352	return 1;
   2353}
   2354
   2355static int grow_stripes(struct r5conf *conf, int num)
   2356{
   2357	struct kmem_cache *sc;
   2358	size_t namelen = sizeof(conf->cache_name[0]);
   2359	int devs = max(conf->raid_disks, conf->previous_raid_disks);
   2360
   2361	if (conf->mddev->gendisk)
   2362		snprintf(conf->cache_name[0], namelen,
   2363			"raid%d-%s", conf->level, mdname(conf->mddev));
   2364	else
   2365		snprintf(conf->cache_name[0], namelen,
   2366			"raid%d-%p", conf->level, conf->mddev);
   2367	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
   2368
   2369	conf->active_name = 0;
   2370	sc = kmem_cache_create(conf->cache_name[conf->active_name],
   2371			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
   2372			       0, 0, NULL);
   2373	if (!sc)
   2374		return 1;
   2375	conf->slab_cache = sc;
   2376	conf->pool_size = devs;
   2377	while (num--)
   2378		if (!grow_one_stripe(conf, GFP_KERNEL))
   2379			return 1;
   2380
   2381	return 0;
   2382}
   2383
   2384/**
   2385 * scribble_alloc - allocate percpu scribble buffer for required size
   2386 *		    of the scribble region
   2387 * @percpu: from for_each_present_cpu() of the caller
   2388 * @num: total number of disks in the array
   2389 * @cnt: scribble objs count for required size of the scribble region
   2390 *
   2391 * The scribble buffer size must be enough to contain:
   2392 * 1/ a struct page pointer for each device in the array +2
   2393 * 2/ room to convert each entry in (1) to its corresponding dma
   2394 *    (dma_map_page()) or page (page_address()) address.
   2395 *
   2396 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
   2397 * calculate over all devices (not just the data blocks), using zeros in place
   2398 * of the P and Q blocks.
   2399 */
   2400static int scribble_alloc(struct raid5_percpu *percpu,
   2401			  int num, int cnt)
   2402{
   2403	size_t obj_size =
   2404		sizeof(struct page *) * (num + 2) +
   2405		sizeof(addr_conv_t) * (num + 2) +
   2406		sizeof(unsigned int) * (num + 2);
   2407	void *scribble;
   2408
   2409	/*
   2410	 * If here is in raid array suspend context, it is in memalloc noio
   2411	 * context as well, there is no potential recursive memory reclaim
   2412	 * I/Os with the GFP_KERNEL flag.
   2413	 */
   2414	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
   2415	if (!scribble)
   2416		return -ENOMEM;
   2417
   2418	kvfree(percpu->scribble);
   2419
   2420	percpu->scribble = scribble;
   2421	percpu->scribble_obj_size = obj_size;
   2422	return 0;
   2423}
   2424
   2425static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
   2426{
   2427	unsigned long cpu;
   2428	int err = 0;
   2429
   2430	/*
   2431	 * Never shrink. And mddev_suspend() could deadlock if this is called
   2432	 * from raid5d. In that case, scribble_disks and scribble_sectors
   2433	 * should equal to new_disks and new_sectors
   2434	 */
   2435	if (conf->scribble_disks >= new_disks &&
   2436	    conf->scribble_sectors >= new_sectors)
   2437		return 0;
   2438	mddev_suspend(conf->mddev);
   2439	cpus_read_lock();
   2440
   2441	for_each_present_cpu(cpu) {
   2442		struct raid5_percpu *percpu;
   2443
   2444		percpu = per_cpu_ptr(conf->percpu, cpu);
   2445		err = scribble_alloc(percpu, new_disks,
   2446				     new_sectors / RAID5_STRIPE_SECTORS(conf));
   2447		if (err)
   2448			break;
   2449	}
   2450
   2451	cpus_read_unlock();
   2452	mddev_resume(conf->mddev);
   2453	if (!err) {
   2454		conf->scribble_disks = new_disks;
   2455		conf->scribble_sectors = new_sectors;
   2456	}
   2457	return err;
   2458}
   2459
   2460static int resize_stripes(struct r5conf *conf, int newsize)
   2461{
   2462	/* Make all the stripes able to hold 'newsize' devices.
   2463	 * New slots in each stripe get 'page' set to a new page.
   2464	 *
   2465	 * This happens in stages:
   2466	 * 1/ create a new kmem_cache and allocate the required number of
   2467	 *    stripe_heads.
   2468	 * 2/ gather all the old stripe_heads and transfer the pages across
   2469	 *    to the new stripe_heads.  This will have the side effect of
   2470	 *    freezing the array as once all stripe_heads have been collected,
   2471	 *    no IO will be possible.  Old stripe heads are freed once their
   2472	 *    pages have been transferred over, and the old kmem_cache is
   2473	 *    freed when all stripes are done.
   2474	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
   2475	 *    we simple return a failure status - no need to clean anything up.
   2476	 * 4/ allocate new pages for the new slots in the new stripe_heads.
   2477	 *    If this fails, we don't bother trying the shrink the
   2478	 *    stripe_heads down again, we just leave them as they are.
   2479	 *    As each stripe_head is processed the new one is released into
   2480	 *    active service.
   2481	 *
   2482	 * Once step2 is started, we cannot afford to wait for a write,
   2483	 * so we use GFP_NOIO allocations.
   2484	 */
   2485	struct stripe_head *osh, *nsh;
   2486	LIST_HEAD(newstripes);
   2487	struct disk_info *ndisks;
   2488	int err = 0;
   2489	struct kmem_cache *sc;
   2490	int i;
   2491	int hash, cnt;
   2492
   2493	md_allow_write(conf->mddev);
   2494
   2495	/* Step 1 */
   2496	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
   2497			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
   2498			       0, 0, NULL);
   2499	if (!sc)
   2500		return -ENOMEM;
   2501
   2502	/* Need to ensure auto-resizing doesn't interfere */
   2503	mutex_lock(&conf->cache_size_mutex);
   2504
   2505	for (i = conf->max_nr_stripes; i; i--) {
   2506		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
   2507		if (!nsh)
   2508			break;
   2509
   2510		list_add(&nsh->lru, &newstripes);
   2511	}
   2512	if (i) {
   2513		/* didn't get enough, give up */
   2514		while (!list_empty(&newstripes)) {
   2515			nsh = list_entry(newstripes.next, struct stripe_head, lru);
   2516			list_del(&nsh->lru);
   2517			free_stripe(sc, nsh);
   2518		}
   2519		kmem_cache_destroy(sc);
   2520		mutex_unlock(&conf->cache_size_mutex);
   2521		return -ENOMEM;
   2522	}
   2523	/* Step 2 - Must use GFP_NOIO now.
   2524	 * OK, we have enough stripes, start collecting inactive
   2525	 * stripes and copying them over
   2526	 */
   2527	hash = 0;
   2528	cnt = 0;
   2529	list_for_each_entry(nsh, &newstripes, lru) {
   2530		lock_device_hash_lock(conf, hash);
   2531		wait_event_cmd(conf->wait_for_stripe,
   2532				    !list_empty(conf->inactive_list + hash),
   2533				    unlock_device_hash_lock(conf, hash),
   2534				    lock_device_hash_lock(conf, hash));
   2535		osh = get_free_stripe(conf, hash);
   2536		unlock_device_hash_lock(conf, hash);
   2537
   2538#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
   2539	for (i = 0; i < osh->nr_pages; i++) {
   2540		nsh->pages[i] = osh->pages[i];
   2541		osh->pages[i] = NULL;
   2542	}
   2543#endif
   2544		for(i=0; i<conf->pool_size; i++) {
   2545			nsh->dev[i].page = osh->dev[i].page;
   2546			nsh->dev[i].orig_page = osh->dev[i].page;
   2547			nsh->dev[i].offset = osh->dev[i].offset;
   2548		}
   2549		nsh->hash_lock_index = hash;
   2550		free_stripe(conf->slab_cache, osh);
   2551		cnt++;
   2552		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
   2553		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
   2554			hash++;
   2555			cnt = 0;
   2556		}
   2557	}
   2558	kmem_cache_destroy(conf->slab_cache);
   2559
   2560	/* Step 3.
   2561	 * At this point, we are holding all the stripes so the array
   2562	 * is completely stalled, so now is a good time to resize
   2563	 * conf->disks and the scribble region
   2564	 */
   2565	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
   2566	if (ndisks) {
   2567		for (i = 0; i < conf->pool_size; i++)
   2568			ndisks[i] = conf->disks[i];
   2569
   2570		for (i = conf->pool_size; i < newsize; i++) {
   2571			ndisks[i].extra_page = alloc_page(GFP_NOIO);
   2572			if (!ndisks[i].extra_page)
   2573				err = -ENOMEM;
   2574		}
   2575
   2576		if (err) {
   2577			for (i = conf->pool_size; i < newsize; i++)
   2578				if (ndisks[i].extra_page)
   2579					put_page(ndisks[i].extra_page);
   2580			kfree(ndisks);
   2581		} else {
   2582			kfree(conf->disks);
   2583			conf->disks = ndisks;
   2584		}
   2585	} else
   2586		err = -ENOMEM;
   2587
   2588	conf->slab_cache = sc;
   2589	conf->active_name = 1-conf->active_name;
   2590
   2591	/* Step 4, return new stripes to service */
   2592	while(!list_empty(&newstripes)) {
   2593		nsh = list_entry(newstripes.next, struct stripe_head, lru);
   2594		list_del_init(&nsh->lru);
   2595
   2596#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
   2597		for (i = 0; i < nsh->nr_pages; i++) {
   2598			if (nsh->pages[i])
   2599				continue;
   2600			nsh->pages[i] = alloc_page(GFP_NOIO);
   2601			if (!nsh->pages[i])
   2602				err = -ENOMEM;
   2603		}
   2604
   2605		for (i = conf->raid_disks; i < newsize; i++) {
   2606			if (nsh->dev[i].page)
   2607				continue;
   2608			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
   2609			nsh->dev[i].orig_page = nsh->dev[i].page;
   2610			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
   2611		}
   2612#else
   2613		for (i=conf->raid_disks; i < newsize; i++)
   2614			if (nsh->dev[i].page == NULL) {
   2615				struct page *p = alloc_page(GFP_NOIO);
   2616				nsh->dev[i].page = p;
   2617				nsh->dev[i].orig_page = p;
   2618				nsh->dev[i].offset = 0;
   2619				if (!p)
   2620					err = -ENOMEM;
   2621			}
   2622#endif
   2623		raid5_release_stripe(nsh);
   2624	}
   2625	/* critical section pass, GFP_NOIO no longer needed */
   2626
   2627	if (!err)
   2628		conf->pool_size = newsize;
   2629	mutex_unlock(&conf->cache_size_mutex);
   2630
   2631	return err;
   2632}
   2633
   2634static int drop_one_stripe(struct r5conf *conf)
   2635{
   2636	struct stripe_head *sh;
   2637	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
   2638
   2639	spin_lock_irq(conf->hash_locks + hash);
   2640	sh = get_free_stripe(conf, hash);
   2641	spin_unlock_irq(conf->hash_locks + hash);
   2642	if (!sh)
   2643		return 0;
   2644	BUG_ON(atomic_read(&sh->count));
   2645	shrink_buffers(sh);
   2646	free_stripe(conf->slab_cache, sh);
   2647	atomic_dec(&conf->active_stripes);
   2648	conf->max_nr_stripes--;
   2649	return 1;
   2650}
   2651
   2652static void shrink_stripes(struct r5conf *conf)
   2653{
   2654	while (conf->max_nr_stripes &&
   2655	       drop_one_stripe(conf))
   2656		;
   2657
   2658	kmem_cache_destroy(conf->slab_cache);
   2659	conf->slab_cache = NULL;
   2660}
   2661
   2662/*
   2663 * This helper wraps rcu_dereference_protected() and can be used when
   2664 * it is known that the nr_pending of the rdev is elevated.
   2665 */
   2666static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
   2667{
   2668	return rcu_dereference_protected(rdev,
   2669			atomic_read(&rcu_access_pointer(rdev)->nr_pending));
   2670}
   2671
   2672/*
   2673 * This helper wraps rcu_dereference_protected() and should be used
   2674 * when it is known that the mddev_lock() is held. This is safe
   2675 * seeing raid5_remove_disk() has the same lock held.
   2676 */
   2677static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
   2678					 struct md_rdev __rcu *rdev)
   2679{
   2680	return rcu_dereference_protected(rdev,
   2681			lockdep_is_held(&mddev->reconfig_mutex));
   2682}
   2683
   2684static void raid5_end_read_request(struct bio * bi)
   2685{
   2686	struct stripe_head *sh = bi->bi_private;
   2687	struct r5conf *conf = sh->raid_conf;
   2688	int disks = sh->disks, i;
   2689	struct md_rdev *rdev = NULL;
   2690	sector_t s;
   2691
   2692	for (i=0 ; i<disks; i++)
   2693		if (bi == &sh->dev[i].req)
   2694			break;
   2695
   2696	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
   2697		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
   2698		bi->bi_status);
   2699	if (i == disks) {
   2700		BUG();
   2701		return;
   2702	}
   2703	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
   2704		/* If replacement finished while this request was outstanding,
   2705		 * 'replacement' might be NULL already.
   2706		 * In that case it moved down to 'rdev'.
   2707		 * rdev is not removed until all requests are finished.
   2708		 */
   2709		rdev = rdev_pend_deref(conf->disks[i].replacement);
   2710	if (!rdev)
   2711		rdev = rdev_pend_deref(conf->disks[i].rdev);
   2712
   2713	if (use_new_offset(conf, sh))
   2714		s = sh->sector + rdev->new_data_offset;
   2715	else
   2716		s = sh->sector + rdev->data_offset;
   2717	if (!bi->bi_status) {
   2718		set_bit(R5_UPTODATE, &sh->dev[i].flags);
   2719		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
   2720			/* Note that this cannot happen on a
   2721			 * replacement device.  We just fail those on
   2722			 * any error
   2723			 */
   2724			pr_info_ratelimited(
   2725				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
   2726				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
   2727				(unsigned long long)s,
   2728				rdev->bdev);
   2729			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
   2730			clear_bit(R5_ReadError, &sh->dev[i].flags);
   2731			clear_bit(R5_ReWrite, &sh->dev[i].flags);
   2732		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
   2733			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
   2734
   2735		if (test_bit(R5_InJournal, &sh->dev[i].flags))
   2736			/*
   2737			 * end read for a page in journal, this
   2738			 * must be preparing for prexor in rmw
   2739			 */
   2740			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
   2741
   2742		if (atomic_read(&rdev->read_errors))
   2743			atomic_set(&rdev->read_errors, 0);
   2744	} else {
   2745		int retry = 0;
   2746		int set_bad = 0;
   2747
   2748		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
   2749		if (!(bi->bi_status == BLK_STS_PROTECTION))
   2750			atomic_inc(&rdev->read_errors);
   2751		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
   2752			pr_warn_ratelimited(
   2753				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
   2754				mdname(conf->mddev),
   2755				(unsigned long long)s,
   2756				rdev->bdev);
   2757		else if (conf->mddev->degraded >= conf->max_degraded) {
   2758			set_bad = 1;
   2759			pr_warn_ratelimited(
   2760				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
   2761				mdname(conf->mddev),
   2762				(unsigned long long)s,
   2763				rdev->bdev);
   2764		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
   2765			/* Oh, no!!! */
   2766			set_bad = 1;
   2767			pr_warn_ratelimited(
   2768				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
   2769				mdname(conf->mddev),
   2770				(unsigned long long)s,
   2771				rdev->bdev);
   2772		} else if (atomic_read(&rdev->read_errors)
   2773			 > conf->max_nr_stripes) {
   2774			if (!test_bit(Faulty, &rdev->flags)) {
   2775				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
   2776				    mdname(conf->mddev),
   2777				    atomic_read(&rdev->read_errors),
   2778				    conf->max_nr_stripes);
   2779				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
   2780				    mdname(conf->mddev), rdev->bdev);
   2781			}
   2782		} else
   2783			retry = 1;
   2784		if (set_bad && test_bit(In_sync, &rdev->flags)
   2785		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
   2786			retry = 1;
   2787		if (retry)
   2788			if (sh->qd_idx >= 0 && sh->pd_idx == i)
   2789				set_bit(R5_ReadError, &sh->dev[i].flags);
   2790			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
   2791				set_bit(R5_ReadError, &sh->dev[i].flags);
   2792				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
   2793			} else
   2794				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
   2795		else {
   2796			clear_bit(R5_ReadError, &sh->dev[i].flags);
   2797			clear_bit(R5_ReWrite, &sh->dev[i].flags);
   2798			if (!(set_bad
   2799			      && test_bit(In_sync, &rdev->flags)
   2800			      && rdev_set_badblocks(
   2801				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
   2802				md_error(conf->mddev, rdev);
   2803		}
   2804	}
   2805	rdev_dec_pending(rdev, conf->mddev);
   2806	bio_uninit(bi);
   2807	clear_bit(R5_LOCKED, &sh->dev[i].flags);
   2808	set_bit(STRIPE_HANDLE, &sh->state);
   2809	raid5_release_stripe(sh);
   2810}
   2811
   2812static void raid5_end_write_request(struct bio *bi)
   2813{
   2814	struct stripe_head *sh = bi->bi_private;
   2815	struct r5conf *conf = sh->raid_conf;
   2816	int disks = sh->disks, i;
   2817	struct md_rdev *rdev;
   2818	sector_t first_bad;
   2819	int bad_sectors;
   2820	int replacement = 0;
   2821
   2822	for (i = 0 ; i < disks; i++) {
   2823		if (bi == &sh->dev[i].req) {
   2824			rdev = rdev_pend_deref(conf->disks[i].rdev);
   2825			break;
   2826		}
   2827		if (bi == &sh->dev[i].rreq) {
   2828			rdev = rdev_pend_deref(conf->disks[i].replacement);
   2829			if (rdev)
   2830				replacement = 1;
   2831			else
   2832				/* rdev was removed and 'replacement'
   2833				 * replaced it.  rdev is not removed
   2834				 * until all requests are finished.
   2835				 */
   2836				rdev = rdev_pend_deref(conf->disks[i].rdev);
   2837			break;
   2838		}
   2839	}
   2840	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
   2841		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
   2842		bi->bi_status);
   2843	if (i == disks) {
   2844		BUG();
   2845		return;
   2846	}
   2847
   2848	if (replacement) {
   2849		if (bi->bi_status)
   2850			md_error(conf->mddev, rdev);
   2851		else if (is_badblock(rdev, sh->sector,
   2852				     RAID5_STRIPE_SECTORS(conf),
   2853				     &first_bad, &bad_sectors))
   2854			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
   2855	} else {
   2856		if (bi->bi_status) {
   2857			set_bit(STRIPE_DEGRADED, &sh->state);
   2858			set_bit(WriteErrorSeen, &rdev->flags);
   2859			set_bit(R5_WriteError, &sh->dev[i].flags);
   2860			if (!test_and_set_bit(WantReplacement, &rdev->flags))
   2861				set_bit(MD_RECOVERY_NEEDED,
   2862					&rdev->mddev->recovery);
   2863		} else if (is_badblock(rdev, sh->sector,
   2864				       RAID5_STRIPE_SECTORS(conf),
   2865				       &first_bad, &bad_sectors)) {
   2866			set_bit(R5_MadeGood, &sh->dev[i].flags);
   2867			if (test_bit(R5_ReadError, &sh->dev[i].flags))
   2868				/* That was a successful write so make
   2869				 * sure it looks like we already did
   2870				 * a re-write.
   2871				 */
   2872				set_bit(R5_ReWrite, &sh->dev[i].flags);
   2873		}
   2874	}
   2875	rdev_dec_pending(rdev, conf->mddev);
   2876
   2877	if (sh->batch_head && bi->bi_status && !replacement)
   2878		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
   2879
   2880	bio_uninit(bi);
   2881	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
   2882		clear_bit(R5_LOCKED, &sh->dev[i].flags);
   2883	set_bit(STRIPE_HANDLE, &sh->state);
   2884	raid5_release_stripe(sh);
   2885
   2886	if (sh->batch_head && sh != sh->batch_head)
   2887		raid5_release_stripe(sh->batch_head);
   2888}
   2889
   2890static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
   2891{
   2892	struct r5conf *conf = mddev->private;
   2893	unsigned long flags;
   2894	pr_debug("raid456: error called\n");
   2895
   2896	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
   2897		mdname(mddev), rdev->bdev);
   2898
   2899	spin_lock_irqsave(&conf->device_lock, flags);
   2900	set_bit(Faulty, &rdev->flags);
   2901	clear_bit(In_sync, &rdev->flags);
   2902	mddev->degraded = raid5_calc_degraded(conf);
   2903
   2904	if (has_failed(conf)) {
   2905		set_bit(MD_BROKEN, &conf->mddev->flags);
   2906		conf->recovery_disabled = mddev->recovery_disabled;
   2907
   2908		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
   2909			mdname(mddev), mddev->degraded, conf->raid_disks);
   2910	} else {
   2911		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
   2912			mdname(mddev), conf->raid_disks - mddev->degraded);
   2913	}
   2914
   2915	spin_unlock_irqrestore(&conf->device_lock, flags);
   2916	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
   2917
   2918	set_bit(Blocked, &rdev->flags);
   2919	set_mask_bits(&mddev->sb_flags, 0,
   2920		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
   2921	r5c_update_on_rdev_error(mddev, rdev);
   2922}
   2923
   2924/*
   2925 * Input: a 'big' sector number,
   2926 * Output: index of the data and parity disk, and the sector # in them.
   2927 */
   2928sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
   2929			      int previous, int *dd_idx,
   2930			      struct stripe_head *sh)
   2931{
   2932	sector_t stripe, stripe2;
   2933	sector_t chunk_number;
   2934	unsigned int chunk_offset;
   2935	int pd_idx, qd_idx;
   2936	int ddf_layout = 0;
   2937	sector_t new_sector;
   2938	int algorithm = previous ? conf->prev_algo
   2939				 : conf->algorithm;
   2940	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
   2941					 : conf->chunk_sectors;
   2942	int raid_disks = previous ? conf->previous_raid_disks
   2943				  : conf->raid_disks;
   2944	int data_disks = raid_disks - conf->max_degraded;
   2945
   2946	/* First compute the information on this sector */
   2947
   2948	/*
   2949	 * Compute the chunk number and the sector offset inside the chunk
   2950	 */
   2951	chunk_offset = sector_div(r_sector, sectors_per_chunk);
   2952	chunk_number = r_sector;
   2953
   2954	/*
   2955	 * Compute the stripe number
   2956	 */
   2957	stripe = chunk_number;
   2958	*dd_idx = sector_div(stripe, data_disks);
   2959	stripe2 = stripe;
   2960	/*
   2961	 * Select the parity disk based on the user selected algorithm.
   2962	 */
   2963	pd_idx = qd_idx = -1;
   2964	switch(conf->level) {
   2965	case 4:
   2966		pd_idx = data_disks;
   2967		break;
   2968	case 5:
   2969		switch (algorithm) {
   2970		case ALGORITHM_LEFT_ASYMMETRIC:
   2971			pd_idx = data_disks - sector_div(stripe2, raid_disks);
   2972			if (*dd_idx >= pd_idx)
   2973				(*dd_idx)++;
   2974			break;
   2975		case ALGORITHM_RIGHT_ASYMMETRIC:
   2976			pd_idx = sector_div(stripe2, raid_disks);
   2977			if (*dd_idx >= pd_idx)
   2978				(*dd_idx)++;
   2979			break;
   2980		case ALGORITHM_LEFT_SYMMETRIC:
   2981			pd_idx = data_disks - sector_div(stripe2, raid_disks);
   2982			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
   2983			break;
   2984		case ALGORITHM_RIGHT_SYMMETRIC:
   2985			pd_idx = sector_div(stripe2, raid_disks);
   2986			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
   2987			break;
   2988		case ALGORITHM_PARITY_0:
   2989			pd_idx = 0;
   2990			(*dd_idx)++;
   2991			break;
   2992		case ALGORITHM_PARITY_N:
   2993			pd_idx = data_disks;
   2994			break;
   2995		default:
   2996			BUG();
   2997		}
   2998		break;
   2999	case 6:
   3000
   3001		switch (algorithm) {
   3002		case ALGORITHM_LEFT_ASYMMETRIC:
   3003			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
   3004			qd_idx = pd_idx + 1;
   3005			if (pd_idx == raid_disks-1) {
   3006				(*dd_idx)++;	/* Q D D D P */
   3007				qd_idx = 0;
   3008			} else if (*dd_idx >= pd_idx)
   3009				(*dd_idx) += 2; /* D D P Q D */
   3010			break;
   3011		case ALGORITHM_RIGHT_ASYMMETRIC:
   3012			pd_idx = sector_div(stripe2, raid_disks);
   3013			qd_idx = pd_idx + 1;
   3014			if (pd_idx == raid_disks-1) {
   3015				(*dd_idx)++;	/* Q D D D P */
   3016				qd_idx = 0;
   3017			} else if (*dd_idx >= pd_idx)
   3018				(*dd_idx) += 2; /* D D P Q D */
   3019			break;
   3020		case ALGORITHM_LEFT_SYMMETRIC:
   3021			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
   3022			qd_idx = (pd_idx + 1) % raid_disks;
   3023			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
   3024			break;
   3025		case ALGORITHM_RIGHT_SYMMETRIC:
   3026			pd_idx = sector_div(stripe2, raid_disks);
   3027			qd_idx = (pd_idx + 1) % raid_disks;
   3028			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
   3029			break;
   3030
   3031		case ALGORITHM_PARITY_0:
   3032			pd_idx = 0;
   3033			qd_idx = 1;
   3034			(*dd_idx) += 2;
   3035			break;
   3036		case ALGORITHM_PARITY_N:
   3037			pd_idx = data_disks;
   3038			qd_idx = data_disks + 1;
   3039			break;
   3040
   3041		case ALGORITHM_ROTATING_ZERO_RESTART:
   3042			/* Exactly the same as RIGHT_ASYMMETRIC, but or
   3043			 * of blocks for computing Q is different.
   3044			 */
   3045			pd_idx = sector_div(stripe2, raid_disks);
   3046			qd_idx = pd_idx + 1;
   3047			if (pd_idx == raid_disks-1) {
   3048				(*dd_idx)++;	/* Q D D D P */
   3049				qd_idx = 0;
   3050			} else if (*dd_idx >= pd_idx)
   3051				(*dd_idx) += 2; /* D D P Q D */
   3052			ddf_layout = 1;
   3053			break;
   3054
   3055		case ALGORITHM_ROTATING_N_RESTART:
   3056			/* Same a left_asymmetric, by first stripe is
   3057			 * D D D P Q  rather than
   3058			 * Q D D D P
   3059			 */
   3060			stripe2 += 1;
   3061			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
   3062			qd_idx = pd_idx + 1;
   3063			if (pd_idx == raid_disks-1) {
   3064				(*dd_idx)++;	/* Q D D D P */
   3065				qd_idx = 0;
   3066			} else if (*dd_idx >= pd_idx)
   3067				(*dd_idx) += 2; /* D D P Q D */
   3068			ddf_layout = 1;
   3069			break;
   3070
   3071		case ALGORITHM_ROTATING_N_CONTINUE:
   3072			/* Same as left_symmetric but Q is before P */
   3073			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
   3074			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
   3075			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
   3076			ddf_layout = 1;
   3077			break;
   3078
   3079		case ALGORITHM_LEFT_ASYMMETRIC_6:
   3080			/* RAID5 left_asymmetric, with Q on last device */
   3081			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
   3082			if (*dd_idx >= pd_idx)
   3083				(*dd_idx)++;
   3084			qd_idx = raid_disks - 1;
   3085			break;
   3086
   3087		case ALGORITHM_RIGHT_ASYMMETRIC_6:
   3088			pd_idx = sector_div(stripe2, raid_disks-1);
   3089			if (*dd_idx >= pd_idx)
   3090				(*dd_idx)++;
   3091			qd_idx = raid_disks - 1;
   3092			break;
   3093
   3094		case ALGORITHM_LEFT_SYMMETRIC_6:
   3095			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
   3096			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
   3097			qd_idx = raid_disks - 1;
   3098			break;
   3099
   3100		case ALGORITHM_RIGHT_SYMMETRIC_6:
   3101			pd_idx = sector_div(stripe2, raid_disks-1);
   3102			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
   3103			qd_idx = raid_disks - 1;
   3104			break;
   3105
   3106		case ALGORITHM_PARITY_0_6:
   3107			pd_idx = 0;
   3108			(*dd_idx)++;
   3109			qd_idx = raid_disks - 1;
   3110			break;
   3111
   3112		default:
   3113			BUG();
   3114		}
   3115		break;
   3116	}
   3117
   3118	if (sh) {
   3119		sh->pd_idx = pd_idx;
   3120		sh->qd_idx = qd_idx;
   3121		sh->ddf_layout = ddf_layout;
   3122	}
   3123	/*
   3124	 * Finally, compute the new sector number
   3125	 */
   3126	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
   3127	return new_sector;
   3128}
   3129
   3130sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
   3131{
   3132	struct r5conf *conf = sh->raid_conf;
   3133	int raid_disks = sh->disks;
   3134	int data_disks = raid_disks - conf->max_degraded;
   3135	sector_t new_sector = sh->sector, check;
   3136	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
   3137					 : conf->chunk_sectors;
   3138	int algorithm = previous ? conf->prev_algo
   3139				 : conf->algorithm;
   3140	sector_t stripe;
   3141	int chunk_offset;
   3142	sector_t chunk_number;
   3143	int dummy1, dd_idx = i;
   3144	sector_t r_sector;
   3145	struct stripe_head sh2;
   3146
   3147	chunk_offset = sector_div(new_sector, sectors_per_chunk);
   3148	stripe = new_sector;
   3149
   3150	if (i == sh->pd_idx)
   3151		return 0;
   3152	switch(conf->level) {
   3153	case 4: break;
   3154	case 5:
   3155		switch (algorithm) {
   3156		case ALGORITHM_LEFT_ASYMMETRIC:
   3157		case ALGORITHM_RIGHT_ASYMMETRIC:
   3158			if (i > sh->pd_idx)
   3159				i--;
   3160			break;
   3161		case ALGORITHM_LEFT_SYMMETRIC:
   3162		case ALGORITHM_RIGHT_SYMMETRIC:
   3163			if (i < sh->pd_idx)
   3164				i += raid_disks;
   3165			i -= (sh->pd_idx + 1);
   3166			break;
   3167		case ALGORITHM_PARITY_0:
   3168			i -= 1;
   3169			break;
   3170		case ALGORITHM_PARITY_N:
   3171			break;
   3172		default:
   3173			BUG();
   3174		}
   3175		break;
   3176	case 6:
   3177		if (i == sh->qd_idx)
   3178			return 0; /* It is the Q disk */
   3179		switch (algorithm) {
   3180		case ALGORITHM_LEFT_ASYMMETRIC:
   3181		case ALGORITHM_RIGHT_ASYMMETRIC:
   3182		case ALGORITHM_ROTATING_ZERO_RESTART:
   3183		case ALGORITHM_ROTATING_N_RESTART:
   3184			if (sh->pd_idx == raid_disks-1)
   3185				i--;	/* Q D D D P */
   3186			else if (i > sh->pd_idx)
   3187				i -= 2; /* D D P Q D */
   3188			break;
   3189		case ALGORITHM_LEFT_SYMMETRIC:
   3190		case ALGORITHM_RIGHT_SYMMETRIC:
   3191			if (sh->pd_idx == raid_disks-1)
   3192				i--; /* Q D D D P */
   3193			else {
   3194				/* D D P Q D */
   3195				if (i < sh->pd_idx)
   3196					i += raid_disks;
   3197				i -= (sh->pd_idx + 2);
   3198			}
   3199			break;
   3200		case ALGORITHM_PARITY_0:
   3201			i -= 2;
   3202			break;
   3203		case ALGORITHM_PARITY_N:
   3204			break;
   3205		case ALGORITHM_ROTATING_N_CONTINUE:
   3206			/* Like left_symmetric, but P is before Q */
   3207			if (sh->pd_idx == 0)
   3208				i--;	/* P D D D Q */
   3209			else {
   3210				/* D D Q P D */
   3211				if (i < sh->pd_idx)
   3212					i += raid_disks;
   3213				i -= (sh->pd_idx + 1);
   3214			}
   3215			break;
   3216		case ALGORITHM_LEFT_ASYMMETRIC_6:
   3217		case ALGORITHM_RIGHT_ASYMMETRIC_6:
   3218			if (i > sh->pd_idx)
   3219				i--;
   3220			break;
   3221		case ALGORITHM_LEFT_SYMMETRIC_6:
   3222		case ALGORITHM_RIGHT_SYMMETRIC_6:
   3223			if (i < sh->pd_idx)
   3224				i += data_disks + 1;
   3225			i -= (sh->pd_idx + 1);
   3226			break;
   3227		case ALGORITHM_PARITY_0_6:
   3228			i -= 1;
   3229			break;
   3230		default:
   3231			BUG();
   3232		}
   3233		break;
   3234	}
   3235
   3236	chunk_number = stripe * data_disks + i;
   3237	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
   3238
   3239	check = raid5_compute_sector(conf, r_sector,
   3240				     previous, &dummy1, &sh2);
   3241	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
   3242		|| sh2.qd_idx != sh->qd_idx) {
   3243		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
   3244			mdname(conf->mddev));
   3245		return 0;
   3246	}
   3247	return r_sector;
   3248}
   3249
   3250/*
   3251 * There are cases where we want handle_stripe_dirtying() and
   3252 * schedule_reconstruction() to delay towrite to some dev of a stripe.
   3253 *
   3254 * This function checks whether we want to delay the towrite. Specifically,
   3255 * we delay the towrite when:
   3256 *
   3257 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
   3258 *      stripe has data in journal (for other devices).
   3259 *
   3260 *      In this case, when reading data for the non-overwrite dev, it is
   3261 *      necessary to handle complex rmw of write back cache (prexor with
   3262 *      orig_page, and xor with page). To keep read path simple, we would
   3263 *      like to flush data in journal to RAID disks first, so complex rmw
   3264 *      is handled in the write patch (handle_stripe_dirtying).
   3265 *
   3266 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
   3267 *
   3268 *      It is important to be able to flush all stripes in raid5-cache.
   3269 *      Therefore, we need reserve some space on the journal device for
   3270 *      these flushes. If flush operation includes pending writes to the
   3271 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
   3272 *      for the flush out. If we exclude these pending writes from flush
   3273 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
   3274 *      Therefore, excluding pending writes in these cases enables more
   3275 *      efficient use of the journal device.
   3276 *
   3277 *      Note: To make sure the stripe makes progress, we only delay
   3278 *      towrite for stripes with data already in journal (injournal > 0).
   3279 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
   3280 *      no_space_stripes list.
   3281 *
   3282 *   3. during journal failure
   3283 *      In journal failure, we try to flush all cached data to raid disks
   3284 *      based on data in stripe cache. The array is read-only to upper
   3285 *      layers, so we would skip all pending writes.
   3286 *
   3287 */
   3288static inline bool delay_towrite(struct r5conf *conf,
   3289				 struct r5dev *dev,
   3290				 struct stripe_head_state *s)
   3291{
   3292	/* case 1 above */
   3293	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
   3294	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
   3295		return true;
   3296	/* case 2 above */
   3297	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
   3298	    s->injournal > 0)
   3299		return true;
   3300	/* case 3 above */
   3301	if (s->log_failed && s->injournal)
   3302		return true;
   3303	return false;
   3304}
   3305
   3306static void
   3307schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
   3308			 int rcw, int expand)
   3309{
   3310	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
   3311	struct r5conf *conf = sh->raid_conf;
   3312	int level = conf->level;
   3313
   3314	if (rcw) {
   3315		/*
   3316		 * In some cases, handle_stripe_dirtying initially decided to
   3317		 * run rmw and allocates extra page for prexor. However, rcw is
   3318		 * cheaper later on. We need to free the extra page now,
   3319		 * because we won't be able to do that in ops_complete_prexor().
   3320		 */
   3321		r5c_release_extra_page(sh);
   3322
   3323		for (i = disks; i--; ) {
   3324			struct r5dev *dev = &sh->dev[i];
   3325
   3326			if (dev->towrite && !delay_towrite(conf, dev, s)) {
   3327				set_bit(R5_LOCKED, &dev->flags);
   3328				set_bit(R5_Wantdrain, &dev->flags);
   3329				if (!expand)
   3330					clear_bit(R5_UPTODATE, &dev->flags);
   3331				s->locked++;
   3332			} else if (test_bit(R5_InJournal, &dev->flags)) {
   3333				set_bit(R5_LOCKED, &dev->flags);
   3334				s->locked++;
   3335			}
   3336		}
   3337		/* if we are not expanding this is a proper write request, and
   3338		 * there will be bios with new data to be drained into the
   3339		 * stripe cache
   3340		 */
   3341		if (!expand) {
   3342			if (!s->locked)
   3343				/* False alarm, nothing to do */
   3344				return;
   3345			sh->reconstruct_state = reconstruct_state_drain_run;
   3346			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
   3347		} else
   3348			sh->reconstruct_state = reconstruct_state_run;
   3349
   3350		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
   3351
   3352		if (s->locked + conf->max_degraded == disks)
   3353			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
   3354				atomic_inc(&conf->pending_full_writes);
   3355	} else {
   3356		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
   3357			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
   3358		BUG_ON(level == 6 &&
   3359			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
   3360			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
   3361
   3362		for (i = disks; i--; ) {
   3363			struct r5dev *dev = &sh->dev[i];
   3364			if (i == pd_idx || i == qd_idx)
   3365				continue;
   3366
   3367			if (dev->towrite &&
   3368			    (test_bit(R5_UPTODATE, &dev->flags) ||
   3369			     test_bit(R5_Wantcompute, &dev->flags))) {
   3370				set_bit(R5_Wantdrain, &dev->flags);
   3371				set_bit(R5_LOCKED, &dev->flags);
   3372				clear_bit(R5_UPTODATE, &dev->flags);
   3373				s->locked++;
   3374			} else if (test_bit(R5_InJournal, &dev->flags)) {
   3375				set_bit(R5_LOCKED, &dev->flags);
   3376				s->locked++;
   3377			}
   3378		}
   3379		if (!s->locked)
   3380			/* False alarm - nothing to do */
   3381			return;
   3382		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
   3383		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
   3384		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
   3385		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
   3386	}
   3387
   3388	/* keep the parity disk(s) locked while asynchronous operations
   3389	 * are in flight
   3390	 */
   3391	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
   3392	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
   3393	s->locked++;
   3394
   3395	if (level == 6) {
   3396		int qd_idx = sh->qd_idx;
   3397		struct r5dev *dev = &sh->dev[qd_idx];
   3398
   3399		set_bit(R5_LOCKED, &dev->flags);
   3400		clear_bit(R5_UPTODATE, &dev->flags);
   3401		s->locked++;
   3402	}
   3403
   3404	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
   3405	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
   3406	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
   3407	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
   3408		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
   3409
   3410	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
   3411		__func__, (unsigned long long)sh->sector,
   3412		s->locked, s->ops_request);
   3413}
   3414
   3415/*
   3416 * Each stripe/dev can have one or more bion attached.
   3417 * toread/towrite point to the first in a chain.
   3418 * The bi_next chain must be in order.
   3419 */
   3420static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
   3421			  int forwrite, int previous)
   3422{
   3423	struct bio **bip;
   3424	struct r5conf *conf = sh->raid_conf;
   3425	int firstwrite=0;
   3426
   3427	pr_debug("adding bi b#%llu to stripe s#%llu\n",
   3428		(unsigned long long)bi->bi_iter.bi_sector,
   3429		(unsigned long long)sh->sector);
   3430
   3431	spin_lock_irq(&sh->stripe_lock);
   3432	/* Don't allow new IO added to stripes in batch list */
   3433	if (sh->batch_head)
   3434		goto overlap;
   3435	if (forwrite) {
   3436		bip = &sh->dev[dd_idx].towrite;
   3437		if (*bip == NULL)
   3438			firstwrite = 1;
   3439	} else
   3440		bip = &sh->dev[dd_idx].toread;
   3441	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
   3442		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
   3443			goto overlap;
   3444		bip = & (*bip)->bi_next;
   3445	}
   3446	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
   3447		goto overlap;
   3448
   3449	if (forwrite && raid5_has_ppl(conf)) {
   3450		/*
   3451		 * With PPL only writes to consecutive data chunks within a
   3452		 * stripe are allowed because for a single stripe_head we can
   3453		 * only have one PPL entry at a time, which describes one data
   3454		 * range. Not really an overlap, but wait_for_overlap can be
   3455		 * used to handle this.
   3456		 */
   3457		sector_t sector;
   3458		sector_t first = 0;
   3459		sector_t last = 0;
   3460		int count = 0;
   3461		int i;
   3462
   3463		for (i = 0; i < sh->disks; i++) {
   3464			if (i != sh->pd_idx &&
   3465			    (i == dd_idx || sh->dev[i].towrite)) {
   3466				sector = sh->dev[i].sector;
   3467				if (count == 0 || sector < first)
   3468					first = sector;
   3469				if (sector > last)
   3470					last = sector;
   3471				count++;
   3472			}
   3473		}
   3474
   3475		if (first + conf->chunk_sectors * (count - 1) != last)
   3476			goto overlap;
   3477	}
   3478
   3479	if (!forwrite || previous)
   3480		clear_bit(STRIPE_BATCH_READY, &sh->state);
   3481
   3482	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
   3483	if (*bip)
   3484		bi->bi_next = *bip;
   3485	*bip = bi;
   3486	bio_inc_remaining(bi);
   3487	md_write_inc(conf->mddev, bi);
   3488
   3489	if (forwrite) {
   3490		/* check if page is covered */
   3491		sector_t sector = sh->dev[dd_idx].sector;
   3492		for (bi=sh->dev[dd_idx].towrite;
   3493		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
   3494			     bi && bi->bi_iter.bi_sector <= sector;
   3495		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
   3496			if (bio_end_sector(bi) >= sector)
   3497				sector = bio_end_sector(bi);
   3498		}
   3499		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
   3500			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
   3501				sh->overwrite_disks++;
   3502	}
   3503
   3504	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
   3505		(unsigned long long)(*bip)->bi_iter.bi_sector,
   3506		(unsigned long long)sh->sector, dd_idx);
   3507
   3508	if (conf->mddev->bitmap && firstwrite) {
   3509		/* Cannot hold spinlock over bitmap_startwrite,
   3510		 * but must ensure this isn't added to a batch until
   3511		 * we have added to the bitmap and set bm_seq.
   3512		 * So set STRIPE_BITMAP_PENDING to prevent
   3513		 * batching.
   3514		 * If multiple add_stripe_bio() calls race here they
   3515		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
   3516		 * to complete "bitmap_startwrite" gets to set
   3517		 * STRIPE_BIT_DELAY.  This is important as once a stripe
   3518		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
   3519		 * any more.
   3520		 */
   3521		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
   3522		spin_unlock_irq(&sh->stripe_lock);
   3523		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
   3524				     RAID5_STRIPE_SECTORS(conf), 0);
   3525		spin_lock_irq(&sh->stripe_lock);
   3526		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
   3527		if (!sh->batch_head) {
   3528			sh->bm_seq = conf->seq_flush+1;
   3529			set_bit(STRIPE_BIT_DELAY, &sh->state);
   3530		}
   3531	}
   3532	spin_unlock_irq(&sh->stripe_lock);
   3533
   3534	if (stripe_can_batch(sh))
   3535		stripe_add_to_batch_list(conf, sh);
   3536	return 1;
   3537
   3538 overlap:
   3539	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
   3540	spin_unlock_irq(&sh->stripe_lock);
   3541	return 0;
   3542}
   3543
   3544static void end_reshape(struct r5conf *conf);
   3545
   3546static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
   3547			    struct stripe_head *sh)
   3548{
   3549	int sectors_per_chunk =
   3550		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
   3551	int dd_idx;
   3552	int chunk_offset = sector_div(stripe, sectors_per_chunk);
   3553	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
   3554
   3555	raid5_compute_sector(conf,
   3556			     stripe * (disks - conf->max_degraded)
   3557			     *sectors_per_chunk + chunk_offset,
   3558			     previous,
   3559			     &dd_idx, sh);
   3560}
   3561
   3562static void
   3563handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
   3564		     struct stripe_head_state *s, int disks)
   3565{
   3566	int i;
   3567	BUG_ON(sh->batch_head);
   3568	for (i = disks; i--; ) {
   3569		struct bio *bi;
   3570		int bitmap_end = 0;
   3571
   3572		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
   3573			struct md_rdev *rdev;
   3574			rcu_read_lock();
   3575			rdev = rcu_dereference(conf->disks[i].rdev);
   3576			if (rdev && test_bit(In_sync, &rdev->flags) &&
   3577			    !test_bit(Faulty, &rdev->flags))
   3578				atomic_inc(&rdev->nr_pending);
   3579			else
   3580				rdev = NULL;
   3581			rcu_read_unlock();
   3582			if (rdev) {
   3583				if (!rdev_set_badblocks(
   3584					    rdev,
   3585					    sh->sector,
   3586					    RAID5_STRIPE_SECTORS(conf), 0))
   3587					md_error(conf->mddev, rdev);
   3588				rdev_dec_pending(rdev, conf->mddev);
   3589			}
   3590		}
   3591		spin_lock_irq(&sh->stripe_lock);
   3592		/* fail all writes first */
   3593		bi = sh->dev[i].towrite;
   3594		sh->dev[i].towrite = NULL;
   3595		sh->overwrite_disks = 0;
   3596		spin_unlock_irq(&sh->stripe_lock);
   3597		if (bi)
   3598			bitmap_end = 1;
   3599
   3600		log_stripe_write_finished(sh);
   3601
   3602		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
   3603			wake_up(&conf->wait_for_overlap);
   3604
   3605		while (bi && bi->bi_iter.bi_sector <
   3606			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
   3607			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
   3608
   3609			md_write_end(conf->mddev);
   3610			bio_io_error(bi);
   3611			bi = nextbi;
   3612		}
   3613		if (bitmap_end)
   3614			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
   3615					   RAID5_STRIPE_SECTORS(conf), 0, 0);
   3616		bitmap_end = 0;
   3617		/* and fail all 'written' */
   3618		bi = sh->dev[i].written;
   3619		sh->dev[i].written = NULL;
   3620		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
   3621			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
   3622			sh->dev[i].page = sh->dev[i].orig_page;
   3623		}
   3624
   3625		if (bi) bitmap_end = 1;
   3626		while (bi && bi->bi_iter.bi_sector <
   3627		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
   3628			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
   3629
   3630			md_write_end(conf->mddev);
   3631			bio_io_error(bi);
   3632			bi = bi2;
   3633		}
   3634
   3635		/* fail any reads if this device is non-operational and
   3636		 * the data has not reached the cache yet.
   3637		 */
   3638		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
   3639		    s->failed > conf->max_degraded &&
   3640		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
   3641		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
   3642			spin_lock_irq(&sh->stripe_lock);
   3643			bi = sh->dev[i].toread;
   3644			sh->dev[i].toread = NULL;
   3645			spin_unlock_irq(&sh->stripe_lock);
   3646			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
   3647				wake_up(&conf->wait_for_overlap);
   3648			if (bi)
   3649				s->to_read--;
   3650			while (bi && bi->bi_iter.bi_sector <
   3651			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
   3652				struct bio *nextbi =
   3653					r5_next_bio(conf, bi, sh->dev[i].sector);
   3654
   3655				bio_io_error(bi);
   3656				bi = nextbi;
   3657			}
   3658		}
   3659		if (bitmap_end)
   3660			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
   3661					   RAID5_STRIPE_SECTORS(conf), 0, 0);
   3662		/* If we were in the middle of a write the parity block might
   3663		 * still be locked - so just clear all R5_LOCKED flags
   3664		 */
   3665		clear_bit(R5_LOCKED, &sh->dev[i].flags);
   3666	}
   3667	s->to_write = 0;
   3668	s->written = 0;
   3669
   3670	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
   3671		if (atomic_dec_and_test(&conf->pending_full_writes))
   3672			md_wakeup_thread(conf->mddev->thread);
   3673}
   3674
   3675static void
   3676handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
   3677		   struct stripe_head_state *s)
   3678{
   3679	int abort = 0;
   3680	int i;
   3681
   3682	BUG_ON(sh->batch_head);
   3683	clear_bit(STRIPE_SYNCING, &sh->state);
   3684	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
   3685		wake_up(&conf->wait_for_overlap);
   3686	s->syncing = 0;
   3687	s->replacing = 0;
   3688	/* There is nothing more to do for sync/check/repair.
   3689	 * Don't even need to abort as that is handled elsewhere
   3690	 * if needed, and not always wanted e.g. if there is a known
   3691	 * bad block here.
   3692	 * For recover/replace we need to record a bad block on all
   3693	 * non-sync devices, or abort the recovery
   3694	 */
   3695	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
   3696		/* During recovery devices cannot be removed, so
   3697		 * locking and refcounting of rdevs is not needed
   3698		 */
   3699		rcu_read_lock();
   3700		for (i = 0; i < conf->raid_disks; i++) {
   3701			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
   3702			if (rdev
   3703			    && !test_bit(Faulty, &rdev->flags)
   3704			    && !test_bit(In_sync, &rdev->flags)
   3705			    && !rdev_set_badblocks(rdev, sh->sector,
   3706						   RAID5_STRIPE_SECTORS(conf), 0))
   3707				abort = 1;
   3708			rdev = rcu_dereference(conf->disks[i].replacement);
   3709			if (rdev
   3710			    && !test_bit(Faulty, &rdev->flags)
   3711			    && !test_bit(In_sync, &rdev->flags)
   3712			    && !rdev_set_badblocks(rdev, sh->sector,
   3713						   RAID5_STRIPE_SECTORS(conf), 0))
   3714				abort = 1;
   3715		}
   3716		rcu_read_unlock();
   3717		if (abort)
   3718			conf->recovery_disabled =
   3719				conf->mddev->recovery_disabled;
   3720	}
   3721	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
   3722}
   3723
   3724static int want_replace(struct stripe_head *sh, int disk_idx)
   3725{
   3726	struct md_rdev *rdev;
   3727	int rv = 0;
   3728
   3729	rcu_read_lock();
   3730	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
   3731	if (rdev
   3732	    && !test_bit(Faulty, &rdev->flags)
   3733	    && !test_bit(In_sync, &rdev->flags)
   3734	    && (rdev->recovery_offset <= sh->sector
   3735		|| rdev->mddev->recovery_cp <= sh->sector))
   3736		rv = 1;
   3737	rcu_read_unlock();
   3738	return rv;
   3739}
   3740
   3741static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
   3742			   int disk_idx, int disks)
   3743{
   3744	struct r5dev *dev = &sh->dev[disk_idx];
   3745	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
   3746				  &sh->dev[s->failed_num[1]] };
   3747	int i;
   3748	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
   3749
   3750
   3751	if (test_bit(R5_LOCKED, &dev->flags) ||
   3752	    test_bit(R5_UPTODATE, &dev->flags))
   3753		/* No point reading this as we already have it or have
   3754		 * decided to get it.
   3755		 */
   3756		return 0;
   3757
   3758	if (dev->toread ||
   3759	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
   3760		/* We need this block to directly satisfy a request */
   3761		return 1;
   3762
   3763	if (s->syncing || s->expanding ||
   3764	    (s->replacing && want_replace(sh, disk_idx)))
   3765		/* When syncing, or expanding we read everything.
   3766		 * When replacing, we need the replaced block.
   3767		 */
   3768		return 1;
   3769
   3770	if ((s->failed >= 1 && fdev[0]->toread) ||
   3771	    (s->failed >= 2 && fdev[1]->toread))
   3772		/* If we want to read from a failed device, then
   3773		 * we need to actually read every other device.
   3774		 */
   3775		return 1;
   3776
   3777	/* Sometimes neither read-modify-write nor reconstruct-write
   3778	 * cycles can work.  In those cases we read every block we
   3779	 * can.  Then the parity-update is certain to have enough to
   3780	 * work with.
   3781	 * This can only be a problem when we need to write something,
   3782	 * and some device has failed.  If either of those tests
   3783	 * fail we need look no further.
   3784	 */
   3785	if (!s->failed || !s->to_write)
   3786		return 0;
   3787
   3788	if (test_bit(R5_Insync, &dev->flags) &&
   3789	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
   3790		/* Pre-reads at not permitted until after short delay
   3791		 * to gather multiple requests.  However if this
   3792		 * device is no Insync, the block could only be computed
   3793		 * and there is no need to delay that.
   3794		 */
   3795		return 0;
   3796
   3797	for (i = 0; i < s->failed && i < 2; i++) {
   3798		if (fdev[i]->towrite &&
   3799		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
   3800		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
   3801			/* If we have a partial write to a failed
   3802			 * device, then we will need to reconstruct
   3803			 * the content of that device, so all other
   3804			 * devices must be read.
   3805			 */
   3806			return 1;
   3807
   3808		if (s->failed >= 2 &&
   3809		    (fdev[i]->towrite ||
   3810		     s->failed_num[i] == sh->pd_idx ||
   3811		     s->failed_num[i] == sh->qd_idx) &&
   3812		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
   3813			/* In max degraded raid6, If the failed disk is P, Q,
   3814			 * or we want to read the failed disk, we need to do
   3815			 * reconstruct-write.
   3816			 */
   3817			force_rcw = true;
   3818	}
   3819
   3820	/* If we are forced to do a reconstruct-write, because parity
   3821	 * cannot be trusted and we are currently recovering it, there
   3822	 * is extra need to be careful.
   3823	 * If one of the devices that we would need to read, because
   3824	 * it is not being overwritten (and maybe not written at all)
   3825	 * is missing/faulty, then we need to read everything we can.
   3826	 */
   3827	if (!force_rcw &&
   3828	    sh->sector < sh->raid_conf->mddev->recovery_cp)
   3829		/* reconstruct-write isn't being forced */
   3830		return 0;
   3831	for (i = 0; i < s->failed && i < 2; i++) {
   3832		if (s->failed_num[i] != sh->pd_idx &&
   3833		    s->failed_num[i] != sh->qd_idx &&
   3834		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
   3835		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
   3836			return 1;
   3837	}
   3838
   3839	return 0;
   3840}
   3841
   3842/* fetch_block - checks the given member device to see if its data needs
   3843 * to be read or computed to satisfy a request.
   3844 *
   3845 * Returns 1 when no more member devices need to be checked, otherwise returns
   3846 * 0 to tell the loop in handle_stripe_fill to continue
   3847 */
   3848static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
   3849		       int disk_idx, int disks)
   3850{
   3851	struct r5dev *dev = &sh->dev[disk_idx];
   3852
   3853	/* is the data in this block needed, and can we get it? */
   3854	if (need_this_block(sh, s, disk_idx, disks)) {
   3855		/* we would like to get this block, possibly by computing it,
   3856		 * otherwise read it if the backing disk is insync
   3857		 */
   3858		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
   3859		BUG_ON(test_bit(R5_Wantread, &dev->flags));
   3860		BUG_ON(sh->batch_head);
   3861
   3862		/*
   3863		 * In the raid6 case if the only non-uptodate disk is P
   3864		 * then we already trusted P to compute the other failed
   3865		 * drives. It is safe to compute rather than re-read P.
   3866		 * In other cases we only compute blocks from failed
   3867		 * devices, otherwise check/repair might fail to detect
   3868		 * a real inconsistency.
   3869		 */
   3870
   3871		if ((s->uptodate == disks - 1) &&
   3872		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
   3873		    (s->failed && (disk_idx == s->failed_num[0] ||
   3874				   disk_idx == s->failed_num[1])))) {
   3875			/* have disk failed, and we're requested to fetch it;
   3876			 * do compute it
   3877			 */
   3878			pr_debug("Computing stripe %llu block %d\n",
   3879			       (unsigned long long)sh->sector, disk_idx);
   3880			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
   3881			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
   3882			set_bit(R5_Wantcompute, &dev->flags);
   3883			sh->ops.target = disk_idx;
   3884			sh->ops.target2 = -1; /* no 2nd target */
   3885			s->req_compute = 1;
   3886			/* Careful: from this point on 'uptodate' is in the eye
   3887			 * of raid_run_ops which services 'compute' operations
   3888			 * before writes. R5_Wantcompute flags a block that will
   3889			 * be R5_UPTODATE by the time it is needed for a
   3890			 * subsequent operation.
   3891			 */
   3892			s->uptodate++;
   3893			return 1;
   3894		} else if (s->uptodate == disks-2 && s->failed >= 2) {
   3895			/* Computing 2-failure is *very* expensive; only
   3896			 * do it if failed >= 2
   3897			 */
   3898			int other;
   3899			for (other = disks; other--; ) {
   3900				if (other == disk_idx)
   3901					continue;
   3902				if (!test_bit(R5_UPTODATE,
   3903				      &sh->dev[other].flags))
   3904					break;
   3905			}
   3906			BUG_ON(other < 0);
   3907			pr_debug("Computing stripe %llu blocks %d,%d\n",
   3908			       (unsigned long long)sh->sector,
   3909			       disk_idx, other);
   3910			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
   3911			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
   3912			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
   3913			set_bit(R5_Wantcompute, &sh->dev[other].flags);
   3914			sh->ops.target = disk_idx;
   3915			sh->ops.target2 = other;
   3916			s->uptodate += 2;
   3917			s->req_compute = 1;
   3918			return 1;
   3919		} else if (test_bit(R5_Insync, &dev->flags)) {
   3920			set_bit(R5_LOCKED, &dev->flags);
   3921			set_bit(R5_Wantread, &dev->flags);
   3922			s->locked++;
   3923			pr_debug("Reading block %d (sync=%d)\n",
   3924				disk_idx, s->syncing);
   3925		}
   3926	}
   3927
   3928	return 0;
   3929}
   3930
   3931/*
   3932 * handle_stripe_fill - read or compute data to satisfy pending requests.
   3933 */
   3934static void handle_stripe_fill(struct stripe_head *sh,
   3935			       struct stripe_head_state *s,
   3936			       int disks)
   3937{
   3938	int i;
   3939
   3940	/* look for blocks to read/compute, skip this if a compute
   3941	 * is already in flight, or if the stripe contents are in the
   3942	 * midst of changing due to a write
   3943	 */
   3944	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
   3945	    !sh->reconstruct_state) {
   3946
   3947		/*
   3948		 * For degraded stripe with data in journal, do not handle
   3949		 * read requests yet, instead, flush the stripe to raid
   3950		 * disks first, this avoids handling complex rmw of write
   3951		 * back cache (prexor with orig_page, and then xor with
   3952		 * page) in the read path
   3953		 */
   3954		if (s->injournal && s->failed) {
   3955			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
   3956				r5c_make_stripe_write_out(sh);
   3957			goto out;
   3958		}
   3959
   3960		for (i = disks; i--; )
   3961			if (fetch_block(sh, s, i, disks))
   3962				break;
   3963	}
   3964out:
   3965	set_bit(STRIPE_HANDLE, &sh->state);
   3966}
   3967
   3968static void break_stripe_batch_list(struct stripe_head *head_sh,
   3969				    unsigned long handle_flags);
   3970/* handle_stripe_clean_event
   3971 * any written block on an uptodate or failed drive can be returned.
   3972 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
   3973 * never LOCKED, so we don't need to test 'failed' directly.
   3974 */
   3975static void handle_stripe_clean_event(struct r5conf *conf,
   3976	struct stripe_head *sh, int disks)
   3977{
   3978	int i;
   3979	struct r5dev *dev;
   3980	int discard_pending = 0;
   3981	struct stripe_head *head_sh = sh;
   3982	bool do_endio = false;
   3983
   3984	for (i = disks; i--; )
   3985		if (sh->dev[i].written) {
   3986			dev = &sh->dev[i];
   3987			if (!test_bit(R5_LOCKED, &dev->flags) &&
   3988			    (test_bit(R5_UPTODATE, &dev->flags) ||
   3989			     test_bit(R5_Discard, &dev->flags) ||
   3990			     test_bit(R5_SkipCopy, &dev->flags))) {
   3991				/* We can return any write requests */
   3992				struct bio *wbi, *wbi2;
   3993				pr_debug("Return write for disc %d\n", i);
   3994				if (test_and_clear_bit(R5_Discard, &dev->flags))
   3995					clear_bit(R5_UPTODATE, &dev->flags);
   3996				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
   3997					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
   3998				}
   3999				do_endio = true;
   4000
   4001returnbi:
   4002				dev->page = dev->orig_page;
   4003				wbi = dev->written;
   4004				dev->written = NULL;
   4005				while (wbi && wbi->bi_iter.bi_sector <
   4006					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
   4007					wbi2 = r5_next_bio(conf, wbi, dev->sector);
   4008					md_write_end(conf->mddev);
   4009					bio_endio(wbi);
   4010					wbi = wbi2;
   4011				}
   4012				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
   4013						   RAID5_STRIPE_SECTORS(conf),
   4014						   !test_bit(STRIPE_DEGRADED, &sh->state),
   4015						   0);
   4016				if (head_sh->batch_head) {
   4017					sh = list_first_entry(&sh->batch_list,
   4018							      struct stripe_head,
   4019							      batch_list);
   4020					if (sh != head_sh) {
   4021						dev = &sh->dev[i];
   4022						goto returnbi;
   4023					}
   4024				}
   4025				sh = head_sh;
   4026				dev = &sh->dev[i];
   4027			} else if (test_bit(R5_Discard, &dev->flags))
   4028				discard_pending = 1;
   4029		}
   4030
   4031	log_stripe_write_finished(sh);
   4032
   4033	if (!discard_pending &&
   4034	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
   4035		int hash;
   4036		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
   4037		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
   4038		if (sh->qd_idx >= 0) {
   4039			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
   4040			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
   4041		}
   4042		/* now that discard is done we can proceed with any sync */
   4043		clear_bit(STRIPE_DISCARD, &sh->state);
   4044		/*
   4045		 * SCSI discard will change some bio fields and the stripe has
   4046		 * no updated data, so remove it from hash list and the stripe
   4047		 * will be reinitialized
   4048		 */
   4049unhash:
   4050		hash = sh->hash_lock_index;
   4051		spin_lock_irq(conf->hash_locks + hash);
   4052		remove_hash(sh);
   4053		spin_unlock_irq(conf->hash_locks + hash);
   4054		if (head_sh->batch_head) {
   4055			sh = list_first_entry(&sh->batch_list,
   4056					      struct stripe_head, batch_list);
   4057			if (sh != head_sh)
   4058					goto unhash;
   4059		}
   4060		sh = head_sh;
   4061
   4062		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
   4063			set_bit(STRIPE_HANDLE, &sh->state);
   4064
   4065	}
   4066
   4067	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
   4068		if (atomic_dec_and_test(&conf->pending_full_writes))
   4069			md_wakeup_thread(conf->mddev->thread);
   4070
   4071	if (head_sh->batch_head && do_endio)
   4072		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
   4073}
   4074
   4075/*
   4076 * For RMW in write back cache, we need extra page in prexor to store the
   4077 * old data. This page is stored in dev->orig_page.
   4078 *
   4079 * This function checks whether we have data for prexor. The exact logic
   4080 * is:
   4081 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
   4082 */
   4083static inline bool uptodate_for_rmw(struct r5dev *dev)
   4084{
   4085	return (test_bit(R5_UPTODATE, &dev->flags)) &&
   4086		(!test_bit(R5_InJournal, &dev->flags) ||
   4087		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
   4088}
   4089
   4090static int handle_stripe_dirtying(struct r5conf *conf,
   4091				  struct stripe_head *sh,
   4092				  struct stripe_head_state *s,
   4093				  int disks)
   4094{
   4095	int rmw = 0, rcw = 0, i;
   4096	sector_t recovery_cp = conf->mddev->recovery_cp;
   4097
   4098	/* Check whether resync is now happening or should start.
   4099	 * If yes, then the array is dirty (after unclean shutdown or
   4100	 * initial creation), so parity in some stripes might be inconsistent.
   4101	 * In this case, we need to always do reconstruct-write, to ensure
   4102	 * that in case of drive failure or read-error correction, we
   4103	 * generate correct data from the parity.
   4104	 */
   4105	if (conf->rmw_level == PARITY_DISABLE_RMW ||
   4106	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
   4107	     s->failed == 0)) {
   4108		/* Calculate the real rcw later - for now make it
   4109		 * look like rcw is cheaper
   4110		 */
   4111		rcw = 1; rmw = 2;
   4112		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
   4113			 conf->rmw_level, (unsigned long long)recovery_cp,
   4114			 (unsigned long long)sh->sector);
   4115	} else for (i = disks; i--; ) {
   4116		/* would I have to read this buffer for read_modify_write */
   4117		struct r5dev *dev = &sh->dev[i];
   4118		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
   4119		     i == sh->pd_idx || i == sh->qd_idx ||
   4120		     test_bit(R5_InJournal, &dev->flags)) &&
   4121		    !test_bit(R5_LOCKED, &dev->flags) &&
   4122		    !(uptodate_for_rmw(dev) ||
   4123		      test_bit(R5_Wantcompute, &dev->flags))) {
   4124			if (test_bit(R5_Insync, &dev->flags))
   4125				rmw++;
   4126			else
   4127				rmw += 2*disks;  /* cannot read it */
   4128		}
   4129		/* Would I have to read this buffer for reconstruct_write */
   4130		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
   4131		    i != sh->pd_idx && i != sh->qd_idx &&
   4132		    !test_bit(R5_LOCKED, &dev->flags) &&
   4133		    !(test_bit(R5_UPTODATE, &dev->flags) ||
   4134		      test_bit(R5_Wantcompute, &dev->flags))) {
   4135			if (test_bit(R5_Insync, &dev->flags))
   4136				rcw++;
   4137			else
   4138				rcw += 2*disks;
   4139		}
   4140	}
   4141
   4142	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
   4143		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
   4144	set_bit(STRIPE_HANDLE, &sh->state);
   4145	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
   4146		/* prefer read-modify-write, but need to get some data */
   4147		if (conf->mddev->queue)
   4148			blk_add_trace_msg(conf->mddev->queue,
   4149					  "raid5 rmw %llu %d",
   4150					  (unsigned long long)sh->sector, rmw);
   4151		for (i = disks; i--; ) {
   4152			struct r5dev *dev = &sh->dev[i];
   4153			if (test_bit(R5_InJournal, &dev->flags) &&
   4154			    dev->page == dev->orig_page &&
   4155			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
   4156				/* alloc page for prexor */
   4157				struct page *p = alloc_page(GFP_NOIO);
   4158
   4159				if (p) {
   4160					dev->orig_page = p;
   4161					continue;
   4162				}
   4163
   4164				/*
   4165				 * alloc_page() failed, try use
   4166				 * disk_info->extra_page
   4167				 */
   4168				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
   4169						      &conf->cache_state)) {
   4170					r5c_use_extra_page(sh);
   4171					break;
   4172				}
   4173
   4174				/* extra_page in use, add to delayed_list */
   4175				set_bit(STRIPE_DELAYED, &sh->state);
   4176				s->waiting_extra_page = 1;
   4177				return -EAGAIN;
   4178			}
   4179		}
   4180
   4181		for (i = disks; i--; ) {
   4182			struct r5dev *dev = &sh->dev[i];
   4183			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
   4184			     i == sh->pd_idx || i == sh->qd_idx ||
   4185			     test_bit(R5_InJournal, &dev->flags)) &&
   4186			    !test_bit(R5_LOCKED, &dev->flags) &&
   4187			    !(uptodate_for_rmw(dev) ||
   4188			      test_bit(R5_Wantcompute, &dev->flags)) &&
   4189			    test_bit(R5_Insync, &dev->flags)) {
   4190				if (test_bit(STRIPE_PREREAD_ACTIVE,
   4191					     &sh->state)) {
   4192					pr_debug("Read_old block %d for r-m-w\n",
   4193						 i);
   4194					set_bit(R5_LOCKED, &dev->flags);
   4195					set_bit(R5_Wantread, &dev->flags);
   4196					s->locked++;
   4197				} else
   4198					set_bit(STRIPE_DELAYED, &sh->state);
   4199			}
   4200		}
   4201	}
   4202	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
   4203		/* want reconstruct write, but need to get some data */
   4204		int qread =0;
   4205		rcw = 0;
   4206		for (i = disks; i--; ) {
   4207			struct r5dev *dev = &sh->dev[i];
   4208			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
   4209			    i != sh->pd_idx && i != sh->qd_idx &&
   4210			    !test_bit(R5_LOCKED, &dev->flags) &&
   4211			    !(test_bit(R5_UPTODATE, &dev->flags) ||
   4212			      test_bit(R5_Wantcompute, &dev->flags))) {
   4213				rcw++;
   4214				if (test_bit(R5_Insync, &dev->flags) &&
   4215				    test_bit(STRIPE_PREREAD_ACTIVE,
   4216					     &sh->state)) {
   4217					pr_debug("Read_old block "
   4218						"%d for Reconstruct\n", i);
   4219					set_bit(R5_LOCKED, &dev->flags);
   4220					set_bit(R5_Wantread, &dev->flags);
   4221					s->locked++;
   4222					qread++;
   4223				} else
   4224					set_bit(STRIPE_DELAYED, &sh->state);
   4225			}
   4226		}
   4227		if (rcw && conf->mddev->queue)
   4228			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
   4229					  (unsigned long long)sh->sector,
   4230					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
   4231	}
   4232
   4233	if (rcw > disks && rmw > disks &&
   4234	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
   4235		set_bit(STRIPE_DELAYED, &sh->state);
   4236
   4237	/* now if nothing is locked, and if we have enough data,
   4238	 * we can start a write request
   4239	 */
   4240	/* since handle_stripe can be called at any time we need to handle the
   4241	 * case where a compute block operation has been submitted and then a
   4242	 * subsequent call wants to start a write request.  raid_run_ops only
   4243	 * handles the case where compute block and reconstruct are requested
   4244	 * simultaneously.  If this is not the case then new writes need to be
   4245	 * held off until the compute completes.
   4246	 */
   4247	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
   4248	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
   4249	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
   4250		schedule_reconstruction(sh, s, rcw == 0, 0);
   4251	return 0;
   4252}
   4253
   4254static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
   4255				struct stripe_head_state *s, int disks)
   4256{
   4257	struct r5dev *dev = NULL;
   4258
   4259	BUG_ON(sh->batch_head);
   4260	set_bit(STRIPE_HANDLE, &sh->state);
   4261
   4262	switch (sh->check_state) {
   4263	case check_state_idle:
   4264		/* start a new check operation if there are no failures */
   4265		if (s->failed == 0) {
   4266			BUG_ON(s->uptodate != disks);
   4267			sh->check_state = check_state_run;
   4268			set_bit(STRIPE_OP_CHECK, &s->ops_request);
   4269			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
   4270			s->uptodate--;
   4271			break;
   4272		}
   4273		dev = &sh->dev[s->failed_num[0]];
   4274		fallthrough;
   4275	case check_state_compute_result:
   4276		sh->check_state = check_state_idle;
   4277		if (!dev)
   4278			dev = &sh->dev[sh->pd_idx];
   4279
   4280		/* check that a write has not made the stripe insync */
   4281		if (test_bit(STRIPE_INSYNC, &sh->state))
   4282			break;
   4283
   4284		/* either failed parity check, or recovery is happening */
   4285		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
   4286		BUG_ON(s->uptodate != disks);
   4287
   4288		set_bit(R5_LOCKED, &dev->flags);
   4289		s->locked++;
   4290		set_bit(R5_Wantwrite, &dev->flags);
   4291
   4292		clear_bit(STRIPE_DEGRADED, &sh->state);
   4293		set_bit(STRIPE_INSYNC, &sh->state);
   4294		break;
   4295	case check_state_run:
   4296		break; /* we will be called again upon completion */
   4297	case check_state_check_result:
   4298		sh->check_state = check_state_idle;
   4299
   4300		/* if a failure occurred during the check operation, leave
   4301		 * STRIPE_INSYNC not set and let the stripe be handled again
   4302		 */
   4303		if (s->failed)
   4304			break;
   4305
   4306		/* handle a successful check operation, if parity is correct
   4307		 * we are done.  Otherwise update the mismatch count and repair
   4308		 * parity if !MD_RECOVERY_CHECK
   4309		 */
   4310		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
   4311			/* parity is correct (on disc,
   4312			 * not in buffer any more)
   4313			 */
   4314			set_bit(STRIPE_INSYNC, &sh->state);
   4315		else {
   4316			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
   4317			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
   4318				/* don't try to repair!! */
   4319				set_bit(STRIPE_INSYNC, &sh->state);
   4320				pr_warn_ratelimited("%s: mismatch sector in range "
   4321						    "%llu-%llu\n", mdname(conf->mddev),
   4322						    (unsigned long long) sh->sector,
   4323						    (unsigned long long) sh->sector +
   4324						    RAID5_STRIPE_SECTORS(conf));
   4325			} else {
   4326				sh->check_state = check_state_compute_run;
   4327				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
   4328				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
   4329				set_bit(R5_Wantcompute,
   4330					&sh->dev[sh->pd_idx].flags);
   4331				sh->ops.target = sh->pd_idx;
   4332				sh->ops.target2 = -1;
   4333				s->uptodate++;
   4334			}
   4335		}
   4336		break;
   4337	case check_state_compute_run:
   4338		break;
   4339	default:
   4340		pr_err("%s: unknown check_state: %d sector: %llu\n",
   4341		       __func__, sh->check_state,
   4342		       (unsigned long long) sh->sector);
   4343		BUG();
   4344	}
   4345}
   4346
   4347static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
   4348				  struct stripe_head_state *s,
   4349				  int disks)
   4350{
   4351	int pd_idx = sh->pd_idx;
   4352	int qd_idx = sh->qd_idx;
   4353	struct r5dev *dev;
   4354
   4355	BUG_ON(sh->batch_head);
   4356	set_bit(STRIPE_HANDLE, &sh->state);
   4357
   4358	BUG_ON(s->failed > 2);
   4359
   4360	/* Want to check and possibly repair P and Q.
   4361	 * However there could be one 'failed' device, in which
   4362	 * case we can only check one of them, possibly using the
   4363	 * other to generate missing data
   4364	 */
   4365
   4366	switch (sh->check_state) {
   4367	case check_state_idle:
   4368		/* start a new check operation if there are < 2 failures */
   4369		if (s->failed == s->q_failed) {
   4370			/* The only possible failed device holds Q, so it
   4371			 * makes sense to check P (If anything else were failed,
   4372			 * we would have used P to recreate it).
   4373			 */
   4374			sh->check_state = check_state_run;
   4375		}
   4376		if (!s->q_failed && s->failed < 2) {
   4377			/* Q is not failed, and we didn't use it to generate
   4378			 * anything, so it makes sense to check it
   4379			 */
   4380			if (sh->check_state == check_state_run)
   4381				sh->check_state = check_state_run_pq;
   4382			else
   4383				sh->check_state = check_state_run_q;
   4384		}
   4385
   4386		/* discard potentially stale zero_sum_result */
   4387		sh->ops.zero_sum_result = 0;
   4388
   4389		if (sh->check_state == check_state_run) {
   4390			/* async_xor_zero_sum destroys the contents of P */
   4391			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
   4392			s->uptodate--;
   4393		}
   4394		if (sh->check_state >= check_state_run &&
   4395		    sh->check_state <= check_state_run_pq) {
   4396			/* async_syndrome_zero_sum preserves P and Q, so
   4397			 * no need to mark them !uptodate here
   4398			 */
   4399			set_bit(STRIPE_OP_CHECK, &s->ops_request);
   4400			break;
   4401		}
   4402
   4403		/* we have 2-disk failure */
   4404		BUG_ON(s->failed != 2);
   4405		fallthrough;
   4406	case check_state_compute_result:
   4407		sh->check_state = check_state_idle;
   4408
   4409		/* check that a write has not made the stripe insync */
   4410		if (test_bit(STRIPE_INSYNC, &sh->state))
   4411			break;
   4412
   4413		/* now write out any block on a failed drive,
   4414		 * or P or Q if they were recomputed
   4415		 */
   4416		dev = NULL;
   4417		if (s->failed == 2) {
   4418			dev = &sh->dev[s->failed_num[1]];
   4419			s->locked++;
   4420			set_bit(R5_LOCKED, &dev->flags);
   4421			set_bit(R5_Wantwrite, &dev->flags);
   4422		}
   4423		if (s->failed >= 1) {
   4424			dev = &sh->dev[s->failed_num[0]];
   4425			s->locked++;
   4426			set_bit(R5_LOCKED, &dev->flags);
   4427			set_bit(R5_Wantwrite, &dev->flags);
   4428		}
   4429		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
   4430			dev = &sh->dev[pd_idx];
   4431			s->locked++;
   4432			set_bit(R5_LOCKED, &dev->flags);
   4433			set_bit(R5_Wantwrite, &dev->flags);
   4434		}
   4435		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
   4436			dev = &sh->dev[qd_idx];
   4437			s->locked++;
   4438			set_bit(R5_LOCKED, &dev->flags);
   4439			set_bit(R5_Wantwrite, &dev->flags);
   4440		}
   4441		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
   4442			      "%s: disk%td not up to date\n",
   4443			      mdname(conf->mddev),
   4444			      dev - (struct r5dev *) &sh->dev)) {
   4445			clear_bit(R5_LOCKED, &dev->flags);
   4446			clear_bit(R5_Wantwrite, &dev->flags);
   4447			s->locked--;
   4448		}
   4449		clear_bit(STRIPE_DEGRADED, &sh->state);
   4450
   4451		set_bit(STRIPE_INSYNC, &sh->state);
   4452		break;
   4453	case check_state_run:
   4454	case check_state_run_q:
   4455	case check_state_run_pq:
   4456		break; /* we will be called again upon completion */
   4457	case check_state_check_result:
   4458		sh->check_state = check_state_idle;
   4459
   4460		/* handle a successful check operation, if parity is correct
   4461		 * we are done.  Otherwise update the mismatch count and repair
   4462		 * parity if !MD_RECOVERY_CHECK
   4463		 */
   4464		if (sh->ops.zero_sum_result == 0) {
   4465			/* both parities are correct */
   4466			if (!s->failed)
   4467				set_bit(STRIPE_INSYNC, &sh->state);
   4468			else {
   4469				/* in contrast to the raid5 case we can validate
   4470				 * parity, but still have a failure to write
   4471				 * back
   4472				 */
   4473				sh->check_state = check_state_compute_result;
   4474				/* Returning at this point means that we may go
   4475				 * off and bring p and/or q uptodate again so
   4476				 * we make sure to check zero_sum_result again
   4477				 * to verify if p or q need writeback
   4478				 */
   4479			}
   4480		} else {
   4481			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
   4482			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
   4483				/* don't try to repair!! */
   4484				set_bit(STRIPE_INSYNC, &sh->state);
   4485				pr_warn_ratelimited("%s: mismatch sector in range "
   4486						    "%llu-%llu\n", mdname(conf->mddev),
   4487						    (unsigned long long) sh->sector,
   4488						    (unsigned long long) sh->sector +
   4489						    RAID5_STRIPE_SECTORS(conf));
   4490			} else {
   4491				int *target = &sh->ops.target;
   4492
   4493				sh->ops.target = -1;
   4494				sh->ops.target2 = -1;
   4495				sh->check_state = check_state_compute_run;
   4496				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
   4497				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
   4498				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
   4499					set_bit(R5_Wantcompute,
   4500						&sh->dev[pd_idx].flags);
   4501					*target = pd_idx;
   4502					target = &sh->ops.target2;
   4503					s->uptodate++;
   4504				}
   4505				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
   4506					set_bit(R5_Wantcompute,
   4507						&sh->dev[qd_idx].flags);
   4508					*target = qd_idx;
   4509					s->uptodate++;
   4510				}
   4511			}
   4512		}
   4513		break;
   4514	case check_state_compute_run:
   4515		break;
   4516	default:
   4517		pr_warn("%s: unknown check_state: %d sector: %llu\n",
   4518			__func__, sh->check_state,
   4519			(unsigned long long) sh->sector);
   4520		BUG();
   4521	}
   4522}
   4523
   4524static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
   4525{
   4526	int i;
   4527
   4528	/* We have read all the blocks in this stripe and now we need to
   4529	 * copy some of them into a target stripe for expand.
   4530	 */
   4531	struct dma_async_tx_descriptor *tx = NULL;
   4532	BUG_ON(sh->batch_head);
   4533	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
   4534	for (i = 0; i < sh->disks; i++)
   4535		if (i != sh->pd_idx && i != sh->qd_idx) {
   4536			int dd_idx, j;
   4537			struct stripe_head *sh2;
   4538			struct async_submit_ctl submit;
   4539
   4540			sector_t bn = raid5_compute_blocknr(sh, i, 1);
   4541			sector_t s = raid5_compute_sector(conf, bn, 0,
   4542							  &dd_idx, NULL);
   4543			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
   4544			if (sh2 == NULL)
   4545				/* so far only the early blocks of this stripe
   4546				 * have been requested.  When later blocks
   4547				 * get requested, we will try again
   4548				 */
   4549				continue;
   4550			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
   4551			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
   4552				/* must have already done this block */
   4553				raid5_release_stripe(sh2);
   4554				continue;
   4555			}
   4556
   4557			/* place all the copies on one channel */
   4558			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
   4559			tx = async_memcpy(sh2->dev[dd_idx].page,
   4560					  sh->dev[i].page, sh2->dev[dd_idx].offset,
   4561					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
   4562					  &submit);
   4563
   4564			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
   4565			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
   4566			for (j = 0; j < conf->raid_disks; j++)
   4567				if (j != sh2->pd_idx &&
   4568				    j != sh2->qd_idx &&
   4569				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
   4570					break;
   4571			if (j == conf->raid_disks) {
   4572				set_bit(STRIPE_EXPAND_READY, &sh2->state);
   4573				set_bit(STRIPE_HANDLE, &sh2->state);
   4574			}
   4575			raid5_release_stripe(sh2);
   4576
   4577		}
   4578	/* done submitting copies, wait for them to complete */
   4579	async_tx_quiesce(&tx);
   4580}
   4581
   4582/*
   4583 * handle_stripe - do things to a stripe.
   4584 *
   4585 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
   4586 * state of various bits to see what needs to be done.
   4587 * Possible results:
   4588 *    return some read requests which now have data
   4589 *    return some write requests which are safely on storage
   4590 *    schedule a read on some buffers
   4591 *    schedule a write of some buffers
   4592 *    return confirmation of parity correctness
   4593 *
   4594 */
   4595
   4596static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
   4597{
   4598	struct r5conf *conf = sh->raid_conf;
   4599	int disks = sh->disks;
   4600	struct r5dev *dev;
   4601	int i;
   4602	int do_recovery = 0;
   4603
   4604	memset(s, 0, sizeof(*s));
   4605
   4606	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
   4607	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
   4608	s->failed_num[0] = -1;
   4609	s->failed_num[1] = -1;
   4610	s->log_failed = r5l_log_disk_error(conf);
   4611
   4612	/* Now to look around and see what can be done */
   4613	rcu_read_lock();
   4614	for (i=disks; i--; ) {
   4615		struct md_rdev *rdev;
   4616		sector_t first_bad;
   4617		int bad_sectors;
   4618		int is_bad = 0;
   4619
   4620		dev = &sh->dev[i];
   4621
   4622		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
   4623			 i, dev->flags,
   4624			 dev->toread, dev->towrite, dev->written);
   4625		/* maybe we can reply to a read
   4626		 *
   4627		 * new wantfill requests are only permitted while
   4628		 * ops_complete_biofill is guaranteed to be inactive
   4629		 */
   4630		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
   4631		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
   4632			set_bit(R5_Wantfill, &dev->flags);
   4633
   4634		/* now count some things */
   4635		if (test_bit(R5_LOCKED, &dev->flags))
   4636			s->locked++;
   4637		if (test_bit(R5_UPTODATE, &dev->flags))
   4638			s->uptodate++;
   4639		if (test_bit(R5_Wantcompute, &dev->flags)) {
   4640			s->compute++;
   4641			BUG_ON(s->compute > 2);
   4642		}
   4643
   4644		if (test_bit(R5_Wantfill, &dev->flags))
   4645			s->to_fill++;
   4646		else if (dev->toread)
   4647			s->to_read++;
   4648		if (dev->towrite) {
   4649			s->to_write++;
   4650			if (!test_bit(R5_OVERWRITE, &dev->flags))
   4651				s->non_overwrite++;
   4652		}
   4653		if (dev->written)
   4654			s->written++;
   4655		/* Prefer to use the replacement for reads, but only
   4656		 * if it is recovered enough and has no bad blocks.
   4657		 */
   4658		rdev = rcu_dereference(conf->disks[i].replacement);
   4659		if (rdev && !test_bit(Faulty, &rdev->flags) &&
   4660		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
   4661		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
   4662				 &first_bad, &bad_sectors))
   4663			set_bit(R5_ReadRepl, &dev->flags);
   4664		else {
   4665			if (rdev && !test_bit(Faulty, &rdev->flags))
   4666				set_bit(R5_NeedReplace, &dev->flags);
   4667			else
   4668				clear_bit(R5_NeedReplace, &dev->flags);
   4669			rdev = rcu_dereference(conf->disks[i].rdev);
   4670			clear_bit(R5_ReadRepl, &dev->flags);
   4671		}
   4672		if (rdev && test_bit(Faulty, &rdev->flags))
   4673			rdev = NULL;
   4674		if (rdev) {
   4675			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
   4676					     &first_bad, &bad_sectors);
   4677			if (s->blocked_rdev == NULL
   4678			    && (test_bit(Blocked, &rdev->flags)
   4679				|| is_bad < 0)) {
   4680				if (is_bad < 0)
   4681					set_bit(BlockedBadBlocks,
   4682						&rdev->flags);
   4683				s->blocked_rdev = rdev;
   4684				atomic_inc(&rdev->nr_pending);
   4685			}
   4686		}
   4687		clear_bit(R5_Insync, &dev->flags);
   4688		if (!rdev)
   4689			/* Not in-sync */;
   4690		else if (is_bad) {
   4691			/* also not in-sync */
   4692			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
   4693			    test_bit(R5_UPTODATE, &dev->flags)) {
   4694				/* treat as in-sync, but with a read error
   4695				 * which we can now try to correct
   4696				 */
   4697				set_bit(R5_Insync, &dev->flags);
   4698				set_bit(R5_ReadError, &dev->flags);
   4699			}
   4700		} else if (test_bit(In_sync, &rdev->flags))
   4701			set_bit(R5_Insync, &dev->flags);
   4702		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
   4703			/* in sync if before recovery_offset */
   4704			set_bit(R5_Insync, &dev->flags);
   4705		else if (test_bit(R5_UPTODATE, &dev->flags) &&
   4706			 test_bit(R5_Expanded, &dev->flags))
   4707			/* If we've reshaped into here, we assume it is Insync.
   4708			 * We will shortly update recovery_offset to make
   4709			 * it official.
   4710			 */
   4711			set_bit(R5_Insync, &dev->flags);
   4712
   4713		if (test_bit(R5_WriteError, &dev->flags)) {
   4714			/* This flag does not apply to '.replacement'
   4715			 * only to .rdev, so make sure to check that*/
   4716			struct md_rdev *rdev2 = rcu_dereference(
   4717				conf->disks[i].rdev);
   4718			if (rdev2 == rdev)
   4719				clear_bit(R5_Insync, &dev->flags);
   4720			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
   4721				s->handle_bad_blocks = 1;
   4722				atomic_inc(&rdev2->nr_pending);
   4723			} else
   4724				clear_bit(R5_WriteError, &dev->flags);
   4725		}
   4726		if (test_bit(R5_MadeGood, &dev->flags)) {
   4727			/* This flag does not apply to '.replacement'
   4728			 * only to .rdev, so make sure to check that*/
   4729			struct md_rdev *rdev2 = rcu_dereference(
   4730				conf->disks[i].rdev);
   4731			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
   4732				s->handle_bad_blocks = 1;
   4733				atomic_inc(&rdev2->nr_pending);
   4734			} else
   4735				clear_bit(R5_MadeGood, &dev->flags);
   4736		}
   4737		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
   4738			struct md_rdev *rdev2 = rcu_dereference(
   4739				conf->disks[i].replacement);
   4740			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
   4741				s->handle_bad_blocks = 1;
   4742				atomic_inc(&rdev2->nr_pending);
   4743			} else
   4744				clear_bit(R5_MadeGoodRepl, &dev->flags);
   4745		}
   4746		if (!test_bit(R5_Insync, &dev->flags)) {
   4747			/* The ReadError flag will just be confusing now */
   4748			clear_bit(R5_ReadError, &dev->flags);
   4749			clear_bit(R5_ReWrite, &dev->flags);
   4750		}
   4751		if (test_bit(R5_ReadError, &dev->flags))
   4752			clear_bit(R5_Insync, &dev->flags);
   4753		if (!test_bit(R5_Insync, &dev->flags)) {
   4754			if (s->failed < 2)
   4755				s->failed_num[s->failed] = i;
   4756			s->failed++;
   4757			if (rdev && !test_bit(Faulty, &rdev->flags))
   4758				do_recovery = 1;
   4759			else if (!rdev) {
   4760				rdev = rcu_dereference(
   4761				    conf->disks[i].replacement);
   4762				if (rdev && !test_bit(Faulty, &rdev->flags))
   4763					do_recovery = 1;
   4764			}
   4765		}
   4766
   4767		if (test_bit(R5_InJournal, &dev->flags))
   4768			s->injournal++;
   4769		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
   4770			s->just_cached++;
   4771	}
   4772	if (test_bit(STRIPE_SYNCING, &sh->state)) {
   4773		/* If there is a failed device being replaced,
   4774		 *     we must be recovering.
   4775		 * else if we are after recovery_cp, we must be syncing
   4776		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
   4777		 * else we can only be replacing
   4778		 * sync and recovery both need to read all devices, and so
   4779		 * use the same flag.
   4780		 */
   4781		if (do_recovery ||
   4782		    sh->sector >= conf->mddev->recovery_cp ||
   4783		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
   4784			s->syncing = 1;
   4785		else
   4786			s->replacing = 1;
   4787	}
   4788	rcu_read_unlock();
   4789}
   4790
   4791/*
   4792 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
   4793 * a head which can now be handled.
   4794 */
   4795static int clear_batch_ready(struct stripe_head *sh)
   4796{
   4797	struct stripe_head *tmp;
   4798	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
   4799		return (sh->batch_head && sh->batch_head != sh);
   4800	spin_lock(&sh->stripe_lock);
   4801	if (!sh->batch_head) {
   4802		spin_unlock(&sh->stripe_lock);
   4803		return 0;
   4804	}
   4805
   4806	/*
   4807	 * this stripe could be added to a batch list before we check
   4808	 * BATCH_READY, skips it
   4809	 */
   4810	if (sh->batch_head != sh) {
   4811		spin_unlock(&sh->stripe_lock);
   4812		return 1;
   4813	}
   4814	spin_lock(&sh->batch_lock);
   4815	list_for_each_entry(tmp, &sh->batch_list, batch_list)
   4816		clear_bit(STRIPE_BATCH_READY, &tmp->state);
   4817	spin_unlock(&sh->batch_lock);
   4818	spin_unlock(&sh->stripe_lock);
   4819
   4820	/*
   4821	 * BATCH_READY is cleared, no new stripes can be added.
   4822	 * batch_list can be accessed without lock
   4823	 */
   4824	return 0;
   4825}
   4826
   4827static void break_stripe_batch_list(struct stripe_head *head_sh,
   4828				    unsigned long handle_flags)
   4829{
   4830	struct stripe_head *sh, *next;
   4831	int i;
   4832	int do_wakeup = 0;
   4833
   4834	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
   4835
   4836		list_del_init(&sh->batch_list);
   4837
   4838		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
   4839					  (1 << STRIPE_SYNCING) |
   4840					  (1 << STRIPE_REPLACED) |
   4841					  (1 << STRIPE_DELAYED) |
   4842					  (1 << STRIPE_BIT_DELAY) |
   4843					  (1 << STRIPE_FULL_WRITE) |
   4844					  (1 << STRIPE_BIOFILL_RUN) |
   4845					  (1 << STRIPE_COMPUTE_RUN)  |
   4846					  (1 << STRIPE_DISCARD) |
   4847					  (1 << STRIPE_BATCH_READY) |
   4848					  (1 << STRIPE_BATCH_ERR) |
   4849					  (1 << STRIPE_BITMAP_PENDING)),
   4850			"stripe state: %lx\n", sh->state);
   4851		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
   4852					      (1 << STRIPE_REPLACED)),
   4853			"head stripe state: %lx\n", head_sh->state);
   4854
   4855		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
   4856					    (1 << STRIPE_PREREAD_ACTIVE) |
   4857					    (1 << STRIPE_DEGRADED) |
   4858					    (1 << STRIPE_ON_UNPLUG_LIST)),
   4859			      head_sh->state & (1 << STRIPE_INSYNC));
   4860
   4861		sh->check_state = head_sh->check_state;
   4862		sh->reconstruct_state = head_sh->reconstruct_state;
   4863		spin_lock_irq(&sh->stripe_lock);
   4864		sh->batch_head = NULL;
   4865		spin_unlock_irq(&sh->stripe_lock);
   4866		for (i = 0; i < sh->disks; i++) {
   4867			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
   4868				do_wakeup = 1;
   4869			sh->dev[i].flags = head_sh->dev[i].flags &
   4870				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
   4871		}
   4872		if (handle_flags == 0 ||
   4873		    sh->state & handle_flags)
   4874			set_bit(STRIPE_HANDLE, &sh->state);
   4875		raid5_release_stripe(sh);
   4876	}
   4877	spin_lock_irq(&head_sh->stripe_lock);
   4878	head_sh->batch_head = NULL;
   4879	spin_unlock_irq(&head_sh->stripe_lock);
   4880	for (i = 0; i < head_sh->disks; i++)
   4881		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
   4882			do_wakeup = 1;
   4883	if (head_sh->state & handle_flags)
   4884		set_bit(STRIPE_HANDLE, &head_sh->state);
   4885
   4886	if (do_wakeup)
   4887		wake_up(&head_sh->raid_conf->wait_for_overlap);
   4888}
   4889
   4890static void handle_stripe(struct stripe_head *sh)
   4891{
   4892	struct stripe_head_state s;
   4893	struct r5conf *conf = sh->raid_conf;
   4894	int i;
   4895	int prexor;
   4896	int disks = sh->disks;
   4897	struct r5dev *pdev, *qdev;
   4898
   4899	clear_bit(STRIPE_HANDLE, &sh->state);
   4900
   4901	/*
   4902	 * handle_stripe should not continue handle the batched stripe, only
   4903	 * the head of batch list or lone stripe can continue. Otherwise we
   4904	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
   4905	 * is set for the batched stripe.
   4906	 */
   4907	if (clear_batch_ready(sh))
   4908		return;
   4909
   4910	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
   4911		/* already being handled, ensure it gets handled
   4912		 * again when current action finishes */
   4913		set_bit(STRIPE_HANDLE, &sh->state);
   4914		return;
   4915	}
   4916
   4917	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
   4918		break_stripe_batch_list(sh, 0);
   4919
   4920	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
   4921		spin_lock(&sh->stripe_lock);
   4922		/*
   4923		 * Cannot process 'sync' concurrently with 'discard'.
   4924		 * Flush data in r5cache before 'sync'.
   4925		 */
   4926		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
   4927		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
   4928		    !test_bit(STRIPE_DISCARD, &sh->state) &&
   4929		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
   4930			set_bit(STRIPE_SYNCING, &sh->state);
   4931			clear_bit(STRIPE_INSYNC, &sh->state);
   4932			clear_bit(STRIPE_REPLACED, &sh->state);
   4933		}
   4934		spin_unlock(&sh->stripe_lock);
   4935	}
   4936	clear_bit(STRIPE_DELAYED, &sh->state);
   4937
   4938	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
   4939		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
   4940	       (unsigned long long)sh->sector, sh->state,
   4941	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
   4942	       sh->check_state, sh->reconstruct_state);
   4943
   4944	analyse_stripe(sh, &s);
   4945
   4946	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
   4947		goto finish;
   4948
   4949	if (s.handle_bad_blocks ||
   4950	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
   4951		set_bit(STRIPE_HANDLE, &sh->state);
   4952		goto finish;
   4953	}
   4954
   4955	if (unlikely(s.blocked_rdev)) {
   4956		if (s.syncing || s.expanding || s.expanded ||
   4957		    s.replacing || s.to_write || s.written) {
   4958			set_bit(STRIPE_HANDLE, &sh->state);
   4959			goto finish;
   4960		}
   4961		/* There is nothing for the blocked_rdev to block */
   4962		rdev_dec_pending(s.blocked_rdev, conf->mddev);
   4963		s.blocked_rdev = NULL;
   4964	}
   4965
   4966	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
   4967		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
   4968		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
   4969	}
   4970
   4971	pr_debug("locked=%d uptodate=%d to_read=%d"
   4972	       " to_write=%d failed=%d failed_num=%d,%d\n",
   4973	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
   4974	       s.failed_num[0], s.failed_num[1]);
   4975	/*
   4976	 * check if the array has lost more than max_degraded devices and,
   4977	 * if so, some requests might need to be failed.
   4978	 *
   4979	 * When journal device failed (log_failed), we will only process
   4980	 * the stripe if there is data need write to raid disks
   4981	 */
   4982	if (s.failed > conf->max_degraded ||
   4983	    (s.log_failed && s.injournal == 0)) {
   4984		sh->check_state = 0;
   4985		sh->reconstruct_state = 0;
   4986		break_stripe_batch_list(sh, 0);
   4987		if (s.to_read+s.to_write+s.written)
   4988			handle_failed_stripe(conf, sh, &s, disks);
   4989		if (s.syncing + s.replacing)
   4990			handle_failed_sync(conf, sh, &s);
   4991	}
   4992
   4993	/* Now we check to see if any write operations have recently
   4994	 * completed
   4995	 */
   4996	prexor = 0;
   4997	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
   4998		prexor = 1;
   4999	if (sh->reconstruct_state == reconstruct_state_drain_result ||
   5000	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
   5001		sh->reconstruct_state = reconstruct_state_idle;
   5002
   5003		/* All the 'written' buffers and the parity block are ready to
   5004		 * be written back to disk
   5005		 */
   5006		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
   5007		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
   5008		BUG_ON(sh->qd_idx >= 0 &&
   5009		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
   5010		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
   5011		for (i = disks; i--; ) {
   5012			struct r5dev *dev = &sh->dev[i];
   5013			if (test_bit(R5_LOCKED, &dev->flags) &&
   5014				(i == sh->pd_idx || i == sh->qd_idx ||
   5015				 dev->written || test_bit(R5_InJournal,
   5016							  &dev->flags))) {
   5017				pr_debug("Writing block %d\n", i);
   5018				set_bit(R5_Wantwrite, &dev->flags);
   5019				if (prexor)
   5020					continue;
   5021				if (s.failed > 1)
   5022					continue;
   5023				if (!test_bit(R5_Insync, &dev->flags) ||
   5024				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
   5025				     s.failed == 0))
   5026					set_bit(STRIPE_INSYNC, &sh->state);
   5027			}
   5028		}
   5029		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
   5030			s.dec_preread_active = 1;
   5031	}
   5032
   5033	/*
   5034	 * might be able to return some write requests if the parity blocks
   5035	 * are safe, or on a failed drive
   5036	 */
   5037	pdev = &sh->dev[sh->pd_idx];
   5038	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
   5039		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
   5040	qdev = &sh->dev[sh->qd_idx];
   5041	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
   5042		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
   5043		|| conf->level < 6;
   5044
   5045	if (s.written &&
   5046	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
   5047			     && !test_bit(R5_LOCKED, &pdev->flags)
   5048			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
   5049				 test_bit(R5_Discard, &pdev->flags))))) &&
   5050	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
   5051			     && !test_bit(R5_LOCKED, &qdev->flags)
   5052			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
   5053				 test_bit(R5_Discard, &qdev->flags))))))
   5054		handle_stripe_clean_event(conf, sh, disks);
   5055
   5056	if (s.just_cached)
   5057		r5c_handle_cached_data_endio(conf, sh, disks);
   5058	log_stripe_write_finished(sh);
   5059
   5060	/* Now we might consider reading some blocks, either to check/generate
   5061	 * parity, or to satisfy requests
   5062	 * or to load a block that is being partially written.
   5063	 */
   5064	if (s.to_read || s.non_overwrite
   5065	    || (s.to_write && s.failed)
   5066	    || (s.syncing && (s.uptodate + s.compute < disks))
   5067	    || s.replacing
   5068	    || s.expanding)
   5069		handle_stripe_fill(sh, &s, disks);
   5070
   5071	/*
   5072	 * When the stripe finishes full journal write cycle (write to journal
   5073	 * and raid disk), this is the clean up procedure so it is ready for
   5074	 * next operation.
   5075	 */
   5076	r5c_finish_stripe_write_out(conf, sh, &s);
   5077
   5078	/*
   5079	 * Now to consider new write requests, cache write back and what else,
   5080	 * if anything should be read.  We do not handle new writes when:
   5081	 * 1/ A 'write' operation (copy+xor) is already in flight.
   5082	 * 2/ A 'check' operation is in flight, as it may clobber the parity
   5083	 *    block.
   5084	 * 3/ A r5c cache log write is in flight.
   5085	 */
   5086
   5087	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
   5088		if (!r5c_is_writeback(conf->log)) {
   5089			if (s.to_write)
   5090				handle_stripe_dirtying(conf, sh, &s, disks);
   5091		} else { /* write back cache */
   5092			int ret = 0;
   5093
   5094			/* First, try handle writes in caching phase */
   5095			if (s.to_write)
   5096				ret = r5c_try_caching_write(conf, sh, &s,
   5097							    disks);
   5098			/*
   5099			 * If caching phase failed: ret == -EAGAIN
   5100			 *    OR
   5101			 * stripe under reclaim: !caching && injournal
   5102			 *
   5103			 * fall back to handle_stripe_dirtying()
   5104			 */
   5105			if (ret == -EAGAIN ||
   5106			    /* stripe under reclaim: !caching && injournal */
   5107			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
   5108			     s.injournal > 0)) {
   5109				ret = handle_stripe_dirtying(conf, sh, &s,
   5110							     disks);
   5111				if (ret == -EAGAIN)
   5112					goto finish;
   5113			}
   5114		}
   5115	}
   5116
   5117	/* maybe we need to check and possibly fix the parity for this stripe
   5118	 * Any reads will already have been scheduled, so we just see if enough
   5119	 * data is available.  The parity check is held off while parity
   5120	 * dependent operations are in flight.
   5121	 */
   5122	if (sh->check_state ||
   5123	    (s.syncing && s.locked == 0 &&
   5124	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
   5125	     !test_bit(STRIPE_INSYNC, &sh->state))) {
   5126		if (conf->level == 6)
   5127			handle_parity_checks6(conf, sh, &s, disks);
   5128		else
   5129			handle_parity_checks5(conf, sh, &s, disks);
   5130	}
   5131
   5132	if ((s.replacing || s.syncing) && s.locked == 0
   5133	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
   5134	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
   5135		/* Write out to replacement devices where possible */
   5136		for (i = 0; i < conf->raid_disks; i++)
   5137			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
   5138				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
   5139				set_bit(R5_WantReplace, &sh->dev[i].flags);
   5140				set_bit(R5_LOCKED, &sh->dev[i].flags);
   5141				s.locked++;
   5142			}
   5143		if (s.replacing)
   5144			set_bit(STRIPE_INSYNC, &sh->state);
   5145		set_bit(STRIPE_REPLACED, &sh->state);
   5146	}
   5147	if ((s.syncing || s.replacing) && s.locked == 0 &&
   5148	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
   5149	    test_bit(STRIPE_INSYNC, &sh->state)) {
   5150		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
   5151		clear_bit(STRIPE_SYNCING, &sh->state);
   5152		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
   5153			wake_up(&conf->wait_for_overlap);
   5154	}
   5155
   5156	/* If the failed drives are just a ReadError, then we might need
   5157	 * to progress the repair/check process
   5158	 */
   5159	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
   5160		for (i = 0; i < s.failed; i++) {
   5161			struct r5dev *dev = &sh->dev[s.failed_num[i]];
   5162			if (test_bit(R5_ReadError, &dev->flags)
   5163			    && !test_bit(R5_LOCKED, &dev->flags)
   5164			    && test_bit(R5_UPTODATE, &dev->flags)
   5165				) {
   5166				if (!test_bit(R5_ReWrite, &dev->flags)) {
   5167					set_bit(R5_Wantwrite, &dev->flags);
   5168					set_bit(R5_ReWrite, &dev->flags);
   5169				} else
   5170					/* let's read it back */
   5171					set_bit(R5_Wantread, &dev->flags);
   5172				set_bit(R5_LOCKED, &dev->flags);
   5173				s.locked++;
   5174			}
   5175		}
   5176
   5177	/* Finish reconstruct operations initiated by the expansion process */
   5178	if (sh->reconstruct_state == reconstruct_state_result) {
   5179		struct stripe_head *sh_src
   5180			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
   5181		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
   5182			/* sh cannot be written until sh_src has been read.
   5183			 * so arrange for sh to be delayed a little
   5184			 */
   5185			set_bit(STRIPE_DELAYED, &sh->state);
   5186			set_bit(STRIPE_HANDLE, &sh->state);
   5187			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
   5188					      &sh_src->state))
   5189				atomic_inc(&conf->preread_active_stripes);
   5190			raid5_release_stripe(sh_src);
   5191			goto finish;
   5192		}
   5193		if (sh_src)
   5194			raid5_release_stripe(sh_src);
   5195
   5196		sh->reconstruct_state = reconstruct_state_idle;
   5197		clear_bit(STRIPE_EXPANDING, &sh->state);
   5198		for (i = conf->raid_disks; i--; ) {
   5199			set_bit(R5_Wantwrite, &sh->dev[i].flags);
   5200			set_bit(R5_LOCKED, &sh->dev[i].flags);
   5201			s.locked++;
   5202		}
   5203	}
   5204
   5205	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
   5206	    !sh->reconstruct_state) {
   5207		/* Need to write out all blocks after computing parity */
   5208		sh->disks = conf->raid_disks;
   5209		stripe_set_idx(sh->sector, conf, 0, sh);
   5210		schedule_reconstruction(sh, &s, 1, 1);
   5211	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
   5212		clear_bit(STRIPE_EXPAND_READY, &sh->state);
   5213		atomic_dec(&conf->reshape_stripes);
   5214		wake_up(&conf->wait_for_overlap);
   5215		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
   5216	}
   5217
   5218	if (s.expanding && s.locked == 0 &&
   5219	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
   5220		handle_stripe_expansion(conf, sh);
   5221
   5222finish:
   5223	/* wait for this device to become unblocked */
   5224	if (unlikely(s.blocked_rdev)) {
   5225		if (conf->mddev->external)
   5226			md_wait_for_blocked_rdev(s.blocked_rdev,
   5227						 conf->mddev);
   5228		else
   5229			/* Internal metadata will immediately
   5230			 * be written by raid5d, so we don't
   5231			 * need to wait here.
   5232			 */
   5233			rdev_dec_pending(s.blocked_rdev,
   5234					 conf->mddev);
   5235	}
   5236
   5237	if (s.handle_bad_blocks)
   5238		for (i = disks; i--; ) {
   5239			struct md_rdev *rdev;
   5240			struct r5dev *dev = &sh->dev[i];
   5241			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
   5242				/* We own a safe reference to the rdev */
   5243				rdev = rdev_pend_deref(conf->disks[i].rdev);
   5244				if (!rdev_set_badblocks(rdev, sh->sector,
   5245							RAID5_STRIPE_SECTORS(conf), 0))
   5246					md_error(conf->mddev, rdev);
   5247				rdev_dec_pending(rdev, conf->mddev);
   5248			}
   5249			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
   5250				rdev = rdev_pend_deref(conf->disks[i].rdev);
   5251				rdev_clear_badblocks(rdev, sh->sector,
   5252						     RAID5_STRIPE_SECTORS(conf), 0);
   5253				rdev_dec_pending(rdev, conf->mddev);
   5254			}
   5255			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
   5256				rdev = rdev_pend_deref(conf->disks[i].replacement);
   5257				if (!rdev)
   5258					/* rdev have been moved down */
   5259					rdev = rdev_pend_deref(conf->disks[i].rdev);
   5260				rdev_clear_badblocks(rdev, sh->sector,
   5261						     RAID5_STRIPE_SECTORS(conf), 0);
   5262				rdev_dec_pending(rdev, conf->mddev);
   5263			}
   5264		}
   5265
   5266	if (s.ops_request)
   5267		raid_run_ops(sh, s.ops_request);
   5268
   5269	ops_run_io(sh, &s);
   5270
   5271	if (s.dec_preread_active) {
   5272		/* We delay this until after ops_run_io so that if make_request
   5273		 * is waiting on a flush, it won't continue until the writes
   5274		 * have actually been submitted.
   5275		 */
   5276		atomic_dec(&conf->preread_active_stripes);
   5277		if (atomic_read(&conf->preread_active_stripes) <
   5278		    IO_THRESHOLD)
   5279			md_wakeup_thread(conf->mddev->thread);
   5280	}
   5281
   5282	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
   5283}
   5284
   5285static void raid5_activate_delayed(struct r5conf *conf)
   5286	__must_hold(&conf->device_lock)
   5287{
   5288	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
   5289		while (!list_empty(&conf->delayed_list)) {
   5290			struct list_head *l = conf->delayed_list.next;
   5291			struct stripe_head *sh;
   5292			sh = list_entry(l, struct stripe_head, lru);
   5293			list_del_init(l);
   5294			clear_bit(STRIPE_DELAYED, &sh->state);
   5295			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
   5296				atomic_inc(&conf->preread_active_stripes);
   5297			list_add_tail(&sh->lru, &conf->hold_list);
   5298			raid5_wakeup_stripe_thread(sh);
   5299		}
   5300	}
   5301}
   5302
   5303static void activate_bit_delay(struct r5conf *conf,
   5304		struct list_head *temp_inactive_list)
   5305	__must_hold(&conf->device_lock)
   5306{
   5307	struct list_head head;
   5308	list_add(&head, &conf->bitmap_list);
   5309	list_del_init(&conf->bitmap_list);
   5310	while (!list_empty(&head)) {
   5311		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
   5312		int hash;
   5313		list_del_init(&sh->lru);
   5314		atomic_inc(&sh->count);
   5315		hash = sh->hash_lock_index;
   5316		__release_stripe(conf, sh, &temp_inactive_list[hash]);
   5317	}
   5318}
   5319
   5320static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
   5321{
   5322	struct r5conf *conf = mddev->private;
   5323	sector_t sector = bio->bi_iter.bi_sector;
   5324	unsigned int chunk_sectors;
   5325	unsigned int bio_sectors = bio_sectors(bio);
   5326
   5327	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
   5328	return  chunk_sectors >=
   5329		((sector & (chunk_sectors - 1)) + bio_sectors);
   5330}
   5331
   5332/*
   5333 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
   5334 *  later sampled by raid5d.
   5335 */
   5336static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
   5337{
   5338	unsigned long flags;
   5339
   5340	spin_lock_irqsave(&conf->device_lock, flags);
   5341
   5342	bi->bi_next = conf->retry_read_aligned_list;
   5343	conf->retry_read_aligned_list = bi;
   5344
   5345	spin_unlock_irqrestore(&conf->device_lock, flags);
   5346	md_wakeup_thread(conf->mddev->thread);
   5347}
   5348
   5349static struct bio *remove_bio_from_retry(struct r5conf *conf,
   5350					 unsigned int *offset)
   5351{
   5352	struct bio *bi;
   5353
   5354	bi = conf->retry_read_aligned;
   5355	if (bi) {
   5356		*offset = conf->retry_read_offset;
   5357		conf->retry_read_aligned = NULL;
   5358		return bi;
   5359	}
   5360	bi = conf->retry_read_aligned_list;
   5361	if(bi) {
   5362		conf->retry_read_aligned_list = bi->bi_next;
   5363		bi->bi_next = NULL;
   5364		*offset = 0;
   5365	}
   5366
   5367	return bi;
   5368}
   5369
   5370/*
   5371 *  The "raid5_align_endio" should check if the read succeeded and if it
   5372 *  did, call bio_endio on the original bio (having bio_put the new bio
   5373 *  first).
   5374 *  If the read failed..
   5375 */
   5376static void raid5_align_endio(struct bio *bi)
   5377{
   5378	struct md_io_acct *md_io_acct = bi->bi_private;
   5379	struct bio *raid_bi = md_io_acct->orig_bio;
   5380	struct mddev *mddev;
   5381	struct r5conf *conf;
   5382	struct md_rdev *rdev;
   5383	blk_status_t error = bi->bi_status;
   5384	unsigned long start_time = md_io_acct->start_time;
   5385
   5386	bio_put(bi);
   5387
   5388	rdev = (void*)raid_bi->bi_next;
   5389	raid_bi->bi_next = NULL;
   5390	mddev = rdev->mddev;
   5391	conf = mddev->private;
   5392
   5393	rdev_dec_pending(rdev, conf->mddev);
   5394
   5395	if (!error) {
   5396		if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
   5397			bio_end_io_acct(raid_bi, start_time);
   5398		bio_endio(raid_bi);
   5399		if (atomic_dec_and_test(&conf->active_aligned_reads))
   5400			wake_up(&conf->wait_for_quiescent);
   5401		return;
   5402	}
   5403
   5404	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
   5405
   5406	add_bio_to_retry(raid_bi, conf);
   5407}
   5408
   5409static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
   5410{
   5411	struct r5conf *conf = mddev->private;
   5412	struct bio *align_bio;
   5413	struct md_rdev *rdev;
   5414	sector_t sector, end_sector, first_bad;
   5415	int bad_sectors, dd_idx;
   5416	struct md_io_acct *md_io_acct;
   5417	bool did_inc;
   5418
   5419	if (!in_chunk_boundary(mddev, raid_bio)) {
   5420		pr_debug("%s: non aligned\n", __func__);
   5421		return 0;
   5422	}
   5423
   5424	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
   5425				      &dd_idx, NULL);
   5426	end_sector = bio_end_sector(raid_bio);
   5427
   5428	rcu_read_lock();
   5429	if (r5c_big_stripe_cached(conf, sector))
   5430		goto out_rcu_unlock;
   5431
   5432	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
   5433	if (!rdev || test_bit(Faulty, &rdev->flags) ||
   5434	    rdev->recovery_offset < end_sector) {
   5435		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
   5436		if (!rdev)
   5437			goto out_rcu_unlock;
   5438		if (test_bit(Faulty, &rdev->flags) ||
   5439		    !(test_bit(In_sync, &rdev->flags) ||
   5440		      rdev->recovery_offset >= end_sector))
   5441			goto out_rcu_unlock;
   5442	}
   5443
   5444	atomic_inc(&rdev->nr_pending);
   5445	rcu_read_unlock();
   5446
   5447	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
   5448			&bad_sectors)) {
   5449		bio_put(raid_bio);
   5450		rdev_dec_pending(rdev, mddev);
   5451		return 0;
   5452	}
   5453
   5454	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
   5455				    &mddev->io_acct_set);
   5456	md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
   5457	raid_bio->bi_next = (void *)rdev;
   5458	if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
   5459		md_io_acct->start_time = bio_start_io_acct(raid_bio);
   5460	md_io_acct->orig_bio = raid_bio;
   5461
   5462	align_bio->bi_end_io = raid5_align_endio;
   5463	align_bio->bi_private = md_io_acct;
   5464	align_bio->bi_iter.bi_sector = sector;
   5465
   5466	/* No reshape active, so we can trust rdev->data_offset */
   5467	align_bio->bi_iter.bi_sector += rdev->data_offset;
   5468
   5469	did_inc = false;
   5470	if (conf->quiesce == 0) {
   5471		atomic_inc(&conf->active_aligned_reads);
   5472		did_inc = true;
   5473	}
   5474	/* need a memory barrier to detect the race with raid5_quiesce() */
   5475	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
   5476		/* quiesce is in progress, so we need to undo io activation and wait
   5477		 * for it to finish
   5478		 */
   5479		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
   5480			wake_up(&conf->wait_for_quiescent);
   5481		spin_lock_irq(&conf->device_lock);
   5482		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
   5483				    conf->device_lock);
   5484		atomic_inc(&conf->active_aligned_reads);
   5485		spin_unlock_irq(&conf->device_lock);
   5486	}
   5487
   5488	if (mddev->gendisk)
   5489		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
   5490				      raid_bio->bi_iter.bi_sector);
   5491	submit_bio_noacct(align_bio);
   5492	return 1;
   5493
   5494out_rcu_unlock:
   5495	rcu_read_unlock();
   5496	return 0;
   5497}
   5498
   5499static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
   5500{
   5501	struct bio *split;
   5502	sector_t sector = raid_bio->bi_iter.bi_sector;
   5503	unsigned chunk_sects = mddev->chunk_sectors;
   5504	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
   5505
   5506	if (sectors < bio_sectors(raid_bio)) {
   5507		struct r5conf *conf = mddev->private;
   5508		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
   5509		bio_chain(split, raid_bio);
   5510		submit_bio_noacct(raid_bio);
   5511		raid_bio = split;
   5512	}
   5513
   5514	if (!raid5_read_one_chunk(mddev, raid_bio))
   5515		return raid_bio;
   5516
   5517	return NULL;
   5518}
   5519
   5520/* __get_priority_stripe - get the next stripe to process
   5521 *
   5522 * Full stripe writes are allowed to pass preread active stripes up until
   5523 * the bypass_threshold is exceeded.  In general the bypass_count
   5524 * increments when the handle_list is handled before the hold_list; however, it
   5525 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
   5526 * stripe with in flight i/o.  The bypass_count will be reset when the
   5527 * head of the hold_list has changed, i.e. the head was promoted to the
   5528 * handle_list.
   5529 */
   5530static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
   5531	__must_hold(&conf->device_lock)
   5532{
   5533	struct stripe_head *sh, *tmp;
   5534	struct list_head *handle_list = NULL;
   5535	struct r5worker_group *wg;
   5536	bool second_try = !r5c_is_writeback(conf->log) &&
   5537		!r5l_log_disk_error(conf);
   5538	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
   5539		r5l_log_disk_error(conf);
   5540
   5541again:
   5542	wg = NULL;
   5543	sh = NULL;
   5544	if (conf->worker_cnt_per_group == 0) {
   5545		handle_list = try_loprio ? &conf->loprio_list :
   5546					&conf->handle_list;
   5547	} else if (group != ANY_GROUP) {
   5548		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
   5549				&conf->worker_groups[group].handle_list;
   5550		wg = &conf->worker_groups[group];
   5551	} else {
   5552		int i;
   5553		for (i = 0; i < conf->group_cnt; i++) {
   5554			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
   5555				&conf->worker_groups[i].handle_list;
   5556			wg = &conf->worker_groups[i];
   5557			if (!list_empty(handle_list))
   5558				break;
   5559		}
   5560	}
   5561
   5562	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
   5563		  __func__,
   5564		  list_empty(handle_list) ? "empty" : "busy",
   5565		  list_empty(&conf->hold_list) ? "empty" : "busy",
   5566		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
   5567
   5568	if (!list_empty(handle_list)) {
   5569		sh = list_entry(handle_list->next, typeof(*sh), lru);
   5570
   5571		if (list_empty(&conf->hold_list))
   5572			conf->bypass_count = 0;
   5573		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
   5574			if (conf->hold_list.next == conf->last_hold)
   5575				conf->bypass_count++;
   5576			else {
   5577				conf->last_hold = conf->hold_list.next;
   5578				conf->bypass_count -= conf->bypass_threshold;
   5579				if (conf->bypass_count < 0)
   5580					conf->bypass_count = 0;
   5581			}
   5582		}
   5583	} else if (!list_empty(&conf->hold_list) &&
   5584		   ((conf->bypass_threshold &&
   5585		     conf->bypass_count > conf->bypass_threshold) ||
   5586		    atomic_read(&conf->pending_full_writes) == 0)) {
   5587
   5588		list_for_each_entry(tmp, &conf->hold_list,  lru) {
   5589			if (conf->worker_cnt_per_group == 0 ||
   5590			    group == ANY_GROUP ||
   5591			    !cpu_online(tmp->cpu) ||
   5592			    cpu_to_group(tmp->cpu) == group) {
   5593				sh = tmp;
   5594				break;
   5595			}
   5596		}
   5597
   5598		if (sh) {
   5599			conf->bypass_count -= conf->bypass_threshold;
   5600			if (conf->bypass_count < 0)
   5601				conf->bypass_count = 0;
   5602		}
   5603		wg = NULL;
   5604	}
   5605
   5606	if (!sh) {
   5607		if (second_try)
   5608			return NULL;
   5609		second_try = true;
   5610		try_loprio = !try_loprio;
   5611		goto again;
   5612	}
   5613
   5614	if (wg) {
   5615		wg->stripes_cnt--;
   5616		sh->group = NULL;
   5617	}
   5618	list_del_init(&sh->lru);
   5619	BUG_ON(atomic_inc_return(&sh->count) != 1);
   5620	return sh;
   5621}
   5622
   5623struct raid5_plug_cb {
   5624	struct blk_plug_cb	cb;
   5625	struct list_head	list;
   5626	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
   5627};
   5628
   5629static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
   5630{
   5631	struct raid5_plug_cb *cb = container_of(
   5632		blk_cb, struct raid5_plug_cb, cb);
   5633	struct stripe_head *sh;
   5634	struct mddev *mddev = cb->cb.data;
   5635	struct r5conf *conf = mddev->private;
   5636	int cnt = 0;
   5637	int hash;
   5638
   5639	if (cb->list.next && !list_empty(&cb->list)) {
   5640		spin_lock_irq(&conf->device_lock);
   5641		while (!list_empty(&cb->list)) {
   5642			sh = list_first_entry(&cb->list, struct stripe_head, lru);
   5643			list_del_init(&sh->lru);
   5644			/*
   5645			 * avoid race release_stripe_plug() sees
   5646			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
   5647			 * is still in our list
   5648			 */
   5649			smp_mb__before_atomic();
   5650			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
   5651			/*
   5652			 * STRIPE_ON_RELEASE_LIST could be set here. In that
   5653			 * case, the count is always > 1 here
   5654			 */
   5655			hash = sh->hash_lock_index;
   5656			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
   5657			cnt++;
   5658		}
   5659		spin_unlock_irq(&conf->device_lock);
   5660	}
   5661	release_inactive_stripe_list(conf, cb->temp_inactive_list,
   5662				     NR_STRIPE_HASH_LOCKS);
   5663	if (mddev->queue)
   5664		trace_block_unplug(mddev->queue, cnt, !from_schedule);
   5665	kfree(cb);
   5666}
   5667
   5668static void release_stripe_plug(struct mddev *mddev,
   5669				struct stripe_head *sh)
   5670{
   5671	struct blk_plug_cb *blk_cb = blk_check_plugged(
   5672		raid5_unplug, mddev,
   5673		sizeof(struct raid5_plug_cb));
   5674	struct raid5_plug_cb *cb;
   5675
   5676	if (!blk_cb) {
   5677		raid5_release_stripe(sh);
   5678		return;
   5679	}
   5680
   5681	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
   5682
   5683	if (cb->list.next == NULL) {
   5684		int i;
   5685		INIT_LIST_HEAD(&cb->list);
   5686		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
   5687			INIT_LIST_HEAD(cb->temp_inactive_list + i);
   5688	}
   5689
   5690	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
   5691		list_add_tail(&sh->lru, &cb->list);
   5692	else
   5693		raid5_release_stripe(sh);
   5694}
   5695
   5696static void make_discard_request(struct mddev *mddev, struct bio *bi)
   5697{
   5698	struct r5conf *conf = mddev->private;
   5699	sector_t logical_sector, last_sector;
   5700	struct stripe_head *sh;
   5701	int stripe_sectors;
   5702
   5703	/* We need to handle this when io_uring supports discard/trim */
   5704	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
   5705		return;
   5706
   5707	if (mddev->reshape_position != MaxSector)
   5708		/* Skip discard while reshape is happening */
   5709		return;
   5710
   5711	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
   5712	last_sector = bio_end_sector(bi);
   5713
   5714	bi->bi_next = NULL;
   5715
   5716	stripe_sectors = conf->chunk_sectors *
   5717		(conf->raid_disks - conf->max_degraded);
   5718	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
   5719					       stripe_sectors);
   5720	sector_div(last_sector, stripe_sectors);
   5721
   5722	logical_sector *= conf->chunk_sectors;
   5723	last_sector *= conf->chunk_sectors;
   5724
   5725	for (; logical_sector < last_sector;
   5726	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
   5727		DEFINE_WAIT(w);
   5728		int d;
   5729	again:
   5730		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
   5731		prepare_to_wait(&conf->wait_for_overlap, &w,
   5732				TASK_UNINTERRUPTIBLE);
   5733		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
   5734		if (test_bit(STRIPE_SYNCING, &sh->state)) {
   5735			raid5_release_stripe(sh);
   5736			schedule();
   5737			goto again;
   5738		}
   5739		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
   5740		spin_lock_irq(&sh->stripe_lock);
   5741		for (d = 0; d < conf->raid_disks; d++) {
   5742			if (d == sh->pd_idx || d == sh->qd_idx)
   5743				continue;
   5744			if (sh->dev[d].towrite || sh->dev[d].toread) {
   5745				set_bit(R5_Overlap, &sh->dev[d].flags);
   5746				spin_unlock_irq(&sh->stripe_lock);
   5747				raid5_release_stripe(sh);
   5748				schedule();
   5749				goto again;
   5750			}
   5751		}
   5752		set_bit(STRIPE_DISCARD, &sh->state);
   5753		finish_wait(&conf->wait_for_overlap, &w);
   5754		sh->overwrite_disks = 0;
   5755		for (d = 0; d < conf->raid_disks; d++) {
   5756			if (d == sh->pd_idx || d == sh->qd_idx)
   5757				continue;
   5758			sh->dev[d].towrite = bi;
   5759			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
   5760			bio_inc_remaining(bi);
   5761			md_write_inc(mddev, bi);
   5762			sh->overwrite_disks++;
   5763		}
   5764		spin_unlock_irq(&sh->stripe_lock);
   5765		if (conf->mddev->bitmap) {
   5766			for (d = 0;
   5767			     d < conf->raid_disks - conf->max_degraded;
   5768			     d++)
   5769				md_bitmap_startwrite(mddev->bitmap,
   5770						     sh->sector,
   5771						     RAID5_STRIPE_SECTORS(conf),
   5772						     0);
   5773			sh->bm_seq = conf->seq_flush + 1;
   5774			set_bit(STRIPE_BIT_DELAY, &sh->state);
   5775		}
   5776
   5777		set_bit(STRIPE_HANDLE, &sh->state);
   5778		clear_bit(STRIPE_DELAYED, &sh->state);
   5779		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
   5780			atomic_inc(&conf->preread_active_stripes);
   5781		release_stripe_plug(mddev, sh);
   5782	}
   5783
   5784	bio_endio(bi);
   5785}
   5786
   5787static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
   5788{
   5789	struct r5conf *conf = mddev->private;
   5790	int dd_idx;
   5791	sector_t new_sector;
   5792	sector_t logical_sector, last_sector;
   5793	struct stripe_head *sh;
   5794	const int rw = bio_data_dir(bi);
   5795	DEFINE_WAIT(w);
   5796	bool do_prepare;
   5797	bool do_flush = false;
   5798
   5799	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
   5800		int ret = log_handle_flush_request(conf, bi);
   5801
   5802		if (ret == 0)
   5803			return true;
   5804		if (ret == -ENODEV) {
   5805			if (md_flush_request(mddev, bi))
   5806				return true;
   5807		}
   5808		/* ret == -EAGAIN, fallback */
   5809		/*
   5810		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
   5811		 * we need to flush journal device
   5812		 */
   5813		do_flush = bi->bi_opf & REQ_PREFLUSH;
   5814	}
   5815
   5816	if (!md_write_start(mddev, bi))
   5817		return false;
   5818	/*
   5819	 * If array is degraded, better not do chunk aligned read because
   5820	 * later we might have to read it again in order to reconstruct
   5821	 * data on failed drives.
   5822	 */
   5823	if (rw == READ && mddev->degraded == 0 &&
   5824	    mddev->reshape_position == MaxSector) {
   5825		bi = chunk_aligned_read(mddev, bi);
   5826		if (!bi)
   5827			return true;
   5828	}
   5829
   5830	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
   5831		make_discard_request(mddev, bi);
   5832		md_write_end(mddev);
   5833		return true;
   5834	}
   5835
   5836	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
   5837	last_sector = bio_end_sector(bi);
   5838	bi->bi_next = NULL;
   5839
   5840	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
   5841	if ((bi->bi_opf & REQ_NOWAIT) &&
   5842	    (conf->reshape_progress != MaxSector) &&
   5843	    (mddev->reshape_backwards
   5844	    ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe)
   5845	    : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) {
   5846		bio_wouldblock_error(bi);
   5847		if (rw == WRITE)
   5848			md_write_end(mddev);
   5849		return true;
   5850	}
   5851	md_account_bio(mddev, &bi);
   5852	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
   5853	for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
   5854		int previous;
   5855		int seq;
   5856
   5857		do_prepare = false;
   5858	retry:
   5859		seq = read_seqcount_begin(&conf->gen_lock);
   5860		previous = 0;
   5861		if (do_prepare)
   5862			prepare_to_wait(&conf->wait_for_overlap, &w,
   5863				TASK_UNINTERRUPTIBLE);
   5864		if (unlikely(conf->reshape_progress != MaxSector)) {
   5865			/* spinlock is needed as reshape_progress may be
   5866			 * 64bit on a 32bit platform, and so it might be
   5867			 * possible to see a half-updated value
   5868			 * Of course reshape_progress could change after
   5869			 * the lock is dropped, so once we get a reference
   5870			 * to the stripe that we think it is, we will have
   5871			 * to check again.
   5872			 */
   5873			spin_lock_irq(&conf->device_lock);
   5874			if (mddev->reshape_backwards
   5875			    ? logical_sector < conf->reshape_progress
   5876			    : logical_sector >= conf->reshape_progress) {
   5877				previous = 1;
   5878			} else {
   5879				if (mddev->reshape_backwards
   5880				    ? logical_sector < conf->reshape_safe
   5881				    : logical_sector >= conf->reshape_safe) {
   5882					spin_unlock_irq(&conf->device_lock);
   5883					schedule();
   5884					do_prepare = true;
   5885					goto retry;
   5886				}
   5887			}
   5888			spin_unlock_irq(&conf->device_lock);
   5889		}
   5890
   5891		new_sector = raid5_compute_sector(conf, logical_sector,
   5892						  previous,
   5893						  &dd_idx, NULL);
   5894		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
   5895			(unsigned long long)new_sector,
   5896			(unsigned long long)logical_sector);
   5897
   5898		sh = raid5_get_active_stripe(conf, new_sector, previous,
   5899				       (bi->bi_opf & REQ_RAHEAD), 0);
   5900		if (sh) {
   5901			if (unlikely(previous)) {
   5902				/* expansion might have moved on while waiting for a
   5903				 * stripe, so we must do the range check again.
   5904				 * Expansion could still move past after this
   5905				 * test, but as we are holding a reference to
   5906				 * 'sh', we know that if that happens,
   5907				 *  STRIPE_EXPANDING will get set and the expansion
   5908				 * won't proceed until we finish with the stripe.
   5909				 */
   5910				int must_retry = 0;
   5911				spin_lock_irq(&conf->device_lock);
   5912				if (mddev->reshape_backwards
   5913				    ? logical_sector >= conf->reshape_progress
   5914				    : logical_sector < conf->reshape_progress)
   5915					/* mismatch, need to try again */
   5916					must_retry = 1;
   5917				spin_unlock_irq(&conf->device_lock);
   5918				if (must_retry) {
   5919					raid5_release_stripe(sh);
   5920					schedule();
   5921					do_prepare = true;
   5922					goto retry;
   5923				}
   5924			}
   5925			if (read_seqcount_retry(&conf->gen_lock, seq)) {
   5926				/* Might have got the wrong stripe_head
   5927				 * by accident
   5928				 */
   5929				raid5_release_stripe(sh);
   5930				goto retry;
   5931			}
   5932
   5933			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
   5934			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
   5935				/* Stripe is busy expanding or
   5936				 * add failed due to overlap.  Flush everything
   5937				 * and wait a while
   5938				 */
   5939				md_wakeup_thread(mddev->thread);
   5940				raid5_release_stripe(sh);
   5941				schedule();
   5942				do_prepare = true;
   5943				goto retry;
   5944			}
   5945			if (do_flush) {
   5946				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
   5947				/* we only need flush for one stripe */
   5948				do_flush = false;
   5949			}
   5950
   5951			set_bit(STRIPE_HANDLE, &sh->state);
   5952			clear_bit(STRIPE_DELAYED, &sh->state);
   5953			if ((!sh->batch_head || sh == sh->batch_head) &&
   5954			    (bi->bi_opf & REQ_SYNC) &&
   5955			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
   5956				atomic_inc(&conf->preread_active_stripes);
   5957			release_stripe_plug(mddev, sh);
   5958		} else {
   5959			/* cannot get stripe for read-ahead, just give-up */
   5960			bi->bi_status = BLK_STS_IOERR;
   5961			break;
   5962		}
   5963	}
   5964	finish_wait(&conf->wait_for_overlap, &w);
   5965
   5966	if (rw == WRITE)
   5967		md_write_end(mddev);
   5968	bio_endio(bi);
   5969	return true;
   5970}
   5971
   5972static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
   5973
   5974static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
   5975{
   5976	/* reshaping is quite different to recovery/resync so it is
   5977	 * handled quite separately ... here.
   5978	 *
   5979	 * On each call to sync_request, we gather one chunk worth of
   5980	 * destination stripes and flag them as expanding.
   5981	 * Then we find all the source stripes and request reads.
   5982	 * As the reads complete, handle_stripe will copy the data
   5983	 * into the destination stripe and release that stripe.
   5984	 */
   5985	struct r5conf *conf = mddev->private;
   5986	struct stripe_head *sh;
   5987	struct md_rdev *rdev;
   5988	sector_t first_sector, last_sector;
   5989	int raid_disks = conf->previous_raid_disks;
   5990	int data_disks = raid_disks - conf->max_degraded;
   5991	int new_data_disks = conf->raid_disks - conf->max_degraded;
   5992	int i;
   5993	int dd_idx;
   5994	sector_t writepos, readpos, safepos;
   5995	sector_t stripe_addr;
   5996	int reshape_sectors;
   5997	struct list_head stripes;
   5998	sector_t retn;
   5999
   6000	if (sector_nr == 0) {
   6001		/* If restarting in the middle, skip the initial sectors */
   6002		if (mddev->reshape_backwards &&
   6003		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
   6004			sector_nr = raid5_size(mddev, 0, 0)
   6005				- conf->reshape_progress;
   6006		} else if (mddev->reshape_backwards &&
   6007			   conf->reshape_progress == MaxSector) {
   6008			/* shouldn't happen, but just in case, finish up.*/
   6009			sector_nr = MaxSector;
   6010		} else if (!mddev->reshape_backwards &&
   6011			   conf->reshape_progress > 0)
   6012			sector_nr = conf->reshape_progress;
   6013		sector_div(sector_nr, new_data_disks);
   6014		if (sector_nr) {
   6015			mddev->curr_resync_completed = sector_nr;
   6016			sysfs_notify_dirent_safe(mddev->sysfs_completed);
   6017			*skipped = 1;
   6018			retn = sector_nr;
   6019			goto finish;
   6020		}
   6021	}
   6022
   6023	/* We need to process a full chunk at a time.
   6024	 * If old and new chunk sizes differ, we need to process the
   6025	 * largest of these
   6026	 */
   6027
   6028	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
   6029
   6030	/* We update the metadata at least every 10 seconds, or when
   6031	 * the data about to be copied would over-write the source of
   6032	 * the data at the front of the range.  i.e. one new_stripe
   6033	 * along from reshape_progress new_maps to after where
   6034	 * reshape_safe old_maps to
   6035	 */
   6036	writepos = conf->reshape_progress;
   6037	sector_div(writepos, new_data_disks);
   6038	readpos = conf->reshape_progress;
   6039	sector_div(readpos, data_disks);
   6040	safepos = conf->reshape_safe;
   6041	sector_div(safepos, data_disks);
   6042	if (mddev->reshape_backwards) {
   6043		BUG_ON(writepos < reshape_sectors);
   6044		writepos -= reshape_sectors;
   6045		readpos += reshape_sectors;
   6046		safepos += reshape_sectors;
   6047	} else {
   6048		writepos += reshape_sectors;
   6049		/* readpos and safepos are worst-case calculations.
   6050		 * A negative number is overly pessimistic, and causes
   6051		 * obvious problems for unsigned storage.  So clip to 0.
   6052		 */
   6053		readpos -= min_t(sector_t, reshape_sectors, readpos);
   6054		safepos -= min_t(sector_t, reshape_sectors, safepos);
   6055	}
   6056
   6057	/* Having calculated the 'writepos' possibly use it
   6058	 * to set 'stripe_addr' which is where we will write to.
   6059	 */
   6060	if (mddev->reshape_backwards) {
   6061		BUG_ON(conf->reshape_progress == 0);
   6062		stripe_addr = writepos;
   6063		BUG_ON((mddev->dev_sectors &
   6064			~((sector_t)reshape_sectors - 1))
   6065		       - reshape_sectors - stripe_addr
   6066		       != sector_nr);
   6067	} else {
   6068		BUG_ON(writepos != sector_nr + reshape_sectors);
   6069		stripe_addr = sector_nr;
   6070	}
   6071
   6072	/* 'writepos' is the most advanced device address we might write.
   6073	 * 'readpos' is the least advanced device address we might read.
   6074	 * 'safepos' is the least address recorded in the metadata as having
   6075	 *     been reshaped.
   6076	 * If there is a min_offset_diff, these are adjusted either by
   6077	 * increasing the safepos/readpos if diff is negative, or
   6078	 * increasing writepos if diff is positive.
   6079	 * If 'readpos' is then behind 'writepos', there is no way that we can
   6080	 * ensure safety in the face of a crash - that must be done by userspace
   6081	 * making a backup of the data.  So in that case there is no particular
   6082	 * rush to update metadata.
   6083	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
   6084	 * update the metadata to advance 'safepos' to match 'readpos' so that
   6085	 * we can be safe in the event of a crash.
   6086	 * So we insist on updating metadata if safepos is behind writepos and
   6087	 * readpos is beyond writepos.
   6088	 * In any case, update the metadata every 10 seconds.
   6089	 * Maybe that number should be configurable, but I'm not sure it is
   6090	 * worth it.... maybe it could be a multiple of safemode_delay???
   6091	 */
   6092	if (conf->min_offset_diff < 0) {
   6093		safepos += -conf->min_offset_diff;
   6094		readpos += -conf->min_offset_diff;
   6095	} else
   6096		writepos += conf->min_offset_diff;
   6097
   6098	if ((mddev->reshape_backwards
   6099	     ? (safepos > writepos && readpos < writepos)
   6100	     : (safepos < writepos && readpos > writepos)) ||
   6101	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
   6102		/* Cannot proceed until we've updated the superblock... */
   6103		wait_event(conf->wait_for_overlap,
   6104			   atomic_read(&conf->reshape_stripes)==0
   6105			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
   6106		if (atomic_read(&conf->reshape_stripes) != 0)
   6107			return 0;
   6108		mddev->reshape_position = conf->reshape_progress;
   6109		mddev->curr_resync_completed = sector_nr;
   6110		if (!mddev->reshape_backwards)
   6111			/* Can update recovery_offset */
   6112			rdev_for_each(rdev, mddev)
   6113				if (rdev->raid_disk >= 0 &&
   6114				    !test_bit(Journal, &rdev->flags) &&
   6115				    !test_bit(In_sync, &rdev->flags) &&
   6116				    rdev->recovery_offset < sector_nr)
   6117					rdev->recovery_offset = sector_nr;
   6118
   6119		conf->reshape_checkpoint = jiffies;
   6120		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
   6121		md_wakeup_thread(mddev->thread);
   6122		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
   6123			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
   6124		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
   6125			return 0;
   6126		spin_lock_irq(&conf->device_lock);
   6127		conf->reshape_safe = mddev->reshape_position;
   6128		spin_unlock_irq(&conf->device_lock);
   6129		wake_up(&conf->wait_for_overlap);
   6130		sysfs_notify_dirent_safe(mddev->sysfs_completed);
   6131	}
   6132
   6133	INIT_LIST_HEAD(&stripes);
   6134	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
   6135		int j;
   6136		int skipped_disk = 0;
   6137		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
   6138		set_bit(STRIPE_EXPANDING, &sh->state);
   6139		atomic_inc(&conf->reshape_stripes);
   6140		/* If any of this stripe is beyond the end of the old
   6141		 * array, then we need to zero those blocks
   6142		 */
   6143		for (j=sh->disks; j--;) {
   6144			sector_t s;
   6145			if (j == sh->pd_idx)
   6146				continue;
   6147			if (conf->level == 6 &&
   6148			    j == sh->qd_idx)
   6149				continue;
   6150			s = raid5_compute_blocknr(sh, j, 0);
   6151			if (s < raid5_size(mddev, 0, 0)) {
   6152				skipped_disk = 1;
   6153				continue;
   6154			}
   6155			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
   6156			set_bit(R5_Expanded, &sh->dev[j].flags);
   6157			set_bit(R5_UPTODATE, &sh->dev[j].flags);
   6158		}
   6159		if (!skipped_disk) {
   6160			set_bit(STRIPE_EXPAND_READY, &sh->state);
   6161			set_bit(STRIPE_HANDLE, &sh->state);
   6162		}
   6163		list_add(&sh->lru, &stripes);
   6164	}
   6165	spin_lock_irq(&conf->device_lock);
   6166	if (mddev->reshape_backwards)
   6167		conf->reshape_progress -= reshape_sectors * new_data_disks;
   6168	else
   6169		conf->reshape_progress += reshape_sectors * new_data_disks;
   6170	spin_unlock_irq(&conf->device_lock);
   6171	/* Ok, those stripe are ready. We can start scheduling
   6172	 * reads on the source stripes.
   6173	 * The source stripes are determined by mapping the first and last
   6174	 * block on the destination stripes.
   6175	 */
   6176	first_sector =
   6177		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
   6178				     1, &dd_idx, NULL);
   6179	last_sector =
   6180		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
   6181					    * new_data_disks - 1),
   6182				     1, &dd_idx, NULL);
   6183	if (last_sector >= mddev->dev_sectors)
   6184		last_sector = mddev->dev_sectors - 1;
   6185	while (first_sector <= last_sector) {
   6186		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
   6187		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
   6188		set_bit(STRIPE_HANDLE, &sh->state);
   6189		raid5_release_stripe(sh);
   6190		first_sector += RAID5_STRIPE_SECTORS(conf);
   6191	}
   6192	/* Now that the sources are clearly marked, we can release
   6193	 * the destination stripes
   6194	 */
   6195	while (!list_empty(&stripes)) {
   6196		sh = list_entry(stripes.next, struct stripe_head, lru);
   6197		list_del_init(&sh->lru);
   6198		raid5_release_stripe(sh);
   6199	}
   6200	/* If this takes us to the resync_max point where we have to pause,
   6201	 * then we need to write out the superblock.
   6202	 */
   6203	sector_nr += reshape_sectors;
   6204	retn = reshape_sectors;
   6205finish:
   6206	if (mddev->curr_resync_completed > mddev->resync_max ||
   6207	    (sector_nr - mddev->curr_resync_completed) * 2
   6208	    >= mddev->resync_max - mddev->curr_resync_completed) {
   6209		/* Cannot proceed until we've updated the superblock... */
   6210		wait_event(conf->wait_for_overlap,
   6211			   atomic_read(&conf->reshape_stripes) == 0
   6212			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
   6213		if (atomic_read(&conf->reshape_stripes) != 0)
   6214			goto ret;
   6215		mddev->reshape_position = conf->reshape_progress;
   6216		mddev->curr_resync_completed = sector_nr;
   6217		if (!mddev->reshape_backwards)
   6218			/* Can update recovery_offset */
   6219			rdev_for_each(rdev, mddev)
   6220				if (rdev->raid_disk >= 0 &&
   6221				    !test_bit(Journal, &rdev->flags) &&
   6222				    !test_bit(In_sync, &rdev->flags) &&
   6223				    rdev->recovery_offset < sector_nr)
   6224					rdev->recovery_offset = sector_nr;
   6225		conf->reshape_checkpoint = jiffies;
   6226		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
   6227		md_wakeup_thread(mddev->thread);
   6228		wait_event(mddev->sb_wait,
   6229			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
   6230			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
   6231		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
   6232			goto ret;
   6233		spin_lock_irq(&conf->device_lock);
   6234		conf->reshape_safe = mddev->reshape_position;
   6235		spin_unlock_irq(&conf->device_lock);
   6236		wake_up(&conf->wait_for_overlap);
   6237		sysfs_notify_dirent_safe(mddev->sysfs_completed);
   6238	}
   6239ret:
   6240	return retn;
   6241}
   6242
   6243static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
   6244					  int *skipped)
   6245{
   6246	struct r5conf *conf = mddev->private;
   6247	struct stripe_head *sh;
   6248	sector_t max_sector = mddev->dev_sectors;
   6249	sector_t sync_blocks;
   6250	int still_degraded = 0;
   6251	int i;
   6252
   6253	if (sector_nr >= max_sector) {
   6254		/* just being told to finish up .. nothing much to do */
   6255
   6256		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
   6257			end_reshape(conf);
   6258			return 0;
   6259		}
   6260
   6261		if (mddev->curr_resync < max_sector) /* aborted */
   6262			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
   6263					   &sync_blocks, 1);
   6264		else /* completed sync */
   6265			conf->fullsync = 0;
   6266		md_bitmap_close_sync(mddev->bitmap);
   6267
   6268		return 0;
   6269	}
   6270
   6271	/* Allow raid5_quiesce to complete */
   6272	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
   6273
   6274	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
   6275		return reshape_request(mddev, sector_nr, skipped);
   6276
   6277	/* No need to check resync_max as we never do more than one
   6278	 * stripe, and as resync_max will always be on a chunk boundary,
   6279	 * if the check in md_do_sync didn't fire, there is no chance
   6280	 * of overstepping resync_max here
   6281	 */
   6282
   6283	/* if there is too many failed drives and we are trying
   6284	 * to resync, then assert that we are finished, because there is
   6285	 * nothing we can do.
   6286	 */
   6287	if (mddev->degraded >= conf->max_degraded &&
   6288	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
   6289		sector_t rv = mddev->dev_sectors - sector_nr;
   6290		*skipped = 1;
   6291		return rv;
   6292	}
   6293	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
   6294	    !conf->fullsync &&
   6295	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
   6296	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
   6297		/* we can skip this block, and probably more */
   6298		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
   6299		*skipped = 1;
   6300		/* keep things rounded to whole stripes */
   6301		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
   6302	}
   6303
   6304	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
   6305
   6306	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
   6307	if (sh == NULL) {
   6308		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
   6309		/* make sure we don't swamp the stripe cache if someone else
   6310		 * is trying to get access
   6311		 */
   6312		schedule_timeout_uninterruptible(1);
   6313	}
   6314	/* Need to check if array will still be degraded after recovery/resync
   6315	 * Note in case of > 1 drive failures it's possible we're rebuilding
   6316	 * one drive while leaving another faulty drive in array.
   6317	 */
   6318	rcu_read_lock();
   6319	for (i = 0; i < conf->raid_disks; i++) {
   6320		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
   6321
   6322		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
   6323			still_degraded = 1;
   6324	}
   6325	rcu_read_unlock();
   6326
   6327	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
   6328
   6329	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
   6330	set_bit(STRIPE_HANDLE, &sh->state);
   6331
   6332	raid5_release_stripe(sh);
   6333
   6334	return RAID5_STRIPE_SECTORS(conf);
   6335}
   6336
   6337static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
   6338			       unsigned int offset)
   6339{
   6340	/* We may not be able to submit a whole bio at once as there
   6341	 * may not be enough stripe_heads available.
   6342	 * We cannot pre-allocate enough stripe_heads as we may need
   6343	 * more than exist in the cache (if we allow ever large chunks).
   6344	 * So we do one stripe head at a time and record in
   6345	 * ->bi_hw_segments how many have been done.
   6346	 *
   6347	 * We *know* that this entire raid_bio is in one chunk, so
   6348	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
   6349	 */
   6350	struct stripe_head *sh;
   6351	int dd_idx;
   6352	sector_t sector, logical_sector, last_sector;
   6353	int scnt = 0;
   6354	int handled = 0;
   6355
   6356	logical_sector = raid_bio->bi_iter.bi_sector &
   6357		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
   6358	sector = raid5_compute_sector(conf, logical_sector,
   6359				      0, &dd_idx, NULL);
   6360	last_sector = bio_end_sector(raid_bio);
   6361
   6362	for (; logical_sector < last_sector;
   6363	     logical_sector += RAID5_STRIPE_SECTORS(conf),
   6364		     sector += RAID5_STRIPE_SECTORS(conf),
   6365		     scnt++) {
   6366
   6367		if (scnt < offset)
   6368			/* already done this stripe */
   6369			continue;
   6370
   6371		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
   6372
   6373		if (!sh) {
   6374			/* failed to get a stripe - must wait */
   6375			conf->retry_read_aligned = raid_bio;
   6376			conf->retry_read_offset = scnt;
   6377			return handled;
   6378		}
   6379
   6380		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
   6381			raid5_release_stripe(sh);
   6382			conf->retry_read_aligned = raid_bio;
   6383			conf->retry_read_offset = scnt;
   6384			return handled;
   6385		}
   6386
   6387		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
   6388		handle_stripe(sh);
   6389		raid5_release_stripe(sh);
   6390		handled++;
   6391	}
   6392
   6393	bio_endio(raid_bio);
   6394
   6395	if (atomic_dec_and_test(&conf->active_aligned_reads))
   6396		wake_up(&conf->wait_for_quiescent);
   6397	return handled;
   6398}
   6399
   6400static int handle_active_stripes(struct r5conf *conf, int group,
   6401				 struct r5worker *worker,
   6402				 struct list_head *temp_inactive_list)
   6403		__must_hold(&conf->device_lock)
   6404{
   6405	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
   6406	int i, batch_size = 0, hash;
   6407	bool release_inactive = false;
   6408
   6409	while (batch_size < MAX_STRIPE_BATCH &&
   6410			(sh = __get_priority_stripe(conf, group)) != NULL)
   6411		batch[batch_size++] = sh;
   6412
   6413	if (batch_size == 0) {
   6414		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
   6415			if (!list_empty(temp_inactive_list + i))
   6416				break;
   6417		if (i == NR_STRIPE_HASH_LOCKS) {
   6418			spin_unlock_irq(&conf->device_lock);
   6419			log_flush_stripe_to_raid(conf);
   6420			spin_lock_irq(&conf->device_lock);
   6421			return batch_size;
   6422		}
   6423		release_inactive = true;
   6424	}
   6425	spin_unlock_irq(&conf->device_lock);
   6426
   6427	release_inactive_stripe_list(conf, temp_inactive_list,
   6428				     NR_STRIPE_HASH_LOCKS);
   6429
   6430	r5l_flush_stripe_to_raid(conf->log);
   6431	if (release_inactive) {
   6432		spin_lock_irq(&conf->device_lock);
   6433		return 0;
   6434	}
   6435
   6436	for (i = 0; i < batch_size; i++)
   6437		handle_stripe(batch[i]);
   6438	log_write_stripe_run(conf);
   6439
   6440	cond_resched();
   6441
   6442	spin_lock_irq(&conf->device_lock);
   6443	for (i = 0; i < batch_size; i++) {
   6444		hash = batch[i]->hash_lock_index;
   6445		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
   6446	}
   6447	return batch_size;
   6448}
   6449
   6450static void raid5_do_work(struct work_struct *work)
   6451{
   6452	struct r5worker *worker = container_of(work, struct r5worker, work);
   6453	struct r5worker_group *group = worker->group;
   6454	struct r5conf *conf = group->conf;
   6455	struct mddev *mddev = conf->mddev;
   6456	int group_id = group - conf->worker_groups;
   6457	int handled;
   6458	struct blk_plug plug;
   6459
   6460	pr_debug("+++ raid5worker active\n");
   6461
   6462	blk_start_plug(&plug);
   6463	handled = 0;
   6464	spin_lock_irq(&conf->device_lock);
   6465	while (1) {
   6466		int batch_size, released;
   6467
   6468		released = release_stripe_list(conf, worker->temp_inactive_list);
   6469
   6470		batch_size = handle_active_stripes(conf, group_id, worker,
   6471						   worker->temp_inactive_list);
   6472		worker->working = false;
   6473		if (!batch_size && !released)
   6474			break;
   6475		handled += batch_size;
   6476		wait_event_lock_irq(mddev->sb_wait,
   6477			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
   6478			conf->device_lock);
   6479	}
   6480	pr_debug("%d stripes handled\n", handled);
   6481
   6482	spin_unlock_irq(&conf->device_lock);
   6483
   6484	flush_deferred_bios(conf);
   6485
   6486	r5l_flush_stripe_to_raid(conf->log);
   6487
   6488	async_tx_issue_pending_all();
   6489	blk_finish_plug(&plug);
   6490
   6491	pr_debug("--- raid5worker inactive\n");
   6492}
   6493
   6494/*
   6495 * This is our raid5 kernel thread.
   6496 *
   6497 * We scan the hash table for stripes which can be handled now.
   6498 * During the scan, completed stripes are saved for us by the interrupt
   6499 * handler, so that they will not have to wait for our next wakeup.
   6500 */
   6501static void raid5d(struct md_thread *thread)
   6502{
   6503	struct mddev *mddev = thread->mddev;
   6504	struct r5conf *conf = mddev->private;
   6505	int handled;
   6506	struct blk_plug plug;
   6507
   6508	pr_debug("+++ raid5d active\n");
   6509
   6510	md_check_recovery(mddev);
   6511
   6512	blk_start_plug(&plug);
   6513	handled = 0;
   6514	spin_lock_irq(&conf->device_lock);
   6515	while (1) {
   6516		struct bio *bio;
   6517		int batch_size, released;
   6518		unsigned int offset;
   6519
   6520		released = release_stripe_list(conf, conf->temp_inactive_list);
   6521		if (released)
   6522			clear_bit(R5_DID_ALLOC, &conf->cache_state);
   6523
   6524		if (
   6525		    !list_empty(&conf->bitmap_list)) {
   6526			/* Now is a good time to flush some bitmap updates */
   6527			conf->seq_flush++;
   6528			spin_unlock_irq(&conf->device_lock);
   6529			md_bitmap_unplug(mddev->bitmap);
   6530			spin_lock_irq(&conf->device_lock);
   6531			conf->seq_write = conf->seq_flush;
   6532			activate_bit_delay(conf, conf->temp_inactive_list);
   6533		}
   6534		raid5_activate_delayed(conf);
   6535
   6536		while ((bio = remove_bio_from_retry(conf, &offset))) {
   6537			int ok;
   6538			spin_unlock_irq(&conf->device_lock);
   6539			ok = retry_aligned_read(conf, bio, offset);
   6540			spin_lock_irq(&conf->device_lock);
   6541			if (!ok)
   6542				break;
   6543			handled++;
   6544		}
   6545
   6546		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
   6547						   conf->temp_inactive_list);
   6548		if (!batch_size && !released)
   6549			break;
   6550		handled += batch_size;
   6551
   6552		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
   6553			spin_unlock_irq(&conf->device_lock);
   6554			md_check_recovery(mddev);
   6555			spin_lock_irq(&conf->device_lock);
   6556		}
   6557	}
   6558	pr_debug("%d stripes handled\n", handled);
   6559
   6560	spin_unlock_irq(&conf->device_lock);
   6561	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
   6562	    mutex_trylock(&conf->cache_size_mutex)) {
   6563		grow_one_stripe(conf, __GFP_NOWARN);
   6564		/* Set flag even if allocation failed.  This helps
   6565		 * slow down allocation requests when mem is short
   6566		 */
   6567		set_bit(R5_DID_ALLOC, &conf->cache_state);
   6568		mutex_unlock(&conf->cache_size_mutex);
   6569	}
   6570
   6571	flush_deferred_bios(conf);
   6572
   6573	r5l_flush_stripe_to_raid(conf->log);
   6574
   6575	async_tx_issue_pending_all();
   6576	blk_finish_plug(&plug);
   6577
   6578	pr_debug("--- raid5d inactive\n");
   6579}
   6580
   6581static ssize_t
   6582raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
   6583{
   6584	struct r5conf *conf;
   6585	int ret = 0;
   6586	spin_lock(&mddev->lock);
   6587	conf = mddev->private;
   6588	if (conf)
   6589		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
   6590	spin_unlock(&mddev->lock);
   6591	return ret;
   6592}
   6593
   6594int
   6595raid5_set_cache_size(struct mddev *mddev, int size)
   6596{
   6597	int result = 0;
   6598	struct r5conf *conf = mddev->private;
   6599
   6600	if (size <= 16 || size > 32768)
   6601		return -EINVAL;
   6602
   6603	conf->min_nr_stripes = size;
   6604	mutex_lock(&conf->cache_size_mutex);
   6605	while (size < conf->max_nr_stripes &&
   6606	       drop_one_stripe(conf))
   6607		;
   6608	mutex_unlock(&conf->cache_size_mutex);
   6609
   6610	md_allow_write(mddev);
   6611
   6612	mutex_lock(&conf->cache_size_mutex);
   6613	while (size > conf->max_nr_stripes)
   6614		if (!grow_one_stripe(conf, GFP_KERNEL)) {
   6615			conf->min_nr_stripes = conf->max_nr_stripes;
   6616			result = -ENOMEM;
   6617			break;
   6618		}
   6619	mutex_unlock(&conf->cache_size_mutex);
   6620
   6621	return result;
   6622}
   6623EXPORT_SYMBOL(raid5_set_cache_size);
   6624
   6625static ssize_t
   6626raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
   6627{
   6628	struct r5conf *conf;
   6629	unsigned long new;
   6630	int err;
   6631
   6632	if (len >= PAGE_SIZE)
   6633		return -EINVAL;
   6634	if (kstrtoul(page, 10, &new))
   6635		return -EINVAL;
   6636	err = mddev_lock(mddev);
   6637	if (err)
   6638		return err;
   6639	conf = mddev->private;
   6640	if (!conf)
   6641		err = -ENODEV;
   6642	else
   6643		err = raid5_set_cache_size(mddev, new);
   6644	mddev_unlock(mddev);
   6645
   6646	return err ?: len;
   6647}
   6648
   6649static struct md_sysfs_entry
   6650raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
   6651				raid5_show_stripe_cache_size,
   6652				raid5_store_stripe_cache_size);
   6653
   6654static ssize_t
   6655raid5_show_rmw_level(struct mddev  *mddev, char *page)
   6656{
   6657	struct r5conf *conf = mddev->private;
   6658	if (conf)
   6659		return sprintf(page, "%d\n", conf->rmw_level);
   6660	else
   6661		return 0;
   6662}
   6663
   6664static ssize_t
   6665raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
   6666{
   6667	struct r5conf *conf = mddev->private;
   6668	unsigned long new;
   6669
   6670	if (!conf)
   6671		return -ENODEV;
   6672
   6673	if (len >= PAGE_SIZE)
   6674		return -EINVAL;
   6675
   6676	if (kstrtoul(page, 10, &new))
   6677		return -EINVAL;
   6678
   6679	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
   6680		return -EINVAL;
   6681
   6682	if (new != PARITY_DISABLE_RMW &&
   6683	    new != PARITY_ENABLE_RMW &&
   6684	    new != PARITY_PREFER_RMW)
   6685		return -EINVAL;
   6686
   6687	conf->rmw_level = new;
   6688	return len;
   6689}
   6690
   6691static struct md_sysfs_entry
   6692raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
   6693			 raid5_show_rmw_level,
   6694			 raid5_store_rmw_level);
   6695
   6696static ssize_t
   6697raid5_show_stripe_size(struct mddev  *mddev, char *page)
   6698{
   6699	struct r5conf *conf;
   6700	int ret = 0;
   6701
   6702	spin_lock(&mddev->lock);
   6703	conf = mddev->private;
   6704	if (conf)
   6705		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
   6706	spin_unlock(&mddev->lock);
   6707	return ret;
   6708}
   6709
   6710#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
   6711static ssize_t
   6712raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
   6713{
   6714	struct r5conf *conf;
   6715	unsigned long new;
   6716	int err;
   6717	int size;
   6718
   6719	if (len >= PAGE_SIZE)
   6720		return -EINVAL;
   6721	if (kstrtoul(page, 10, &new))
   6722		return -EINVAL;
   6723
   6724	/*
   6725	 * The value should not be bigger than PAGE_SIZE. It requires to
   6726	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
   6727	 * of two.
   6728	 */
   6729	if (new % DEFAULT_STRIPE_SIZE != 0 ||
   6730			new > PAGE_SIZE || new == 0 ||
   6731			new != roundup_pow_of_two(new))
   6732		return -EINVAL;
   6733
   6734	err = mddev_lock(mddev);
   6735	if (err)
   6736		return err;
   6737
   6738	conf = mddev->private;
   6739	if (!conf) {
   6740		err = -ENODEV;
   6741		goto out_unlock;
   6742	}
   6743
   6744	if (new == conf->stripe_size)
   6745		goto out_unlock;
   6746
   6747	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
   6748			conf->stripe_size, new);
   6749
   6750	if (mddev->sync_thread ||
   6751		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
   6752		mddev->reshape_position != MaxSector ||
   6753		mddev->sysfs_active) {
   6754		err = -EBUSY;
   6755		goto out_unlock;
   6756	}
   6757
   6758	mddev_suspend(mddev);
   6759	mutex_lock(&conf->cache_size_mutex);
   6760	size = conf->max_nr_stripes;
   6761
   6762	shrink_stripes(conf);
   6763
   6764	conf->stripe_size = new;
   6765	conf->stripe_shift = ilog2(new) - 9;
   6766	conf->stripe_sectors = new >> 9;
   6767	if (grow_stripes(conf, size)) {
   6768		pr_warn("md/raid:%s: couldn't allocate buffers\n",
   6769				mdname(mddev));
   6770		err = -ENOMEM;
   6771	}
   6772	mutex_unlock(&conf->cache_size_mutex);
   6773	mddev_resume(mddev);
   6774
   6775out_unlock:
   6776	mddev_unlock(mddev);
   6777	return err ?: len;
   6778}
   6779
   6780static struct md_sysfs_entry
   6781raid5_stripe_size = __ATTR(stripe_size, 0644,
   6782			 raid5_show_stripe_size,
   6783			 raid5_store_stripe_size);
   6784#else
   6785static struct md_sysfs_entry
   6786raid5_stripe_size = __ATTR(stripe_size, 0444,
   6787			 raid5_show_stripe_size,
   6788			 NULL);
   6789#endif
   6790
   6791static ssize_t
   6792raid5_show_preread_threshold(struct mddev *mddev, char *page)
   6793{
   6794	struct r5conf *conf;
   6795	int ret = 0;
   6796	spin_lock(&mddev->lock);
   6797	conf = mddev->private;
   6798	if (conf)
   6799		ret = sprintf(page, "%d\n", conf->bypass_threshold);
   6800	spin_unlock(&mddev->lock);
   6801	return ret;
   6802}
   6803
   6804static ssize_t
   6805raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
   6806{
   6807	struct r5conf *conf;
   6808	unsigned long new;
   6809	int err;
   6810
   6811	if (len >= PAGE_SIZE)
   6812		return -EINVAL;
   6813	if (kstrtoul(page, 10, &new))
   6814		return -EINVAL;
   6815
   6816	err = mddev_lock(mddev);
   6817	if (err)
   6818		return err;
   6819	conf = mddev->private;
   6820	if (!conf)
   6821		err = -ENODEV;
   6822	else if (new > conf->min_nr_stripes)
   6823		err = -EINVAL;
   6824	else
   6825		conf->bypass_threshold = new;
   6826	mddev_unlock(mddev);
   6827	return err ?: len;
   6828}
   6829
   6830static struct md_sysfs_entry
   6831raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
   6832					S_IRUGO | S_IWUSR,
   6833					raid5_show_preread_threshold,
   6834					raid5_store_preread_threshold);
   6835
   6836static ssize_t
   6837raid5_show_skip_copy(struct mddev *mddev, char *page)
   6838{
   6839	struct r5conf *conf;
   6840	int ret = 0;
   6841	spin_lock(&mddev->lock);
   6842	conf = mddev->private;
   6843	if (conf)
   6844		ret = sprintf(page, "%d\n", conf->skip_copy);
   6845	spin_unlock(&mddev->lock);
   6846	return ret;
   6847}
   6848
   6849static ssize_t
   6850raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
   6851{
   6852	struct r5conf *conf;
   6853	unsigned long new;
   6854	int err;
   6855
   6856	if (len >= PAGE_SIZE)
   6857		return -EINVAL;
   6858	if (kstrtoul(page, 10, &new))
   6859		return -EINVAL;
   6860	new = !!new;
   6861
   6862	err = mddev_lock(mddev);
   6863	if (err)
   6864		return err;
   6865	conf = mddev->private;
   6866	if (!conf)
   6867		err = -ENODEV;
   6868	else if (new != conf->skip_copy) {
   6869		struct request_queue *q = mddev->queue;
   6870
   6871		mddev_suspend(mddev);
   6872		conf->skip_copy = new;
   6873		if (new)
   6874			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
   6875		else
   6876			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
   6877		mddev_resume(mddev);
   6878	}
   6879	mddev_unlock(mddev);
   6880	return err ?: len;
   6881}
   6882
   6883static struct md_sysfs_entry
   6884raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
   6885					raid5_show_skip_copy,
   6886					raid5_store_skip_copy);
   6887
   6888static ssize_t
   6889stripe_cache_active_show(struct mddev *mddev, char *page)
   6890{
   6891	struct r5conf *conf = mddev->private;
   6892	if (conf)
   6893		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
   6894	else
   6895		return 0;
   6896}
   6897
   6898static struct md_sysfs_entry
   6899raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
   6900
   6901static ssize_t
   6902raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
   6903{
   6904	struct r5conf *conf;
   6905	int ret = 0;
   6906	spin_lock(&mddev->lock);
   6907	conf = mddev->private;
   6908	if (conf)
   6909		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
   6910	spin_unlock(&mddev->lock);
   6911	return ret;
   6912}
   6913
   6914static int alloc_thread_groups(struct r5conf *conf, int cnt,
   6915			       int *group_cnt,
   6916			       struct r5worker_group **worker_groups);
   6917static ssize_t
   6918raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
   6919{
   6920	struct r5conf *conf;
   6921	unsigned int new;
   6922	int err;
   6923	struct r5worker_group *new_groups, *old_groups;
   6924	int group_cnt;
   6925
   6926	if (len >= PAGE_SIZE)
   6927		return -EINVAL;
   6928	if (kstrtouint(page, 10, &new))
   6929		return -EINVAL;
   6930	/* 8192 should be big enough */
   6931	if (new > 8192)
   6932		return -EINVAL;
   6933
   6934	err = mddev_lock(mddev);
   6935	if (err)
   6936		return err;
   6937	conf = mddev->private;
   6938	if (!conf)
   6939		err = -ENODEV;
   6940	else if (new != conf->worker_cnt_per_group) {
   6941		mddev_suspend(mddev);
   6942
   6943		old_groups = conf->worker_groups;
   6944		if (old_groups)
   6945			flush_workqueue(raid5_wq);
   6946
   6947		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
   6948		if (!err) {
   6949			spin_lock_irq(&conf->device_lock);
   6950			conf->group_cnt = group_cnt;
   6951			conf->worker_cnt_per_group = new;
   6952			conf->worker_groups = new_groups;
   6953			spin_unlock_irq(&conf->device_lock);
   6954
   6955			if (old_groups)
   6956				kfree(old_groups[0].workers);
   6957			kfree(old_groups);
   6958		}
   6959		mddev_resume(mddev);
   6960	}
   6961	mddev_unlock(mddev);
   6962
   6963	return err ?: len;
   6964}
   6965
   6966static struct md_sysfs_entry
   6967raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
   6968				raid5_show_group_thread_cnt,
   6969				raid5_store_group_thread_cnt);
   6970
   6971static struct attribute *raid5_attrs[] =  {
   6972	&raid5_stripecache_size.attr,
   6973	&raid5_stripecache_active.attr,
   6974	&raid5_preread_bypass_threshold.attr,
   6975	&raid5_group_thread_cnt.attr,
   6976	&raid5_skip_copy.attr,
   6977	&raid5_rmw_level.attr,
   6978	&raid5_stripe_size.attr,
   6979	&r5c_journal_mode.attr,
   6980	&ppl_write_hint.attr,
   6981	NULL,
   6982};
   6983static const struct attribute_group raid5_attrs_group = {
   6984	.name = NULL,
   6985	.attrs = raid5_attrs,
   6986};
   6987
   6988static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
   6989			       struct r5worker_group **worker_groups)
   6990{
   6991	int i, j, k;
   6992	ssize_t size;
   6993	struct r5worker *workers;
   6994
   6995	if (cnt == 0) {
   6996		*group_cnt = 0;
   6997		*worker_groups = NULL;
   6998		return 0;
   6999	}
   7000	*group_cnt = num_possible_nodes();
   7001	size = sizeof(struct r5worker) * cnt;
   7002	workers = kcalloc(size, *group_cnt, GFP_NOIO);
   7003	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
   7004				 GFP_NOIO);
   7005	if (!*worker_groups || !workers) {
   7006		kfree(workers);
   7007		kfree(*worker_groups);
   7008		return -ENOMEM;
   7009	}
   7010
   7011	for (i = 0; i < *group_cnt; i++) {
   7012		struct r5worker_group *group;
   7013
   7014		group = &(*worker_groups)[i];
   7015		INIT_LIST_HEAD(&group->handle_list);
   7016		INIT_LIST_HEAD(&group->loprio_list);
   7017		group->conf = conf;
   7018		group->workers = workers + i * cnt;
   7019
   7020		for (j = 0; j < cnt; j++) {
   7021			struct r5worker *worker = group->workers + j;
   7022			worker->group = group;
   7023			INIT_WORK(&worker->work, raid5_do_work);
   7024
   7025			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
   7026				INIT_LIST_HEAD(worker->temp_inactive_list + k);
   7027		}
   7028	}
   7029
   7030	return 0;
   7031}
   7032
   7033static void free_thread_groups(struct r5conf *conf)
   7034{
   7035	if (conf->worker_groups)
   7036		kfree(conf->worker_groups[0].workers);
   7037	kfree(conf->worker_groups);
   7038	conf->worker_groups = NULL;
   7039}
   7040
   7041static sector_t
   7042raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
   7043{
   7044	struct r5conf *conf = mddev->private;
   7045
   7046	if (!sectors)
   7047		sectors = mddev->dev_sectors;
   7048	if (!raid_disks)
   7049		/* size is defined by the smallest of previous and new size */
   7050		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
   7051
   7052	sectors &= ~((sector_t)conf->chunk_sectors - 1);
   7053	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
   7054	return sectors * (raid_disks - conf->max_degraded);
   7055}
   7056
   7057static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
   7058{
   7059	safe_put_page(percpu->spare_page);
   7060	percpu->spare_page = NULL;
   7061	kvfree(percpu->scribble);
   7062	percpu->scribble = NULL;
   7063}
   7064
   7065static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
   7066{
   7067	if (conf->level == 6 && !percpu->spare_page) {
   7068		percpu->spare_page = alloc_page(GFP_KERNEL);
   7069		if (!percpu->spare_page)
   7070			return -ENOMEM;
   7071	}
   7072
   7073	if (scribble_alloc(percpu,
   7074			   max(conf->raid_disks,
   7075			       conf->previous_raid_disks),
   7076			   max(conf->chunk_sectors,
   7077			       conf->prev_chunk_sectors)
   7078			   / RAID5_STRIPE_SECTORS(conf))) {
   7079		free_scratch_buffer(conf, percpu);
   7080		return -ENOMEM;
   7081	}
   7082
   7083	local_lock_init(&percpu->lock);
   7084	return 0;
   7085}
   7086
   7087static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
   7088{
   7089	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
   7090
   7091	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
   7092	return 0;
   7093}
   7094
   7095static void raid5_free_percpu(struct r5conf *conf)
   7096{
   7097	if (!conf->percpu)
   7098		return;
   7099
   7100	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
   7101	free_percpu(conf->percpu);
   7102}
   7103
   7104static void free_conf(struct r5conf *conf)
   7105{
   7106	int i;
   7107
   7108	log_exit(conf);
   7109
   7110	unregister_shrinker(&conf->shrinker);
   7111	free_thread_groups(conf);
   7112	shrink_stripes(conf);
   7113	raid5_free_percpu(conf);
   7114	for (i = 0; i < conf->pool_size; i++)
   7115		if (conf->disks[i].extra_page)
   7116			put_page(conf->disks[i].extra_page);
   7117	kfree(conf->disks);
   7118	bioset_exit(&conf->bio_split);
   7119	kfree(conf->stripe_hashtbl);
   7120	kfree(conf->pending_data);
   7121	kfree(conf);
   7122}
   7123
   7124static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
   7125{
   7126	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
   7127	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
   7128
   7129	if (alloc_scratch_buffer(conf, percpu)) {
   7130		pr_warn("%s: failed memory allocation for cpu%u\n",
   7131			__func__, cpu);
   7132		return -ENOMEM;
   7133	}
   7134	return 0;
   7135}
   7136
   7137static int raid5_alloc_percpu(struct r5conf *conf)
   7138{
   7139	int err = 0;
   7140
   7141	conf->percpu = alloc_percpu(struct raid5_percpu);
   7142	if (!conf->percpu)
   7143		return -ENOMEM;
   7144
   7145	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
   7146	if (!err) {
   7147		conf->scribble_disks = max(conf->raid_disks,
   7148			conf->previous_raid_disks);
   7149		conf->scribble_sectors = max(conf->chunk_sectors,
   7150			conf->prev_chunk_sectors);
   7151	}
   7152	return err;
   7153}
   7154
   7155static unsigned long raid5_cache_scan(struct shrinker *shrink,
   7156				      struct shrink_control *sc)
   7157{
   7158	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
   7159	unsigned long ret = SHRINK_STOP;
   7160
   7161	if (mutex_trylock(&conf->cache_size_mutex)) {
   7162		ret= 0;
   7163		while (ret < sc->nr_to_scan &&
   7164		       conf->max_nr_stripes > conf->min_nr_stripes) {
   7165			if (drop_one_stripe(conf) == 0) {
   7166				ret = SHRINK_STOP;
   7167				break;
   7168			}
   7169			ret++;
   7170		}
   7171		mutex_unlock(&conf->cache_size_mutex);
   7172	}
   7173	return ret;
   7174}
   7175
   7176static unsigned long raid5_cache_count(struct shrinker *shrink,
   7177				       struct shrink_control *sc)
   7178{
   7179	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
   7180
   7181	if (conf->max_nr_stripes < conf->min_nr_stripes)
   7182		/* unlikely, but not impossible */
   7183		return 0;
   7184	return conf->max_nr_stripes - conf->min_nr_stripes;
   7185}
   7186
   7187static struct r5conf *setup_conf(struct mddev *mddev)
   7188{
   7189	struct r5conf *conf;
   7190	int raid_disk, memory, max_disks;
   7191	struct md_rdev *rdev;
   7192	struct disk_info *disk;
   7193	char pers_name[6];
   7194	int i;
   7195	int group_cnt;
   7196	struct r5worker_group *new_group;
   7197	int ret = -ENOMEM;
   7198
   7199	if (mddev->new_level != 5
   7200	    && mddev->new_level != 4
   7201	    && mddev->new_level != 6) {
   7202		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
   7203			mdname(mddev), mddev->new_level);
   7204		return ERR_PTR(-EIO);
   7205	}
   7206	if ((mddev->new_level == 5
   7207	     && !algorithm_valid_raid5(mddev->new_layout)) ||
   7208	    (mddev->new_level == 6
   7209	     && !algorithm_valid_raid6(mddev->new_layout))) {
   7210		pr_warn("md/raid:%s: layout %d not supported\n",
   7211			mdname(mddev), mddev->new_layout);
   7212		return ERR_PTR(-EIO);
   7213	}
   7214	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
   7215		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
   7216			mdname(mddev), mddev->raid_disks);
   7217		return ERR_PTR(-EINVAL);
   7218	}
   7219
   7220	if (!mddev->new_chunk_sectors ||
   7221	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
   7222	    !is_power_of_2(mddev->new_chunk_sectors)) {
   7223		pr_warn("md/raid:%s: invalid chunk size %d\n",
   7224			mdname(mddev), mddev->new_chunk_sectors << 9);
   7225		return ERR_PTR(-EINVAL);
   7226	}
   7227
   7228	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
   7229	if (conf == NULL)
   7230		goto abort;
   7231
   7232#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
   7233	conf->stripe_size = DEFAULT_STRIPE_SIZE;
   7234	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
   7235	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
   7236#endif
   7237	INIT_LIST_HEAD(&conf->free_list);
   7238	INIT_LIST_HEAD(&conf->pending_list);
   7239	conf->pending_data = kcalloc(PENDING_IO_MAX,
   7240				     sizeof(struct r5pending_data),
   7241				     GFP_KERNEL);
   7242	if (!conf->pending_data)
   7243		goto abort;
   7244	for (i = 0; i < PENDING_IO_MAX; i++)
   7245		list_add(&conf->pending_data[i].sibling, &conf->free_list);
   7246	/* Don't enable multi-threading by default*/
   7247	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
   7248		conf->group_cnt = group_cnt;
   7249		conf->worker_cnt_per_group = 0;
   7250		conf->worker_groups = new_group;
   7251	} else
   7252		goto abort;
   7253	spin_lock_init(&conf->device_lock);
   7254	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
   7255	mutex_init(&conf->cache_size_mutex);
   7256
   7257	init_waitqueue_head(&conf->wait_for_quiescent);
   7258	init_waitqueue_head(&conf->wait_for_stripe);
   7259	init_waitqueue_head(&conf->wait_for_overlap);
   7260	INIT_LIST_HEAD(&conf->handle_list);
   7261	INIT_LIST_HEAD(&conf->loprio_list);
   7262	INIT_LIST_HEAD(&conf->hold_list);
   7263	INIT_LIST_HEAD(&conf->delayed_list);
   7264	INIT_LIST_HEAD(&conf->bitmap_list);
   7265	init_llist_head(&conf->released_stripes);
   7266	atomic_set(&conf->active_stripes, 0);
   7267	atomic_set(&conf->preread_active_stripes, 0);
   7268	atomic_set(&conf->active_aligned_reads, 0);
   7269	spin_lock_init(&conf->pending_bios_lock);
   7270	conf->batch_bio_dispatch = true;
   7271	rdev_for_each(rdev, mddev) {
   7272		if (test_bit(Journal, &rdev->flags))
   7273			continue;
   7274		if (bdev_nonrot(rdev->bdev)) {
   7275			conf->batch_bio_dispatch = false;
   7276			break;
   7277		}
   7278	}
   7279
   7280	conf->bypass_threshold = BYPASS_THRESHOLD;
   7281	conf->recovery_disabled = mddev->recovery_disabled - 1;
   7282
   7283	conf->raid_disks = mddev->raid_disks;
   7284	if (mddev->reshape_position == MaxSector)
   7285		conf->previous_raid_disks = mddev->raid_disks;
   7286	else
   7287		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
   7288	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
   7289
   7290	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
   7291			      GFP_KERNEL);
   7292
   7293	if (!conf->disks)
   7294		goto abort;
   7295
   7296	for (i = 0; i < max_disks; i++) {
   7297		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
   7298		if (!conf->disks[i].extra_page)
   7299			goto abort;
   7300	}
   7301
   7302	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
   7303	if (ret)
   7304		goto abort;
   7305	conf->mddev = mddev;
   7306
   7307	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
   7308		goto abort;
   7309
   7310	/* We init hash_locks[0] separately to that it can be used
   7311	 * as the reference lock in the spin_lock_nest_lock() call
   7312	 * in lock_all_device_hash_locks_irq in order to convince
   7313	 * lockdep that we know what we are doing.
   7314	 */
   7315	spin_lock_init(conf->hash_locks);
   7316	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
   7317		spin_lock_init(conf->hash_locks + i);
   7318
   7319	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
   7320		INIT_LIST_HEAD(conf->inactive_list + i);
   7321
   7322	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
   7323		INIT_LIST_HEAD(conf->temp_inactive_list + i);
   7324
   7325	atomic_set(&conf->r5c_cached_full_stripes, 0);
   7326	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
   7327	atomic_set(&conf->r5c_cached_partial_stripes, 0);
   7328	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
   7329	atomic_set(&conf->r5c_flushing_full_stripes, 0);
   7330	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
   7331
   7332	conf->level = mddev->new_level;
   7333	conf->chunk_sectors = mddev->new_chunk_sectors;
   7334	ret = raid5_alloc_percpu(conf);
   7335	if (ret)
   7336		goto abort;
   7337
   7338	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
   7339
   7340	ret = -EIO;
   7341	rdev_for_each(rdev, mddev) {
   7342		raid_disk = rdev->raid_disk;
   7343		if (raid_disk >= max_disks
   7344		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
   7345			continue;
   7346		disk = conf->disks + raid_disk;
   7347
   7348		if (test_bit(Replacement, &rdev->flags)) {
   7349			if (disk->replacement)
   7350				goto abort;
   7351			RCU_INIT_POINTER(disk->replacement, rdev);
   7352		} else {
   7353			if (disk->rdev)
   7354				goto abort;
   7355			RCU_INIT_POINTER(disk->rdev, rdev);
   7356		}
   7357
   7358		if (test_bit(In_sync, &rdev->flags)) {
   7359			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
   7360				mdname(mddev), rdev->bdev, raid_disk);
   7361		} else if (rdev->saved_raid_disk != raid_disk)
   7362			/* Cannot rely on bitmap to complete recovery */
   7363			conf->fullsync = 1;
   7364	}
   7365
   7366	conf->level = mddev->new_level;
   7367	if (conf->level == 6) {
   7368		conf->max_degraded = 2;
   7369		if (raid6_call.xor_syndrome)
   7370			conf->rmw_level = PARITY_ENABLE_RMW;
   7371		else
   7372			conf->rmw_level = PARITY_DISABLE_RMW;
   7373	} else {
   7374		conf->max_degraded = 1;
   7375		conf->rmw_level = PARITY_ENABLE_RMW;
   7376	}
   7377	conf->algorithm = mddev->new_layout;
   7378	conf->reshape_progress = mddev->reshape_position;
   7379	if (conf->reshape_progress != MaxSector) {
   7380		conf->prev_chunk_sectors = mddev->chunk_sectors;
   7381		conf->prev_algo = mddev->layout;
   7382	} else {
   7383		conf->prev_chunk_sectors = conf->chunk_sectors;
   7384		conf->prev_algo = conf->algorithm;
   7385	}
   7386
   7387	conf->min_nr_stripes = NR_STRIPES;
   7388	if (mddev->reshape_position != MaxSector) {
   7389		int stripes = max_t(int,
   7390			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
   7391			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
   7392		conf->min_nr_stripes = max(NR_STRIPES, stripes);
   7393		if (conf->min_nr_stripes != NR_STRIPES)
   7394			pr_info("md/raid:%s: force stripe size %d for reshape\n",
   7395				mdname(mddev), conf->min_nr_stripes);
   7396	}
   7397	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
   7398		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
   7399	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
   7400	if (grow_stripes(conf, conf->min_nr_stripes)) {
   7401		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
   7402			mdname(mddev), memory);
   7403		ret = -ENOMEM;
   7404		goto abort;
   7405	} else
   7406		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
   7407	/*
   7408	 * Losing a stripe head costs more than the time to refill it,
   7409	 * it reduces the queue depth and so can hurt throughput.
   7410	 * So set it rather large, scaled by number of devices.
   7411	 */
   7412	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
   7413	conf->shrinker.scan_objects = raid5_cache_scan;
   7414	conf->shrinker.count_objects = raid5_cache_count;
   7415	conf->shrinker.batch = 128;
   7416	conf->shrinker.flags = 0;
   7417	ret = register_shrinker(&conf->shrinker);
   7418	if (ret) {
   7419		pr_warn("md/raid:%s: couldn't register shrinker.\n",
   7420			mdname(mddev));
   7421		goto abort;
   7422	}
   7423
   7424	sprintf(pers_name, "raid%d", mddev->new_level);
   7425	conf->thread = md_register_thread(raid5d, mddev, pers_name);
   7426	if (!conf->thread) {
   7427		pr_warn("md/raid:%s: couldn't allocate thread.\n",
   7428			mdname(mddev));
   7429		ret = -ENOMEM;
   7430		goto abort;
   7431	}
   7432
   7433	return conf;
   7434
   7435 abort:
   7436	if (conf)
   7437		free_conf(conf);
   7438	return ERR_PTR(ret);
   7439}
   7440
   7441static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
   7442{
   7443	switch (algo) {
   7444	case ALGORITHM_PARITY_0:
   7445		if (raid_disk < max_degraded)
   7446			return 1;
   7447		break;
   7448	case ALGORITHM_PARITY_N:
   7449		if (raid_disk >= raid_disks - max_degraded)
   7450			return 1;
   7451		break;
   7452	case ALGORITHM_PARITY_0_6:
   7453		if (raid_disk == 0 ||
   7454		    raid_disk == raid_disks - 1)
   7455			return 1;
   7456		break;
   7457	case ALGORITHM_LEFT_ASYMMETRIC_6:
   7458	case ALGORITHM_RIGHT_ASYMMETRIC_6:
   7459	case ALGORITHM_LEFT_SYMMETRIC_6:
   7460	case ALGORITHM_RIGHT_SYMMETRIC_6:
   7461		if (raid_disk == raid_disks - 1)
   7462			return 1;
   7463	}
   7464	return 0;
   7465}
   7466
   7467static void raid5_set_io_opt(struct r5conf *conf)
   7468{
   7469	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
   7470			 (conf->raid_disks - conf->max_degraded));
   7471}
   7472
   7473static int raid5_run(struct mddev *mddev)
   7474{
   7475	struct r5conf *conf;
   7476	int working_disks = 0;
   7477	int dirty_parity_disks = 0;
   7478	struct md_rdev *rdev;
   7479	struct md_rdev *journal_dev = NULL;
   7480	sector_t reshape_offset = 0;
   7481	int i, ret = 0;
   7482	long long min_offset_diff = 0;
   7483	int first = 1;
   7484
   7485	if (acct_bioset_init(mddev)) {
   7486		pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
   7487		return -ENOMEM;
   7488	}
   7489
   7490	if (mddev_init_writes_pending(mddev) < 0) {
   7491		ret = -ENOMEM;
   7492		goto exit_acct_set;
   7493	}
   7494
   7495	if (mddev->recovery_cp != MaxSector)
   7496		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
   7497			  mdname(mddev));
   7498
   7499	rdev_for_each(rdev, mddev) {
   7500		long long diff;
   7501
   7502		if (test_bit(Journal, &rdev->flags)) {
   7503			journal_dev = rdev;
   7504			continue;
   7505		}
   7506		if (rdev->raid_disk < 0)
   7507			continue;
   7508		diff = (rdev->new_data_offset - rdev->data_offset);
   7509		if (first) {
   7510			min_offset_diff = diff;
   7511			first = 0;
   7512		} else if (mddev->reshape_backwards &&
   7513			 diff < min_offset_diff)
   7514			min_offset_diff = diff;
   7515		else if (!mddev->reshape_backwards &&
   7516			 diff > min_offset_diff)
   7517			min_offset_diff = diff;
   7518	}
   7519
   7520	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
   7521	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
   7522		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
   7523			  mdname(mddev));
   7524		ret = -EINVAL;
   7525		goto exit_acct_set;
   7526	}
   7527
   7528	if (mddev->reshape_position != MaxSector) {
   7529		/* Check that we can continue the reshape.
   7530		 * Difficulties arise if the stripe we would write to
   7531		 * next is at or after the stripe we would read from next.
   7532		 * For a reshape that changes the number of devices, this
   7533		 * is only possible for a very short time, and mdadm makes
   7534		 * sure that time appears to have past before assembling
   7535		 * the array.  So we fail if that time hasn't passed.
   7536		 * For a reshape that keeps the number of devices the same
   7537		 * mdadm must be monitoring the reshape can keeping the
   7538		 * critical areas read-only and backed up.  It will start
   7539		 * the array in read-only mode, so we check for that.
   7540		 */
   7541		sector_t here_new, here_old;
   7542		int old_disks;
   7543		int max_degraded = (mddev->level == 6 ? 2 : 1);
   7544		int chunk_sectors;
   7545		int new_data_disks;
   7546
   7547		if (journal_dev) {
   7548			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
   7549				mdname(mddev));
   7550			ret = -EINVAL;
   7551			goto exit_acct_set;
   7552		}
   7553
   7554		if (mddev->new_level != mddev->level) {
   7555			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
   7556				mdname(mddev));
   7557			ret = -EINVAL;
   7558			goto exit_acct_set;
   7559		}
   7560		old_disks = mddev->raid_disks - mddev->delta_disks;
   7561		/* reshape_position must be on a new-stripe boundary, and one
   7562		 * further up in new geometry must map after here in old
   7563		 * geometry.
   7564		 * If the chunk sizes are different, then as we perform reshape
   7565		 * in units of the largest of the two, reshape_position needs
   7566		 * be a multiple of the largest chunk size times new data disks.
   7567		 */
   7568		here_new = mddev->reshape_position;
   7569		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
   7570		new_data_disks = mddev->raid_disks - max_degraded;
   7571		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
   7572			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
   7573				mdname(mddev));
   7574			ret = -EINVAL;
   7575			goto exit_acct_set;
   7576		}
   7577		reshape_offset = here_new * chunk_sectors;
   7578		/* here_new is the stripe we will write to */
   7579		here_old = mddev->reshape_position;
   7580		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
   7581		/* here_old is the first stripe that we might need to read
   7582		 * from */
   7583		if (mddev->delta_disks == 0) {
   7584			/* We cannot be sure it is safe to start an in-place
   7585			 * reshape.  It is only safe if user-space is monitoring
   7586			 * and taking constant backups.
   7587			 * mdadm always starts a situation like this in
   7588			 * readonly mode so it can take control before
   7589			 * allowing any writes.  So just check for that.
   7590			 */
   7591			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
   7592			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
   7593				/* not really in-place - so OK */;
   7594			else if (mddev->ro == 0) {
   7595				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
   7596					mdname(mddev));
   7597				ret = -EINVAL;
   7598				goto exit_acct_set;
   7599			}
   7600		} else if (mddev->reshape_backwards
   7601		    ? (here_new * chunk_sectors + min_offset_diff <=
   7602		       here_old * chunk_sectors)
   7603		    : (here_new * chunk_sectors >=
   7604		       here_old * chunk_sectors + (-min_offset_diff))) {
   7605			/* Reading from the same stripe as writing to - bad */
   7606			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
   7607				mdname(mddev));
   7608			ret = -EINVAL;
   7609			goto exit_acct_set;
   7610		}
   7611		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
   7612		/* OK, we should be able to continue; */
   7613	} else {
   7614		BUG_ON(mddev->level != mddev->new_level);
   7615		BUG_ON(mddev->layout != mddev->new_layout);
   7616		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
   7617		BUG_ON(mddev->delta_disks != 0);
   7618	}
   7619
   7620	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
   7621	    test_bit(MD_HAS_PPL, &mddev->flags)) {
   7622		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
   7623			mdname(mddev));
   7624		clear_bit(MD_HAS_PPL, &mddev->flags);
   7625		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
   7626	}
   7627
   7628	if (mddev->private == NULL)
   7629		conf = setup_conf(mddev);
   7630	else
   7631		conf = mddev->private;
   7632
   7633	if (IS_ERR(conf)) {
   7634		ret = PTR_ERR(conf);
   7635		goto exit_acct_set;
   7636	}
   7637
   7638	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
   7639		if (!journal_dev) {
   7640			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
   7641				mdname(mddev));
   7642			mddev->ro = 1;
   7643			set_disk_ro(mddev->gendisk, 1);
   7644		} else if (mddev->recovery_cp == MaxSector)
   7645			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
   7646	}
   7647
   7648	conf->min_offset_diff = min_offset_diff;
   7649	mddev->thread = conf->thread;
   7650	conf->thread = NULL;
   7651	mddev->private = conf;
   7652
   7653	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
   7654	     i++) {
   7655		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
   7656		if (!rdev && conf->disks[i].replacement) {
   7657			/* The replacement is all we have yet */
   7658			rdev = rdev_mdlock_deref(mddev,
   7659						 conf->disks[i].replacement);
   7660			conf->disks[i].replacement = NULL;
   7661			clear_bit(Replacement, &rdev->flags);
   7662			rcu_assign_pointer(conf->disks[i].rdev, rdev);
   7663		}
   7664		if (!rdev)
   7665			continue;
   7666		if (rcu_access_pointer(conf->disks[i].replacement) &&
   7667		    conf->reshape_progress != MaxSector) {
   7668			/* replacements and reshape simply do not mix. */
   7669			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
   7670			goto abort;
   7671		}
   7672		if (test_bit(In_sync, &rdev->flags)) {
   7673			working_disks++;
   7674			continue;
   7675		}
   7676		/* This disc is not fully in-sync.  However if it
   7677		 * just stored parity (beyond the recovery_offset),
   7678		 * when we don't need to be concerned about the
   7679		 * array being dirty.
   7680		 * When reshape goes 'backwards', we never have
   7681		 * partially completed devices, so we only need
   7682		 * to worry about reshape going forwards.
   7683		 */
   7684		/* Hack because v0.91 doesn't store recovery_offset properly. */
   7685		if (mddev->major_version == 0 &&
   7686		    mddev->minor_version > 90)
   7687			rdev->recovery_offset = reshape_offset;
   7688
   7689		if (rdev->recovery_offset < reshape_offset) {
   7690			/* We need to check old and new layout */
   7691			if (!only_parity(rdev->raid_disk,
   7692					 conf->algorithm,
   7693					 conf->raid_disks,
   7694					 conf->max_degraded))
   7695				continue;
   7696		}
   7697		if (!only_parity(rdev->raid_disk,
   7698				 conf->prev_algo,
   7699				 conf->previous_raid_disks,
   7700				 conf->max_degraded))
   7701			continue;
   7702		dirty_parity_disks++;
   7703	}
   7704
   7705	/*
   7706	 * 0 for a fully functional array, 1 or 2 for a degraded array.
   7707	 */
   7708	mddev->degraded = raid5_calc_degraded(conf);
   7709
   7710	if (has_failed(conf)) {
   7711		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
   7712			mdname(mddev), mddev->degraded, conf->raid_disks);
   7713		goto abort;
   7714	}
   7715
   7716	/* device size must be a multiple of chunk size */
   7717	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
   7718	mddev->resync_max_sectors = mddev->dev_sectors;
   7719
   7720	if (mddev->degraded > dirty_parity_disks &&
   7721	    mddev->recovery_cp != MaxSector) {
   7722		if (test_bit(MD_HAS_PPL, &mddev->flags))
   7723			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
   7724				mdname(mddev));
   7725		else if (mddev->ok_start_degraded)
   7726			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
   7727				mdname(mddev));
   7728		else {
   7729			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
   7730				mdname(mddev));
   7731			goto abort;
   7732		}
   7733	}
   7734
   7735	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
   7736		mdname(mddev), conf->level,
   7737		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
   7738		mddev->new_layout);
   7739
   7740	print_raid5_conf(conf);
   7741
   7742	if (conf->reshape_progress != MaxSector) {
   7743		conf->reshape_safe = conf->reshape_progress;
   7744		atomic_set(&conf->reshape_stripes, 0);
   7745		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
   7746		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
   7747		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
   7748		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
   7749		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
   7750							"reshape");
   7751		if (!mddev->sync_thread)
   7752			goto abort;
   7753	}
   7754
   7755	/* Ok, everything is just fine now */
   7756	if (mddev->to_remove == &raid5_attrs_group)
   7757		mddev->to_remove = NULL;
   7758	else if (mddev->kobj.sd &&
   7759	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
   7760		pr_warn("raid5: failed to create sysfs attributes for %s\n",
   7761			mdname(mddev));
   7762	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
   7763
   7764	if (mddev->queue) {
   7765		int chunk_size;
   7766		/* read-ahead size must cover two whole stripes, which
   7767		 * is 2 * (datadisks) * chunksize where 'n' is the
   7768		 * number of raid devices
   7769		 */
   7770		int data_disks = conf->previous_raid_disks - conf->max_degraded;
   7771		int stripe = data_disks *
   7772			((mddev->chunk_sectors << 9) / PAGE_SIZE);
   7773
   7774		chunk_size = mddev->chunk_sectors << 9;
   7775		blk_queue_io_min(mddev->queue, chunk_size);
   7776		raid5_set_io_opt(conf);
   7777		mddev->queue->limits.raid_partial_stripes_expensive = 1;
   7778		/*
   7779		 * We can only discard a whole stripe. It doesn't make sense to
   7780		 * discard data disk but write parity disk
   7781		 */
   7782		stripe = stripe * PAGE_SIZE;
   7783		stripe = roundup_pow_of_two(stripe);
   7784		mddev->queue->limits.discard_granularity = stripe;
   7785
   7786		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
   7787
   7788		rdev_for_each(rdev, mddev) {
   7789			disk_stack_limits(mddev->gendisk, rdev->bdev,
   7790					  rdev->data_offset << 9);
   7791			disk_stack_limits(mddev->gendisk, rdev->bdev,
   7792					  rdev->new_data_offset << 9);
   7793		}
   7794
   7795		/*
   7796		 * zeroing is required, otherwise data
   7797		 * could be lost. Consider a scenario: discard a stripe
   7798		 * (the stripe could be inconsistent if
   7799		 * discard_zeroes_data is 0); write one disk of the
   7800		 * stripe (the stripe could be inconsistent again
   7801		 * depending on which disks are used to calculate
   7802		 * parity); the disk is broken; The stripe data of this
   7803		 * disk is lost.
   7804		 *
   7805		 * We only allow DISCARD if the sysadmin has confirmed that
   7806		 * only safe devices are in use by setting a module parameter.
   7807		 * A better idea might be to turn DISCARD into WRITE_ZEROES
   7808		 * requests, as that is required to be safe.
   7809		 */
   7810		if (!devices_handle_discard_safely ||
   7811		    mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
   7812		    mddev->queue->limits.discard_granularity < stripe)
   7813			blk_queue_max_discard_sectors(mddev->queue, 0);
   7814
   7815		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
   7816	}
   7817
   7818	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
   7819		goto abort;
   7820
   7821	return 0;
   7822abort:
   7823	md_unregister_thread(&mddev->thread);
   7824	print_raid5_conf(conf);
   7825	free_conf(conf);
   7826	mddev->private = NULL;
   7827	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
   7828	ret = -EIO;
   7829exit_acct_set:
   7830	acct_bioset_exit(mddev);
   7831	return ret;
   7832}
   7833
   7834static void raid5_free(struct mddev *mddev, void *priv)
   7835{
   7836	struct r5conf *conf = priv;
   7837
   7838	free_conf(conf);
   7839	acct_bioset_exit(mddev);
   7840	mddev->to_remove = &raid5_attrs_group;
   7841}
   7842
   7843static void raid5_status(struct seq_file *seq, struct mddev *mddev)
   7844{
   7845	struct r5conf *conf = mddev->private;
   7846	int i;
   7847
   7848	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
   7849		conf->chunk_sectors / 2, mddev->layout);
   7850	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
   7851	rcu_read_lock();
   7852	for (i = 0; i < conf->raid_disks; i++) {
   7853		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
   7854		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
   7855	}
   7856	rcu_read_unlock();
   7857	seq_printf (seq, "]");
   7858}
   7859
   7860static void print_raid5_conf (struct r5conf *conf)
   7861{
   7862	struct md_rdev *rdev;
   7863	int i;
   7864
   7865	pr_debug("RAID conf printout:\n");
   7866	if (!conf) {
   7867		pr_debug("(conf==NULL)\n");
   7868		return;
   7869	}
   7870	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
   7871	       conf->raid_disks,
   7872	       conf->raid_disks - conf->mddev->degraded);
   7873
   7874	rcu_read_lock();
   7875	for (i = 0; i < conf->raid_disks; i++) {
   7876		rdev = rcu_dereference(conf->disks[i].rdev);
   7877		if (rdev)
   7878			pr_debug(" disk %d, o:%d, dev:%pg\n",
   7879			       i, !test_bit(Faulty, &rdev->flags),
   7880			       rdev->bdev);
   7881	}
   7882	rcu_read_unlock();
   7883}
   7884
   7885static int raid5_spare_active(struct mddev *mddev)
   7886{
   7887	int i;
   7888	struct r5conf *conf = mddev->private;
   7889	struct md_rdev *rdev, *replacement;
   7890	int count = 0;
   7891	unsigned long flags;
   7892
   7893	for (i = 0; i < conf->raid_disks; i++) {
   7894		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
   7895		replacement = rdev_mdlock_deref(mddev,
   7896						conf->disks[i].replacement);
   7897		if (replacement
   7898		    && replacement->recovery_offset == MaxSector
   7899		    && !test_bit(Faulty, &replacement->flags)
   7900		    && !test_and_set_bit(In_sync, &replacement->flags)) {
   7901			/* Replacement has just become active. */
   7902			if (!rdev
   7903			    || !test_and_clear_bit(In_sync, &rdev->flags))
   7904				count++;
   7905			if (rdev) {
   7906				/* Replaced device not technically faulty,
   7907				 * but we need to be sure it gets removed
   7908				 * and never re-added.
   7909				 */
   7910				set_bit(Faulty, &rdev->flags);
   7911				sysfs_notify_dirent_safe(
   7912					rdev->sysfs_state);
   7913			}
   7914			sysfs_notify_dirent_safe(replacement->sysfs_state);
   7915		} else if (rdev
   7916		    && rdev->recovery_offset == MaxSector
   7917		    && !test_bit(Faulty, &rdev->flags)
   7918		    && !test_and_set_bit(In_sync, &rdev->flags)) {
   7919			count++;
   7920			sysfs_notify_dirent_safe(rdev->sysfs_state);
   7921		}
   7922	}
   7923	spin_lock_irqsave(&conf->device_lock, flags);
   7924	mddev->degraded = raid5_calc_degraded(conf);
   7925	spin_unlock_irqrestore(&conf->device_lock, flags);
   7926	print_raid5_conf(conf);
   7927	return count;
   7928}
   7929
   7930static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
   7931{
   7932	struct r5conf *conf = mddev->private;
   7933	int err = 0;
   7934	int number = rdev->raid_disk;
   7935	struct md_rdev __rcu **rdevp;
   7936	struct disk_info *p;
   7937	struct md_rdev *tmp;
   7938
   7939	print_raid5_conf(conf);
   7940	if (test_bit(Journal, &rdev->flags) && conf->log) {
   7941		/*
   7942		 * we can't wait pending write here, as this is called in
   7943		 * raid5d, wait will deadlock.
   7944		 * neilb: there is no locking about new writes here,
   7945		 * so this cannot be safe.
   7946		 */
   7947		if (atomic_read(&conf->active_stripes) ||
   7948		    atomic_read(&conf->r5c_cached_full_stripes) ||
   7949		    atomic_read(&conf->r5c_cached_partial_stripes)) {
   7950			return -EBUSY;
   7951		}
   7952		log_exit(conf);
   7953		return 0;
   7954	}
   7955	if (unlikely(number >= conf->pool_size))
   7956		return 0;
   7957	p = conf->disks + number;
   7958	if (rdev == rcu_access_pointer(p->rdev))
   7959		rdevp = &p->rdev;
   7960	else if (rdev == rcu_access_pointer(p->replacement))
   7961		rdevp = &p->replacement;
   7962	else
   7963		return 0;
   7964
   7965	if (number >= conf->raid_disks &&
   7966	    conf->reshape_progress == MaxSector)
   7967		clear_bit(In_sync, &rdev->flags);
   7968
   7969	if (test_bit(In_sync, &rdev->flags) ||
   7970	    atomic_read(&rdev->nr_pending)) {
   7971		err = -EBUSY;
   7972		goto abort;
   7973	}
   7974	/* Only remove non-faulty devices if recovery
   7975	 * isn't possible.
   7976	 */
   7977	if (!test_bit(Faulty, &rdev->flags) &&
   7978	    mddev->recovery_disabled != conf->recovery_disabled &&
   7979	    !has_failed(conf) &&
   7980	    (!rcu_access_pointer(p->replacement) ||
   7981	     rcu_access_pointer(p->replacement) == rdev) &&
   7982	    number < conf->raid_disks) {
   7983		err = -EBUSY;
   7984		goto abort;
   7985	}
   7986	*rdevp = NULL;
   7987	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
   7988		lockdep_assert_held(&mddev->reconfig_mutex);
   7989		synchronize_rcu();
   7990		if (atomic_read(&rdev->nr_pending)) {
   7991			/* lost the race, try later */
   7992			err = -EBUSY;
   7993			rcu_assign_pointer(*rdevp, rdev);
   7994		}
   7995	}
   7996	if (!err) {
   7997		err = log_modify(conf, rdev, false);
   7998		if (err)
   7999			goto abort;
   8000	}
   8001
   8002	tmp = rcu_access_pointer(p->replacement);
   8003	if (tmp) {
   8004		/* We must have just cleared 'rdev' */
   8005		rcu_assign_pointer(p->rdev, tmp);
   8006		clear_bit(Replacement, &tmp->flags);
   8007		smp_mb(); /* Make sure other CPUs may see both as identical
   8008			   * but will never see neither - if they are careful
   8009			   */
   8010		rcu_assign_pointer(p->replacement, NULL);
   8011
   8012		if (!err)
   8013			err = log_modify(conf, tmp, true);
   8014	}
   8015
   8016	clear_bit(WantReplacement, &rdev->flags);
   8017abort:
   8018
   8019	print_raid5_conf(conf);
   8020	return err;
   8021}
   8022
   8023static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
   8024{
   8025	struct r5conf *conf = mddev->private;
   8026	int ret, err = -EEXIST;
   8027	int disk;
   8028	struct disk_info *p;
   8029	struct md_rdev *tmp;
   8030	int first = 0;
   8031	int last = conf->raid_disks - 1;
   8032
   8033	if (test_bit(Journal, &rdev->flags)) {
   8034		if (conf->log)
   8035			return -EBUSY;
   8036
   8037		rdev->raid_disk = 0;
   8038		/*
   8039		 * The array is in readonly mode if journal is missing, so no
   8040		 * write requests running. We should be safe
   8041		 */
   8042		ret = log_init(conf, rdev, false);
   8043		if (ret)
   8044			return ret;
   8045
   8046		ret = r5l_start(conf->log);
   8047		if (ret)
   8048			return ret;
   8049
   8050		return 0;
   8051	}
   8052	if (mddev->recovery_disabled == conf->recovery_disabled)
   8053		return -EBUSY;
   8054
   8055	if (rdev->saved_raid_disk < 0 && has_failed(conf))
   8056		/* no point adding a device */
   8057		return -EINVAL;
   8058
   8059	if (rdev->raid_disk >= 0)
   8060		first = last = rdev->raid_disk;
   8061
   8062	/*
   8063	 * find the disk ... but prefer rdev->saved_raid_disk
   8064	 * if possible.
   8065	 */
   8066	if (rdev->saved_raid_disk >= 0 &&
   8067	    rdev->saved_raid_disk >= first &&
   8068	    rdev->saved_raid_disk <= last &&
   8069	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
   8070		first = rdev->saved_raid_disk;
   8071
   8072	for (disk = first; disk <= last; disk++) {
   8073		p = conf->disks + disk;
   8074		if (p->rdev == NULL) {
   8075			clear_bit(In_sync, &rdev->flags);
   8076			rdev->raid_disk = disk;
   8077			if (rdev->saved_raid_disk != disk)
   8078				conf->fullsync = 1;
   8079			rcu_assign_pointer(p->rdev, rdev);
   8080
   8081			err = log_modify(conf, rdev, true);
   8082
   8083			goto out;
   8084		}
   8085	}
   8086	for (disk = first; disk <= last; disk++) {
   8087		p = conf->disks + disk;
   8088		tmp = rdev_mdlock_deref(mddev, p->rdev);
   8089		if (test_bit(WantReplacement, &tmp->flags) &&
   8090		    p->replacement == NULL) {
   8091			clear_bit(In_sync, &rdev->flags);
   8092			set_bit(Replacement, &rdev->flags);
   8093			rdev->raid_disk = disk;
   8094			err = 0;
   8095			conf->fullsync = 1;
   8096			rcu_assign_pointer(p->replacement, rdev);
   8097			break;
   8098		}
   8099	}
   8100out:
   8101	print_raid5_conf(conf);
   8102	return err;
   8103}
   8104
   8105static int raid5_resize(struct mddev *mddev, sector_t sectors)
   8106{
   8107	/* no resync is happening, and there is enough space
   8108	 * on all devices, so we can resize.
   8109	 * We need to make sure resync covers any new space.
   8110	 * If the array is shrinking we should possibly wait until
   8111	 * any io in the removed space completes, but it hardly seems
   8112	 * worth it.
   8113	 */
   8114	sector_t newsize;
   8115	struct r5conf *conf = mddev->private;
   8116
   8117	if (raid5_has_log(conf) || raid5_has_ppl(conf))
   8118		return -EINVAL;
   8119	sectors &= ~((sector_t)conf->chunk_sectors - 1);
   8120	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
   8121	if (mddev->external_size &&
   8122	    mddev->array_sectors > newsize)
   8123		return -EINVAL;
   8124	if (mddev->bitmap) {
   8125		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
   8126		if (ret)
   8127			return ret;
   8128	}
   8129	md_set_array_sectors(mddev, newsize);
   8130	if (sectors > mddev->dev_sectors &&
   8131	    mddev->recovery_cp > mddev->dev_sectors) {
   8132		mddev->recovery_cp = mddev->dev_sectors;
   8133		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
   8134	}
   8135	mddev->dev_sectors = sectors;
   8136	mddev->resync_max_sectors = sectors;
   8137	return 0;
   8138}
   8139
   8140static int check_stripe_cache(struct mddev *mddev)
   8141{
   8142	/* Can only proceed if there are plenty of stripe_heads.
   8143	 * We need a minimum of one full stripe,, and for sensible progress
   8144	 * it is best to have about 4 times that.
   8145	 * If we require 4 times, then the default 256 4K stripe_heads will
   8146	 * allow for chunk sizes up to 256K, which is probably OK.
   8147	 * If the chunk size is greater, user-space should request more
   8148	 * stripe_heads first.
   8149	 */
   8150	struct r5conf *conf = mddev->private;
   8151	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
   8152	    > conf->min_nr_stripes ||
   8153	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
   8154	    > conf->min_nr_stripes) {
   8155		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
   8156			mdname(mddev),
   8157			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
   8158			 / RAID5_STRIPE_SIZE(conf))*4);
   8159		return 0;
   8160	}
   8161	return 1;
   8162}
   8163
   8164static int check_reshape(struct mddev *mddev)
   8165{
   8166	struct r5conf *conf = mddev->private;
   8167
   8168	if (raid5_has_log(conf) || raid5_has_ppl(conf))
   8169		return -EINVAL;
   8170	if (mddev->delta_disks == 0 &&
   8171	    mddev->new_layout == mddev->layout &&
   8172	    mddev->new_chunk_sectors == mddev->chunk_sectors)
   8173		return 0; /* nothing to do */
   8174	if (has_failed(conf))
   8175		return -EINVAL;
   8176	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
   8177		/* We might be able to shrink, but the devices must
   8178		 * be made bigger first.
   8179		 * For raid6, 4 is the minimum size.
   8180		 * Otherwise 2 is the minimum
   8181		 */
   8182		int min = 2;
   8183		if (mddev->level == 6)
   8184			min = 4;
   8185		if (mddev->raid_disks + mddev->delta_disks < min)
   8186			return -EINVAL;
   8187	}
   8188
   8189	if (!check_stripe_cache(mddev))
   8190		return -ENOSPC;
   8191
   8192	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
   8193	    mddev->delta_disks > 0)
   8194		if (resize_chunks(conf,
   8195				  conf->previous_raid_disks
   8196				  + max(0, mddev->delta_disks),
   8197				  max(mddev->new_chunk_sectors,
   8198				      mddev->chunk_sectors)
   8199			    ) < 0)
   8200			return -ENOMEM;
   8201
   8202	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
   8203		return 0; /* never bother to shrink */
   8204	return resize_stripes(conf, (conf->previous_raid_disks
   8205				     + mddev->delta_disks));
   8206}
   8207
   8208static int raid5_start_reshape(struct mddev *mddev)
   8209{
   8210	struct r5conf *conf = mddev->private;
   8211	struct md_rdev *rdev;
   8212	int spares = 0;
   8213	unsigned long flags;
   8214
   8215	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
   8216		return -EBUSY;
   8217
   8218	if (!check_stripe_cache(mddev))
   8219		return -ENOSPC;
   8220
   8221	if (has_failed(conf))
   8222		return -EINVAL;
   8223
   8224	rdev_for_each(rdev, mddev) {
   8225		if (!test_bit(In_sync, &rdev->flags)
   8226		    && !test_bit(Faulty, &rdev->flags))
   8227			spares++;
   8228	}
   8229
   8230	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
   8231		/* Not enough devices even to make a degraded array
   8232		 * of that size
   8233		 */
   8234		return -EINVAL;
   8235
   8236	/* Refuse to reduce size of the array.  Any reductions in
   8237	 * array size must be through explicit setting of array_size
   8238	 * attribute.
   8239	 */
   8240	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
   8241	    < mddev->array_sectors) {
   8242		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
   8243			mdname(mddev));
   8244		return -EINVAL;
   8245	}
   8246
   8247	atomic_set(&conf->reshape_stripes, 0);
   8248	spin_lock_irq(&conf->device_lock);
   8249	write_seqcount_begin(&conf->gen_lock);
   8250	conf->previous_raid_disks = conf->raid_disks;
   8251	conf->raid_disks += mddev->delta_disks;
   8252	conf->prev_chunk_sectors = conf->chunk_sectors;
   8253	conf->chunk_sectors = mddev->new_chunk_sectors;
   8254	conf->prev_algo = conf->algorithm;
   8255	conf->algorithm = mddev->new_layout;
   8256	conf->generation++;
   8257	/* Code that selects data_offset needs to see the generation update
   8258	 * if reshape_progress has been set - so a memory barrier needed.
   8259	 */
   8260	smp_mb();
   8261	if (mddev->reshape_backwards)
   8262		conf->reshape_progress = raid5_size(mddev, 0, 0);
   8263	else
   8264		conf->reshape_progress = 0;
   8265	conf->reshape_safe = conf->reshape_progress;
   8266	write_seqcount_end(&conf->gen_lock);
   8267	spin_unlock_irq(&conf->device_lock);
   8268
   8269	/* Now make sure any requests that proceeded on the assumption
   8270	 * the reshape wasn't running - like Discard or Read - have
   8271	 * completed.
   8272	 */
   8273	mddev_suspend(mddev);
   8274	mddev_resume(mddev);
   8275
   8276	/* Add some new drives, as many as will fit.
   8277	 * We know there are enough to make the newly sized array work.
   8278	 * Don't add devices if we are reducing the number of
   8279	 * devices in the array.  This is because it is not possible
   8280	 * to correctly record the "partially reconstructed" state of
   8281	 * such devices during the reshape and confusion could result.
   8282	 */
   8283	if (mddev->delta_disks >= 0) {
   8284		rdev_for_each(rdev, mddev)
   8285			if (rdev->raid_disk < 0 &&
   8286			    !test_bit(Faulty, &rdev->flags)) {
   8287				if (raid5_add_disk(mddev, rdev) == 0) {
   8288					if (rdev->raid_disk
   8289					    >= conf->previous_raid_disks)
   8290						set_bit(In_sync, &rdev->flags);
   8291					else
   8292						rdev->recovery_offset = 0;
   8293
   8294					/* Failure here is OK */
   8295					sysfs_link_rdev(mddev, rdev);
   8296				}
   8297			} else if (rdev->raid_disk >= conf->previous_raid_disks
   8298				   && !test_bit(Faulty, &rdev->flags)) {
   8299				/* This is a spare that was manually added */
   8300				set_bit(In_sync, &rdev->flags);
   8301			}
   8302
   8303		/* When a reshape changes the number of devices,
   8304		 * ->degraded is measured against the larger of the
   8305		 * pre and post number of devices.
   8306		 */
   8307		spin_lock_irqsave(&conf->device_lock, flags);
   8308		mddev->degraded = raid5_calc_degraded(conf);
   8309		spin_unlock_irqrestore(&conf->device_lock, flags);
   8310	}
   8311	mddev->raid_disks = conf->raid_disks;
   8312	mddev->reshape_position = conf->reshape_progress;
   8313	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
   8314
   8315	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
   8316	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
   8317	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
   8318	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
   8319	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
   8320	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
   8321						"reshape");
   8322	if (!mddev->sync_thread) {
   8323		mddev->recovery = 0;
   8324		spin_lock_irq(&conf->device_lock);
   8325		write_seqcount_begin(&conf->gen_lock);
   8326		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
   8327		mddev->new_chunk_sectors =
   8328			conf->chunk_sectors = conf->prev_chunk_sectors;
   8329		mddev->new_layout = conf->algorithm = conf->prev_algo;
   8330		rdev_for_each(rdev, mddev)
   8331			rdev->new_data_offset = rdev->data_offset;
   8332		smp_wmb();
   8333		conf->generation --;
   8334		conf->reshape_progress = MaxSector;
   8335		mddev->reshape_position = MaxSector;
   8336		write_seqcount_end(&conf->gen_lock);
   8337		spin_unlock_irq(&conf->device_lock);
   8338		return -EAGAIN;
   8339	}
   8340	conf->reshape_checkpoint = jiffies;
   8341	md_wakeup_thread(mddev->sync_thread);
   8342	md_new_event();
   8343	return 0;
   8344}
   8345
   8346/* This is called from the reshape thread and should make any
   8347 * changes needed in 'conf'
   8348 */
   8349static void end_reshape(struct r5conf *conf)
   8350{
   8351
   8352	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
   8353		struct md_rdev *rdev;
   8354
   8355		spin_lock_irq(&conf->device_lock);
   8356		conf->previous_raid_disks = conf->raid_disks;
   8357		md_finish_reshape(conf->mddev);
   8358		smp_wmb();
   8359		conf->reshape_progress = MaxSector;
   8360		conf->mddev->reshape_position = MaxSector;
   8361		rdev_for_each(rdev, conf->mddev)
   8362			if (rdev->raid_disk >= 0 &&
   8363			    !test_bit(Journal, &rdev->flags) &&
   8364			    !test_bit(In_sync, &rdev->flags))
   8365				rdev->recovery_offset = MaxSector;
   8366		spin_unlock_irq(&conf->device_lock);
   8367		wake_up(&conf->wait_for_overlap);
   8368
   8369		if (conf->mddev->queue)
   8370			raid5_set_io_opt(conf);
   8371	}
   8372}
   8373
   8374/* This is called from the raid5d thread with mddev_lock held.
   8375 * It makes config changes to the device.
   8376 */
   8377static void raid5_finish_reshape(struct mddev *mddev)
   8378{
   8379	struct r5conf *conf = mddev->private;
   8380	struct md_rdev *rdev;
   8381
   8382	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
   8383
   8384		if (mddev->delta_disks <= 0) {
   8385			int d;
   8386			spin_lock_irq(&conf->device_lock);
   8387			mddev->degraded = raid5_calc_degraded(conf);
   8388			spin_unlock_irq(&conf->device_lock);
   8389			for (d = conf->raid_disks ;
   8390			     d < conf->raid_disks - mddev->delta_disks;
   8391			     d++) {
   8392				rdev = rdev_mdlock_deref(mddev,
   8393							 conf->disks[d].rdev);
   8394				if (rdev)
   8395					clear_bit(In_sync, &rdev->flags);
   8396				rdev = rdev_mdlock_deref(mddev,
   8397						conf->disks[d].replacement);
   8398				if (rdev)
   8399					clear_bit(In_sync, &rdev->flags);
   8400			}
   8401		}
   8402		mddev->layout = conf->algorithm;
   8403		mddev->chunk_sectors = conf->chunk_sectors;
   8404		mddev->reshape_position = MaxSector;
   8405		mddev->delta_disks = 0;
   8406		mddev->reshape_backwards = 0;
   8407	}
   8408}
   8409
   8410static void raid5_quiesce(struct mddev *mddev, int quiesce)
   8411{
   8412	struct r5conf *conf = mddev->private;
   8413
   8414	if (quiesce) {
   8415		/* stop all writes */
   8416		lock_all_device_hash_locks_irq(conf);
   8417		/* '2' tells resync/reshape to pause so that all
   8418		 * active stripes can drain
   8419		 */
   8420		r5c_flush_cache(conf, INT_MAX);
   8421		/* need a memory barrier to make sure read_one_chunk() sees
   8422		 * quiesce started and reverts to slow (locked) path.
   8423		 */
   8424		smp_store_release(&conf->quiesce, 2);
   8425		wait_event_cmd(conf->wait_for_quiescent,
   8426				    atomic_read(&conf->active_stripes) == 0 &&
   8427				    atomic_read(&conf->active_aligned_reads) == 0,
   8428				    unlock_all_device_hash_locks_irq(conf),
   8429				    lock_all_device_hash_locks_irq(conf));
   8430		conf->quiesce = 1;
   8431		unlock_all_device_hash_locks_irq(conf);
   8432		/* allow reshape to continue */
   8433		wake_up(&conf->wait_for_overlap);
   8434	} else {
   8435		/* re-enable writes */
   8436		lock_all_device_hash_locks_irq(conf);
   8437		conf->quiesce = 0;
   8438		wake_up(&conf->wait_for_quiescent);
   8439		wake_up(&conf->wait_for_overlap);
   8440		unlock_all_device_hash_locks_irq(conf);
   8441	}
   8442	log_quiesce(conf, quiesce);
   8443}
   8444
   8445static void *raid45_takeover_raid0(struct mddev *mddev, int level)
   8446{
   8447	struct r0conf *raid0_conf = mddev->private;
   8448	sector_t sectors;
   8449
   8450	/* for raid0 takeover only one zone is supported */
   8451	if (raid0_conf->nr_strip_zones > 1) {
   8452		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
   8453			mdname(mddev));
   8454		return ERR_PTR(-EINVAL);
   8455	}
   8456
   8457	sectors = raid0_conf->strip_zone[0].zone_end;
   8458	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
   8459	mddev->dev_sectors = sectors;
   8460	mddev->new_level = level;
   8461	mddev->new_layout = ALGORITHM_PARITY_N;
   8462	mddev->new_chunk_sectors = mddev->chunk_sectors;
   8463	mddev->raid_disks += 1;
   8464	mddev->delta_disks = 1;
   8465	/* make sure it will be not marked as dirty */
   8466	mddev->recovery_cp = MaxSector;
   8467
   8468	return setup_conf(mddev);
   8469}
   8470
   8471static void *raid5_takeover_raid1(struct mddev *mddev)
   8472{
   8473	int chunksect;
   8474	void *ret;
   8475
   8476	if (mddev->raid_disks != 2 ||
   8477	    mddev->degraded > 1)
   8478		return ERR_PTR(-EINVAL);
   8479
   8480	/* Should check if there are write-behind devices? */
   8481
   8482	chunksect = 64*2; /* 64K by default */
   8483
   8484	/* The array must be an exact multiple of chunksize */
   8485	while (chunksect && (mddev->array_sectors & (chunksect-1)))
   8486		chunksect >>= 1;
   8487
   8488	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
   8489		/* array size does not allow a suitable chunk size */
   8490		return ERR_PTR(-EINVAL);
   8491
   8492	mddev->new_level = 5;
   8493	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
   8494	mddev->new_chunk_sectors = chunksect;
   8495
   8496	ret = setup_conf(mddev);
   8497	if (!IS_ERR(ret))
   8498		mddev_clear_unsupported_flags(mddev,
   8499			UNSUPPORTED_MDDEV_FLAGS);
   8500	return ret;
   8501}
   8502
   8503static void *raid5_takeover_raid6(struct mddev *mddev)
   8504{
   8505	int new_layout;
   8506
   8507	switch (mddev->layout) {
   8508	case ALGORITHM_LEFT_ASYMMETRIC_6:
   8509		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
   8510		break;
   8511	case ALGORITHM_RIGHT_ASYMMETRIC_6:
   8512		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
   8513		break;
   8514	case ALGORITHM_LEFT_SYMMETRIC_6:
   8515		new_layout = ALGORITHM_LEFT_SYMMETRIC;
   8516		break;
   8517	case ALGORITHM_RIGHT_SYMMETRIC_6:
   8518		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
   8519		break;
   8520	case ALGORITHM_PARITY_0_6:
   8521		new_layout = ALGORITHM_PARITY_0;
   8522		break;
   8523	case ALGORITHM_PARITY_N:
   8524		new_layout = ALGORITHM_PARITY_N;
   8525		break;
   8526	default:
   8527		return ERR_PTR(-EINVAL);
   8528	}
   8529	mddev->new_level = 5;
   8530	mddev->new_layout = new_layout;
   8531	mddev->delta_disks = -1;
   8532	mddev->raid_disks -= 1;
   8533	return setup_conf(mddev);
   8534}
   8535
   8536static int raid5_check_reshape(struct mddev *mddev)
   8537{
   8538	/* For a 2-drive array, the layout and chunk size can be changed
   8539	 * immediately as not restriping is needed.
   8540	 * For larger arrays we record the new value - after validation
   8541	 * to be used by a reshape pass.
   8542	 */
   8543	struct r5conf *conf = mddev->private;
   8544	int new_chunk = mddev->new_chunk_sectors;
   8545
   8546	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
   8547		return -EINVAL;
   8548	if (new_chunk > 0) {
   8549		if (!is_power_of_2(new_chunk))
   8550			return -EINVAL;
   8551		if (new_chunk < (PAGE_SIZE>>9))
   8552			return -EINVAL;
   8553		if (mddev->array_sectors & (new_chunk-1))
   8554			/* not factor of array size */
   8555			return -EINVAL;
   8556	}
   8557
   8558	/* They look valid */
   8559
   8560	if (mddev->raid_disks == 2) {
   8561		/* can make the change immediately */
   8562		if (mddev->new_layout >= 0) {
   8563			conf->algorithm = mddev->new_layout;
   8564			mddev->layout = mddev->new_layout;
   8565		}
   8566		if (new_chunk > 0) {
   8567			conf->chunk_sectors = new_chunk ;
   8568			mddev->chunk_sectors = new_chunk;
   8569		}
   8570		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
   8571		md_wakeup_thread(mddev->thread);
   8572	}
   8573	return check_reshape(mddev);
   8574}
   8575
   8576static int raid6_check_reshape(struct mddev *mddev)
   8577{
   8578	int new_chunk = mddev->new_chunk_sectors;
   8579
   8580	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
   8581		return -EINVAL;
   8582	if (new_chunk > 0) {
   8583		if (!is_power_of_2(new_chunk))
   8584			return -EINVAL;
   8585		if (new_chunk < (PAGE_SIZE >> 9))
   8586			return -EINVAL;
   8587		if (mddev->array_sectors & (new_chunk-1))
   8588			/* not factor of array size */
   8589			return -EINVAL;
   8590	}
   8591
   8592	/* They look valid */
   8593	return check_reshape(mddev);
   8594}
   8595
   8596static void *raid5_takeover(struct mddev *mddev)
   8597{
   8598	/* raid5 can take over:
   8599	 *  raid0 - if there is only one strip zone - make it a raid4 layout
   8600	 *  raid1 - if there are two drives.  We need to know the chunk size
   8601	 *  raid4 - trivial - just use a raid4 layout.
   8602	 *  raid6 - Providing it is a *_6 layout
   8603	 */
   8604	if (mddev->level == 0)
   8605		return raid45_takeover_raid0(mddev, 5);
   8606	if (mddev->level == 1)
   8607		return raid5_takeover_raid1(mddev);
   8608	if (mddev->level == 4) {
   8609		mddev->new_layout = ALGORITHM_PARITY_N;
   8610		mddev->new_level = 5;
   8611		return setup_conf(mddev);
   8612	}
   8613	if (mddev->level == 6)
   8614		return raid5_takeover_raid6(mddev);
   8615
   8616	return ERR_PTR(-EINVAL);
   8617}
   8618
   8619static void *raid4_takeover(struct mddev *mddev)
   8620{
   8621	/* raid4 can take over:
   8622	 *  raid0 - if there is only one strip zone
   8623	 *  raid5 - if layout is right
   8624	 */
   8625	if (mddev->level == 0)
   8626		return raid45_takeover_raid0(mddev, 4);
   8627	if (mddev->level == 5 &&
   8628	    mddev->layout == ALGORITHM_PARITY_N) {
   8629		mddev->new_layout = 0;
   8630		mddev->new_level = 4;
   8631		return setup_conf(mddev);
   8632	}
   8633	return ERR_PTR(-EINVAL);
   8634}
   8635
   8636static struct md_personality raid5_personality;
   8637
   8638static void *raid6_takeover(struct mddev *mddev)
   8639{
   8640	/* Currently can only take over a raid5.  We map the
   8641	 * personality to an equivalent raid6 personality
   8642	 * with the Q block at the end.
   8643	 */
   8644	int new_layout;
   8645
   8646	if (mddev->pers != &raid5_personality)
   8647		return ERR_PTR(-EINVAL);
   8648	if (mddev->degraded > 1)
   8649		return ERR_PTR(-EINVAL);
   8650	if (mddev->raid_disks > 253)
   8651		return ERR_PTR(-EINVAL);
   8652	if (mddev->raid_disks < 3)
   8653		return ERR_PTR(-EINVAL);
   8654
   8655	switch (mddev->layout) {
   8656	case ALGORITHM_LEFT_ASYMMETRIC:
   8657		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
   8658		break;
   8659	case ALGORITHM_RIGHT_ASYMMETRIC:
   8660		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
   8661		break;
   8662	case ALGORITHM_LEFT_SYMMETRIC:
   8663		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
   8664		break;
   8665	case ALGORITHM_RIGHT_SYMMETRIC:
   8666		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
   8667		break;
   8668	case ALGORITHM_PARITY_0:
   8669		new_layout = ALGORITHM_PARITY_0_6;
   8670		break;
   8671	case ALGORITHM_PARITY_N:
   8672		new_layout = ALGORITHM_PARITY_N;
   8673		break;
   8674	default:
   8675		return ERR_PTR(-EINVAL);
   8676	}
   8677	mddev->new_level = 6;
   8678	mddev->new_layout = new_layout;
   8679	mddev->delta_disks = 1;
   8680	mddev->raid_disks += 1;
   8681	return setup_conf(mddev);
   8682}
   8683
   8684static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
   8685{
   8686	struct r5conf *conf;
   8687	int err;
   8688
   8689	err = mddev_lock(mddev);
   8690	if (err)
   8691		return err;
   8692	conf = mddev->private;
   8693	if (!conf) {
   8694		mddev_unlock(mddev);
   8695		return -ENODEV;
   8696	}
   8697
   8698	if (strncmp(buf, "ppl", 3) == 0) {
   8699		/* ppl only works with RAID 5 */
   8700		if (!raid5_has_ppl(conf) && conf->level == 5) {
   8701			err = log_init(conf, NULL, true);
   8702			if (!err) {
   8703				err = resize_stripes(conf, conf->pool_size);
   8704				if (err)
   8705					log_exit(conf);
   8706			}
   8707		} else
   8708			err = -EINVAL;
   8709	} else if (strncmp(buf, "resync", 6) == 0) {
   8710		if (raid5_has_ppl(conf)) {
   8711			mddev_suspend(mddev);
   8712			log_exit(conf);
   8713			mddev_resume(mddev);
   8714			err = resize_stripes(conf, conf->pool_size);
   8715		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
   8716			   r5l_log_disk_error(conf)) {
   8717			bool journal_dev_exists = false;
   8718			struct md_rdev *rdev;
   8719
   8720			rdev_for_each(rdev, mddev)
   8721				if (test_bit(Journal, &rdev->flags)) {
   8722					journal_dev_exists = true;
   8723					break;
   8724				}
   8725
   8726			if (!journal_dev_exists) {
   8727				mddev_suspend(mddev);
   8728				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
   8729				mddev_resume(mddev);
   8730			} else  /* need remove journal device first */
   8731				err = -EBUSY;
   8732		} else
   8733			err = -EINVAL;
   8734	} else {
   8735		err = -EINVAL;
   8736	}
   8737
   8738	if (!err)
   8739		md_update_sb(mddev, 1);
   8740
   8741	mddev_unlock(mddev);
   8742
   8743	return err;
   8744}
   8745
   8746static int raid5_start(struct mddev *mddev)
   8747{
   8748	struct r5conf *conf = mddev->private;
   8749
   8750	return r5l_start(conf->log);
   8751}
   8752
   8753static struct md_personality raid6_personality =
   8754{
   8755	.name		= "raid6",
   8756	.level		= 6,
   8757	.owner		= THIS_MODULE,
   8758	.make_request	= raid5_make_request,
   8759	.run		= raid5_run,
   8760	.start		= raid5_start,
   8761	.free		= raid5_free,
   8762	.status		= raid5_status,
   8763	.error_handler	= raid5_error,
   8764	.hot_add_disk	= raid5_add_disk,
   8765	.hot_remove_disk= raid5_remove_disk,
   8766	.spare_active	= raid5_spare_active,
   8767	.sync_request	= raid5_sync_request,
   8768	.resize		= raid5_resize,
   8769	.size		= raid5_size,
   8770	.check_reshape	= raid6_check_reshape,
   8771	.start_reshape  = raid5_start_reshape,
   8772	.finish_reshape = raid5_finish_reshape,
   8773	.quiesce	= raid5_quiesce,
   8774	.takeover	= raid6_takeover,
   8775	.change_consistency_policy = raid5_change_consistency_policy,
   8776};
   8777static struct md_personality raid5_personality =
   8778{
   8779	.name		= "raid5",
   8780	.level		= 5,
   8781	.owner		= THIS_MODULE,
   8782	.make_request	= raid5_make_request,
   8783	.run		= raid5_run,
   8784	.start		= raid5_start,
   8785	.free		= raid5_free,
   8786	.status		= raid5_status,
   8787	.error_handler	= raid5_error,
   8788	.hot_add_disk	= raid5_add_disk,
   8789	.hot_remove_disk= raid5_remove_disk,
   8790	.spare_active	= raid5_spare_active,
   8791	.sync_request	= raid5_sync_request,
   8792	.resize		= raid5_resize,
   8793	.size		= raid5_size,
   8794	.check_reshape	= raid5_check_reshape,
   8795	.start_reshape  = raid5_start_reshape,
   8796	.finish_reshape = raid5_finish_reshape,
   8797	.quiesce	= raid5_quiesce,
   8798	.takeover	= raid5_takeover,
   8799	.change_consistency_policy = raid5_change_consistency_policy,
   8800};
   8801
   8802static struct md_personality raid4_personality =
   8803{
   8804	.name		= "raid4",
   8805	.level		= 4,
   8806	.owner		= THIS_MODULE,
   8807	.make_request	= raid5_make_request,
   8808	.run		= raid5_run,
   8809	.start		= raid5_start,
   8810	.free		= raid5_free,
   8811	.status		= raid5_status,
   8812	.error_handler	= raid5_error,
   8813	.hot_add_disk	= raid5_add_disk,
   8814	.hot_remove_disk= raid5_remove_disk,
   8815	.spare_active	= raid5_spare_active,
   8816	.sync_request	= raid5_sync_request,
   8817	.resize		= raid5_resize,
   8818	.size		= raid5_size,
   8819	.check_reshape	= raid5_check_reshape,
   8820	.start_reshape  = raid5_start_reshape,
   8821	.finish_reshape = raid5_finish_reshape,
   8822	.quiesce	= raid5_quiesce,
   8823	.takeover	= raid4_takeover,
   8824	.change_consistency_policy = raid5_change_consistency_policy,
   8825};
   8826
   8827static int __init raid5_init(void)
   8828{
   8829	int ret;
   8830
   8831	raid5_wq = alloc_workqueue("raid5wq",
   8832		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
   8833	if (!raid5_wq)
   8834		return -ENOMEM;
   8835
   8836	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
   8837				      "md/raid5:prepare",
   8838				      raid456_cpu_up_prepare,
   8839				      raid456_cpu_dead);
   8840	if (ret) {
   8841		destroy_workqueue(raid5_wq);
   8842		return ret;
   8843	}
   8844	register_md_personality(&raid6_personality);
   8845	register_md_personality(&raid5_personality);
   8846	register_md_personality(&raid4_personality);
   8847	return 0;
   8848}
   8849
   8850static void raid5_exit(void)
   8851{
   8852	unregister_md_personality(&raid6_personality);
   8853	unregister_md_personality(&raid5_personality);
   8854	unregister_md_personality(&raid4_personality);
   8855	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
   8856	destroy_workqueue(raid5_wq);
   8857}
   8858
   8859module_init(raid5_init);
   8860module_exit(raid5_exit);
   8861MODULE_LICENSE("GPL");
   8862MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
   8863MODULE_ALIAS("md-personality-4"); /* RAID5 */
   8864MODULE_ALIAS("md-raid5");
   8865MODULE_ALIAS("md-raid4");
   8866MODULE_ALIAS("md-level-5");
   8867MODULE_ALIAS("md-level-4");
   8868MODULE_ALIAS("md-personality-8"); /* RAID6 */
   8869MODULE_ALIAS("md-raid6");
   8870MODULE_ALIAS("md-level-6");
   8871
   8872/* This used to be two separate modules, they were: */
   8873MODULE_ALIAS("raid5");
   8874MODULE_ALIAS("raid6");