cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

aptina-pll.c (5386B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Aptina Sensor PLL Configuration
      4 *
      5 * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
      6 */
      7
      8#include <linux/device.h>
      9#include <linux/gcd.h>
     10#include <linux/kernel.h>
     11#include <linux/lcm.h>
     12#include <linux/module.h>
     13
     14#include "aptina-pll.h"
     15
     16int aptina_pll_calculate(struct device *dev,
     17			 const struct aptina_pll_limits *limits,
     18			 struct aptina_pll *pll)
     19{
     20	unsigned int mf_min;
     21	unsigned int mf_max;
     22	unsigned int p1_min;
     23	unsigned int p1_max;
     24	unsigned int p1;
     25	unsigned int div;
     26
     27	dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
     28		pll->ext_clock, pll->pix_clock);
     29
     30	if (pll->ext_clock < limits->ext_clock_min ||
     31	    pll->ext_clock > limits->ext_clock_max) {
     32		dev_err(dev, "pll: invalid external clock frequency.\n");
     33		return -EINVAL;
     34	}
     35
     36	if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
     37		dev_err(dev, "pll: invalid pixel clock frequency.\n");
     38		return -EINVAL;
     39	}
     40
     41	/* Compute the multiplier M and combined N*P1 divisor. */
     42	div = gcd(pll->pix_clock, pll->ext_clock);
     43	pll->m = pll->pix_clock / div;
     44	div = pll->ext_clock / div;
     45
     46	/* We now have the smallest M and N*P1 values that will result in the
     47	 * desired pixel clock frequency, but they might be out of the valid
     48	 * range. Compute the factor by which we should multiply them given the
     49	 * following constraints:
     50	 *
     51	 * - minimum/maximum multiplier
     52	 * - minimum/maximum multiplier output clock frequency assuming the
     53	 *   minimum/maximum N value
     54	 * - minimum/maximum combined N*P1 divisor
     55	 */
     56	mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
     57	mf_min = max(mf_min, limits->out_clock_min /
     58		     (pll->ext_clock / limits->n_min * pll->m));
     59	mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
     60	mf_max = limits->m_max / pll->m;
     61	mf_max = min(mf_max, limits->out_clock_max /
     62		    (pll->ext_clock / limits->n_max * pll->m));
     63	mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
     64
     65	dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
     66	if (mf_min > mf_max) {
     67		dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
     68		return -EINVAL;
     69	}
     70
     71	/*
     72	 * We're looking for the highest acceptable P1 value for which a
     73	 * multiplier factor MF exists that fulfills the following conditions:
     74	 *
     75	 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
     76	 *    even
     77	 * 2. mf is in the [mf_min, mf_max] range computed above
     78	 * 3. div * mf is a multiple of p1, in order to compute
     79	 *	n = div * mf / p1
     80	 *	m = pll->m * mf
     81	 * 4. the internal clock frequency, given by ext_clock / n, is in the
     82	 *    [int_clock_min, int_clock_max] range given by the limits
     83	 * 5. the output clock frequency, given by ext_clock / n * m, is in the
     84	 *    [out_clock_min, out_clock_max] range given by the limits
     85	 *
     86	 * The first naive approach is to iterate over all p1 values acceptable
     87	 * according to (1) and all mf values acceptable according to (2), and
     88	 * stop at the first combination that fulfills (3), (4) and (5). This
     89	 * has a O(n^2) complexity.
     90	 *
     91	 * Instead of iterating over all mf values in the [mf_min, mf_max] range
     92	 * we can compute the mf increment between two acceptable values
     93	 * according to (3) with
     94	 *
     95	 *	mf_inc = p1 / gcd(div, p1)			(6)
     96	 *
     97	 * and round the minimum up to the nearest multiple of mf_inc. This will
     98	 * restrict the number of mf values to be checked.
     99	 *
    100	 * Furthermore, conditions (4) and (5) only restrict the range of
    101	 * acceptable p1 and mf values by modifying the minimum and maximum
    102	 * limits. (5) can be expressed as
    103	 *
    104	 *	ext_clock / (div * mf / p1) * m * mf >= out_clock_min
    105	 *	ext_clock / (div * mf / p1) * m * mf <= out_clock_max
    106	 *
    107	 * or
    108	 *
    109	 *	p1 >= out_clock_min * div / (ext_clock * m)	(7)
    110	 *	p1 <= out_clock_max * div / (ext_clock * m)
    111	 *
    112	 * Similarly, (4) can be expressed as
    113	 *
    114	 *	mf >= ext_clock * p1 / (int_clock_max * div)	(8)
    115	 *	mf <= ext_clock * p1 / (int_clock_min * div)
    116	 *
    117	 * We can thus iterate over the restricted p1 range defined by the
    118	 * combination of (1) and (7), and then compute the restricted mf range
    119	 * defined by the combination of (2), (6) and (8). If the resulting mf
    120	 * range is not empty, any value in the mf range is acceptable. We thus
    121	 * select the mf lwoer bound and the corresponding p1 value.
    122	 */
    123	if (limits->p1_min == 0) {
    124		dev_err(dev, "pll: P1 minimum value must be >0.\n");
    125		return -EINVAL;
    126	}
    127
    128	p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
    129		     pll->ext_clock * pll->m));
    130	p1_max = min(limits->p1_max, limits->out_clock_max * div /
    131		     (pll->ext_clock * pll->m));
    132
    133	for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
    134		unsigned int mf_inc = p1 / gcd(div, p1);
    135		unsigned int mf_high;
    136		unsigned int mf_low;
    137
    138		mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
    139					limits->int_clock_max * div)), mf_inc);
    140		mf_high = min(mf_max, pll->ext_clock * p1 /
    141			      (limits->int_clock_min * div));
    142
    143		if (mf_low > mf_high)
    144			continue;
    145
    146		pll->n = div * mf_low / p1;
    147		pll->m *= mf_low;
    148		pll->p1 = p1;
    149		dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
    150		return 0;
    151	}
    152
    153	dev_err(dev, "pll: no valid N and P1 divisors found.\n");
    154	return -EINVAL;
    155}
    156EXPORT_SYMBOL_GPL(aptina_pll_calculate);
    157
    158MODULE_DESCRIPTION("Aptina PLL Helpers");
    159MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
    160MODULE_LICENSE("GPL v2");