cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

drxd_hard.c (75491B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
      4 *
      5 * Copyright (C) 2003-2007 Micronas
      6 */
      7
      8#include <linux/kernel.h>
      9#include <linux/module.h>
     10#include <linux/moduleparam.h>
     11#include <linux/init.h>
     12#include <linux/delay.h>
     13#include <linux/firmware.h>
     14#include <linux/i2c.h>
     15#include <asm/div64.h>
     16
     17#include <media/dvb_frontend.h>
     18#include "drxd.h"
     19#include "drxd_firm.h"
     20
     21#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
     22#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
     23
     24#define CHUNK_SIZE 48
     25
     26#define DRX_I2C_RMW           0x10
     27#define DRX_I2C_BROADCAST     0x20
     28#define DRX_I2C_CLEARCRC      0x80
     29#define DRX_I2C_SINGLE_MASTER 0xC0
     30#define DRX_I2C_MODEFLAGS     0xC0
     31#define DRX_I2C_FLAGS         0xF0
     32
     33#define DEFAULT_LOCK_TIMEOUT    1100
     34
     35#define DRX_CHANNEL_AUTO 0
     36#define DRX_CHANNEL_HIGH 1
     37#define DRX_CHANNEL_LOW  2
     38
     39#define DRX_LOCK_MPEG  1
     40#define DRX_LOCK_FEC   2
     41#define DRX_LOCK_DEMOD 4
     42
     43/****************************************************************************/
     44
     45enum CSCDState {
     46	CSCD_INIT = 0,
     47	CSCD_SET,
     48	CSCD_SAVED
     49};
     50
     51enum CDrxdState {
     52	DRXD_UNINITIALIZED = 0,
     53	DRXD_STOPPED,
     54	DRXD_STARTED
     55};
     56
     57enum AGC_CTRL_MODE {
     58	AGC_CTRL_AUTO = 0,
     59	AGC_CTRL_USER,
     60	AGC_CTRL_OFF
     61};
     62
     63enum OperationMode {
     64	OM_Default,
     65	OM_DVBT_Diversity_Front,
     66	OM_DVBT_Diversity_End
     67};
     68
     69struct SCfgAgc {
     70	enum AGC_CTRL_MODE ctrlMode;
     71	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
     72	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
     73	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
     74	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
     75	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
     76
     77	u16 R1;
     78	u16 R2;
     79	u16 R3;
     80};
     81
     82struct SNoiseCal {
     83	int cpOpt;
     84	short cpNexpOfs;
     85	short tdCal2k;
     86	short tdCal8k;
     87};
     88
     89enum app_env {
     90	APPENV_STATIC = 0,
     91	APPENV_PORTABLE = 1,
     92	APPENV_MOBILE = 2
     93};
     94
     95enum EIFFilter {
     96	IFFILTER_SAW = 0,
     97	IFFILTER_DISCRETE = 1
     98};
     99
    100struct drxd_state {
    101	struct dvb_frontend frontend;
    102	struct dvb_frontend_ops ops;
    103	struct dtv_frontend_properties props;
    104
    105	const struct firmware *fw;
    106	struct device *dev;
    107
    108	struct i2c_adapter *i2c;
    109	void *priv;
    110	struct drxd_config config;
    111
    112	int i2c_access;
    113	int init_done;
    114	struct mutex mutex;
    115
    116	u8 chip_adr;
    117	u16 hi_cfg_timing_div;
    118	u16 hi_cfg_bridge_delay;
    119	u16 hi_cfg_wakeup_key;
    120	u16 hi_cfg_ctrl;
    121
    122	u16 intermediate_freq;
    123	u16 osc_clock_freq;
    124
    125	enum CSCDState cscd_state;
    126	enum CDrxdState drxd_state;
    127
    128	u16 sys_clock_freq;
    129	s16 osc_clock_deviation;
    130	u16 expected_sys_clock_freq;
    131
    132	u16 insert_rs_byte;
    133	u16 enable_parallel;
    134
    135	int operation_mode;
    136
    137	struct SCfgAgc if_agc_cfg;
    138	struct SCfgAgc rf_agc_cfg;
    139
    140	struct SNoiseCal noise_cal;
    141
    142	u32 fe_fs_add_incr;
    143	u32 org_fe_fs_add_incr;
    144	u16 current_fe_if_incr;
    145
    146	u16 m_FeAgRegAgPwd;
    147	u16 m_FeAgRegAgAgcSio;
    148
    149	u16 m_EcOcRegOcModeLop;
    150	u16 m_EcOcRegSncSncLvl;
    151	u8 *m_InitAtomicRead;
    152	u8 *m_HiI2cPatch;
    153
    154	u8 *m_ResetCEFR;
    155	u8 *m_InitFE_1;
    156	u8 *m_InitFE_2;
    157	u8 *m_InitCP;
    158	u8 *m_InitCE;
    159	u8 *m_InitEQ;
    160	u8 *m_InitSC;
    161	u8 *m_InitEC;
    162	u8 *m_ResetECRAM;
    163	u8 *m_InitDiversityFront;
    164	u8 *m_InitDiversityEnd;
    165	u8 *m_DisableDiversity;
    166	u8 *m_StartDiversityFront;
    167	u8 *m_StartDiversityEnd;
    168
    169	u8 *m_DiversityDelay8MHZ;
    170	u8 *m_DiversityDelay6MHZ;
    171
    172	u8 *microcode;
    173	u32 microcode_length;
    174
    175	int type_A;
    176	int PGA;
    177	int diversity;
    178	int tuner_mirrors;
    179
    180	enum app_env app_env_default;
    181	enum app_env app_env_diversity;
    182
    183};
    184
    185/****************************************************************************/
    186/* I2C **********************************************************************/
    187/****************************************************************************/
    188
    189static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
    190{
    191	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
    192
    193	if (i2c_transfer(adap, &msg, 1) != 1)
    194		return -1;
    195	return 0;
    196}
    197
    198static int i2c_read(struct i2c_adapter *adap,
    199		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
    200{
    201	struct i2c_msg msgs[2] = {
    202		{
    203			.addr = adr, .flags = 0,
    204			.buf = msg, .len = len
    205		}, {
    206			.addr = adr, .flags = I2C_M_RD,
    207			.buf = answ, .len = alen
    208		}
    209	};
    210	if (i2c_transfer(adap, msgs, 2) != 2)
    211		return -1;
    212	return 0;
    213}
    214
    215static inline u32 MulDiv32(u32 a, u32 b, u32 c)
    216{
    217	u64 tmp64;
    218
    219	tmp64 = (u64)a * (u64)b;
    220	do_div(tmp64, c);
    221
    222	return (u32) tmp64;
    223}
    224
    225static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
    226{
    227	u8 adr = state->config.demod_address;
    228	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
    229		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
    230	};
    231	u8 mm2[2];
    232	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
    233		return -1;
    234	if (data)
    235		*data = mm2[0] | (mm2[1] << 8);
    236	return mm2[0] | (mm2[1] << 8);
    237}
    238
    239static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
    240{
    241	u8 adr = state->config.demod_address;
    242	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
    243		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
    244	};
    245	u8 mm2[4];
    246
    247	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
    248		return -1;
    249	if (data)
    250		*data =
    251		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
    252	return 0;
    253}
    254
    255static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
    256{
    257	u8 adr = state->config.demod_address;
    258	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
    259		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
    260		data & 0xff, (data >> 8) & 0xff
    261	};
    262
    263	if (i2c_write(state->i2c, adr, mm, 6) < 0)
    264		return -1;
    265	return 0;
    266}
    267
    268static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
    269{
    270	u8 adr = state->config.demod_address;
    271	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
    272		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
    273		data & 0xff, (data >> 8) & 0xff,
    274		(data >> 16) & 0xff, (data >> 24) & 0xff
    275	};
    276
    277	if (i2c_write(state->i2c, adr, mm, 8) < 0)
    278		return -1;
    279	return 0;
    280}
    281
    282static int write_chunk(struct drxd_state *state,
    283		       u32 reg, u8 *data, u32 len, u8 flags)
    284{
    285	u8 adr = state->config.demod_address;
    286	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
    287		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
    288	};
    289	int i;
    290
    291	for (i = 0; i < len; i++)
    292		mm[4 + i] = data[i];
    293	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
    294		printk(KERN_ERR "error in write_chunk\n");
    295		return -1;
    296	}
    297	return 0;
    298}
    299
    300static int WriteBlock(struct drxd_state *state,
    301		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
    302{
    303	while (BlockSize > 0) {
    304		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
    305
    306		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
    307			return -1;
    308		pBlock += Chunk;
    309		Address += (Chunk >> 1);
    310		BlockSize -= Chunk;
    311	}
    312	return 0;
    313}
    314
    315static int WriteTable(struct drxd_state *state, u8 * pTable)
    316{
    317	int status = 0;
    318
    319	if (!pTable)
    320		return 0;
    321
    322	while (!status) {
    323		u16 Length;
    324		u32 Address = pTable[0] | (pTable[1] << 8) |
    325		    (pTable[2] << 16) | (pTable[3] << 24);
    326
    327		if (Address == 0xFFFFFFFF)
    328			break;
    329		pTable += sizeof(u32);
    330
    331		Length = pTable[0] | (pTable[1] << 8);
    332		pTable += sizeof(u16);
    333		if (!Length)
    334			break;
    335		status = WriteBlock(state, Address, Length * 2, pTable, 0);
    336		pTable += (Length * 2);
    337	}
    338	return status;
    339}
    340
    341/****************************************************************************/
    342/****************************************************************************/
    343/****************************************************************************/
    344
    345static int ResetCEFR(struct drxd_state *state)
    346{
    347	return WriteTable(state, state->m_ResetCEFR);
    348}
    349
    350static int InitCP(struct drxd_state *state)
    351{
    352	return WriteTable(state, state->m_InitCP);
    353}
    354
    355static int InitCE(struct drxd_state *state)
    356{
    357	int status;
    358	enum app_env AppEnv = state->app_env_default;
    359
    360	do {
    361		status = WriteTable(state, state->m_InitCE);
    362		if (status < 0)
    363			break;
    364
    365		if (state->operation_mode == OM_DVBT_Diversity_Front ||
    366		    state->operation_mode == OM_DVBT_Diversity_End) {
    367			AppEnv = state->app_env_diversity;
    368		}
    369		if (AppEnv == APPENV_STATIC) {
    370			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
    371			if (status < 0)
    372				break;
    373		} else if (AppEnv == APPENV_PORTABLE) {
    374			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
    375			if (status < 0)
    376				break;
    377		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
    378			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
    379			if (status < 0)
    380				break;
    381		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
    382			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
    383			if (status < 0)
    384				break;
    385		}
    386
    387		/* start ce */
    388		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
    389		if (status < 0)
    390			break;
    391	} while (0);
    392	return status;
    393}
    394
    395static int StopOC(struct drxd_state *state)
    396{
    397	int status = 0;
    398	u16 ocSyncLvl = 0;
    399	u16 ocModeLop = state->m_EcOcRegOcModeLop;
    400	u16 dtoIncLop = 0;
    401	u16 dtoIncHip = 0;
    402
    403	do {
    404		/* Store output configuration */
    405		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
    406		if (status < 0)
    407			break;
    408		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
    409		state->m_EcOcRegSncSncLvl = ocSyncLvl;
    410		/* m_EcOcRegOcModeLop = ocModeLop; */
    411
    412		/* Flush FIFO (byte-boundary) at fixed rate */
    413		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
    414		if (status < 0)
    415			break;
    416		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
    417		if (status < 0)
    418			break;
    419		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
    420		if (status < 0)
    421			break;
    422		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
    423		if (status < 0)
    424			break;
    425		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
    426		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
    427		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
    428		if (status < 0)
    429			break;
    430		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
    431		if (status < 0)
    432			break;
    433
    434		msleep(1);
    435		/* Output pins to '0' */
    436		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
    437		if (status < 0)
    438			break;
    439
    440		/* Force the OC out of sync */
    441		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
    442		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
    443		if (status < 0)
    444			break;
    445		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
    446		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
    447		ocModeLop |= 0x2;	/* Magically-out-of-sync */
    448		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
    449		if (status < 0)
    450			break;
    451		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
    452		if (status < 0)
    453			break;
    454		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
    455		if (status < 0)
    456			break;
    457	} while (0);
    458
    459	return status;
    460}
    461
    462static int StartOC(struct drxd_state *state)
    463{
    464	int status = 0;
    465
    466	do {
    467		/* Stop OC */
    468		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
    469		if (status < 0)
    470			break;
    471
    472		/* Restore output configuration */
    473		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
    474		if (status < 0)
    475			break;
    476		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
    477		if (status < 0)
    478			break;
    479
    480		/* Output pins active again */
    481		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
    482		if (status < 0)
    483			break;
    484
    485		/* Start OC */
    486		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
    487		if (status < 0)
    488			break;
    489	} while (0);
    490	return status;
    491}
    492
    493static int InitEQ(struct drxd_state *state)
    494{
    495	return WriteTable(state, state->m_InitEQ);
    496}
    497
    498static int InitEC(struct drxd_state *state)
    499{
    500	return WriteTable(state, state->m_InitEC);
    501}
    502
    503static int InitSC(struct drxd_state *state)
    504{
    505	return WriteTable(state, state->m_InitSC);
    506}
    507
    508static int InitAtomicRead(struct drxd_state *state)
    509{
    510	return WriteTable(state, state->m_InitAtomicRead);
    511}
    512
    513static int CorrectSysClockDeviation(struct drxd_state *state);
    514
    515static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
    516{
    517	u16 ScRaRamLock = 0;
    518	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
    519				    SC_RA_RAM_LOCK_FEC__M |
    520				    SC_RA_RAM_LOCK_DEMOD__M);
    521	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
    522				   SC_RA_RAM_LOCK_DEMOD__M);
    523	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
    524
    525	int status;
    526
    527	*pLockStatus = 0;
    528
    529	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
    530	if (status < 0) {
    531		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
    532		return status;
    533	}
    534
    535	if (state->drxd_state != DRXD_STARTED)
    536		return 0;
    537
    538	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
    539		*pLockStatus |= DRX_LOCK_MPEG;
    540		CorrectSysClockDeviation(state);
    541	}
    542
    543	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
    544		*pLockStatus |= DRX_LOCK_FEC;
    545
    546	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
    547		*pLockStatus |= DRX_LOCK_DEMOD;
    548	return 0;
    549}
    550
    551/****************************************************************************/
    552
    553static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
    554{
    555	int status;
    556
    557	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
    558		return -1;
    559
    560	if (cfg->ctrlMode == AGC_CTRL_USER) {
    561		do {
    562			u16 FeAgRegPm1AgcWri;
    563			u16 FeAgRegAgModeLop;
    564
    565			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
    566			if (status < 0)
    567				break;
    568			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
    569			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
    570			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
    571			if (status < 0)
    572				break;
    573
    574			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
    575						  FE_AG_REG_PM1_AGC_WRI__M);
    576			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
    577			if (status < 0)
    578				break;
    579		} while (0);
    580	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
    581		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
    582		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
    583		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
    584		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
    585		    )
    586			return -1;
    587		do {
    588			u16 FeAgRegAgModeLop;
    589			u16 FeAgRegEgcSetLvl;
    590			u16 slope, offset;
    591
    592			/* == Mode == */
    593
    594			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
    595			if (status < 0)
    596				break;
    597			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
    598			FeAgRegAgModeLop |=
    599			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
    600			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
    601			if (status < 0)
    602				break;
    603
    604			/* == Settle level == */
    605
    606			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
    607						  FE_AG_REG_EGC_SET_LVL__M);
    608			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
    609			if (status < 0)
    610				break;
    611
    612			/* == Min/Max == */
    613
    614			slope = (u16) ((cfg->maxOutputLevel -
    615					cfg->minOutputLevel) / 2);
    616			offset = (u16) ((cfg->maxOutputLevel +
    617					 cfg->minOutputLevel) / 2 - 511);
    618
    619			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
    620			if (status < 0)
    621				break;
    622			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
    623			if (status < 0)
    624				break;
    625
    626			/* == Speed == */
    627			{
    628				const u16 maxRur = 8;
    629				static const u16 slowIncrDecLUT[] = {
    630					3, 4, 4, 5, 6 };
    631				static const u16 fastIncrDecLUT[] = {
    632					14, 15, 15, 16,
    633					17, 18, 18, 19,
    634					20, 21, 22, 23,
    635					24, 26, 27, 28,
    636					29, 31
    637				};
    638
    639				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
    640				    (maxRur + 1);
    641				u16 fineSpeed = (u16) (cfg->speed -
    642						       ((cfg->speed /
    643							 fineSteps) *
    644							fineSteps));
    645				u16 invRurCount = (u16) (cfg->speed /
    646							 fineSteps);
    647				u16 rurCount;
    648				if (invRurCount > maxRur) {
    649					rurCount = 0;
    650					fineSpeed += fineSteps;
    651				} else {
    652					rurCount = maxRur - invRurCount;
    653				}
    654
    655				/*
    656				   fastInc = default *
    657				   (2^(fineSpeed/fineSteps))
    658				   => range[default...2*default>
    659				   slowInc = default *
    660				   (2^(fineSpeed/fineSteps))
    661				 */
    662				{
    663					u16 fastIncrDec =
    664					    fastIncrDecLUT[fineSpeed /
    665							   ((fineSteps /
    666							     (14 + 1)) + 1)];
    667					u16 slowIncrDec =
    668					    slowIncrDecLUT[fineSpeed /
    669							   (fineSteps /
    670							    (3 + 1))];
    671
    672					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
    673					if (status < 0)
    674						break;
    675					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
    676					if (status < 0)
    677						break;
    678					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
    679					if (status < 0)
    680						break;
    681					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
    682					if (status < 0)
    683						break;
    684					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
    685					if (status < 0)
    686						break;
    687				}
    688			}
    689		} while (0);
    690
    691	} else {
    692		/* No OFF mode for IF control */
    693		return -1;
    694	}
    695	return status;
    696}
    697
    698static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
    699{
    700	int status = 0;
    701
    702	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
    703		return -1;
    704
    705	if (cfg->ctrlMode == AGC_CTRL_USER) {
    706		do {
    707			u16 AgModeLop = 0;
    708			u16 level = (cfg->outputLevel);
    709
    710			if (level == DRXD_FE_CTRL_MAX)
    711				level++;
    712
    713			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
    714			if (status < 0)
    715				break;
    716
    717			/*==== Mode ====*/
    718
    719			/* Powerdown PD2, WRI source */
    720			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
    721			state->m_FeAgRegAgPwd |=
    722			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
    723			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
    724			if (status < 0)
    725				break;
    726
    727			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
    728			if (status < 0)
    729				break;
    730			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
    731					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
    732			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
    733				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
    734			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
    735			if (status < 0)
    736				break;
    737
    738			/* enable AGC2 pin */
    739			{
    740				u16 FeAgRegAgAgcSio = 0;
    741				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
    742				if (status < 0)
    743					break;
    744				FeAgRegAgAgcSio &=
    745				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
    746				FeAgRegAgAgcSio |=
    747				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
    748				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
    749				if (status < 0)
    750					break;
    751			}
    752
    753		} while (0);
    754	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
    755		u16 AgModeLop = 0;
    756
    757		do {
    758			u16 level;
    759			/* Automatic control */
    760			/* Powerup PD2, AGC2 as output, TGC source */
    761			(state->m_FeAgRegAgPwd) &=
    762			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
    763			(state->m_FeAgRegAgPwd) |=
    764			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
    765			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
    766			if (status < 0)
    767				break;
    768
    769			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
    770			if (status < 0)
    771				break;
    772			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
    773					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
    774			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
    775				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
    776			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
    777			if (status < 0)
    778				break;
    779			/* Settle level */
    780			level = (((cfg->settleLevel) >> 4) &
    781				 FE_AG_REG_TGC_SET_LVL__M);
    782			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
    783			if (status < 0)
    784				break;
    785
    786			/* Min/max: don't care */
    787
    788			/* Speed: TODO */
    789
    790			/* enable AGC2 pin */
    791			{
    792				u16 FeAgRegAgAgcSio = 0;
    793				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
    794				if (status < 0)
    795					break;
    796				FeAgRegAgAgcSio &=
    797				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
    798				FeAgRegAgAgcSio |=
    799				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
    800				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
    801				if (status < 0)
    802					break;
    803			}
    804
    805		} while (0);
    806	} else {
    807		u16 AgModeLop = 0;
    808
    809		do {
    810			/* No RF AGC control */
    811			/* Powerdown PD2, AGC2 as output, WRI source */
    812			(state->m_FeAgRegAgPwd) &=
    813			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
    814			(state->m_FeAgRegAgPwd) |=
    815			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
    816			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
    817			if (status < 0)
    818				break;
    819
    820			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
    821			if (status < 0)
    822				break;
    823			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
    824					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
    825			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
    826				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
    827			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
    828			if (status < 0)
    829				break;
    830
    831			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
    832			{
    833				u16 FeAgRegAgAgcSio = 0;
    834				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
    835				if (status < 0)
    836					break;
    837				FeAgRegAgAgcSio &=
    838				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
    839				FeAgRegAgAgcSio |=
    840				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
    841				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
    842				if (status < 0)
    843					break;
    844			}
    845		} while (0);
    846	}
    847	return status;
    848}
    849
    850static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
    851{
    852	int status = 0;
    853
    854	*pValue = 0;
    855	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
    856		u16 Value;
    857		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
    858		Value &= FE_AG_REG_GC1_AGC_DAT__M;
    859		if (status >= 0) {
    860			/*           3.3V
    861			   |
    862			   R1
    863			   |
    864			   Vin - R3 - * -- Vout
    865			   |
    866			   R2
    867			   |
    868			   GND
    869			 */
    870			u32 R1 = state->if_agc_cfg.R1;
    871			u32 R2 = state->if_agc_cfg.R2;
    872			u32 R3 = state->if_agc_cfg.R3;
    873
    874			u32 Vmax, Rpar, Vmin, Vout;
    875
    876			if (R2 == 0 && (R1 == 0 || R3 == 0))
    877				return 0;
    878
    879			Vmax = (3300 * R2) / (R1 + R2);
    880			Rpar = (R2 * R3) / (R3 + R2);
    881			Vmin = (3300 * Rpar) / (R1 + Rpar);
    882			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
    883
    884			*pValue = Vout;
    885		}
    886	}
    887	return status;
    888}
    889
    890static int load_firmware(struct drxd_state *state, const char *fw_name)
    891{
    892	const struct firmware *fw;
    893
    894	if (request_firmware(&fw, fw_name, state->dev) < 0) {
    895		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
    896		return -EIO;
    897	}
    898
    899	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
    900	if (!state->microcode) {
    901		release_firmware(fw);
    902		return -ENOMEM;
    903	}
    904
    905	state->microcode_length = fw->size;
    906	release_firmware(fw);
    907	return 0;
    908}
    909
    910static int DownloadMicrocode(struct drxd_state *state,
    911			     const u8 *pMCImage, u32 Length)
    912{
    913	u8 *pSrc;
    914	u32 Address;
    915	u16 nBlocks;
    916	u16 BlockSize;
    917	int i, status = 0;
    918
    919	pSrc = (u8 *) pMCImage;
    920	/* We're not using Flags */
    921	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
    922	pSrc += sizeof(u16);
    923	nBlocks = (pSrc[0] << 8) | pSrc[1];
    924	pSrc += sizeof(u16);
    925
    926	for (i = 0; i < nBlocks; i++) {
    927		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
    928		    (pSrc[2] << 8) | pSrc[3];
    929		pSrc += sizeof(u32);
    930
    931		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
    932		pSrc += sizeof(u16);
    933
    934		/* We're not using Flags */
    935		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
    936		pSrc += sizeof(u16);
    937
    938		/* We're not using BlockCRC */
    939		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
    940		pSrc += sizeof(u16);
    941
    942		status = WriteBlock(state, Address, BlockSize,
    943				    pSrc, DRX_I2C_CLEARCRC);
    944		if (status < 0)
    945			break;
    946		pSrc += BlockSize;
    947	}
    948
    949	return status;
    950}
    951
    952static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
    953{
    954	u32 nrRetries = 0;
    955	int status;
    956
    957	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
    958	if (status < 0)
    959		return status;
    960
    961	do {
    962		nrRetries += 1;
    963		if (nrRetries > DRXD_MAX_RETRIES) {
    964			status = -1;
    965			break;
    966		}
    967		status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
    968	} while (status != 0);
    969
    970	if (status >= 0)
    971		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
    972	return status;
    973}
    974
    975static int HI_CfgCommand(struct drxd_state *state)
    976{
    977	int status = 0;
    978
    979	mutex_lock(&state->mutex);
    980	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
    981	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
    982	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
    983	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
    984	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
    985
    986	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
    987
    988	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
    989	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
    990		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
    991				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
    992	else
    993		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
    994	mutex_unlock(&state->mutex);
    995	return status;
    996}
    997
    998static int InitHI(struct drxd_state *state)
    999{
   1000	state->hi_cfg_wakeup_key = (state->chip_adr);
   1001	/* port/bridge/power down ctrl */
   1002	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
   1003	return HI_CfgCommand(state);
   1004}
   1005
   1006static int HI_ResetCommand(struct drxd_state *state)
   1007{
   1008	int status;
   1009
   1010	mutex_lock(&state->mutex);
   1011	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
   1012			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
   1013	if (status == 0)
   1014		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
   1015	mutex_unlock(&state->mutex);
   1016	msleep(1);
   1017	return status;
   1018}
   1019
   1020static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
   1021{
   1022	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
   1023	if (bEnableBridge)
   1024		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
   1025	else
   1026		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
   1027
   1028	return HI_CfgCommand(state);
   1029}
   1030
   1031#define HI_TR_WRITE      0x9
   1032#define HI_TR_READ       0xA
   1033#define HI_TR_READ_WRITE 0xB
   1034#define HI_TR_BROADCAST  0x4
   1035
   1036#if 0
   1037static int AtomicReadBlock(struct drxd_state *state,
   1038			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
   1039{
   1040	int status;
   1041	int i = 0;
   1042
   1043	/* Parameter check */
   1044	if ((!pData) || ((DataSize & 1) != 0))
   1045		return -1;
   1046
   1047	mutex_lock(&state->mutex);
   1048
   1049	do {
   1050		/* Instruct HI to read n bytes */
   1051		/* TODO use proper names forthese egisters */
   1052		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
   1053		if (status < 0)
   1054			break;
   1055		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
   1056		if (status < 0)
   1057			break;
   1058		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
   1059		if (status < 0)
   1060			break;
   1061		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
   1062		if (status < 0)
   1063			break;
   1064		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
   1065		if (status < 0)
   1066			break;
   1067
   1068		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
   1069		if (status < 0)
   1070			break;
   1071
   1072	} while (0);
   1073
   1074	if (status >= 0) {
   1075		for (i = 0; i < (DataSize / 2); i += 1) {
   1076			u16 word;
   1077
   1078			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
   1079					&word, 0);
   1080			if (status < 0)
   1081				break;
   1082			pData[2 * i] = (u8) (word & 0xFF);
   1083			pData[(2 * i) + 1] = (u8) (word >> 8);
   1084		}
   1085	}
   1086	mutex_unlock(&state->mutex);
   1087	return status;
   1088}
   1089
   1090static int AtomicReadReg32(struct drxd_state *state,
   1091			   u32 Addr, u32 *pData, u8 Flags)
   1092{
   1093	u8 buf[sizeof(u32)];
   1094	int status;
   1095
   1096	if (!pData)
   1097		return -1;
   1098	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
   1099	*pData = (((u32) buf[0]) << 0) +
   1100	    (((u32) buf[1]) << 8) +
   1101	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
   1102	return status;
   1103}
   1104#endif
   1105
   1106static int StopAllProcessors(struct drxd_state *state)
   1107{
   1108	return Write16(state, HI_COMM_EXEC__A,
   1109		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
   1110}
   1111
   1112static int EnableAndResetMB(struct drxd_state *state)
   1113{
   1114	if (state->type_A) {
   1115		/* disable? monitor bus observe @ EC_OC */
   1116		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
   1117	}
   1118
   1119	/* do inverse broadcast, followed by explicit write to HI */
   1120	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
   1121	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
   1122	return 0;
   1123}
   1124
   1125static int InitCC(struct drxd_state *state)
   1126{
   1127	int status = 0;
   1128
   1129	if (state->osc_clock_freq == 0 ||
   1130	    state->osc_clock_freq > 20000 ||
   1131	    (state->osc_clock_freq % 4000) != 0) {
   1132		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
   1133		return -1;
   1134	}
   1135
   1136	status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
   1137	status |= Write16(state, CC_REG_PLL_MODE__A,
   1138				CC_REG_PLL_MODE_BYPASS_PLL |
   1139				CC_REG_PLL_MODE_PUMP_CUR_12, 0);
   1140	status |= Write16(state, CC_REG_REF_DIVIDE__A,
   1141				state->osc_clock_freq / 4000, 0);
   1142	status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
   1143				0);
   1144	status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
   1145
   1146	return status;
   1147}
   1148
   1149static int ResetECOD(struct drxd_state *state)
   1150{
   1151	int status = 0;
   1152
   1153	if (state->type_A)
   1154		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
   1155	else
   1156		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
   1157
   1158	if (!(status < 0))
   1159		status = WriteTable(state, state->m_ResetECRAM);
   1160	if (!(status < 0))
   1161		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
   1162	return status;
   1163}
   1164
   1165/* Configure PGA switch */
   1166
   1167static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
   1168{
   1169	int status;
   1170	u16 AgModeLop = 0;
   1171	u16 AgModeHip = 0;
   1172	do {
   1173		if (pgaSwitch) {
   1174			/* PGA on */
   1175			/* fine gain */
   1176			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
   1177			if (status < 0)
   1178				break;
   1179			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
   1180			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
   1181			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
   1182			if (status < 0)
   1183				break;
   1184
   1185			/* coarse gain */
   1186			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
   1187			if (status < 0)
   1188				break;
   1189			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
   1190			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
   1191			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
   1192			if (status < 0)
   1193				break;
   1194
   1195			/* enable fine and coarse gain, enable AAF,
   1196			   no ext resistor */
   1197			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
   1198			if (status < 0)
   1199				break;
   1200		} else {
   1201			/* PGA off, bypass */
   1202
   1203			/* fine gain */
   1204			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
   1205			if (status < 0)
   1206				break;
   1207			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
   1208			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
   1209			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
   1210			if (status < 0)
   1211				break;
   1212
   1213			/* coarse gain */
   1214			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
   1215			if (status < 0)
   1216				break;
   1217			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
   1218			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
   1219			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
   1220			if (status < 0)
   1221				break;
   1222
   1223			/* disable fine and coarse gain, enable AAF,
   1224			   no ext resistor */
   1225			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
   1226			if (status < 0)
   1227				break;
   1228		}
   1229	} while (0);
   1230	return status;
   1231}
   1232
   1233static int InitFE(struct drxd_state *state)
   1234{
   1235	int status;
   1236
   1237	do {
   1238		status = WriteTable(state, state->m_InitFE_1);
   1239		if (status < 0)
   1240			break;
   1241
   1242		if (state->type_A) {
   1243			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
   1244					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
   1245					 0);
   1246		} else {
   1247			if (state->PGA)
   1248				status = SetCfgPga(state, 0);
   1249			else
   1250				status =
   1251				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
   1252					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
   1253					    0);
   1254		}
   1255
   1256		if (status < 0)
   1257			break;
   1258		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
   1259		if (status < 0)
   1260			break;
   1261		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
   1262		if (status < 0)
   1263			break;
   1264
   1265		status = WriteTable(state, state->m_InitFE_2);
   1266		if (status < 0)
   1267			break;
   1268
   1269	} while (0);
   1270
   1271	return status;
   1272}
   1273
   1274static int InitFT(struct drxd_state *state)
   1275{
   1276	/*
   1277	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
   1278	   SC stuff
   1279	 */
   1280	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
   1281}
   1282
   1283static int SC_WaitForReady(struct drxd_state *state)
   1284{
   1285	int i;
   1286
   1287	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
   1288		int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
   1289		if (status == 0)
   1290			return status;
   1291	}
   1292	return -1;
   1293}
   1294
   1295static int SC_SendCommand(struct drxd_state *state, u16 cmd)
   1296{
   1297	int status = 0, ret;
   1298	u16 errCode;
   1299
   1300	status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
   1301	if (status < 0)
   1302		return status;
   1303
   1304	SC_WaitForReady(state);
   1305
   1306	ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
   1307
   1308	if (ret < 0 || errCode == 0xFFFF) {
   1309		printk(KERN_ERR "Command Error\n");
   1310		status = -1;
   1311	}
   1312
   1313	return status;
   1314}
   1315
   1316static int SC_ProcStartCommand(struct drxd_state *state,
   1317			       u16 subCmd, u16 param0, u16 param1)
   1318{
   1319	int ret, status = 0;
   1320	u16 scExec;
   1321
   1322	mutex_lock(&state->mutex);
   1323	do {
   1324		ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
   1325		if (ret < 0 || scExec != 1) {
   1326			status = -1;
   1327			break;
   1328		}
   1329		SC_WaitForReady(state);
   1330		status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
   1331		status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
   1332		status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
   1333
   1334		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
   1335	} while (0);
   1336	mutex_unlock(&state->mutex);
   1337	return status;
   1338}
   1339
   1340static int SC_SetPrefParamCommand(struct drxd_state *state,
   1341				  u16 subCmd, u16 param0, u16 param1)
   1342{
   1343	int status;
   1344
   1345	mutex_lock(&state->mutex);
   1346	do {
   1347		status = SC_WaitForReady(state);
   1348		if (status < 0)
   1349			break;
   1350		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
   1351		if (status < 0)
   1352			break;
   1353		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
   1354		if (status < 0)
   1355			break;
   1356		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
   1357		if (status < 0)
   1358			break;
   1359
   1360		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
   1361		if (status < 0)
   1362			break;
   1363	} while (0);
   1364	mutex_unlock(&state->mutex);
   1365	return status;
   1366}
   1367
   1368#if 0
   1369static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
   1370{
   1371	int status = 0;
   1372
   1373	mutex_lock(&state->mutex);
   1374	do {
   1375		status = SC_WaitForReady(state);
   1376		if (status < 0)
   1377			break;
   1378		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
   1379		if (status < 0)
   1380			break;
   1381		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
   1382		if (status < 0)
   1383			break;
   1384	} while (0);
   1385	mutex_unlock(&state->mutex);
   1386	return status;
   1387}
   1388#endif
   1389
   1390static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
   1391{
   1392	int status;
   1393
   1394	do {
   1395		u16 EcOcRegIprInvMpg = 0;
   1396		u16 EcOcRegOcModeLop = 0;
   1397		u16 EcOcRegOcModeHip = 0;
   1398		u16 EcOcRegOcMpgSio = 0;
   1399
   1400		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
   1401
   1402		if (state->operation_mode == OM_DVBT_Diversity_Front) {
   1403			if (bEnableOutput) {
   1404				EcOcRegOcModeHip |=
   1405				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
   1406			} else
   1407				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
   1408			EcOcRegOcModeLop |=
   1409			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
   1410		} else {
   1411			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
   1412
   1413			if (bEnableOutput)
   1414				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
   1415			else
   1416				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
   1417
   1418			/* Don't Insert RS Byte */
   1419			if (state->insert_rs_byte) {
   1420				EcOcRegOcModeLop &=
   1421				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
   1422				EcOcRegOcModeHip &=
   1423				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
   1424				EcOcRegOcModeHip |=
   1425				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
   1426			} else {
   1427				EcOcRegOcModeLop |=
   1428				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
   1429				EcOcRegOcModeHip &=
   1430				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
   1431				EcOcRegOcModeHip |=
   1432				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
   1433			}
   1434
   1435			/* Mode = Parallel */
   1436			if (state->enable_parallel)
   1437				EcOcRegOcModeLop &=
   1438				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
   1439			else
   1440				EcOcRegOcModeLop |=
   1441				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
   1442		}
   1443		/* Invert Data */
   1444		/* EcOcRegIprInvMpg |= 0x00FF; */
   1445		EcOcRegIprInvMpg &= (~(0x00FF));
   1446
   1447		/* Invert Error ( we don't use the pin ) */
   1448		/*  EcOcRegIprInvMpg |= 0x0100; */
   1449		EcOcRegIprInvMpg &= (~(0x0100));
   1450
   1451		/* Invert Start ( we don't use the pin ) */
   1452		/* EcOcRegIprInvMpg |= 0x0200; */
   1453		EcOcRegIprInvMpg &= (~(0x0200));
   1454
   1455		/* Invert Valid ( we don't use the pin ) */
   1456		/* EcOcRegIprInvMpg |= 0x0400; */
   1457		EcOcRegIprInvMpg &= (~(0x0400));
   1458
   1459		/* Invert Clock */
   1460		/* EcOcRegIprInvMpg |= 0x0800; */
   1461		EcOcRegIprInvMpg &= (~(0x0800));
   1462
   1463		/* EcOcRegOcModeLop =0x05; */
   1464		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
   1465		if (status < 0)
   1466			break;
   1467		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
   1468		if (status < 0)
   1469			break;
   1470		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
   1471		if (status < 0)
   1472			break;
   1473		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
   1474		if (status < 0)
   1475			break;
   1476	} while (0);
   1477	return status;
   1478}
   1479
   1480static int SetDeviceTypeId(struct drxd_state *state)
   1481{
   1482	int status = 0;
   1483	u16 deviceId = 0;
   1484
   1485	do {
   1486		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
   1487		if (status < 0)
   1488			break;
   1489		/* TODO: why twice? */
   1490		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
   1491		if (status < 0)
   1492			break;
   1493		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
   1494
   1495		state->type_A = 0;
   1496		state->PGA = 0;
   1497		state->diversity = 0;
   1498		if (deviceId == 0) {	/* on A2 only 3975 available */
   1499			state->type_A = 1;
   1500			printk(KERN_INFO "DRX3975D-A2\n");
   1501		} else {
   1502			deviceId >>= 12;
   1503			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
   1504			switch (deviceId) {
   1505			case 4:
   1506				state->diversity = 1;
   1507				fallthrough;
   1508			case 3:
   1509			case 7:
   1510				state->PGA = 1;
   1511				break;
   1512			case 6:
   1513				state->diversity = 1;
   1514				fallthrough;
   1515			case 5:
   1516			case 8:
   1517				break;
   1518			default:
   1519				status = -1;
   1520				break;
   1521			}
   1522		}
   1523	} while (0);
   1524
   1525	if (status < 0)
   1526		return status;
   1527
   1528	/* Init Table selection */
   1529	state->m_InitAtomicRead = DRXD_InitAtomicRead;
   1530	state->m_InitSC = DRXD_InitSC;
   1531	state->m_ResetECRAM = DRXD_ResetECRAM;
   1532	if (state->type_A) {
   1533		state->m_ResetCEFR = DRXD_ResetCEFR;
   1534		state->m_InitFE_1 = DRXD_InitFEA2_1;
   1535		state->m_InitFE_2 = DRXD_InitFEA2_2;
   1536		state->m_InitCP = DRXD_InitCPA2;
   1537		state->m_InitCE = DRXD_InitCEA2;
   1538		state->m_InitEQ = DRXD_InitEQA2;
   1539		state->m_InitEC = DRXD_InitECA2;
   1540		if (load_firmware(state, DRX_FW_FILENAME_A2))
   1541			return -EIO;
   1542	} else {
   1543		state->m_ResetCEFR = NULL;
   1544		state->m_InitFE_1 = DRXD_InitFEB1_1;
   1545		state->m_InitFE_2 = DRXD_InitFEB1_2;
   1546		state->m_InitCP = DRXD_InitCPB1;
   1547		state->m_InitCE = DRXD_InitCEB1;
   1548		state->m_InitEQ = DRXD_InitEQB1;
   1549		state->m_InitEC = DRXD_InitECB1;
   1550		if (load_firmware(state, DRX_FW_FILENAME_B1))
   1551			return -EIO;
   1552	}
   1553	if (state->diversity) {
   1554		state->m_InitDiversityFront = DRXD_InitDiversityFront;
   1555		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
   1556		state->m_DisableDiversity = DRXD_DisableDiversity;
   1557		state->m_StartDiversityFront = DRXD_StartDiversityFront;
   1558		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
   1559		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
   1560		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
   1561	} else {
   1562		state->m_InitDiversityFront = NULL;
   1563		state->m_InitDiversityEnd = NULL;
   1564		state->m_DisableDiversity = NULL;
   1565		state->m_StartDiversityFront = NULL;
   1566		state->m_StartDiversityEnd = NULL;
   1567		state->m_DiversityDelay8MHZ = NULL;
   1568		state->m_DiversityDelay6MHZ = NULL;
   1569	}
   1570
   1571	return status;
   1572}
   1573
   1574static int CorrectSysClockDeviation(struct drxd_state *state)
   1575{
   1576	int status;
   1577	s32 incr = 0;
   1578	s32 nomincr = 0;
   1579	u32 bandwidth = 0;
   1580	u32 sysClockInHz = 0;
   1581	u32 sysClockFreq = 0;	/* in kHz */
   1582	s16 oscClockDeviation;
   1583	s16 Diff;
   1584
   1585	do {
   1586		/* Retrieve bandwidth and incr, sanity check */
   1587
   1588		/* These accesses should be AtomicReadReg32, but that
   1589		   causes trouble (at least for diversity */
   1590		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
   1591		if (status < 0)
   1592			break;
   1593		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
   1594		if (status < 0)
   1595			break;
   1596
   1597		if (state->type_A) {
   1598			if ((nomincr - incr < -500) || (nomincr - incr > 500))
   1599				break;
   1600		} else {
   1601			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
   1602				break;
   1603		}
   1604
   1605		switch (state->props.bandwidth_hz) {
   1606		case 8000000:
   1607			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
   1608			break;
   1609		case 7000000:
   1610			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
   1611			break;
   1612		case 6000000:
   1613			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
   1614			break;
   1615		default:
   1616			return -1;
   1617		}
   1618
   1619		/* Compute new sysclock value
   1620		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
   1621		incr += (1 << 23);
   1622		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
   1623		sysClockFreq = (u32) (sysClockInHz / 1000);
   1624		/* rounding */
   1625		if ((sysClockInHz % 1000) > 500)
   1626			sysClockFreq++;
   1627
   1628		/* Compute clock deviation in ppm */
   1629		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
   1630					     (s32)
   1631					     (state->expected_sys_clock_freq)) *
   1632					    1000000L) /
   1633					   (s32)
   1634					   (state->expected_sys_clock_freq));
   1635
   1636		Diff = oscClockDeviation - state->osc_clock_deviation;
   1637		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
   1638		if (Diff >= -200 && Diff <= 200) {
   1639			state->sys_clock_freq = (u16) sysClockFreq;
   1640			if (oscClockDeviation != state->osc_clock_deviation) {
   1641				if (state->config.osc_deviation) {
   1642					state->config.osc_deviation(state->priv,
   1643								    oscClockDeviation,
   1644								    1);
   1645					state->osc_clock_deviation =
   1646					    oscClockDeviation;
   1647				}
   1648			}
   1649			/* switch OFF SRMM scan in SC */
   1650			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
   1651			if (status < 0)
   1652				break;
   1653			/* overrule FE_IF internal value for
   1654			   proper re-locking */
   1655			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
   1656			if (status < 0)
   1657				break;
   1658			state->cscd_state = CSCD_SAVED;
   1659		}
   1660	} while (0);
   1661
   1662	return status;
   1663}
   1664
   1665static int DRX_Stop(struct drxd_state *state)
   1666{
   1667	int status;
   1668
   1669	if (state->drxd_state != DRXD_STARTED)
   1670		return 0;
   1671
   1672	do {
   1673		if (state->cscd_state != CSCD_SAVED) {
   1674			u32 lock;
   1675			status = DRX_GetLockStatus(state, &lock);
   1676			if (status < 0)
   1677				break;
   1678		}
   1679
   1680		status = StopOC(state);
   1681		if (status < 0)
   1682			break;
   1683
   1684		state->drxd_state = DRXD_STOPPED;
   1685
   1686		status = ConfigureMPEGOutput(state, 0);
   1687		if (status < 0)
   1688			break;
   1689
   1690		if (state->type_A) {
   1691			/* Stop relevant processors off the device */
   1692			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
   1693			if (status < 0)
   1694				break;
   1695
   1696			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   1697			if (status < 0)
   1698				break;
   1699			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   1700			if (status < 0)
   1701				break;
   1702		} else {
   1703			/* Stop all processors except HI & CC & FE */
   1704			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   1705			if (status < 0)
   1706				break;
   1707			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   1708			if (status < 0)
   1709				break;
   1710			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   1711			if (status < 0)
   1712				break;
   1713			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   1714			if (status < 0)
   1715				break;
   1716			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   1717			if (status < 0)
   1718				break;
   1719			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   1720			if (status < 0)
   1721				break;
   1722			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
   1723			if (status < 0)
   1724				break;
   1725		}
   1726
   1727	} while (0);
   1728	return status;
   1729}
   1730
   1731#if 0	/* Currently unused */
   1732static int SetOperationMode(struct drxd_state *state, int oMode)
   1733{
   1734	int status;
   1735
   1736	do {
   1737		if (state->drxd_state != DRXD_STOPPED) {
   1738			status = -1;
   1739			break;
   1740		}
   1741
   1742		if (oMode == state->operation_mode) {
   1743			status = 0;
   1744			break;
   1745		}
   1746
   1747		if (oMode != OM_Default && !state->diversity) {
   1748			status = -1;
   1749			break;
   1750		}
   1751
   1752		switch (oMode) {
   1753		case OM_DVBT_Diversity_Front:
   1754			status = WriteTable(state, state->m_InitDiversityFront);
   1755			break;
   1756		case OM_DVBT_Diversity_End:
   1757			status = WriteTable(state, state->m_InitDiversityEnd);
   1758			break;
   1759		case OM_Default:
   1760			/* We need to check how to
   1761			   get DRXD out of diversity */
   1762		default:
   1763			status = WriteTable(state, state->m_DisableDiversity);
   1764			break;
   1765		}
   1766	} while (0);
   1767
   1768	if (!status)
   1769		state->operation_mode = oMode;
   1770	return status;
   1771}
   1772#endif
   1773
   1774static int StartDiversity(struct drxd_state *state)
   1775{
   1776	int status = 0;
   1777	u16 rcControl;
   1778
   1779	do {
   1780		if (state->operation_mode == OM_DVBT_Diversity_Front) {
   1781			status = WriteTable(state, state->m_StartDiversityFront);
   1782			if (status < 0)
   1783				break;
   1784		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
   1785			status = WriteTable(state, state->m_StartDiversityEnd);
   1786			if (status < 0)
   1787				break;
   1788			if (state->props.bandwidth_hz == 8000000) {
   1789				status = WriteTable(state, state->m_DiversityDelay8MHZ);
   1790				if (status < 0)
   1791					break;
   1792			} else {
   1793				status = WriteTable(state, state->m_DiversityDelay6MHZ);
   1794				if (status < 0)
   1795					break;
   1796			}
   1797
   1798			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
   1799			if (status < 0)
   1800				break;
   1801			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
   1802			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
   1803			    /*  combining enabled */
   1804			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
   1805			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
   1806			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
   1807			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
   1808			if (status < 0)
   1809				break;
   1810		}
   1811	} while (0);
   1812	return status;
   1813}
   1814
   1815static int SetFrequencyShift(struct drxd_state *state,
   1816			     u32 offsetFreq, int channelMirrored)
   1817{
   1818	int negativeShift = (state->tuner_mirrors == channelMirrored);
   1819
   1820	/* Handle all mirroring
   1821	 *
   1822	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
   1823	 * feFsRegAddInc to 28 bits below
   1824	 * (if the result before masking is more than 28 bits, this means
   1825	 *  that the ADC is mirroring.
   1826	 * The masking is in fact the aliasing of the ADC)
   1827	 *
   1828	 */
   1829
   1830	/* Compute register value, unsigned computation */
   1831	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
   1832					 offsetFreq,
   1833					 1 << 28, state->sys_clock_freq);
   1834	/* Remove integer part */
   1835	state->fe_fs_add_incr &= 0x0FFFFFFFL;
   1836	if (negativeShift)
   1837		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
   1838
   1839	/* Save the frequency shift without tunerOffset compensation
   1840	   for CtrlGetChannel. */
   1841	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
   1842					     1 << 28, state->sys_clock_freq);
   1843	/* Remove integer part */
   1844	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
   1845	if (negativeShift)
   1846		state->org_fe_fs_add_incr = ((1L << 28) -
   1847					     state->org_fe_fs_add_incr);
   1848
   1849	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
   1850		       state->fe_fs_add_incr, 0);
   1851}
   1852
   1853static int SetCfgNoiseCalibration(struct drxd_state *state,
   1854				  struct SNoiseCal *noiseCal)
   1855{
   1856	u16 beOptEna;
   1857	int status = 0;
   1858
   1859	do {
   1860		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
   1861		if (status < 0)
   1862			break;
   1863		if (noiseCal->cpOpt) {
   1864			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
   1865		} else {
   1866			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
   1867			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
   1868			if (status < 0)
   1869				break;
   1870		}
   1871		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
   1872		if (status < 0)
   1873			break;
   1874
   1875		if (!state->type_A) {
   1876			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
   1877			if (status < 0)
   1878				break;
   1879			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
   1880			if (status < 0)
   1881				break;
   1882		}
   1883	} while (0);
   1884
   1885	return status;
   1886}
   1887
   1888static int DRX_Start(struct drxd_state *state, s32 off)
   1889{
   1890	struct dtv_frontend_properties *p = &state->props;
   1891	int status;
   1892
   1893	u16 transmissionParams = 0;
   1894	u16 operationMode = 0;
   1895	u16 qpskTdTpsPwr = 0;
   1896	u16 qam16TdTpsPwr = 0;
   1897	u16 qam64TdTpsPwr = 0;
   1898	u32 feIfIncr = 0;
   1899	u32 bandwidth = 0;
   1900	int mirrorFreqSpect;
   1901
   1902	u16 qpskSnCeGain = 0;
   1903	u16 qam16SnCeGain = 0;
   1904	u16 qam64SnCeGain = 0;
   1905	u16 qpskIsGainMan = 0;
   1906	u16 qam16IsGainMan = 0;
   1907	u16 qam64IsGainMan = 0;
   1908	u16 qpskIsGainExp = 0;
   1909	u16 qam16IsGainExp = 0;
   1910	u16 qam64IsGainExp = 0;
   1911	u16 bandwidthParam = 0;
   1912
   1913	if (off < 0)
   1914		off = (off - 500) / 1000;
   1915	else
   1916		off = (off + 500) / 1000;
   1917
   1918	do {
   1919		if (state->drxd_state != DRXD_STOPPED)
   1920			return -1;
   1921		status = ResetECOD(state);
   1922		if (status < 0)
   1923			break;
   1924		if (state->type_A) {
   1925			status = InitSC(state);
   1926			if (status < 0)
   1927				break;
   1928		} else {
   1929			status = InitFT(state);
   1930			if (status < 0)
   1931				break;
   1932			status = InitCP(state);
   1933			if (status < 0)
   1934				break;
   1935			status = InitCE(state);
   1936			if (status < 0)
   1937				break;
   1938			status = InitEQ(state);
   1939			if (status < 0)
   1940				break;
   1941			status = InitSC(state);
   1942			if (status < 0)
   1943				break;
   1944		}
   1945
   1946		/* Restore current IF & RF AGC settings */
   1947
   1948		status = SetCfgIfAgc(state, &state->if_agc_cfg);
   1949		if (status < 0)
   1950			break;
   1951		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
   1952		if (status < 0)
   1953			break;
   1954
   1955		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
   1956
   1957		switch (p->transmission_mode) {
   1958		default:	/* Not set, detect it automatically */
   1959			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
   1960			fallthrough;	/* try first guess DRX_FFTMODE_8K */
   1961		case TRANSMISSION_MODE_8K:
   1962			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
   1963			if (state->type_A) {
   1964				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
   1965				if (status < 0)
   1966					break;
   1967				qpskSnCeGain = 99;
   1968				qam16SnCeGain = 83;
   1969				qam64SnCeGain = 67;
   1970			}
   1971			break;
   1972		case TRANSMISSION_MODE_2K:
   1973			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
   1974			if (state->type_A) {
   1975				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
   1976				if (status < 0)
   1977					break;
   1978				qpskSnCeGain = 97;
   1979				qam16SnCeGain = 71;
   1980				qam64SnCeGain = 65;
   1981			}
   1982			break;
   1983		}
   1984
   1985		switch (p->guard_interval) {
   1986		case GUARD_INTERVAL_1_4:
   1987			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
   1988			break;
   1989		case GUARD_INTERVAL_1_8:
   1990			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
   1991			break;
   1992		case GUARD_INTERVAL_1_16:
   1993			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
   1994			break;
   1995		case GUARD_INTERVAL_1_32:
   1996			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
   1997			break;
   1998		default:	/* Not set, detect it automatically */
   1999			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
   2000			/* try first guess 1/4 */
   2001			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
   2002			break;
   2003		}
   2004
   2005		switch (p->hierarchy) {
   2006		case HIERARCHY_1:
   2007			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
   2008			if (state->type_A) {
   2009				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
   2010				if (status < 0)
   2011					break;
   2012				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
   2013				if (status < 0)
   2014					break;
   2015
   2016				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
   2017				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
   2018				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
   2019
   2020				qpskIsGainMan =
   2021				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
   2022				qam16IsGainMan =
   2023				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
   2024				qam64IsGainMan =
   2025				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
   2026
   2027				qpskIsGainExp =
   2028				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
   2029				qam16IsGainExp =
   2030				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
   2031				qam64IsGainExp =
   2032				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
   2033			}
   2034			break;
   2035
   2036		case HIERARCHY_2:
   2037			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
   2038			if (state->type_A) {
   2039				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
   2040				if (status < 0)
   2041					break;
   2042				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
   2043				if (status < 0)
   2044					break;
   2045
   2046				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
   2047				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
   2048				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
   2049
   2050				qpskIsGainMan =
   2051				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
   2052				qam16IsGainMan =
   2053				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
   2054				qam64IsGainMan =
   2055				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
   2056
   2057				qpskIsGainExp =
   2058				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
   2059				qam16IsGainExp =
   2060				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
   2061				qam64IsGainExp =
   2062				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
   2063			}
   2064			break;
   2065		case HIERARCHY_4:
   2066			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
   2067			if (state->type_A) {
   2068				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
   2069				if (status < 0)
   2070					break;
   2071				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
   2072				if (status < 0)
   2073					break;
   2074
   2075				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
   2076				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
   2077				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
   2078
   2079				qpskIsGainMan =
   2080				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
   2081				qam16IsGainMan =
   2082				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
   2083				qam64IsGainMan =
   2084				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
   2085
   2086				qpskIsGainExp =
   2087				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
   2088				qam16IsGainExp =
   2089				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
   2090				qam64IsGainExp =
   2091				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
   2092			}
   2093			break;
   2094		case HIERARCHY_AUTO:
   2095		default:
   2096			/* Not set, detect it automatically, start with none */
   2097			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
   2098			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
   2099			if (state->type_A) {
   2100				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
   2101				if (status < 0)
   2102					break;
   2103				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
   2104				if (status < 0)
   2105					break;
   2106
   2107				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
   2108				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
   2109				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
   2110
   2111				qpskIsGainMan =
   2112				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
   2113				qam16IsGainMan =
   2114				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
   2115				qam64IsGainMan =
   2116				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
   2117
   2118				qpskIsGainExp =
   2119				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
   2120				qam16IsGainExp =
   2121				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
   2122				qam64IsGainExp =
   2123				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
   2124			}
   2125			break;
   2126		}
   2127		if (status < 0)
   2128			break;
   2129
   2130		switch (p->modulation) {
   2131		default:
   2132			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
   2133			fallthrough;	/* try first guess DRX_CONSTELLATION_QAM64 */
   2134		case QAM_64:
   2135			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
   2136			if (state->type_A) {
   2137				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
   2138				if (status < 0)
   2139					break;
   2140				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
   2141				if (status < 0)
   2142					break;
   2143				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
   2144				if (status < 0)
   2145					break;
   2146				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
   2147				if (status < 0)
   2148					break;
   2149				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
   2150				if (status < 0)
   2151					break;
   2152
   2153				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
   2154				if (status < 0)
   2155					break;
   2156				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
   2157				if (status < 0)
   2158					break;
   2159				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
   2160				if (status < 0)
   2161					break;
   2162				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
   2163				if (status < 0)
   2164					break;
   2165			}
   2166			break;
   2167		case QPSK:
   2168			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
   2169			if (state->type_A) {
   2170				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
   2171				if (status < 0)
   2172					break;
   2173				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
   2174				if (status < 0)
   2175					break;
   2176				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
   2177				if (status < 0)
   2178					break;
   2179				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
   2180				if (status < 0)
   2181					break;
   2182				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
   2183				if (status < 0)
   2184					break;
   2185
   2186				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
   2187				if (status < 0)
   2188					break;
   2189				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
   2190				if (status < 0)
   2191					break;
   2192				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
   2193				if (status < 0)
   2194					break;
   2195				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
   2196				if (status < 0)
   2197					break;
   2198			}
   2199			break;
   2200
   2201		case QAM_16:
   2202			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
   2203			if (state->type_A) {
   2204				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
   2205				if (status < 0)
   2206					break;
   2207				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
   2208				if (status < 0)
   2209					break;
   2210				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
   2211				if (status < 0)
   2212					break;
   2213				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
   2214				if (status < 0)
   2215					break;
   2216				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
   2217				if (status < 0)
   2218					break;
   2219
   2220				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
   2221				if (status < 0)
   2222					break;
   2223				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
   2224				if (status < 0)
   2225					break;
   2226				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
   2227				if (status < 0)
   2228					break;
   2229				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
   2230				if (status < 0)
   2231					break;
   2232			}
   2233			break;
   2234
   2235		}
   2236		if (status < 0)
   2237			break;
   2238
   2239		switch (DRX_CHANNEL_HIGH) {
   2240		default:
   2241		case DRX_CHANNEL_AUTO:
   2242		case DRX_CHANNEL_LOW:
   2243			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
   2244			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
   2245			break;
   2246		case DRX_CHANNEL_HIGH:
   2247			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
   2248			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
   2249			break;
   2250		}
   2251
   2252		switch (p->code_rate_HP) {
   2253		case FEC_1_2:
   2254			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
   2255			if (state->type_A)
   2256				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
   2257			break;
   2258		default:
   2259			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
   2260			fallthrough;
   2261		case FEC_2_3:
   2262			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
   2263			if (state->type_A)
   2264				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
   2265			break;
   2266		case FEC_3_4:
   2267			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
   2268			if (state->type_A)
   2269				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
   2270			break;
   2271		case FEC_5_6:
   2272			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
   2273			if (state->type_A)
   2274				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
   2275			break;
   2276		case FEC_7_8:
   2277			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
   2278			if (state->type_A)
   2279				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
   2280			break;
   2281		}
   2282		if (status < 0)
   2283			break;
   2284
   2285		/* First determine real bandwidth (Hz) */
   2286		/* Also set delay for impulse noise cruncher (only A2) */
   2287		/* Also set parameters for EC_OC fix, note
   2288		   EC_OC_REG_TMD_HIL_MAR is changed
   2289		   by SC for fix for some 8K,1/8 guard but is restored by
   2290		   InitEC and ResetEC
   2291		   functions */
   2292		switch (p->bandwidth_hz) {
   2293		case 0:
   2294			p->bandwidth_hz = 8000000;
   2295			fallthrough;
   2296		case 8000000:
   2297			/* (64/7)*(8/8)*1000000 */
   2298			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
   2299
   2300			bandwidthParam = 0;
   2301			status = Write16(state,
   2302					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
   2303			break;
   2304		case 7000000:
   2305			/* (64/7)*(7/8)*1000000 */
   2306			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
   2307			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
   2308			status = Write16(state,
   2309					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
   2310			break;
   2311		case 6000000:
   2312			/* (64/7)*(6/8)*1000000 */
   2313			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
   2314			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
   2315			status = Write16(state,
   2316					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
   2317			break;
   2318		default:
   2319			status = -EINVAL;
   2320		}
   2321		if (status < 0)
   2322			break;
   2323
   2324		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
   2325		if (status < 0)
   2326			break;
   2327
   2328		{
   2329			u16 sc_config;
   2330			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
   2331			if (status < 0)
   2332				break;
   2333
   2334			/* enable SLAVE mode in 2k 1/32 to
   2335			   prevent timing change glitches */
   2336			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
   2337			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
   2338				/* enable slave */
   2339				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
   2340			} else {
   2341				/* disable slave */
   2342				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
   2343			}
   2344			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
   2345			if (status < 0)
   2346				break;
   2347		}
   2348
   2349		status = SetCfgNoiseCalibration(state, &state->noise_cal);
   2350		if (status < 0)
   2351			break;
   2352
   2353		if (state->cscd_state == CSCD_INIT) {
   2354			/* switch on SRMM scan in SC */
   2355			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
   2356			if (status < 0)
   2357				break;
   2358/*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
   2359			state->cscd_state = CSCD_SET;
   2360		}
   2361
   2362		/* Now compute FE_IF_REG_INCR */
   2363		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
   2364		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
   2365		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
   2366				    (1ULL << 21), bandwidth) - (1 << 23);
   2367		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
   2368		if (status < 0)
   2369			break;
   2370		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
   2371		if (status < 0)
   2372			break;
   2373		/* Bandwidth setting done */
   2374
   2375		/* Mirror & frequency offset */
   2376		SetFrequencyShift(state, off, mirrorFreqSpect);
   2377
   2378		/* Start SC, write channel settings to SC */
   2379
   2380		/* Enable SC after setting all other parameters */
   2381		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
   2382		if (status < 0)
   2383			break;
   2384		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
   2385		if (status < 0)
   2386			break;
   2387
   2388		/* Write SC parameter registers, operation mode */
   2389#if 1
   2390		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
   2391				 SC_RA_RAM_OP_AUTO_GUARD__M |
   2392				 SC_RA_RAM_OP_AUTO_CONST__M |
   2393				 SC_RA_RAM_OP_AUTO_HIER__M |
   2394				 SC_RA_RAM_OP_AUTO_RATE__M);
   2395#endif
   2396		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
   2397		if (status < 0)
   2398			break;
   2399
   2400		/* Start correct processes to get in lock */
   2401		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
   2402		if (status < 0)
   2403			break;
   2404
   2405		status = StartOC(state);
   2406		if (status < 0)
   2407			break;
   2408
   2409		if (state->operation_mode != OM_Default) {
   2410			status = StartDiversity(state);
   2411			if (status < 0)
   2412				break;
   2413		}
   2414
   2415		state->drxd_state = DRXD_STARTED;
   2416	} while (0);
   2417
   2418	return status;
   2419}
   2420
   2421static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
   2422{
   2423	u32 ulRfAgcOutputLevel = 0xffffffff;
   2424	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
   2425	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
   2426	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
   2427	u32 ulRfAgcSpeed = 0;	/* Currently unused */
   2428	u32 ulRfAgcMode = 0;	/*2;   Off */
   2429	u32 ulRfAgcR1 = 820;
   2430	u32 ulRfAgcR2 = 2200;
   2431	u32 ulRfAgcR3 = 150;
   2432	u32 ulIfAgcMode = 0;	/* Auto */
   2433	u32 ulIfAgcOutputLevel = 0xffffffff;
   2434	u32 ulIfAgcSettleLevel = 0xffffffff;
   2435	u32 ulIfAgcMinLevel = 0xffffffff;
   2436	u32 ulIfAgcMaxLevel = 0xffffffff;
   2437	u32 ulIfAgcSpeed = 0xffffffff;
   2438	u32 ulIfAgcR1 = 820;
   2439	u32 ulIfAgcR2 = 2200;
   2440	u32 ulIfAgcR3 = 150;
   2441	u32 ulClock = state->config.clock;
   2442	u32 ulSerialMode = 0;
   2443	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
   2444	u32 ulHiI2cDelay = HI_I2C_DELAY;
   2445	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
   2446	u32 ulHiI2cPatch = 0;
   2447	u32 ulEnvironment = APPENV_PORTABLE;
   2448	u32 ulEnvironmentDiversity = APPENV_MOBILE;
   2449	u32 ulIFFilter = IFFILTER_SAW;
   2450
   2451	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
   2452	state->if_agc_cfg.outputLevel = 0;
   2453	state->if_agc_cfg.settleLevel = 140;
   2454	state->if_agc_cfg.minOutputLevel = 0;
   2455	state->if_agc_cfg.maxOutputLevel = 1023;
   2456	state->if_agc_cfg.speed = 904;
   2457
   2458	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
   2459		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
   2460		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
   2461	}
   2462
   2463	if (ulIfAgcMode == 0 &&
   2464	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
   2465	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
   2466	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
   2467	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
   2468		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
   2469		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
   2470		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
   2471		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
   2472		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
   2473	}
   2474
   2475	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
   2476	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
   2477	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
   2478
   2479	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
   2480	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
   2481	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
   2482
   2483	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
   2484	/* rest of the RFAgcCfg structure currently unused */
   2485	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
   2486		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
   2487		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
   2488	}
   2489
   2490	if (ulRfAgcMode == 0 &&
   2491	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
   2492	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
   2493	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
   2494	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
   2495		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
   2496		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
   2497		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
   2498		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
   2499		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
   2500	}
   2501
   2502	if (ulRfAgcMode == 2)
   2503		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
   2504
   2505	if (ulEnvironment <= 2)
   2506		state->app_env_default = (enum app_env)
   2507		    (ulEnvironment);
   2508	if (ulEnvironmentDiversity <= 2)
   2509		state->app_env_diversity = (enum app_env)
   2510		    (ulEnvironmentDiversity);
   2511
   2512	if (ulIFFilter == IFFILTER_DISCRETE) {
   2513		/* discrete filter */
   2514		state->noise_cal.cpOpt = 0;
   2515		state->noise_cal.cpNexpOfs = 40;
   2516		state->noise_cal.tdCal2k = -40;
   2517		state->noise_cal.tdCal8k = -24;
   2518	} else {
   2519		/* SAW filter */
   2520		state->noise_cal.cpOpt = 1;
   2521		state->noise_cal.cpNexpOfs = 0;
   2522		state->noise_cal.tdCal2k = -21;
   2523		state->noise_cal.tdCal8k = -24;
   2524	}
   2525	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
   2526
   2527	state->chip_adr = (state->config.demod_address << 1) | 1;
   2528	switch (ulHiI2cPatch) {
   2529	case 1:
   2530		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
   2531		break;
   2532	case 3:
   2533		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
   2534		break;
   2535	default:
   2536		state->m_HiI2cPatch = NULL;
   2537	}
   2538
   2539	/* modify tuner and clock attributes */
   2540	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
   2541	/* expected system clock frequency in kHz */
   2542	state->expected_sys_clock_freq = 48000;
   2543	/* real system clock frequency in kHz */
   2544	state->sys_clock_freq = 48000;
   2545	state->osc_clock_freq = (u16) ulClock;
   2546	state->osc_clock_deviation = 0;
   2547	state->cscd_state = CSCD_INIT;
   2548	state->drxd_state = DRXD_UNINITIALIZED;
   2549
   2550	state->PGA = 0;
   2551	state->type_A = 0;
   2552	state->tuner_mirrors = 0;
   2553
   2554	/* modify MPEG output attributes */
   2555	state->insert_rs_byte = state->config.insert_rs_byte;
   2556	state->enable_parallel = (ulSerialMode != 1);
   2557
   2558	/* Timing div, 250ns/Psys */
   2559	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
   2560
   2561	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
   2562					  ulHiI2cDelay) / 1000;
   2563	/* Bridge delay, uses oscilator clock */
   2564	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
   2565	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
   2566					    ulHiI2cBridgeDelay) / 1000;
   2567
   2568	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
   2569	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
   2570	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
   2571	return 0;
   2572}
   2573
   2574static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
   2575{
   2576	int status = 0;
   2577	u32 driverVersion;
   2578
   2579	if (state->init_done)
   2580		return 0;
   2581
   2582	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
   2583
   2584	do {
   2585		state->operation_mode = OM_Default;
   2586
   2587		status = SetDeviceTypeId(state);
   2588		if (status < 0)
   2589			break;
   2590
   2591		/* Apply I2c address patch to B1 */
   2592		if (!state->type_A && state->m_HiI2cPatch) {
   2593			status = WriteTable(state, state->m_HiI2cPatch);
   2594			if (status < 0)
   2595				break;
   2596		}
   2597
   2598		if (state->type_A) {
   2599			/* HI firmware patch for UIO readout,
   2600			   avoid clearing of result register */
   2601			status = Write16(state, 0x43012D, 0x047f, 0);
   2602			if (status < 0)
   2603				break;
   2604		}
   2605
   2606		status = HI_ResetCommand(state);
   2607		if (status < 0)
   2608			break;
   2609
   2610		status = StopAllProcessors(state);
   2611		if (status < 0)
   2612			break;
   2613		status = InitCC(state);
   2614		if (status < 0)
   2615			break;
   2616
   2617		state->osc_clock_deviation = 0;
   2618
   2619		if (state->config.osc_deviation)
   2620			state->osc_clock_deviation =
   2621			    state->config.osc_deviation(state->priv, 0, 0);
   2622		{
   2623			/* Handle clock deviation */
   2624			s32 devB;
   2625			s32 devA = (s32) (state->osc_clock_deviation) *
   2626			    (s32) (state->expected_sys_clock_freq);
   2627			/* deviation in kHz */
   2628			s32 deviation = (devA / (1000000L));
   2629			/* rounding, signed */
   2630			if (devA > 0)
   2631				devB = (2);
   2632			else
   2633				devB = (-2);
   2634			if ((devB * (devA % 1000000L) > 1000000L)) {
   2635				/* add +1 or -1 */
   2636				deviation += (devB / 2);
   2637			}
   2638
   2639			state->sys_clock_freq =
   2640			    (u16) ((state->expected_sys_clock_freq) +
   2641				   deviation);
   2642		}
   2643		status = InitHI(state);
   2644		if (status < 0)
   2645			break;
   2646		status = InitAtomicRead(state);
   2647		if (status < 0)
   2648			break;
   2649
   2650		status = EnableAndResetMB(state);
   2651		if (status < 0)
   2652			break;
   2653		if (state->type_A) {
   2654			status = ResetCEFR(state);
   2655			if (status < 0)
   2656				break;
   2657		}
   2658		if (fw) {
   2659			status = DownloadMicrocode(state, fw, fw_size);
   2660			if (status < 0)
   2661				break;
   2662		} else {
   2663			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
   2664			if (status < 0)
   2665				break;
   2666		}
   2667
   2668		if (state->PGA) {
   2669			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
   2670			SetCfgPga(state, 0);	/* PGA = 0 dB */
   2671		} else {
   2672			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
   2673		}
   2674
   2675		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
   2676
   2677		status = InitFE(state);
   2678		if (status < 0)
   2679			break;
   2680		status = InitFT(state);
   2681		if (status < 0)
   2682			break;
   2683		status = InitCP(state);
   2684		if (status < 0)
   2685			break;
   2686		status = InitCE(state);
   2687		if (status < 0)
   2688			break;
   2689		status = InitEQ(state);
   2690		if (status < 0)
   2691			break;
   2692		status = InitEC(state);
   2693		if (status < 0)
   2694			break;
   2695		status = InitSC(state);
   2696		if (status < 0)
   2697			break;
   2698
   2699		status = SetCfgIfAgc(state, &state->if_agc_cfg);
   2700		if (status < 0)
   2701			break;
   2702		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
   2703		if (status < 0)
   2704			break;
   2705
   2706		state->cscd_state = CSCD_INIT;
   2707		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   2708		if (status < 0)
   2709			break;
   2710		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
   2711		if (status < 0)
   2712			break;
   2713
   2714		driverVersion = (((VERSION_MAJOR / 10) << 4) +
   2715				 (VERSION_MAJOR % 10)) << 24;
   2716		driverVersion += (((VERSION_MINOR / 10) << 4) +
   2717				  (VERSION_MINOR % 10)) << 16;
   2718		driverVersion += ((VERSION_PATCH / 1000) << 12) +
   2719		    ((VERSION_PATCH / 100) << 8) +
   2720		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
   2721
   2722		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
   2723		if (status < 0)
   2724			break;
   2725
   2726		status = StopOC(state);
   2727		if (status < 0)
   2728			break;
   2729
   2730		state->drxd_state = DRXD_STOPPED;
   2731		state->init_done = 1;
   2732		status = 0;
   2733	} while (0);
   2734	return status;
   2735}
   2736
   2737static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
   2738{
   2739	DRX_GetLockStatus(state, pLockStatus);
   2740
   2741	/*if (*pLockStatus&DRX_LOCK_MPEG) */
   2742	if (*pLockStatus & DRX_LOCK_FEC) {
   2743		ConfigureMPEGOutput(state, 1);
   2744		/* Get status again, in case we have MPEG lock now */
   2745		/*DRX_GetLockStatus(state, pLockStatus); */
   2746	}
   2747
   2748	return 0;
   2749}
   2750
   2751/****************************************************************************/
   2752/****************************************************************************/
   2753/****************************************************************************/
   2754
   2755static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
   2756{
   2757	struct drxd_state *state = fe->demodulator_priv;
   2758	u32 value;
   2759	int res;
   2760
   2761	res = ReadIFAgc(state, &value);
   2762	if (res < 0)
   2763		*strength = 0;
   2764	else
   2765		*strength = 0xffff - (value << 4);
   2766	return 0;
   2767}
   2768
   2769static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
   2770{
   2771	struct drxd_state *state = fe->demodulator_priv;
   2772	u32 lock;
   2773
   2774	DRXD_status(state, &lock);
   2775	*status = 0;
   2776	/* No MPEG lock in V255 firmware, bug ? */
   2777#if 1
   2778	if (lock & DRX_LOCK_MPEG)
   2779		*status |= FE_HAS_LOCK;
   2780#else
   2781	if (lock & DRX_LOCK_FEC)
   2782		*status |= FE_HAS_LOCK;
   2783#endif
   2784	if (lock & DRX_LOCK_FEC)
   2785		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
   2786	if (lock & DRX_LOCK_DEMOD)
   2787		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
   2788
   2789	return 0;
   2790}
   2791
   2792static int drxd_init(struct dvb_frontend *fe)
   2793{
   2794	struct drxd_state *state = fe->demodulator_priv;
   2795
   2796	return DRXD_init(state, NULL, 0);
   2797}
   2798
   2799static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
   2800{
   2801	struct drxd_state *state = fe->demodulator_priv;
   2802
   2803	if (state->config.disable_i2c_gate_ctrl == 1)
   2804		return 0;
   2805
   2806	return DRX_ConfigureI2CBridge(state, onoff);
   2807}
   2808
   2809static int drxd_get_tune_settings(struct dvb_frontend *fe,
   2810				  struct dvb_frontend_tune_settings *sets)
   2811{
   2812	sets->min_delay_ms = 10000;
   2813	sets->max_drift = 0;
   2814	sets->step_size = 0;
   2815	return 0;
   2816}
   2817
   2818static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
   2819{
   2820	*ber = 0;
   2821	return 0;
   2822}
   2823
   2824static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
   2825{
   2826	*snr = 0;
   2827	return 0;
   2828}
   2829
   2830static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
   2831{
   2832	*ucblocks = 0;
   2833	return 0;
   2834}
   2835
   2836static int drxd_sleep(struct dvb_frontend *fe)
   2837{
   2838	struct drxd_state *state = fe->demodulator_priv;
   2839
   2840	ConfigureMPEGOutput(state, 0);
   2841	return 0;
   2842}
   2843
   2844static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
   2845{
   2846	return drxd_config_i2c(fe, enable);
   2847}
   2848
   2849static int drxd_set_frontend(struct dvb_frontend *fe)
   2850{
   2851	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
   2852	struct drxd_state *state = fe->demodulator_priv;
   2853	s32 off = 0;
   2854
   2855	state->props = *p;
   2856	DRX_Stop(state);
   2857
   2858	if (fe->ops.tuner_ops.set_params) {
   2859		fe->ops.tuner_ops.set_params(fe);
   2860		if (fe->ops.i2c_gate_ctrl)
   2861			fe->ops.i2c_gate_ctrl(fe, 0);
   2862	}
   2863
   2864	msleep(200);
   2865
   2866	return DRX_Start(state, off);
   2867}
   2868
   2869static void drxd_release(struct dvb_frontend *fe)
   2870{
   2871	struct drxd_state *state = fe->demodulator_priv;
   2872
   2873	kfree(state);
   2874}
   2875
   2876static const struct dvb_frontend_ops drxd_ops = {
   2877	.delsys = { SYS_DVBT},
   2878	.info = {
   2879		 .name = "Micronas DRXD DVB-T",
   2880		 .frequency_min_hz =  47125 * kHz,
   2881		 .frequency_max_hz = 855250 * kHz,
   2882		 .frequency_stepsize_hz = 166667,
   2883		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
   2884		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
   2885		 FE_CAN_FEC_AUTO |
   2886		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
   2887		 FE_CAN_QAM_AUTO |
   2888		 FE_CAN_TRANSMISSION_MODE_AUTO |
   2889		 FE_CAN_GUARD_INTERVAL_AUTO |
   2890		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
   2891
   2892	.release = drxd_release,
   2893	.init = drxd_init,
   2894	.sleep = drxd_sleep,
   2895	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
   2896
   2897	.set_frontend = drxd_set_frontend,
   2898	.get_tune_settings = drxd_get_tune_settings,
   2899
   2900	.read_status = drxd_read_status,
   2901	.read_ber = drxd_read_ber,
   2902	.read_signal_strength = drxd_read_signal_strength,
   2903	.read_snr = drxd_read_snr,
   2904	.read_ucblocks = drxd_read_ucblocks,
   2905};
   2906
   2907struct dvb_frontend *drxd_attach(const struct drxd_config *config,
   2908				 void *priv, struct i2c_adapter *i2c,
   2909				 struct device *dev)
   2910{
   2911	struct drxd_state *state = NULL;
   2912
   2913	state = kzalloc(sizeof(*state), GFP_KERNEL);
   2914	if (!state)
   2915		return NULL;
   2916
   2917	state->ops = drxd_ops;
   2918	state->dev = dev;
   2919	state->config = *config;
   2920	state->i2c = i2c;
   2921	state->priv = priv;
   2922
   2923	mutex_init(&state->mutex);
   2924
   2925	if (Read16(state, 0, NULL, 0) < 0)
   2926		goto error;
   2927
   2928	state->frontend.ops = drxd_ops;
   2929	state->frontend.demodulator_priv = state;
   2930	ConfigureMPEGOutput(state, 0);
   2931	/* add few initialization to allow gate control */
   2932	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
   2933	InitHI(state);
   2934
   2935	return &state->frontend;
   2936
   2937error:
   2938	printk(KERN_ERR "drxd: not found\n");
   2939	kfree(state);
   2940	return NULL;
   2941}
   2942EXPORT_SYMBOL(drxd_attach);
   2943
   2944MODULE_DESCRIPTION("DRXD driver");
   2945MODULE_AUTHOR("Micronas");
   2946MODULE_LICENSE("GPL");