cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ccs-core.c (100017B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * drivers/media/i2c/ccs/ccs-core.c
      4 *
      5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
      6 *
      7 * Copyright (C) 2020 Intel Corporation
      8 * Copyright (C) 2010--2012 Nokia Corporation
      9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
     10 *
     11 * Based on smiapp driver by Vimarsh Zutshi
     12 * Based on jt8ev1.c by Vimarsh Zutshi
     13 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
     14 */
     15
     16#include <linux/clk.h>
     17#include <linux/delay.h>
     18#include <linux/device.h>
     19#include <linux/firmware.h>
     20#include <linux/gpio/consumer.h>
     21#include <linux/module.h>
     22#include <linux/pm_runtime.h>
     23#include <linux/property.h>
     24#include <linux/regulator/consumer.h>
     25#include <linux/slab.h>
     26#include <linux/smiapp.h>
     27#include <linux/v4l2-mediabus.h>
     28#include <media/v4l2-fwnode.h>
     29#include <media/v4l2-device.h>
     30#include <uapi/linux/ccs.h>
     31
     32#include "ccs.h"
     33
     34#define CCS_ALIGN_DIM(dim, flags)	\
     35	((flags) & V4L2_SEL_FLAG_GE	\
     36	 ? ALIGN((dim), 2)		\
     37	 : (dim) & ~1)
     38
     39static struct ccs_limit_offset {
     40	u16	lim;
     41	u16	info;
     42} ccs_limit_offsets[CCS_L_LAST + 1];
     43
     44/*
     45 * ccs_module_idents - supported camera modules
     46 */
     47static const struct ccs_module_ident ccs_module_idents[] = {
     48	CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
     49	CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
     50	CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
     51	CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
     52	CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
     53	CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
     54	CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
     55	CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
     56	CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
     57	CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
     58	CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
     59};
     60
     61#define CCS_DEVICE_FLAG_IS_SMIA		BIT(0)
     62
     63struct ccs_device {
     64	unsigned char flags;
     65};
     66
     67static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
     68
     69/*
     70 *
     71 * Dynamic Capability Identification
     72 *
     73 */
     74
     75static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
     76{
     77	switch (width) {
     78	case sizeof(u8):
     79		*(u8 *)ptr = val;
     80		break;
     81	case sizeof(u16):
     82		*(u16 *)ptr = val;
     83		break;
     84	case sizeof(u32):
     85		*(u32 *)ptr = val;
     86		break;
     87	}
     88}
     89
     90static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
     91			 unsigned int offset, void **__ptr)
     92{
     93	const struct ccs_limit *linfo;
     94
     95	if (WARN_ON(limit >= CCS_L_LAST))
     96		return -EINVAL;
     97
     98	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
     99
    100	if (WARN_ON(!sensor->ccs_limits) ||
    101	    WARN_ON(offset + ccs_reg_width(linfo->reg) >
    102		    ccs_limit_offsets[limit + 1].lim))
    103		return -EINVAL;
    104
    105	*__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
    106
    107	return 0;
    108}
    109
    110void ccs_replace_limit(struct ccs_sensor *sensor,
    111		       unsigned int limit, unsigned int offset, u32 val)
    112{
    113	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
    114	const struct ccs_limit *linfo;
    115	void *ptr;
    116	int ret;
    117
    118	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
    119	if (ret)
    120		return;
    121
    122	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
    123
    124	dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %u, 0x%x\n",
    125		linfo->reg, linfo->name, offset, val, val);
    126
    127	ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
    128}
    129
    130u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
    131		  unsigned int offset)
    132{
    133	void *ptr;
    134	u32 val;
    135	int ret;
    136
    137	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
    138	if (ret)
    139		return 0;
    140
    141	switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
    142	case sizeof(u8):
    143		val = *(u8 *)ptr;
    144		break;
    145	case sizeof(u16):
    146		val = *(u16 *)ptr;
    147		break;
    148	case sizeof(u32):
    149		val = *(u32 *)ptr;
    150		break;
    151	default:
    152		WARN_ON(1);
    153		return 0;
    154	}
    155
    156	return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
    157}
    158
    159static int ccs_read_all_limits(struct ccs_sensor *sensor)
    160{
    161	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
    162	void *ptr, *alloc, *end;
    163	unsigned int i, l;
    164	int ret;
    165
    166	kfree(sensor->ccs_limits);
    167	sensor->ccs_limits = NULL;
    168
    169	alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
    170	if (!alloc)
    171		return -ENOMEM;
    172
    173	end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
    174
    175	for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
    176		u32 reg = ccs_limits[i].reg;
    177		unsigned int width = ccs_reg_width(reg);
    178		unsigned int j;
    179
    180		if (l == CCS_L_LAST) {
    181			dev_err(&client->dev,
    182				"internal error --- end of limit array\n");
    183			ret = -EINVAL;
    184			goto out_err;
    185		}
    186
    187		for (j = 0; j < ccs_limits[i].size / width;
    188		     j++, reg += width, ptr += width) {
    189			u32 val;
    190
    191			ret = ccs_read_addr_noconv(sensor, reg, &val);
    192			if (ret)
    193				goto out_err;
    194
    195			if (ptr + width > end) {
    196				dev_err(&client->dev,
    197					"internal error --- no room for regs\n");
    198				ret = -EINVAL;
    199				goto out_err;
    200			}
    201
    202			if (!val && j)
    203				break;
    204
    205			ccs_assign_limit(ptr, width, val);
    206
    207			dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
    208				reg, ccs_limits[i].name, val, val);
    209		}
    210
    211		if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
    212			continue;
    213
    214		l++;
    215		ptr = alloc + ccs_limit_offsets[l].lim;
    216	}
    217
    218	if (l != CCS_L_LAST) {
    219		dev_err(&client->dev,
    220			"internal error --- insufficient limits\n");
    221		ret = -EINVAL;
    222		goto out_err;
    223	}
    224
    225	sensor->ccs_limits = alloc;
    226
    227	if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
    228		ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
    229
    230	return 0;
    231
    232out_err:
    233	kfree(alloc);
    234
    235	return ret;
    236}
    237
    238static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
    239{
    240	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
    241	u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
    242	unsigned int i;
    243	int pixel_count = 0;
    244	int line_count = 0;
    245
    246	fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
    247	fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
    248
    249	ncol_desc = (fmt_model_subtype
    250		     & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
    251		>> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
    252	nrow_desc = fmt_model_subtype
    253		& CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
    254
    255	dev_dbg(&client->dev, "format_model_type %s\n",
    256		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
    257		? "2 byte" :
    258		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
    259		? "4 byte" : "is simply bad");
    260
    261	dev_dbg(&client->dev, "%u column and %u row descriptors\n",
    262		ncol_desc, nrow_desc);
    263
    264	for (i = 0; i < ncol_desc + nrow_desc; i++) {
    265		u32 desc;
    266		u32 pixelcode;
    267		u32 pixels;
    268		char *which;
    269		char *what;
    270
    271		if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
    272			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
    273
    274			pixelcode =
    275				(desc
    276				 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
    277				>> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
    278			pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
    279		} else if (fmt_model_type
    280			   == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
    281			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
    282
    283			pixelcode =
    284				(desc
    285				 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
    286				>> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
    287			pixels = desc &
    288				CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
    289		} else {
    290			dev_dbg(&client->dev,
    291				"invalid frame format model type %u\n",
    292				fmt_model_type);
    293			return -EINVAL;
    294		}
    295
    296		if (i < ncol_desc)
    297			which = "columns";
    298		else
    299			which = "rows";
    300
    301		switch (pixelcode) {
    302		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
    303			what = "embedded";
    304			break;
    305		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
    306			what = "dummy";
    307			break;
    308		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
    309			what = "black";
    310			break;
    311		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
    312			what = "dark";
    313			break;
    314		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
    315			what = "visible";
    316			break;
    317		default:
    318			what = "invalid";
    319			break;
    320		}
    321
    322		dev_dbg(&client->dev,
    323			"%s pixels: %u %s (pixelcode %u)\n",
    324			what, pixels, which, pixelcode);
    325
    326		if (i < ncol_desc) {
    327			if (pixelcode ==
    328			    CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
    329				sensor->visible_pixel_start = pixel_count;
    330			pixel_count += pixels;
    331			continue;
    332		}
    333
    334		/* Handle row descriptors */
    335		switch (pixelcode) {
    336		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
    337			if (sensor->embedded_end)
    338				break;
    339			sensor->embedded_start = line_count;
    340			sensor->embedded_end = line_count + pixels;
    341			break;
    342		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
    343			sensor->image_start = line_count;
    344			break;
    345		}
    346		line_count += pixels;
    347	}
    348
    349	if (sensor->embedded_end > sensor->image_start) {
    350		dev_dbg(&client->dev,
    351			"adjusting image start line to %u (was %u)\n",
    352			sensor->embedded_end, sensor->image_start);
    353		sensor->image_start = sensor->embedded_end;
    354	}
    355
    356	dev_dbg(&client->dev, "embedded data from lines %u to %u\n",
    357		sensor->embedded_start, sensor->embedded_end);
    358	dev_dbg(&client->dev, "image data starts at line %u\n",
    359		sensor->image_start);
    360
    361	return 0;
    362}
    363
    364static int ccs_pll_configure(struct ccs_sensor *sensor)
    365{
    366	struct ccs_pll *pll = &sensor->pll;
    367	int rval;
    368
    369	rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
    370	if (rval < 0)
    371		return rval;
    372
    373	rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
    374	if (rval < 0)
    375		return rval;
    376
    377	rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
    378	if (rval < 0)
    379		return rval;
    380
    381	rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
    382	if (rval < 0)
    383		return rval;
    384
    385	if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
    386	      CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
    387		/* Lane op clock ratio does not apply here. */
    388		rval = ccs_write(sensor, REQUESTED_LINK_RATE,
    389				 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
    390					      1000000 / 256 / 256) *
    391				 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
    392				  sensor->pll.csi2.lanes : 1) <<
    393				 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
    394				  1 : 0));
    395		if (rval < 0)
    396			return rval;
    397	}
    398
    399	if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
    400		return 0;
    401
    402	rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
    403	if (rval < 0)
    404		return rval;
    405
    406	rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
    407	if (rval < 0)
    408		return rval;
    409
    410	if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
    411		return 0;
    412
    413	rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
    414	if (rval < 0)
    415		return rval;
    416
    417	rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
    418			 pll->op_fr.pre_pll_clk_div);
    419	if (rval < 0)
    420		return rval;
    421
    422	return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
    423}
    424
    425static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
    426{
    427	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
    428	struct ccs_pll_limits lim = {
    429		.vt_fr = {
    430			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
    431			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
    432			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
    433			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
    434			.min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
    435			.max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
    436			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
    437			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
    438		},
    439		.op_fr = {
    440			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
    441			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
    442			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
    443			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
    444			.min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
    445			.max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
    446			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
    447			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
    448		},
    449		.op_bk = {
    450			 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
    451			 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
    452			 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
    453			 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
    454			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
    455			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
    456			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
    457			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
    458		 },
    459		.vt_bk = {
    460			 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
    461			 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
    462			 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
    463			 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
    464			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
    465			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
    466			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
    467			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
    468		 },
    469		.min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
    470		.min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
    471	};
    472
    473	return ccs_pll_calculate(&client->dev, &lim, pll);
    474}
    475
    476static int ccs_pll_update(struct ccs_sensor *sensor)
    477{
    478	struct ccs_pll *pll = &sensor->pll;
    479	int rval;
    480
    481	pll->binning_horizontal = sensor->binning_horizontal;
    482	pll->binning_vertical = sensor->binning_vertical;
    483	pll->link_freq =
    484		sensor->link_freq->qmenu_int[sensor->link_freq->val];
    485	pll->scale_m = sensor->scale_m;
    486	pll->bits_per_pixel = sensor->csi_format->compressed;
    487
    488	rval = ccs_pll_try(sensor, pll);
    489	if (rval < 0)
    490		return rval;
    491
    492	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
    493				 pll->pixel_rate_pixel_array);
    494	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
    495
    496	return 0;
    497}
    498
    499
    500/*
    501 *
    502 * V4L2 Controls handling
    503 *
    504 */
    505
    506static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
    507{
    508	struct v4l2_ctrl *ctrl = sensor->exposure;
    509	int max;
    510
    511	max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
    512		+ sensor->vblank->val
    513		- CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
    514
    515	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
    516}
    517
    518/*
    519 * Order matters.
    520 *
    521 * 1. Bits-per-pixel, descending.
    522 * 2. Bits-per-pixel compressed, descending.
    523 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
    524 *    orders must be defined.
    525 */
    526static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
    527	{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
    528	{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
    529	{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
    530	{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
    531	{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
    532	{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
    533	{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
    534	{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
    535	{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
    536	{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
    537	{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
    538	{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
    539	{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
    540	{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
    541	{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
    542	{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
    543	{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
    544	{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
    545	{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
    546	{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
    547	{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
    548	{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
    549	{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
    550	{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
    551};
    552
    553static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
    554
    555#define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
    556				 - (unsigned long)ccs_csi_data_formats) \
    557				/ sizeof(*ccs_csi_data_formats))
    558
    559static u32 ccs_pixel_order(struct ccs_sensor *sensor)
    560{
    561	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
    562	int flip = 0;
    563
    564	if (sensor->hflip) {
    565		if (sensor->hflip->val)
    566			flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
    567
    568		if (sensor->vflip->val)
    569			flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
    570	}
    571
    572	flip ^= sensor->hvflip_inv_mask;
    573
    574	dev_dbg(&client->dev, "flip %u\n", flip);
    575	return sensor->default_pixel_order ^ flip;
    576}
    577
    578static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
    579{
    580	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
    581	unsigned int csi_format_idx =
    582		to_csi_format_idx(sensor->csi_format) & ~3;
    583	unsigned int internal_csi_format_idx =
    584		to_csi_format_idx(sensor->internal_csi_format) & ~3;
    585	unsigned int pixel_order = ccs_pixel_order(sensor);
    586
    587	if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
    588			 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
    589		return;
    590
    591	sensor->mbus_frame_fmts =
    592		sensor->default_mbus_frame_fmts << pixel_order;
    593	sensor->csi_format =
    594		&ccs_csi_data_formats[csi_format_idx + pixel_order];
    595	sensor->internal_csi_format =
    596		&ccs_csi_data_formats[internal_csi_format_idx
    597					 + pixel_order];
    598
    599	dev_dbg(&client->dev, "new pixel order %s\n",
    600		pixel_order_str[pixel_order]);
    601}
    602
    603static const char * const ccs_test_patterns[] = {
    604	"Disabled",
    605	"Solid Colour",
    606	"Eight Vertical Colour Bars",
    607	"Colour Bars With Fade to Grey",
    608	"Pseudorandom Sequence (PN9)",
    609};
    610
    611static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
    612{
    613	struct ccs_sensor *sensor =
    614		container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
    615			->sensor;
    616	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
    617	int pm_status;
    618	u32 orient = 0;
    619	unsigned int i;
    620	int exposure;
    621	int rval;
    622
    623	switch (ctrl->id) {
    624	case V4L2_CID_HFLIP:
    625	case V4L2_CID_VFLIP:
    626		if (sensor->streaming)
    627			return -EBUSY;
    628
    629		if (sensor->hflip->val)
    630			orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
    631
    632		if (sensor->vflip->val)
    633			orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
    634
    635		orient ^= sensor->hvflip_inv_mask;
    636
    637		ccs_update_mbus_formats(sensor);
    638
    639		break;
    640	case V4L2_CID_VBLANK:
    641		exposure = sensor->exposure->val;
    642
    643		__ccs_update_exposure_limits(sensor);
    644
    645		if (exposure > sensor->exposure->maximum) {
    646			sensor->exposure->val =	sensor->exposure->maximum;
    647			rval = ccs_set_ctrl(sensor->exposure);
    648			if (rval < 0)
    649				return rval;
    650		}
    651
    652		break;
    653	case V4L2_CID_LINK_FREQ:
    654		if (sensor->streaming)
    655			return -EBUSY;
    656
    657		rval = ccs_pll_update(sensor);
    658		if (rval)
    659			return rval;
    660
    661		return 0;
    662	case V4L2_CID_TEST_PATTERN:
    663		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
    664			v4l2_ctrl_activate(
    665				sensor->test_data[i],
    666				ctrl->val ==
    667				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
    668
    669		break;
    670	}
    671
    672	pm_status = pm_runtime_get_if_active(&client->dev, true);
    673	if (!pm_status)
    674		return 0;
    675
    676	switch (ctrl->id) {
    677	case V4L2_CID_ANALOGUE_GAIN:
    678		rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
    679
    680		break;
    681
    682	case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
    683		rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
    684
    685		break;
    686
    687	case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
    688		rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
    689				 ctrl->val);
    690
    691		break;
    692
    693	case V4L2_CID_DIGITAL_GAIN:
    694		if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
    695		    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
    696			rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
    697					 ctrl->val);
    698			break;
    699		}
    700
    701		rval = ccs_write_addr(sensor,
    702				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
    703				      ctrl->val);
    704		if (rval)
    705			break;
    706
    707		rval = ccs_write_addr(sensor,
    708				      SMIAPP_REG_U16_DIGITAL_GAIN_RED,
    709				      ctrl->val);
    710		if (rval)
    711			break;
    712
    713		rval = ccs_write_addr(sensor,
    714				      SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
    715				      ctrl->val);
    716		if (rval)
    717			break;
    718
    719		rval = ccs_write_addr(sensor,
    720				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
    721				      ctrl->val);
    722
    723		break;
    724	case V4L2_CID_EXPOSURE:
    725		rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
    726
    727		break;
    728	case V4L2_CID_HFLIP:
    729	case V4L2_CID_VFLIP:
    730		rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
    731
    732		break;
    733	case V4L2_CID_VBLANK:
    734		rval = ccs_write(sensor, FRAME_LENGTH_LINES,
    735				 sensor->pixel_array->crop[
    736					 CCS_PA_PAD_SRC].height
    737				 + ctrl->val);
    738
    739		break;
    740	case V4L2_CID_HBLANK:
    741		rval = ccs_write(sensor, LINE_LENGTH_PCK,
    742				 sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
    743				 + ctrl->val);
    744
    745		break;
    746	case V4L2_CID_TEST_PATTERN:
    747		rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
    748
    749		break;
    750	case V4L2_CID_TEST_PATTERN_RED:
    751		rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
    752
    753		break;
    754	case V4L2_CID_TEST_PATTERN_GREENR:
    755		rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
    756
    757		break;
    758	case V4L2_CID_TEST_PATTERN_BLUE:
    759		rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
    760
    761		break;
    762	case V4L2_CID_TEST_PATTERN_GREENB:
    763		rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
    764
    765		break;
    766	case V4L2_CID_CCS_SHADING_CORRECTION:
    767		rval = ccs_write(sensor, SHADING_CORRECTION_EN,
    768				 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
    769				 0);
    770
    771		if (!rval && sensor->luminance_level)
    772			v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
    773
    774		break;
    775	case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
    776		rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
    777
    778		break;
    779	case V4L2_CID_PIXEL_RATE:
    780		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
    781		rval = 0;
    782
    783		break;
    784	default:
    785		rval = -EINVAL;
    786	}
    787
    788	if (pm_status > 0) {
    789		pm_runtime_mark_last_busy(&client->dev);
    790		pm_runtime_put_autosuspend(&client->dev);
    791	}
    792
    793	return rval;
    794}
    795
    796static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
    797	.s_ctrl = ccs_set_ctrl,
    798};
    799
    800static int ccs_init_controls(struct ccs_sensor *sensor)
    801{
    802	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
    803	int rval;
    804
    805	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17);
    806	if (rval)
    807		return rval;
    808
    809	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
    810
    811	switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
    812	case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
    813		struct {
    814			const char *name;
    815			u32 id;
    816			s32 value;
    817		} const gain_ctrls[] = {
    818			{ "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
    819			  CCS_LIM(sensor, ANALOG_GAIN_M0), },
    820			{ "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
    821			  CCS_LIM(sensor, ANALOG_GAIN_C0), },
    822			{ "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
    823			  CCS_LIM(sensor, ANALOG_GAIN_M1), },
    824			{ "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
    825			  CCS_LIM(sensor, ANALOG_GAIN_C1), },
    826		};
    827		struct v4l2_ctrl_config ctrl_cfg = {
    828			.type = V4L2_CTRL_TYPE_INTEGER,
    829			.ops = &ccs_ctrl_ops,
    830			.flags = V4L2_CTRL_FLAG_READ_ONLY,
    831			.step = 1,
    832		};
    833		unsigned int i;
    834
    835		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
    836			ctrl_cfg.name = gain_ctrls[i].name;
    837			ctrl_cfg.id = gain_ctrls[i].id;
    838			ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
    839				gain_ctrls[i].value;
    840
    841			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
    842					     &ctrl_cfg, NULL);
    843		}
    844
    845		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
    846				  &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
    847				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
    848				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
    849				  max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
    850				      1U),
    851				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
    852	}
    853		break;
    854
    855	case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
    856		struct {
    857			const char *name;
    858			u32 id;
    859			u16 min, max, step;
    860		} const gain_ctrls[] = {
    861			{
    862				"Analogue Linear Gain",
    863				V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
    864				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
    865				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
    866				max(CCS_LIM(sensor,
    867					    ANALOG_LINEAR_GAIN_STEP_SIZE),
    868				    1U),
    869			},
    870			{
    871				"Analogue Exponential Gain",
    872				V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
    873				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
    874				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
    875				max(CCS_LIM(sensor,
    876					    ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
    877				    1U),
    878			},
    879		};
    880		struct v4l2_ctrl_config ctrl_cfg = {
    881			.type = V4L2_CTRL_TYPE_INTEGER,
    882			.ops = &ccs_ctrl_ops,
    883		};
    884		unsigned int i;
    885
    886		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
    887			ctrl_cfg.name = gain_ctrls[i].name;
    888			ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
    889			ctrl_cfg.max = gain_ctrls[i].max;
    890			ctrl_cfg.step = gain_ctrls[i].step;
    891			ctrl_cfg.id = gain_ctrls[i].id;
    892
    893			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
    894					     &ctrl_cfg, NULL);
    895		}
    896	}
    897	}
    898
    899	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
    900	    (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
    901	     CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
    902		const struct v4l2_ctrl_config ctrl_cfg = {
    903			.name = "Shading Correction",
    904			.type = V4L2_CTRL_TYPE_BOOLEAN,
    905			.id = V4L2_CID_CCS_SHADING_CORRECTION,
    906			.ops = &ccs_ctrl_ops,
    907			.max = 1,
    908			.step = 1,
    909		};
    910
    911		v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
    912				     &ctrl_cfg, NULL);
    913	}
    914
    915	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
    916	    CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
    917		const struct v4l2_ctrl_config ctrl_cfg = {
    918			.name = "Luminance Correction Level",
    919			.type = V4L2_CTRL_TYPE_BOOLEAN,
    920			.id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
    921			.ops = &ccs_ctrl_ops,
    922			.max = 255,
    923			.step = 1,
    924			.def = 128,
    925		};
    926
    927		sensor->luminance_level =
    928			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
    929					     &ctrl_cfg, NULL);
    930	}
    931
    932	if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
    933	    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
    934	    CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
    935	    SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
    936		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
    937				  &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
    938				  CCS_LIM(sensor, DIGITAL_GAIN_MIN),
    939				  CCS_LIM(sensor, DIGITAL_GAIN_MAX),
    940				  max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
    941				      1U),
    942				  0x100);
    943
    944	/* Exposure limits will be updated soon, use just something here. */
    945	sensor->exposure = v4l2_ctrl_new_std(
    946		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
    947		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
    948
    949	sensor->hflip = v4l2_ctrl_new_std(
    950		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
    951		V4L2_CID_HFLIP, 0, 1, 1, 0);
    952	sensor->vflip = v4l2_ctrl_new_std(
    953		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
    954		V4L2_CID_VFLIP, 0, 1, 1, 0);
    955
    956	sensor->vblank = v4l2_ctrl_new_std(
    957		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
    958		V4L2_CID_VBLANK, 0, 1, 1, 0);
    959
    960	if (sensor->vblank)
    961		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
    962
    963	sensor->hblank = v4l2_ctrl_new_std(
    964		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
    965		V4L2_CID_HBLANK, 0, 1, 1, 0);
    966
    967	if (sensor->hblank)
    968		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
    969
    970	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
    971		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
    972		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
    973
    974	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
    975				     &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
    976				     ARRAY_SIZE(ccs_test_patterns) - 1,
    977				     0, 0, ccs_test_patterns);
    978
    979	if (sensor->pixel_array->ctrl_handler.error) {
    980		dev_err(&client->dev,
    981			"pixel array controls initialization failed (%d)\n",
    982			sensor->pixel_array->ctrl_handler.error);
    983		return sensor->pixel_array->ctrl_handler.error;
    984	}
    985
    986	sensor->pixel_array->sd.ctrl_handler =
    987		&sensor->pixel_array->ctrl_handler;
    988
    989	v4l2_ctrl_cluster(2, &sensor->hflip);
    990
    991	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
    992	if (rval)
    993		return rval;
    994
    995	sensor->src->ctrl_handler.lock = &sensor->mutex;
    996
    997	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
    998		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
    999		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
   1000
   1001	if (sensor->src->ctrl_handler.error) {
   1002		dev_err(&client->dev,
   1003			"src controls initialization failed (%d)\n",
   1004			sensor->src->ctrl_handler.error);
   1005		return sensor->src->ctrl_handler.error;
   1006	}
   1007
   1008	sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
   1009
   1010	return 0;
   1011}
   1012
   1013/*
   1014 * For controls that require information on available media bus codes
   1015 * and linke frequencies.
   1016 */
   1017static int ccs_init_late_controls(struct ccs_sensor *sensor)
   1018{
   1019	unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
   1020		sensor->csi_format->compressed - sensor->compressed_min_bpp];
   1021	unsigned int i;
   1022
   1023	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
   1024		int max_value = (1 << sensor->csi_format->width) - 1;
   1025
   1026		sensor->test_data[i] = v4l2_ctrl_new_std(
   1027				&sensor->pixel_array->ctrl_handler,
   1028				&ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
   1029				0, max_value, 1, max_value);
   1030	}
   1031
   1032	sensor->link_freq = v4l2_ctrl_new_int_menu(
   1033		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
   1034		V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
   1035		__ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
   1036
   1037	return sensor->src->ctrl_handler.error;
   1038}
   1039
   1040static void ccs_free_controls(struct ccs_sensor *sensor)
   1041{
   1042	unsigned int i;
   1043
   1044	for (i = 0; i < sensor->ssds_used; i++)
   1045		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
   1046}
   1047
   1048static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
   1049{
   1050	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1051	struct ccs_pll *pll = &sensor->pll;
   1052	u8 compressed_max_bpp = 0;
   1053	unsigned int type, n;
   1054	unsigned int i, pixel_order;
   1055	int rval;
   1056
   1057	type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
   1058
   1059	dev_dbg(&client->dev, "data_format_model_type %u\n", type);
   1060
   1061	rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
   1062	if (rval)
   1063		return rval;
   1064
   1065	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
   1066		dev_dbg(&client->dev, "bad pixel order %u\n", pixel_order);
   1067		return -EINVAL;
   1068	}
   1069
   1070	dev_dbg(&client->dev, "pixel order %u (%s)\n", pixel_order,
   1071		pixel_order_str[pixel_order]);
   1072
   1073	switch (type) {
   1074	case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
   1075		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
   1076		break;
   1077	case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
   1078		n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
   1079		break;
   1080	default:
   1081		return -EINVAL;
   1082	}
   1083
   1084	sensor->default_pixel_order = pixel_order;
   1085	sensor->mbus_frame_fmts = 0;
   1086
   1087	for (i = 0; i < n; i++) {
   1088		unsigned int fmt, j;
   1089
   1090		fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
   1091
   1092		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
   1093			i, fmt >> 8, (u8)fmt);
   1094
   1095		for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
   1096			const struct ccs_csi_data_format *f =
   1097				&ccs_csi_data_formats[j];
   1098
   1099			if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
   1100				continue;
   1101
   1102			if (f->width != fmt >>
   1103			    CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
   1104			    f->compressed !=
   1105			    (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
   1106				continue;
   1107
   1108			dev_dbg(&client->dev, "jolly good! %u\n", j);
   1109
   1110			sensor->default_mbus_frame_fmts |= 1 << j;
   1111		}
   1112	}
   1113
   1114	/* Figure out which BPP values can be used with which formats. */
   1115	pll->binning_horizontal = 1;
   1116	pll->binning_vertical = 1;
   1117	pll->scale_m = sensor->scale_m;
   1118
   1119	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
   1120		sensor->compressed_min_bpp =
   1121			min(ccs_csi_data_formats[i].compressed,
   1122			    sensor->compressed_min_bpp);
   1123		compressed_max_bpp =
   1124			max(ccs_csi_data_formats[i].compressed,
   1125			    compressed_max_bpp);
   1126	}
   1127
   1128	sensor->valid_link_freqs = devm_kcalloc(
   1129		&client->dev,
   1130		compressed_max_bpp - sensor->compressed_min_bpp + 1,
   1131		sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
   1132	if (!sensor->valid_link_freqs)
   1133		return -ENOMEM;
   1134
   1135	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
   1136		const struct ccs_csi_data_format *f =
   1137			&ccs_csi_data_formats[i];
   1138		unsigned long *valid_link_freqs =
   1139			&sensor->valid_link_freqs[
   1140				f->compressed - sensor->compressed_min_bpp];
   1141		unsigned int j;
   1142
   1143		if (!(sensor->default_mbus_frame_fmts & 1 << i))
   1144			continue;
   1145
   1146		pll->bits_per_pixel = f->compressed;
   1147
   1148		for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
   1149			pll->link_freq = sensor->hwcfg.op_sys_clock[j];
   1150
   1151			rval = ccs_pll_try(sensor, pll);
   1152			dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
   1153				pll->link_freq, pll->bits_per_pixel,
   1154				rval ? "not ok" : "ok");
   1155			if (rval)
   1156				continue;
   1157
   1158			set_bit(j, valid_link_freqs);
   1159		}
   1160
   1161		if (!*valid_link_freqs) {
   1162			dev_info(&client->dev,
   1163				 "no valid link frequencies for %u bpp\n",
   1164				 f->compressed);
   1165			sensor->default_mbus_frame_fmts &= ~BIT(i);
   1166			continue;
   1167		}
   1168
   1169		if (!sensor->csi_format
   1170		    || f->width > sensor->csi_format->width
   1171		    || (f->width == sensor->csi_format->width
   1172			&& f->compressed > sensor->csi_format->compressed)) {
   1173			sensor->csi_format = f;
   1174			sensor->internal_csi_format = f;
   1175		}
   1176	}
   1177
   1178	if (!sensor->csi_format) {
   1179		dev_err(&client->dev, "no supported mbus code found\n");
   1180		return -EINVAL;
   1181	}
   1182
   1183	ccs_update_mbus_formats(sensor);
   1184
   1185	return 0;
   1186}
   1187
   1188static void ccs_update_blanking(struct ccs_sensor *sensor)
   1189{
   1190	struct v4l2_ctrl *vblank = sensor->vblank;
   1191	struct v4l2_ctrl *hblank = sensor->hblank;
   1192	u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
   1193	int min, max;
   1194
   1195	if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
   1196		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
   1197		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
   1198		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
   1199		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
   1200		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
   1201	} else {
   1202		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
   1203		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
   1204		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
   1205		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
   1206		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
   1207	}
   1208
   1209	min = max_t(int,
   1210		    CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
   1211		    min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height);
   1212	max = max_fll -	sensor->pixel_array->crop[CCS_PA_PAD_SRC].height;
   1213
   1214	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
   1215
   1216	min = max_t(int,
   1217		    min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width,
   1218		    min_lbp);
   1219	max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width;
   1220
   1221	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
   1222
   1223	__ccs_update_exposure_limits(sensor);
   1224}
   1225
   1226static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
   1227{
   1228	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1229	int rval;
   1230
   1231	rval = ccs_pll_update(sensor);
   1232	if (rval < 0)
   1233		return rval;
   1234
   1235	/* Output from pixel array, including blanking */
   1236	ccs_update_blanking(sensor);
   1237
   1238	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
   1239	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
   1240
   1241	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
   1242		sensor->pll.pixel_rate_pixel_array /
   1243		((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
   1244		  + sensor->hblank->val) *
   1245		 (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
   1246		  + sensor->vblank->val) / 100));
   1247
   1248	return 0;
   1249}
   1250
   1251/*
   1252 *
   1253 * SMIA++ NVM handling
   1254 *
   1255 */
   1256
   1257static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
   1258			     u8 *status)
   1259{
   1260	unsigned int i;
   1261	int rval;
   1262	u32 s;
   1263
   1264	*status = 0;
   1265
   1266	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
   1267	if (rval)
   1268		return rval;
   1269
   1270	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
   1271			 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
   1272	if (rval)
   1273		return rval;
   1274
   1275	rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
   1276	if (rval)
   1277		return rval;
   1278
   1279	if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
   1280		*status = s;
   1281		return -ENODATA;
   1282	}
   1283
   1284	if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
   1285	    CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
   1286		for (i = 1000; i > 0; i--) {
   1287			if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
   1288				break;
   1289
   1290			rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
   1291			if (rval)
   1292				return rval;
   1293		}
   1294
   1295		if (!i)
   1296			return -ETIMEDOUT;
   1297	}
   1298
   1299	for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
   1300		u32 v;
   1301
   1302		rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
   1303		if (rval)
   1304			return rval;
   1305
   1306		*nvm++ = v;
   1307	}
   1308
   1309	return 0;
   1310}
   1311
   1312static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
   1313			size_t nvm_size)
   1314{
   1315	u8 status = 0;
   1316	u32 p;
   1317	int rval = 0, rval2;
   1318
   1319	for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
   1320		     && !rval; p++) {
   1321		rval = ccs_read_nvm_page(sensor, p, nvm, &status);
   1322		nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
   1323	}
   1324
   1325	if (rval == -ENODATA &&
   1326	    status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
   1327		rval = 0;
   1328
   1329	rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
   1330	if (rval < 0)
   1331		return rval;
   1332	else
   1333		return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
   1334}
   1335
   1336/*
   1337 *
   1338 * SMIA++ CCI address control
   1339 *
   1340 */
   1341static int ccs_change_cci_addr(struct ccs_sensor *sensor)
   1342{
   1343	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1344	int rval;
   1345	u32 val;
   1346
   1347	client->addr = sensor->hwcfg.i2c_addr_dfl;
   1348
   1349	rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
   1350			 sensor->hwcfg.i2c_addr_alt << 1);
   1351	if (rval)
   1352		return rval;
   1353
   1354	client->addr = sensor->hwcfg.i2c_addr_alt;
   1355
   1356	/* verify addr change went ok */
   1357	rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
   1358	if (rval)
   1359		return rval;
   1360
   1361	if (val != sensor->hwcfg.i2c_addr_alt << 1)
   1362		return -ENODEV;
   1363
   1364	return 0;
   1365}
   1366
   1367/*
   1368 *
   1369 * SMIA++ Mode Control
   1370 *
   1371 */
   1372static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
   1373{
   1374	struct ccs_flash_strobe_parms *strobe_setup;
   1375	unsigned int ext_freq = sensor->hwcfg.ext_clk;
   1376	u32 tmp;
   1377	u32 strobe_adjustment;
   1378	u32 strobe_width_high_rs;
   1379	int rval;
   1380
   1381	strobe_setup = sensor->hwcfg.strobe_setup;
   1382
   1383	/*
   1384	 * How to calculate registers related to strobe length. Please
   1385	 * do not change, or if you do at least know what you're
   1386	 * doing. :-)
   1387	 *
   1388	 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
   1389	 *
   1390	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
   1391	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
   1392	 *
   1393	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
   1394	 * flash_strobe_adjustment E N, [1 - 0xff]
   1395	 *
   1396	 * The formula above is written as below to keep it on one
   1397	 * line:
   1398	 *
   1399	 * l / 10^6 = w / e * a
   1400	 *
   1401	 * Let's mark w * a by x:
   1402	 *
   1403	 * x = w * a
   1404	 *
   1405	 * Thus, we get:
   1406	 *
   1407	 * x = l * e / 10^6
   1408	 *
   1409	 * The strobe width must be at least as long as requested,
   1410	 * thus rounding upwards is needed.
   1411	 *
   1412	 * x = (l * e + 10^6 - 1) / 10^6
   1413	 * -----------------------------
   1414	 *
   1415	 * Maximum possible accuracy is wanted at all times. Thus keep
   1416	 * a as small as possible.
   1417	 *
   1418	 * Calculate a, assuming maximum w, with rounding upwards:
   1419	 *
   1420	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
   1421	 * -------------------------------------
   1422	 *
   1423	 * Thus, we also get w, with that a, with rounding upwards:
   1424	 *
   1425	 * w = (x + a - 1) / a
   1426	 * -------------------
   1427	 *
   1428	 * To get limits:
   1429	 *
   1430	 * x E [1, (2^16 - 1) * (2^8 - 1)]
   1431	 *
   1432	 * Substituting maximum x to the original formula (with rounding),
   1433	 * the maximum l is thus
   1434	 *
   1435	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
   1436	 *
   1437	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
   1438	 * --------------------------------------------------
   1439	 *
   1440	 * flash_strobe_length must be clamped between 1 and
   1441	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
   1442	 *
   1443	 * Then,
   1444	 *
   1445	 * flash_strobe_adjustment = ((flash_strobe_length *
   1446	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
   1447	 *
   1448	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
   1449	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
   1450	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
   1451	 */
   1452	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
   1453		      1000000 + 1, ext_freq);
   1454	strobe_setup->strobe_width_high_us =
   1455		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
   1456
   1457	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
   1458			1000000 - 1), 1000000ULL);
   1459	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
   1460	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
   1461				strobe_adjustment;
   1462
   1463	rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
   1464	if (rval < 0)
   1465		goto out;
   1466
   1467	rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
   1468	if (rval < 0)
   1469		goto out;
   1470
   1471	rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
   1472			 strobe_width_high_rs);
   1473	if (rval < 0)
   1474		goto out;
   1475
   1476	rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
   1477			 strobe_setup->strobe_delay);
   1478	if (rval < 0)
   1479		goto out;
   1480
   1481	rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
   1482			 strobe_setup->stobe_start_point);
   1483	if (rval < 0)
   1484		goto out;
   1485
   1486	rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
   1487
   1488out:
   1489	sensor->hwcfg.strobe_setup->trigger = 0;
   1490
   1491	return rval;
   1492}
   1493
   1494/* -----------------------------------------------------------------------------
   1495 * Power management
   1496 */
   1497
   1498static int ccs_write_msr_regs(struct ccs_sensor *sensor)
   1499{
   1500	int rval;
   1501
   1502	rval = ccs_write_data_regs(sensor,
   1503				   sensor->sdata.sensor_manufacturer_regs,
   1504				   sensor->sdata.num_sensor_manufacturer_regs);
   1505	if (rval)
   1506		return rval;
   1507
   1508	return ccs_write_data_regs(sensor,
   1509				   sensor->mdata.module_manufacturer_regs,
   1510				   sensor->mdata.num_module_manufacturer_regs);
   1511}
   1512
   1513static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
   1514{
   1515	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1516	u8 val;
   1517
   1518	if (!sensor->ccs_limits)
   1519		return 0;
   1520
   1521	if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
   1522	    CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
   1523		val = CCS_PHY_CTRL_AUTO;
   1524	} else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
   1525		   CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
   1526		val = CCS_PHY_CTRL_UI;
   1527	} else {
   1528		dev_err(&client->dev, "manual PHY control not supported\n");
   1529		return -EINVAL;
   1530	}
   1531
   1532	return ccs_write(sensor, PHY_CTRL, val);
   1533}
   1534
   1535static int ccs_power_on(struct device *dev)
   1536{
   1537	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
   1538	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   1539	/*
   1540	 * The sub-device related to the I2C device is always the
   1541	 * source one, i.e. ssds[0].
   1542	 */
   1543	struct ccs_sensor *sensor =
   1544		container_of(ssd, struct ccs_sensor, ssds[0]);
   1545	const struct ccs_device *ccsdev = device_get_match_data(dev);
   1546	int rval;
   1547
   1548	rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
   1549				     sensor->regulators);
   1550	if (rval) {
   1551		dev_err(dev, "failed to enable vana regulator\n");
   1552		return rval;
   1553	}
   1554
   1555	if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
   1556		unsigned int sleep;
   1557
   1558		rval = clk_prepare_enable(sensor->ext_clk);
   1559		if (rval < 0) {
   1560			dev_dbg(dev, "failed to enable xclk\n");
   1561			goto out_xclk_fail;
   1562		}
   1563
   1564		gpiod_set_value(sensor->reset, 0);
   1565		gpiod_set_value(sensor->xshutdown, 1);
   1566
   1567		if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
   1568			sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
   1569		else
   1570			sleep = 5000;
   1571
   1572		usleep_range(sleep, sleep);
   1573	}
   1574
   1575	/*
   1576	 * Failures to respond to the address change command have been noticed.
   1577	 * Those failures seem to be caused by the sensor requiring a longer
   1578	 * boot time than advertised. An additional 10ms delay seems to work
   1579	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
   1580	 * unnecessary. The failures need to be investigated to find a proper
   1581	 * fix, and a delay will likely need to be added here if the I2C write
   1582	 * retry hack is reverted before the root cause of the boot time issue
   1583	 * is found.
   1584	 */
   1585
   1586	if (!sensor->reset && !sensor->xshutdown) {
   1587		u8 retry = 100;
   1588		u32 reset;
   1589
   1590		rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
   1591		if (rval < 0) {
   1592			dev_err(dev, "software reset failed\n");
   1593			goto out_cci_addr_fail;
   1594		}
   1595
   1596		do {
   1597			rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
   1598			reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
   1599			if (reset)
   1600				break;
   1601
   1602			usleep_range(1000, 2000);
   1603		} while (--retry);
   1604
   1605		if (!reset) {
   1606			dev_err(dev, "software reset failed\n");
   1607			rval = -EIO;
   1608			goto out_cci_addr_fail;
   1609		}
   1610	}
   1611
   1612	if (sensor->hwcfg.i2c_addr_alt) {
   1613		rval = ccs_change_cci_addr(sensor);
   1614		if (rval) {
   1615			dev_err(dev, "cci address change error\n");
   1616			goto out_cci_addr_fail;
   1617		}
   1618	}
   1619
   1620	rval = ccs_write(sensor, COMPRESSION_MODE,
   1621			 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
   1622	if (rval) {
   1623		dev_err(dev, "compression mode set failed\n");
   1624		goto out_cci_addr_fail;
   1625	}
   1626
   1627	rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
   1628			 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
   1629	if (rval) {
   1630		dev_err(dev, "extclk frequency set failed\n");
   1631		goto out_cci_addr_fail;
   1632	}
   1633
   1634	rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
   1635	if (rval) {
   1636		dev_err(dev, "csi lane mode set failed\n");
   1637		goto out_cci_addr_fail;
   1638	}
   1639
   1640	rval = ccs_write(sensor, FAST_STANDBY_CTRL,
   1641			 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
   1642	if (rval) {
   1643		dev_err(dev, "fast standby set failed\n");
   1644		goto out_cci_addr_fail;
   1645	}
   1646
   1647	rval = ccs_write(sensor, CSI_SIGNALING_MODE,
   1648			 sensor->hwcfg.csi_signalling_mode);
   1649	if (rval) {
   1650		dev_err(dev, "csi signalling mode set failed\n");
   1651		goto out_cci_addr_fail;
   1652	}
   1653
   1654	rval = ccs_update_phy_ctrl(sensor);
   1655	if (rval < 0)
   1656		goto out_cci_addr_fail;
   1657
   1658	rval = ccs_write_msr_regs(sensor);
   1659	if (rval)
   1660		goto out_cci_addr_fail;
   1661
   1662	rval = ccs_call_quirk(sensor, post_poweron);
   1663	if (rval) {
   1664		dev_err(dev, "post_poweron quirks failed\n");
   1665		goto out_cci_addr_fail;
   1666	}
   1667
   1668	return 0;
   1669
   1670out_cci_addr_fail:
   1671	gpiod_set_value(sensor->reset, 1);
   1672	gpiod_set_value(sensor->xshutdown, 0);
   1673	clk_disable_unprepare(sensor->ext_clk);
   1674
   1675out_xclk_fail:
   1676	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
   1677			       sensor->regulators);
   1678
   1679	return rval;
   1680}
   1681
   1682static int ccs_power_off(struct device *dev)
   1683{
   1684	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
   1685	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   1686	struct ccs_sensor *sensor =
   1687		container_of(ssd, struct ccs_sensor, ssds[0]);
   1688
   1689	/*
   1690	 * Currently power/clock to lens are enable/disabled separately
   1691	 * but they are essentially the same signals. So if the sensor is
   1692	 * powered off while the lens is powered on the sensor does not
   1693	 * really see a power off and next time the cci address change
   1694	 * will fail. So do a soft reset explicitly here.
   1695	 */
   1696	if (sensor->hwcfg.i2c_addr_alt)
   1697		ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
   1698
   1699	gpiod_set_value(sensor->reset, 1);
   1700	gpiod_set_value(sensor->xshutdown, 0);
   1701	clk_disable_unprepare(sensor->ext_clk);
   1702	usleep_range(5000, 5000);
   1703	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
   1704			       sensor->regulators);
   1705	sensor->streaming = false;
   1706
   1707	return 0;
   1708}
   1709
   1710/* -----------------------------------------------------------------------------
   1711 * Video stream management
   1712 */
   1713
   1714static int ccs_start_streaming(struct ccs_sensor *sensor)
   1715{
   1716	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1717	unsigned int binning_mode;
   1718	int rval;
   1719
   1720	mutex_lock(&sensor->mutex);
   1721
   1722	rval = ccs_write(sensor, CSI_DATA_FORMAT,
   1723			 (sensor->csi_format->width << 8) |
   1724			 sensor->csi_format->compressed);
   1725	if (rval)
   1726		goto out;
   1727
   1728	/* Binning configuration */
   1729	if (sensor->binning_horizontal == 1 &&
   1730	    sensor->binning_vertical == 1) {
   1731		binning_mode = 0;
   1732	} else {
   1733		u8 binning_type =
   1734			(sensor->binning_horizontal << 4)
   1735			| sensor->binning_vertical;
   1736
   1737		rval = ccs_write(sensor, BINNING_TYPE, binning_type);
   1738		if (rval < 0)
   1739			goto out;
   1740
   1741		binning_mode = 1;
   1742	}
   1743	rval = ccs_write(sensor, BINNING_MODE, binning_mode);
   1744	if (rval < 0)
   1745		goto out;
   1746
   1747	/* Set up PLL */
   1748	rval = ccs_pll_configure(sensor);
   1749	if (rval)
   1750		goto out;
   1751
   1752	/* Analog crop start coordinates */
   1753	rval = ccs_write(sensor, X_ADDR_START,
   1754			 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left);
   1755	if (rval < 0)
   1756		goto out;
   1757
   1758	rval = ccs_write(sensor, Y_ADDR_START,
   1759			 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top);
   1760	if (rval < 0)
   1761		goto out;
   1762
   1763	/* Analog crop end coordinates */
   1764	rval = ccs_write(
   1765		sensor, X_ADDR_END,
   1766		sensor->pixel_array->crop[CCS_PA_PAD_SRC].left
   1767		+ sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1);
   1768	if (rval < 0)
   1769		goto out;
   1770
   1771	rval = ccs_write(
   1772		sensor, Y_ADDR_END,
   1773		sensor->pixel_array->crop[CCS_PA_PAD_SRC].top
   1774		+ sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1);
   1775	if (rval < 0)
   1776		goto out;
   1777
   1778	/*
   1779	 * Output from pixel array, including blanking, is set using
   1780	 * controls below. No need to set here.
   1781	 */
   1782
   1783	/* Digital crop */
   1784	if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
   1785	    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
   1786		rval = ccs_write(
   1787			sensor, DIGITAL_CROP_X_OFFSET,
   1788			sensor->scaler->crop[CCS_PAD_SINK].left);
   1789		if (rval < 0)
   1790			goto out;
   1791
   1792		rval = ccs_write(
   1793			sensor, DIGITAL_CROP_Y_OFFSET,
   1794			sensor->scaler->crop[CCS_PAD_SINK].top);
   1795		if (rval < 0)
   1796			goto out;
   1797
   1798		rval = ccs_write(
   1799			sensor, DIGITAL_CROP_IMAGE_WIDTH,
   1800			sensor->scaler->crop[CCS_PAD_SINK].width);
   1801		if (rval < 0)
   1802			goto out;
   1803
   1804		rval = ccs_write(
   1805			sensor, DIGITAL_CROP_IMAGE_HEIGHT,
   1806			sensor->scaler->crop[CCS_PAD_SINK].height);
   1807		if (rval < 0)
   1808			goto out;
   1809	}
   1810
   1811	/* Scaling */
   1812	if (CCS_LIM(sensor, SCALING_CAPABILITY)
   1813	    != CCS_SCALING_CAPABILITY_NONE) {
   1814		rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
   1815		if (rval < 0)
   1816			goto out;
   1817
   1818		rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
   1819		if (rval < 0)
   1820			goto out;
   1821	}
   1822
   1823	/* Output size from sensor */
   1824	rval = ccs_write(sensor, X_OUTPUT_SIZE,
   1825			 sensor->src->crop[CCS_PAD_SRC].width);
   1826	if (rval < 0)
   1827		goto out;
   1828	rval = ccs_write(sensor, Y_OUTPUT_SIZE,
   1829			 sensor->src->crop[CCS_PAD_SRC].height);
   1830	if (rval < 0)
   1831		goto out;
   1832
   1833	if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
   1834	    (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
   1835	     SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
   1836	    sensor->hwcfg.strobe_setup != NULL &&
   1837	    sensor->hwcfg.strobe_setup->trigger != 0) {
   1838		rval = ccs_setup_flash_strobe(sensor);
   1839		if (rval)
   1840			goto out;
   1841	}
   1842
   1843	rval = ccs_call_quirk(sensor, pre_streamon);
   1844	if (rval) {
   1845		dev_err(&client->dev, "pre_streamon quirks failed\n");
   1846		goto out;
   1847	}
   1848
   1849	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
   1850
   1851out:
   1852	mutex_unlock(&sensor->mutex);
   1853
   1854	return rval;
   1855}
   1856
   1857static int ccs_stop_streaming(struct ccs_sensor *sensor)
   1858{
   1859	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1860	int rval;
   1861
   1862	mutex_lock(&sensor->mutex);
   1863	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
   1864	if (rval)
   1865		goto out;
   1866
   1867	rval = ccs_call_quirk(sensor, post_streamoff);
   1868	if (rval)
   1869		dev_err(&client->dev, "post_streamoff quirks failed\n");
   1870
   1871out:
   1872	mutex_unlock(&sensor->mutex);
   1873	return rval;
   1874}
   1875
   1876/* -----------------------------------------------------------------------------
   1877 * V4L2 subdev video operations
   1878 */
   1879
   1880static int ccs_pm_get_init(struct ccs_sensor *sensor)
   1881{
   1882	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1883	int rval;
   1884
   1885	/*
   1886	 * It can't use pm_runtime_resume_and_get() here, as the driver
   1887	 * relies at the returned value to detect if the device was already
   1888	 * active or not.
   1889	 */
   1890	rval = pm_runtime_get_sync(&client->dev);
   1891	if (rval < 0)
   1892		goto error;
   1893
   1894	/* Device was already active, so don't set controls */
   1895	if (rval == 1)
   1896		return 0;
   1897
   1898	/* Restore V4L2 controls to the previously suspended device */
   1899	rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
   1900	if (rval)
   1901		goto error;
   1902
   1903	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
   1904	if (rval)
   1905		goto error;
   1906
   1907	/* Keep PM runtime usage_count incremented on success */
   1908	return 0;
   1909error:
   1910	pm_runtime_put(&client->dev);
   1911	return rval;
   1912}
   1913
   1914static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
   1915{
   1916	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   1917	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1918	int rval;
   1919
   1920	if (sensor->streaming == enable)
   1921		return 0;
   1922
   1923	if (!enable) {
   1924		ccs_stop_streaming(sensor);
   1925		sensor->streaming = false;
   1926		pm_runtime_mark_last_busy(&client->dev);
   1927		pm_runtime_put_autosuspend(&client->dev);
   1928
   1929		return 0;
   1930	}
   1931
   1932	rval = ccs_pm_get_init(sensor);
   1933	if (rval)
   1934		return rval;
   1935
   1936	sensor->streaming = true;
   1937
   1938	rval = ccs_start_streaming(sensor);
   1939	if (rval < 0) {
   1940		sensor->streaming = false;
   1941		pm_runtime_mark_last_busy(&client->dev);
   1942		pm_runtime_put_autosuspend(&client->dev);
   1943	}
   1944
   1945	return rval;
   1946}
   1947
   1948static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
   1949{
   1950	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   1951	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1952	int rval;
   1953
   1954	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
   1955		switch (sensor->hwcfg.csi_signalling_mode) {
   1956		case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
   1957			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
   1958			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
   1959				return -EACCES;
   1960			break;
   1961		case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
   1962			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
   1963			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
   1964				return -EACCES;
   1965			break;
   1966		default:
   1967			return -EACCES;
   1968		}
   1969	}
   1970
   1971	rval = ccs_pm_get_init(sensor);
   1972	if (rval)
   1973		return rval;
   1974
   1975	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
   1976		rval = ccs_write(sensor, MANUAL_LP_CTRL,
   1977				 CCS_MANUAL_LP_CTRL_ENABLE);
   1978		if (rval)
   1979			pm_runtime_put(&client->dev);
   1980	}
   1981
   1982	return rval;
   1983}
   1984
   1985static int ccs_post_streamoff(struct v4l2_subdev *subdev)
   1986{
   1987	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   1988	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   1989
   1990	return pm_runtime_put(&client->dev);
   1991}
   1992
   1993static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
   1994			      struct v4l2_subdev_state *sd_state,
   1995			      struct v4l2_subdev_mbus_code_enum *code)
   1996{
   1997	struct i2c_client *client = v4l2_get_subdevdata(subdev);
   1998	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   1999	unsigned int i;
   2000	int idx = -1;
   2001	int rval = -EINVAL;
   2002
   2003	mutex_lock(&sensor->mutex);
   2004
   2005	dev_err(&client->dev, "subdev %s, pad %u, index %u\n",
   2006		subdev->name, code->pad, code->index);
   2007
   2008	if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
   2009		if (code->index)
   2010			goto out;
   2011
   2012		code->code = sensor->internal_csi_format->code;
   2013		rval = 0;
   2014		goto out;
   2015	}
   2016
   2017	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
   2018		if (sensor->mbus_frame_fmts & (1 << i))
   2019			idx++;
   2020
   2021		if (idx == code->index) {
   2022			code->code = ccs_csi_data_formats[i].code;
   2023			dev_err(&client->dev, "found index %u, i %u, code %x\n",
   2024				code->index, i, code->code);
   2025			rval = 0;
   2026			break;
   2027		}
   2028	}
   2029
   2030out:
   2031	mutex_unlock(&sensor->mutex);
   2032
   2033	return rval;
   2034}
   2035
   2036static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
   2037{
   2038	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2039
   2040	if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
   2041		return sensor->csi_format->code;
   2042	else
   2043		return sensor->internal_csi_format->code;
   2044}
   2045
   2046static int __ccs_get_format(struct v4l2_subdev *subdev,
   2047			    struct v4l2_subdev_state *sd_state,
   2048			    struct v4l2_subdev_format *fmt)
   2049{
   2050	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   2051
   2052	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
   2053		fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state,
   2054							  fmt->pad);
   2055	} else {
   2056		struct v4l2_rect *r;
   2057
   2058		if (fmt->pad == ssd->source_pad)
   2059			r = &ssd->crop[ssd->source_pad];
   2060		else
   2061			r = &ssd->sink_fmt;
   2062
   2063		fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
   2064		fmt->format.width = r->width;
   2065		fmt->format.height = r->height;
   2066		fmt->format.field = V4L2_FIELD_NONE;
   2067	}
   2068
   2069	return 0;
   2070}
   2071
   2072static int ccs_get_format(struct v4l2_subdev *subdev,
   2073			  struct v4l2_subdev_state *sd_state,
   2074			  struct v4l2_subdev_format *fmt)
   2075{
   2076	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2077	int rval;
   2078
   2079	mutex_lock(&sensor->mutex);
   2080	rval = __ccs_get_format(subdev, sd_state, fmt);
   2081	mutex_unlock(&sensor->mutex);
   2082
   2083	return rval;
   2084}
   2085
   2086static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
   2087				 struct v4l2_subdev_state *sd_state,
   2088				 struct v4l2_rect **crops,
   2089				 struct v4l2_rect **comps, int which)
   2090{
   2091	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   2092	unsigned int i;
   2093
   2094	if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
   2095		if (crops)
   2096			for (i = 0; i < subdev->entity.num_pads; i++)
   2097				crops[i] = &ssd->crop[i];
   2098		if (comps)
   2099			*comps = &ssd->compose;
   2100	} else {
   2101		if (crops) {
   2102			for (i = 0; i < subdev->entity.num_pads; i++)
   2103				crops[i] = v4l2_subdev_get_try_crop(subdev,
   2104								    sd_state,
   2105								    i);
   2106		}
   2107		if (comps)
   2108			*comps = v4l2_subdev_get_try_compose(subdev, sd_state,
   2109							     CCS_PAD_SINK);
   2110	}
   2111}
   2112
   2113/* Changes require propagation only on sink pad. */
   2114static void ccs_propagate(struct v4l2_subdev *subdev,
   2115			  struct v4l2_subdev_state *sd_state, int which,
   2116			  int target)
   2117{
   2118	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2119	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   2120	struct v4l2_rect *comp, *crops[CCS_PADS];
   2121
   2122	ccs_get_crop_compose(subdev, sd_state, crops, &comp, which);
   2123
   2124	switch (target) {
   2125	case V4L2_SEL_TGT_CROP:
   2126		comp->width = crops[CCS_PAD_SINK]->width;
   2127		comp->height = crops[CCS_PAD_SINK]->height;
   2128		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
   2129			if (ssd == sensor->scaler) {
   2130				sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
   2131				sensor->scaling_mode =
   2132					CCS_SCALING_MODE_NO_SCALING;
   2133			} else if (ssd == sensor->binner) {
   2134				sensor->binning_horizontal = 1;
   2135				sensor->binning_vertical = 1;
   2136			}
   2137		}
   2138		fallthrough;
   2139	case V4L2_SEL_TGT_COMPOSE:
   2140		*crops[CCS_PAD_SRC] = *comp;
   2141		break;
   2142	default:
   2143		WARN_ON_ONCE(1);
   2144	}
   2145}
   2146
   2147static const struct ccs_csi_data_format
   2148*ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
   2149{
   2150	unsigned int i;
   2151
   2152	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
   2153		if (sensor->mbus_frame_fmts & (1 << i) &&
   2154		    ccs_csi_data_formats[i].code == code)
   2155			return &ccs_csi_data_formats[i];
   2156	}
   2157
   2158	return sensor->csi_format;
   2159}
   2160
   2161static int ccs_set_format_source(struct v4l2_subdev *subdev,
   2162				 struct v4l2_subdev_state *sd_state,
   2163				 struct v4l2_subdev_format *fmt)
   2164{
   2165	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2166	const struct ccs_csi_data_format *csi_format,
   2167		*old_csi_format = sensor->csi_format;
   2168	unsigned long *valid_link_freqs;
   2169	u32 code = fmt->format.code;
   2170	unsigned int i;
   2171	int rval;
   2172
   2173	rval = __ccs_get_format(subdev, sd_state, fmt);
   2174	if (rval)
   2175		return rval;
   2176
   2177	/*
   2178	 * Media bus code is changeable on src subdev's source pad. On
   2179	 * other source pads we just get format here.
   2180	 */
   2181	if (subdev != &sensor->src->sd)
   2182		return 0;
   2183
   2184	csi_format = ccs_validate_csi_data_format(sensor, code);
   2185
   2186	fmt->format.code = csi_format->code;
   2187
   2188	if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
   2189		return 0;
   2190
   2191	sensor->csi_format = csi_format;
   2192
   2193	if (csi_format->width != old_csi_format->width)
   2194		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
   2195			__v4l2_ctrl_modify_range(
   2196				sensor->test_data[i], 0,
   2197				(1 << csi_format->width) - 1, 1, 0);
   2198
   2199	if (csi_format->compressed == old_csi_format->compressed)
   2200		return 0;
   2201
   2202	valid_link_freqs =
   2203		&sensor->valid_link_freqs[sensor->csi_format->compressed
   2204					  - sensor->compressed_min_bpp];
   2205
   2206	__v4l2_ctrl_modify_range(
   2207		sensor->link_freq, 0,
   2208		__fls(*valid_link_freqs), ~*valid_link_freqs,
   2209		__ffs(*valid_link_freqs));
   2210
   2211	return ccs_pll_update(sensor);
   2212}
   2213
   2214static int ccs_set_format(struct v4l2_subdev *subdev,
   2215			  struct v4l2_subdev_state *sd_state,
   2216			  struct v4l2_subdev_format *fmt)
   2217{
   2218	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2219	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   2220	struct v4l2_rect *crops[CCS_PADS];
   2221
   2222	mutex_lock(&sensor->mutex);
   2223
   2224	if (fmt->pad == ssd->source_pad) {
   2225		int rval;
   2226
   2227		rval = ccs_set_format_source(subdev, sd_state, fmt);
   2228
   2229		mutex_unlock(&sensor->mutex);
   2230
   2231		return rval;
   2232	}
   2233
   2234	/* Sink pad. Width and height are changeable here. */
   2235	fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
   2236	fmt->format.width &= ~1;
   2237	fmt->format.height &= ~1;
   2238	fmt->format.field = V4L2_FIELD_NONE;
   2239
   2240	fmt->format.width =
   2241		clamp(fmt->format.width,
   2242		      CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
   2243		      CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
   2244	fmt->format.height =
   2245		clamp(fmt->format.height,
   2246		      CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
   2247		      CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
   2248
   2249	ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which);
   2250
   2251	crops[ssd->sink_pad]->left = 0;
   2252	crops[ssd->sink_pad]->top = 0;
   2253	crops[ssd->sink_pad]->width = fmt->format.width;
   2254	crops[ssd->sink_pad]->height = fmt->format.height;
   2255	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
   2256		ssd->sink_fmt = *crops[ssd->sink_pad];
   2257	ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
   2258
   2259	mutex_unlock(&sensor->mutex);
   2260
   2261	return 0;
   2262}
   2263
   2264/*
   2265 * Calculate goodness of scaled image size compared to expected image
   2266 * size and flags provided.
   2267 */
   2268#define SCALING_GOODNESS		100000
   2269#define SCALING_GOODNESS_EXTREME	100000000
   2270static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
   2271			    int h, int ask_h, u32 flags)
   2272{
   2273	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2274	struct i2c_client *client = v4l2_get_subdevdata(subdev);
   2275	int val = 0;
   2276
   2277	w &= ~1;
   2278	ask_w &= ~1;
   2279	h &= ~1;
   2280	ask_h &= ~1;
   2281
   2282	if (flags & V4L2_SEL_FLAG_GE) {
   2283		if (w < ask_w)
   2284			val -= SCALING_GOODNESS;
   2285		if (h < ask_h)
   2286			val -= SCALING_GOODNESS;
   2287	}
   2288
   2289	if (flags & V4L2_SEL_FLAG_LE) {
   2290		if (w > ask_w)
   2291			val -= SCALING_GOODNESS;
   2292		if (h > ask_h)
   2293			val -= SCALING_GOODNESS;
   2294	}
   2295
   2296	val -= abs(w - ask_w);
   2297	val -= abs(h - ask_h);
   2298
   2299	if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
   2300		val -= SCALING_GOODNESS_EXTREME;
   2301
   2302	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
   2303		w, ask_w, h, ask_h, val);
   2304
   2305	return val;
   2306}
   2307
   2308static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
   2309				   struct v4l2_subdev_state *sd_state,
   2310				   struct v4l2_subdev_selection *sel,
   2311				   struct v4l2_rect **crops,
   2312				   struct v4l2_rect *comp)
   2313{
   2314	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2315	unsigned int i;
   2316	unsigned int binh = 1, binv = 1;
   2317	int best = scaling_goodness(
   2318		subdev,
   2319		crops[CCS_PAD_SINK]->width, sel->r.width,
   2320		crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
   2321
   2322	for (i = 0; i < sensor->nbinning_subtypes; i++) {
   2323		int this = scaling_goodness(
   2324			subdev,
   2325			crops[CCS_PAD_SINK]->width
   2326			/ sensor->binning_subtypes[i].horizontal,
   2327			sel->r.width,
   2328			crops[CCS_PAD_SINK]->height
   2329			/ sensor->binning_subtypes[i].vertical,
   2330			sel->r.height, sel->flags);
   2331
   2332		if (this > best) {
   2333			binh = sensor->binning_subtypes[i].horizontal;
   2334			binv = sensor->binning_subtypes[i].vertical;
   2335			best = this;
   2336		}
   2337	}
   2338	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
   2339		sensor->binning_vertical = binv;
   2340		sensor->binning_horizontal = binh;
   2341	}
   2342
   2343	sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
   2344	sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
   2345}
   2346
   2347/*
   2348 * Calculate best scaling ratio and mode for given output resolution.
   2349 *
   2350 * Try all of these: horizontal ratio, vertical ratio and smallest
   2351 * size possible (horizontally).
   2352 *
   2353 * Also try whether horizontal scaler or full scaler gives a better
   2354 * result.
   2355 */
   2356static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
   2357				   struct v4l2_subdev_state *sd_state,
   2358				   struct v4l2_subdev_selection *sel,
   2359				   struct v4l2_rect **crops,
   2360				   struct v4l2_rect *comp)
   2361{
   2362	struct i2c_client *client = v4l2_get_subdevdata(subdev);
   2363	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2364	u32 min, max, a, b, max_m;
   2365	u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
   2366	int mode = CCS_SCALING_MODE_HORIZONTAL;
   2367	u32 try[4];
   2368	u32 ntry = 0;
   2369	unsigned int i;
   2370	int best = INT_MIN;
   2371
   2372	sel->r.width = min_t(unsigned int, sel->r.width,
   2373			     crops[CCS_PAD_SINK]->width);
   2374	sel->r.height = min_t(unsigned int, sel->r.height,
   2375			      crops[CCS_PAD_SINK]->height);
   2376
   2377	a = crops[CCS_PAD_SINK]->width
   2378		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
   2379	b = crops[CCS_PAD_SINK]->height
   2380		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
   2381	max_m = crops[CCS_PAD_SINK]->width
   2382		* CCS_LIM(sensor, SCALER_N_MIN)
   2383		/ CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
   2384
   2385	a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
   2386		  CCS_LIM(sensor, SCALER_M_MAX));
   2387	b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
   2388		  CCS_LIM(sensor, SCALER_M_MAX));
   2389	max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
   2390		      CCS_LIM(sensor, SCALER_M_MAX));
   2391
   2392	dev_dbg(&client->dev, "scaling: a %u b %u max_m %u\n", a, b, max_m);
   2393
   2394	min = min(max_m, min(a, b));
   2395	max = min(max_m, max(a, b));
   2396
   2397	try[ntry] = min;
   2398	ntry++;
   2399	if (min != max) {
   2400		try[ntry] = max;
   2401		ntry++;
   2402	}
   2403	if (max != max_m) {
   2404		try[ntry] = min + 1;
   2405		ntry++;
   2406		if (min != max) {
   2407			try[ntry] = max + 1;
   2408			ntry++;
   2409		}
   2410	}
   2411
   2412	for (i = 0; i < ntry; i++) {
   2413		int this = scaling_goodness(
   2414			subdev,
   2415			crops[CCS_PAD_SINK]->width
   2416			/ try[i] * CCS_LIM(sensor, SCALER_N_MIN),
   2417			sel->r.width,
   2418			crops[CCS_PAD_SINK]->height,
   2419			sel->r.height,
   2420			sel->flags);
   2421
   2422		dev_dbg(&client->dev, "trying factor %u (%u)\n", try[i], i);
   2423
   2424		if (this > best) {
   2425			scale_m = try[i];
   2426			mode = CCS_SCALING_MODE_HORIZONTAL;
   2427			best = this;
   2428		}
   2429
   2430		if (CCS_LIM(sensor, SCALING_CAPABILITY)
   2431		    == CCS_SCALING_CAPABILITY_HORIZONTAL)
   2432			continue;
   2433
   2434		this = scaling_goodness(
   2435			subdev, crops[CCS_PAD_SINK]->width
   2436			/ try[i]
   2437			* CCS_LIM(sensor, SCALER_N_MIN),
   2438			sel->r.width,
   2439			crops[CCS_PAD_SINK]->height
   2440			/ try[i]
   2441			* CCS_LIM(sensor, SCALER_N_MIN),
   2442			sel->r.height,
   2443			sel->flags);
   2444
   2445		if (this > best) {
   2446			scale_m = try[i];
   2447			mode = SMIAPP_SCALING_MODE_BOTH;
   2448			best = this;
   2449		}
   2450	}
   2451
   2452	sel->r.width =
   2453		(crops[CCS_PAD_SINK]->width
   2454		 / scale_m
   2455		 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
   2456	if (mode == SMIAPP_SCALING_MODE_BOTH)
   2457		sel->r.height =
   2458			(crops[CCS_PAD_SINK]->height
   2459			 / scale_m
   2460			 * CCS_LIM(sensor, SCALER_N_MIN))
   2461			& ~1;
   2462	else
   2463		sel->r.height = crops[CCS_PAD_SINK]->height;
   2464
   2465	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
   2466		sensor->scale_m = scale_m;
   2467		sensor->scaling_mode = mode;
   2468	}
   2469}
   2470/* We're only called on source pads. This function sets scaling. */
   2471static int ccs_set_compose(struct v4l2_subdev *subdev,
   2472			   struct v4l2_subdev_state *sd_state,
   2473			   struct v4l2_subdev_selection *sel)
   2474{
   2475	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2476	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   2477	struct v4l2_rect *comp, *crops[CCS_PADS];
   2478
   2479	ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
   2480
   2481	sel->r.top = 0;
   2482	sel->r.left = 0;
   2483
   2484	if (ssd == sensor->binner)
   2485		ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
   2486	else
   2487		ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
   2488
   2489	*comp = sel->r;
   2490	ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
   2491
   2492	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
   2493		return ccs_pll_blanking_update(sensor);
   2494
   2495	return 0;
   2496}
   2497
   2498static int __ccs_sel_supported(struct v4l2_subdev *subdev,
   2499			       struct v4l2_subdev_selection *sel)
   2500{
   2501	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2502	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   2503
   2504	/* We only implement crop in three places. */
   2505	switch (sel->target) {
   2506	case V4L2_SEL_TGT_CROP:
   2507	case V4L2_SEL_TGT_CROP_BOUNDS:
   2508		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
   2509			return 0;
   2510		if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
   2511			return 0;
   2512		if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
   2513		    CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
   2514		    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
   2515			return 0;
   2516		return -EINVAL;
   2517	case V4L2_SEL_TGT_NATIVE_SIZE:
   2518		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
   2519			return 0;
   2520		return -EINVAL;
   2521	case V4L2_SEL_TGT_COMPOSE:
   2522	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
   2523		if (sel->pad == ssd->source_pad)
   2524			return -EINVAL;
   2525		if (ssd == sensor->binner)
   2526			return 0;
   2527		if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
   2528		    != CCS_SCALING_CAPABILITY_NONE)
   2529			return 0;
   2530		fallthrough;
   2531	default:
   2532		return -EINVAL;
   2533	}
   2534}
   2535
   2536static int ccs_set_crop(struct v4l2_subdev *subdev,
   2537			struct v4l2_subdev_state *sd_state,
   2538			struct v4l2_subdev_selection *sel)
   2539{
   2540	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2541	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   2542	struct v4l2_rect *src_size, *crops[CCS_PADS];
   2543	struct v4l2_rect _r;
   2544
   2545	ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which);
   2546
   2547	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
   2548		if (sel->pad == ssd->sink_pad)
   2549			src_size = &ssd->sink_fmt;
   2550		else
   2551			src_size = &ssd->compose;
   2552	} else {
   2553		if (sel->pad == ssd->sink_pad) {
   2554			_r.left = 0;
   2555			_r.top = 0;
   2556			_r.width = v4l2_subdev_get_try_format(subdev,
   2557							      sd_state,
   2558							      sel->pad)
   2559				->width;
   2560			_r.height = v4l2_subdev_get_try_format(subdev,
   2561							       sd_state,
   2562							       sel->pad)
   2563				->height;
   2564			src_size = &_r;
   2565		} else {
   2566			src_size = v4l2_subdev_get_try_compose(
   2567				subdev, sd_state, ssd->sink_pad);
   2568		}
   2569	}
   2570
   2571	if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
   2572		sel->r.left = 0;
   2573		sel->r.top = 0;
   2574	}
   2575
   2576	sel->r.width = min(sel->r.width, src_size->width);
   2577	sel->r.height = min(sel->r.height, src_size->height);
   2578
   2579	sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
   2580	sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
   2581
   2582	*crops[sel->pad] = sel->r;
   2583
   2584	if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
   2585		ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
   2586
   2587	return 0;
   2588}
   2589
   2590static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
   2591{
   2592	r->top = 0;
   2593	r->left = 0;
   2594	r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
   2595	r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
   2596}
   2597
   2598static int __ccs_get_selection(struct v4l2_subdev *subdev,
   2599			       struct v4l2_subdev_state *sd_state,
   2600			       struct v4l2_subdev_selection *sel)
   2601{
   2602	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2603	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
   2604	struct v4l2_rect *comp, *crops[CCS_PADS];
   2605	struct v4l2_rect sink_fmt;
   2606	int ret;
   2607
   2608	ret = __ccs_sel_supported(subdev, sel);
   2609	if (ret)
   2610		return ret;
   2611
   2612	ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
   2613
   2614	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
   2615		sink_fmt = ssd->sink_fmt;
   2616	} else {
   2617		struct v4l2_mbus_framefmt *fmt =
   2618			v4l2_subdev_get_try_format(subdev, sd_state,
   2619						   ssd->sink_pad);
   2620
   2621		sink_fmt.left = 0;
   2622		sink_fmt.top = 0;
   2623		sink_fmt.width = fmt->width;
   2624		sink_fmt.height = fmt->height;
   2625	}
   2626
   2627	switch (sel->target) {
   2628	case V4L2_SEL_TGT_CROP_BOUNDS:
   2629	case V4L2_SEL_TGT_NATIVE_SIZE:
   2630		if (ssd == sensor->pixel_array)
   2631			ccs_get_native_size(ssd, &sel->r);
   2632		else if (sel->pad == ssd->sink_pad)
   2633			sel->r = sink_fmt;
   2634		else
   2635			sel->r = *comp;
   2636		break;
   2637	case V4L2_SEL_TGT_CROP:
   2638	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
   2639		sel->r = *crops[sel->pad];
   2640		break;
   2641	case V4L2_SEL_TGT_COMPOSE:
   2642		sel->r = *comp;
   2643		break;
   2644	}
   2645
   2646	return 0;
   2647}
   2648
   2649static int ccs_get_selection(struct v4l2_subdev *subdev,
   2650			     struct v4l2_subdev_state *sd_state,
   2651			     struct v4l2_subdev_selection *sel)
   2652{
   2653	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2654	int rval;
   2655
   2656	mutex_lock(&sensor->mutex);
   2657	rval = __ccs_get_selection(subdev, sd_state, sel);
   2658	mutex_unlock(&sensor->mutex);
   2659
   2660	return rval;
   2661}
   2662
   2663static int ccs_set_selection(struct v4l2_subdev *subdev,
   2664			     struct v4l2_subdev_state *sd_state,
   2665			     struct v4l2_subdev_selection *sel)
   2666{
   2667	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2668	int ret;
   2669
   2670	ret = __ccs_sel_supported(subdev, sel);
   2671	if (ret)
   2672		return ret;
   2673
   2674	mutex_lock(&sensor->mutex);
   2675
   2676	sel->r.left = max(0, sel->r.left & ~1);
   2677	sel->r.top = max(0, sel->r.top & ~1);
   2678	sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
   2679	sel->r.height =	CCS_ALIGN_DIM(sel->r.height, sel->flags);
   2680
   2681	sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
   2682			     sel->r.width);
   2683	sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
   2684			      sel->r.height);
   2685
   2686	switch (sel->target) {
   2687	case V4L2_SEL_TGT_CROP:
   2688		ret = ccs_set_crop(subdev, sd_state, sel);
   2689		break;
   2690	case V4L2_SEL_TGT_COMPOSE:
   2691		ret = ccs_set_compose(subdev, sd_state, sel);
   2692		break;
   2693	default:
   2694		ret = -EINVAL;
   2695	}
   2696
   2697	mutex_unlock(&sensor->mutex);
   2698	return ret;
   2699}
   2700
   2701static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
   2702{
   2703	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2704
   2705	*frames = sensor->frame_skip;
   2706	return 0;
   2707}
   2708
   2709static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
   2710{
   2711	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2712
   2713	*lines = sensor->image_start;
   2714
   2715	return 0;
   2716}
   2717
   2718/* -----------------------------------------------------------------------------
   2719 * sysfs attributes
   2720 */
   2721
   2722static ssize_t
   2723nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
   2724{
   2725	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
   2726	struct i2c_client *client = v4l2_get_subdevdata(subdev);
   2727	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2728	int rval;
   2729
   2730	if (!sensor->dev_init_done)
   2731		return -EBUSY;
   2732
   2733	rval = ccs_pm_get_init(sensor);
   2734	if (rval < 0)
   2735		return -ENODEV;
   2736
   2737	rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
   2738	if (rval < 0) {
   2739		pm_runtime_put(&client->dev);
   2740		dev_err(&client->dev, "nvm read failed\n");
   2741		return -ENODEV;
   2742	}
   2743
   2744	pm_runtime_mark_last_busy(&client->dev);
   2745	pm_runtime_put_autosuspend(&client->dev);
   2746
   2747	/*
   2748	 * NVM is still way below a PAGE_SIZE, so we can safely
   2749	 * assume this for now.
   2750	 */
   2751	return rval;
   2752}
   2753static DEVICE_ATTR_RO(nvm);
   2754
   2755static ssize_t
   2756ident_show(struct device *dev, struct device_attribute *attr, char *buf)
   2757{
   2758	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
   2759	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2760	struct ccs_module_info *minfo = &sensor->minfo;
   2761
   2762	if (minfo->mipi_manufacturer_id)
   2763		return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n",
   2764				    minfo->mipi_manufacturer_id, minfo->model_id,
   2765				    minfo->revision_number) + 1;
   2766	else
   2767		return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n",
   2768				    minfo->smia_manufacturer_id, minfo->model_id,
   2769				    minfo->revision_number) + 1;
   2770}
   2771static DEVICE_ATTR_RO(ident);
   2772
   2773/* -----------------------------------------------------------------------------
   2774 * V4L2 subdev core operations
   2775 */
   2776
   2777static int ccs_identify_module(struct ccs_sensor *sensor)
   2778{
   2779	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   2780	struct ccs_module_info *minfo = &sensor->minfo;
   2781	unsigned int i;
   2782	u32 rev;
   2783	int rval = 0;
   2784
   2785	/* Module info */
   2786	rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
   2787			&minfo->mipi_manufacturer_id);
   2788	if (!rval && !minfo->mipi_manufacturer_id)
   2789		rval = ccs_read_addr_8only(sensor,
   2790					   SMIAPP_REG_U8_MANUFACTURER_ID,
   2791					   &minfo->smia_manufacturer_id);
   2792	if (!rval)
   2793		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
   2794					   &minfo->model_id);
   2795	if (!rval)
   2796		rval = ccs_read_addr_8only(sensor,
   2797					   CCS_R_MODULE_REVISION_NUMBER_MAJOR,
   2798					   &rev);
   2799	if (!rval) {
   2800		rval = ccs_read_addr_8only(sensor,
   2801					   CCS_R_MODULE_REVISION_NUMBER_MINOR,
   2802					   &minfo->revision_number);
   2803		minfo->revision_number |= rev << 8;
   2804	}
   2805	if (!rval)
   2806		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
   2807					   &minfo->module_year);
   2808	if (!rval)
   2809		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
   2810					   &minfo->module_month);
   2811	if (!rval)
   2812		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
   2813					   &minfo->module_day);
   2814
   2815	/* Sensor info */
   2816	if (!rval)
   2817		rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
   2818				&minfo->sensor_mipi_manufacturer_id);
   2819	if (!rval && !minfo->sensor_mipi_manufacturer_id)
   2820		rval = ccs_read_addr_8only(sensor,
   2821					   CCS_R_SENSOR_MANUFACTURER_ID,
   2822					   &minfo->sensor_smia_manufacturer_id);
   2823	if (!rval)
   2824		rval = ccs_read_addr_8only(sensor,
   2825					   CCS_R_SENSOR_MODEL_ID,
   2826					   &minfo->sensor_model_id);
   2827	if (!rval)
   2828		rval = ccs_read_addr_8only(sensor,
   2829					   CCS_R_SENSOR_REVISION_NUMBER,
   2830					   &minfo->sensor_revision_number);
   2831	if (!rval)
   2832		rval = ccs_read_addr_8only(sensor,
   2833					   CCS_R_SENSOR_FIRMWARE_VERSION,
   2834					   &minfo->sensor_firmware_version);
   2835
   2836	/* SMIA */
   2837	if (!rval)
   2838		rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
   2839	if (!rval && !minfo->ccs_version)
   2840		rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
   2841					   &minfo->smia_version);
   2842	if (!rval && !minfo->ccs_version)
   2843		rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
   2844					   &minfo->smiapp_version);
   2845
   2846	if (rval) {
   2847		dev_err(&client->dev, "sensor detection failed\n");
   2848		return -ENODEV;
   2849	}
   2850
   2851	if (minfo->mipi_manufacturer_id)
   2852		dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
   2853			minfo->mipi_manufacturer_id, minfo->model_id);
   2854	else
   2855		dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
   2856			minfo->smia_manufacturer_id, minfo->model_id);
   2857
   2858	dev_dbg(&client->dev,
   2859		"module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
   2860		minfo->revision_number, minfo->module_year, minfo->module_month,
   2861		minfo->module_day);
   2862
   2863	if (minfo->sensor_mipi_manufacturer_id)
   2864		dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
   2865			minfo->sensor_mipi_manufacturer_id,
   2866			minfo->sensor_model_id);
   2867	else
   2868		dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
   2869			minfo->sensor_smia_manufacturer_id,
   2870			minfo->sensor_model_id);
   2871
   2872	dev_dbg(&client->dev,
   2873		"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
   2874		minfo->sensor_revision_number, minfo->sensor_firmware_version);
   2875
   2876	if (minfo->ccs_version) {
   2877		dev_dbg(&client->dev, "MIPI CCS version %u.%u",
   2878			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
   2879			>> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
   2880			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
   2881		minfo->name = CCS_NAME;
   2882	} else {
   2883		dev_dbg(&client->dev,
   2884			"smia version %2.2d smiapp version %2.2d\n",
   2885			minfo->smia_version, minfo->smiapp_version);
   2886		minfo->name = SMIAPP_NAME;
   2887	}
   2888
   2889	/*
   2890	 * Some modules have bad data in the lvalues below. Hope the
   2891	 * rvalues have better stuff. The lvalues are module
   2892	 * parameters whereas the rvalues are sensor parameters.
   2893	 */
   2894	if (minfo->sensor_smia_manufacturer_id &&
   2895	    !minfo->smia_manufacturer_id && !minfo->model_id) {
   2896		minfo->smia_manufacturer_id =
   2897			minfo->sensor_smia_manufacturer_id;
   2898		minfo->model_id = minfo->sensor_model_id;
   2899		minfo->revision_number = minfo->sensor_revision_number;
   2900	}
   2901
   2902	for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
   2903		if (ccs_module_idents[i].mipi_manufacturer_id &&
   2904		    ccs_module_idents[i].mipi_manufacturer_id
   2905		    != minfo->mipi_manufacturer_id)
   2906			continue;
   2907		if (ccs_module_idents[i].smia_manufacturer_id &&
   2908		    ccs_module_idents[i].smia_manufacturer_id
   2909		    != minfo->smia_manufacturer_id)
   2910			continue;
   2911		if (ccs_module_idents[i].model_id != minfo->model_id)
   2912			continue;
   2913		if (ccs_module_idents[i].flags
   2914		    & CCS_MODULE_IDENT_FLAG_REV_LE) {
   2915			if (ccs_module_idents[i].revision_number_major
   2916			    < (minfo->revision_number >> 8))
   2917				continue;
   2918		} else {
   2919			if (ccs_module_idents[i].revision_number_major
   2920			    != (minfo->revision_number >> 8))
   2921				continue;
   2922		}
   2923
   2924		minfo->name = ccs_module_idents[i].name;
   2925		minfo->quirk = ccs_module_idents[i].quirk;
   2926		break;
   2927	}
   2928
   2929	if (i >= ARRAY_SIZE(ccs_module_idents))
   2930		dev_warn(&client->dev,
   2931			 "no quirks for this module; let's hope it's fully compliant\n");
   2932
   2933	dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
   2934
   2935	return 0;
   2936}
   2937
   2938static const struct v4l2_subdev_ops ccs_ops;
   2939static const struct v4l2_subdev_internal_ops ccs_internal_ops;
   2940static const struct media_entity_operations ccs_entity_ops;
   2941
   2942static int ccs_register_subdev(struct ccs_sensor *sensor,
   2943			       struct ccs_subdev *ssd,
   2944			       struct ccs_subdev *sink_ssd,
   2945			       u16 source_pad, u16 sink_pad, u32 link_flags)
   2946{
   2947	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   2948	int rval;
   2949
   2950	if (!sink_ssd)
   2951		return 0;
   2952
   2953	rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
   2954	if (rval) {
   2955		dev_err(&client->dev, "media_entity_pads_init failed\n");
   2956		return rval;
   2957	}
   2958
   2959	rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
   2960	if (rval) {
   2961		dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
   2962		return rval;
   2963	}
   2964
   2965	rval = media_create_pad_link(&ssd->sd.entity, source_pad,
   2966				     &sink_ssd->sd.entity, sink_pad,
   2967				     link_flags);
   2968	if (rval) {
   2969		dev_err(&client->dev, "media_create_pad_link failed\n");
   2970		v4l2_device_unregister_subdev(&ssd->sd);
   2971		return rval;
   2972	}
   2973
   2974	return 0;
   2975}
   2976
   2977static void ccs_unregistered(struct v4l2_subdev *subdev)
   2978{
   2979	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2980	unsigned int i;
   2981
   2982	for (i = 1; i < sensor->ssds_used; i++)
   2983		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
   2984}
   2985
   2986static int ccs_registered(struct v4l2_subdev *subdev)
   2987{
   2988	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   2989	int rval;
   2990
   2991	if (sensor->scaler) {
   2992		rval = ccs_register_subdev(sensor, sensor->binner,
   2993					   sensor->scaler,
   2994					   CCS_PAD_SRC, CCS_PAD_SINK,
   2995					   MEDIA_LNK_FL_ENABLED |
   2996					   MEDIA_LNK_FL_IMMUTABLE);
   2997		if (rval < 0)
   2998			return rval;
   2999	}
   3000
   3001	rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
   3002				   CCS_PA_PAD_SRC, CCS_PAD_SINK,
   3003				   MEDIA_LNK_FL_ENABLED |
   3004				   MEDIA_LNK_FL_IMMUTABLE);
   3005	if (rval)
   3006		goto out_err;
   3007
   3008	return 0;
   3009
   3010out_err:
   3011	ccs_unregistered(subdev);
   3012
   3013	return rval;
   3014}
   3015
   3016static void ccs_cleanup(struct ccs_sensor *sensor)
   3017{
   3018	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   3019
   3020	device_remove_file(&client->dev, &dev_attr_nvm);
   3021	device_remove_file(&client->dev, &dev_attr_ident);
   3022
   3023	ccs_free_controls(sensor);
   3024}
   3025
   3026static void ccs_create_subdev(struct ccs_sensor *sensor,
   3027			      struct ccs_subdev *ssd, const char *name,
   3028			      unsigned short num_pads, u32 function)
   3029{
   3030	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
   3031
   3032	if (!ssd)
   3033		return;
   3034
   3035	if (ssd != sensor->src)
   3036		v4l2_subdev_init(&ssd->sd, &ccs_ops);
   3037
   3038	ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
   3039	ssd->sd.entity.function = function;
   3040	ssd->sensor = sensor;
   3041
   3042	ssd->npads = num_pads;
   3043	ssd->source_pad = num_pads - 1;
   3044
   3045	v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
   3046
   3047	ccs_get_native_size(ssd, &ssd->sink_fmt);
   3048
   3049	ssd->compose.width = ssd->sink_fmt.width;
   3050	ssd->compose.height = ssd->sink_fmt.height;
   3051	ssd->crop[ssd->source_pad] = ssd->compose;
   3052	ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
   3053	if (ssd != sensor->pixel_array) {
   3054		ssd->crop[ssd->sink_pad] = ssd->compose;
   3055		ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
   3056	}
   3057
   3058	ssd->sd.entity.ops = &ccs_entity_ops;
   3059
   3060	if (ssd == sensor->src)
   3061		return;
   3062
   3063	ssd->sd.internal_ops = &ccs_internal_ops;
   3064	ssd->sd.owner = THIS_MODULE;
   3065	ssd->sd.dev = &client->dev;
   3066	v4l2_set_subdevdata(&ssd->sd, client);
   3067}
   3068
   3069static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
   3070{
   3071	struct ccs_subdev *ssd = to_ccs_subdev(sd);
   3072	struct ccs_sensor *sensor = ssd->sensor;
   3073	unsigned int i;
   3074
   3075	mutex_lock(&sensor->mutex);
   3076
   3077	for (i = 0; i < ssd->npads; i++) {
   3078		struct v4l2_mbus_framefmt *try_fmt =
   3079			v4l2_subdev_get_try_format(sd, fh->state, i);
   3080		struct v4l2_rect *try_crop =
   3081			v4l2_subdev_get_try_crop(sd, fh->state, i);
   3082		struct v4l2_rect *try_comp;
   3083
   3084		ccs_get_native_size(ssd, try_crop);
   3085
   3086		try_fmt->width = try_crop->width;
   3087		try_fmt->height = try_crop->height;
   3088		try_fmt->code = sensor->internal_csi_format->code;
   3089		try_fmt->field = V4L2_FIELD_NONE;
   3090
   3091		if (ssd != sensor->pixel_array)
   3092			continue;
   3093
   3094		try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i);
   3095		*try_comp = *try_crop;
   3096	}
   3097
   3098	mutex_unlock(&sensor->mutex);
   3099
   3100	return 0;
   3101}
   3102
   3103static const struct v4l2_subdev_video_ops ccs_video_ops = {
   3104	.s_stream = ccs_set_stream,
   3105	.pre_streamon = ccs_pre_streamon,
   3106	.post_streamoff = ccs_post_streamoff,
   3107};
   3108
   3109static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
   3110	.enum_mbus_code = ccs_enum_mbus_code,
   3111	.get_fmt = ccs_get_format,
   3112	.set_fmt = ccs_set_format,
   3113	.get_selection = ccs_get_selection,
   3114	.set_selection = ccs_set_selection,
   3115};
   3116
   3117static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
   3118	.g_skip_frames = ccs_get_skip_frames,
   3119	.g_skip_top_lines = ccs_get_skip_top_lines,
   3120};
   3121
   3122static const struct v4l2_subdev_ops ccs_ops = {
   3123	.video = &ccs_video_ops,
   3124	.pad = &ccs_pad_ops,
   3125	.sensor = &ccs_sensor_ops,
   3126};
   3127
   3128static const struct media_entity_operations ccs_entity_ops = {
   3129	.link_validate = v4l2_subdev_link_validate,
   3130};
   3131
   3132static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
   3133	.registered = ccs_registered,
   3134	.unregistered = ccs_unregistered,
   3135	.open = ccs_open,
   3136};
   3137
   3138static const struct v4l2_subdev_internal_ops ccs_internal_ops = {
   3139	.open = ccs_open,
   3140};
   3141
   3142/* -----------------------------------------------------------------------------
   3143 * I2C Driver
   3144 */
   3145
   3146static int __maybe_unused ccs_suspend(struct device *dev)
   3147{
   3148	struct i2c_client *client = to_i2c_client(dev);
   3149	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
   3150	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   3151	bool streaming = sensor->streaming;
   3152	int rval;
   3153
   3154	rval = pm_runtime_resume_and_get(dev);
   3155	if (rval < 0)
   3156		return rval;
   3157
   3158	if (sensor->streaming)
   3159		ccs_stop_streaming(sensor);
   3160
   3161	/* save state for resume */
   3162	sensor->streaming = streaming;
   3163
   3164	return 0;
   3165}
   3166
   3167static int __maybe_unused ccs_resume(struct device *dev)
   3168{
   3169	struct i2c_client *client = to_i2c_client(dev);
   3170	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
   3171	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   3172	int rval = 0;
   3173
   3174	pm_runtime_put(dev);
   3175
   3176	if (sensor->streaming)
   3177		rval = ccs_start_streaming(sensor);
   3178
   3179	return rval;
   3180}
   3181
   3182static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
   3183{
   3184	struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
   3185	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
   3186	struct fwnode_handle *ep;
   3187	struct fwnode_handle *fwnode = dev_fwnode(dev);
   3188	u32 rotation;
   3189	unsigned int i;
   3190	int rval;
   3191
   3192	ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
   3193					     FWNODE_GRAPH_ENDPOINT_NEXT);
   3194	if (!ep)
   3195		return -ENODEV;
   3196
   3197	/*
   3198	 * Note that we do need to rely on detecting the bus type between CSI-2
   3199	 * D-PHY and CCP2 as the old bindings did not require it.
   3200	 */
   3201	rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
   3202	if (rval)
   3203		goto out_err;
   3204
   3205	switch (bus_cfg.bus_type) {
   3206	case V4L2_MBUS_CSI2_DPHY:
   3207		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
   3208		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
   3209		break;
   3210	case V4L2_MBUS_CSI2_CPHY:
   3211		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
   3212		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
   3213		break;
   3214	case V4L2_MBUS_CSI1:
   3215	case V4L2_MBUS_CCP2:
   3216		hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
   3217		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
   3218		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
   3219		hwcfg->lanes = 1;
   3220		break;
   3221	default:
   3222		dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
   3223		rval = -EINVAL;
   3224		goto out_err;
   3225	}
   3226
   3227	rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
   3228	if (!rval) {
   3229		switch (rotation) {
   3230		case 180:
   3231			hwcfg->module_board_orient =
   3232				CCS_MODULE_BOARD_ORIENT_180;
   3233			fallthrough;
   3234		case 0:
   3235			break;
   3236		default:
   3237			dev_err(dev, "invalid rotation %u\n", rotation);
   3238			rval = -EINVAL;
   3239			goto out_err;
   3240		}
   3241	}
   3242
   3243	rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
   3244					&hwcfg->ext_clk);
   3245	if (rval)
   3246		dev_info(dev, "can't get clock-frequency\n");
   3247
   3248	dev_dbg(dev, "clk %u, mode %u\n", hwcfg->ext_clk,
   3249		hwcfg->csi_signalling_mode);
   3250
   3251	if (!bus_cfg.nr_of_link_frequencies) {
   3252		dev_warn(dev, "no link frequencies defined\n");
   3253		rval = -EINVAL;
   3254		goto out_err;
   3255	}
   3256
   3257	hwcfg->op_sys_clock = devm_kcalloc(
   3258		dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
   3259		sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
   3260	if (!hwcfg->op_sys_clock) {
   3261		rval = -ENOMEM;
   3262		goto out_err;
   3263	}
   3264
   3265	for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
   3266		hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
   3267		dev_dbg(dev, "freq %u: %lld\n", i, hwcfg->op_sys_clock[i]);
   3268	}
   3269
   3270	v4l2_fwnode_endpoint_free(&bus_cfg);
   3271	fwnode_handle_put(ep);
   3272
   3273	return 0;
   3274
   3275out_err:
   3276	v4l2_fwnode_endpoint_free(&bus_cfg);
   3277	fwnode_handle_put(ep);
   3278
   3279	return rval;
   3280}
   3281
   3282static int ccs_probe(struct i2c_client *client)
   3283{
   3284	struct ccs_sensor *sensor;
   3285	const struct firmware *fw;
   3286	char filename[40];
   3287	unsigned int i;
   3288	int rval;
   3289
   3290	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
   3291	if (sensor == NULL)
   3292		return -ENOMEM;
   3293
   3294	rval = ccs_get_hwconfig(sensor, &client->dev);
   3295	if (rval)
   3296		return rval;
   3297
   3298	sensor->src = &sensor->ssds[sensor->ssds_used];
   3299
   3300	v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
   3301	sensor->src->sd.internal_ops = &ccs_internal_src_ops;
   3302
   3303	sensor->regulators = devm_kcalloc(&client->dev,
   3304					  ARRAY_SIZE(ccs_regulators),
   3305					  sizeof(*sensor->regulators),
   3306					  GFP_KERNEL);
   3307	if (!sensor->regulators)
   3308		return -ENOMEM;
   3309
   3310	for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
   3311		sensor->regulators[i].supply = ccs_regulators[i];
   3312
   3313	rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
   3314				       sensor->regulators);
   3315	if (rval) {
   3316		dev_err(&client->dev, "could not get regulators\n");
   3317		return rval;
   3318	}
   3319
   3320	sensor->ext_clk = devm_clk_get(&client->dev, NULL);
   3321	if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
   3322		dev_info(&client->dev, "no clock defined, continuing...\n");
   3323		sensor->ext_clk = NULL;
   3324	} else if (IS_ERR(sensor->ext_clk)) {
   3325		dev_err(&client->dev, "could not get clock (%ld)\n",
   3326			PTR_ERR(sensor->ext_clk));
   3327		return -EPROBE_DEFER;
   3328	}
   3329
   3330	if (sensor->ext_clk) {
   3331		if (sensor->hwcfg.ext_clk) {
   3332			unsigned long rate;
   3333
   3334			rval = clk_set_rate(sensor->ext_clk,
   3335					    sensor->hwcfg.ext_clk);
   3336			if (rval < 0) {
   3337				dev_err(&client->dev,
   3338					"unable to set clock freq to %u\n",
   3339					sensor->hwcfg.ext_clk);
   3340				return rval;
   3341			}
   3342
   3343			rate = clk_get_rate(sensor->ext_clk);
   3344			if (rate != sensor->hwcfg.ext_clk) {
   3345				dev_err(&client->dev,
   3346					"can't set clock freq, asked for %u but got %lu\n",
   3347					sensor->hwcfg.ext_clk, rate);
   3348				return -EINVAL;
   3349			}
   3350		} else {
   3351			sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
   3352			dev_dbg(&client->dev, "obtained clock freq %u\n",
   3353				sensor->hwcfg.ext_clk);
   3354		}
   3355	} else if (sensor->hwcfg.ext_clk) {
   3356		dev_dbg(&client->dev, "assuming clock freq %u\n",
   3357			sensor->hwcfg.ext_clk);
   3358	} else {
   3359		dev_err(&client->dev, "unable to obtain clock freq\n");
   3360		return -EINVAL;
   3361	}
   3362
   3363	if (!sensor->hwcfg.ext_clk) {
   3364		dev_err(&client->dev, "cannot work with xclk frequency 0\n");
   3365		return -EINVAL;
   3366	}
   3367
   3368	sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
   3369						GPIOD_OUT_HIGH);
   3370	if (IS_ERR(sensor->reset))
   3371		return PTR_ERR(sensor->reset);
   3372	/* Support old users that may have used "xshutdown" property. */
   3373	if (!sensor->reset)
   3374		sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
   3375							    "xshutdown",
   3376							    GPIOD_OUT_LOW);
   3377	if (IS_ERR(sensor->xshutdown))
   3378		return PTR_ERR(sensor->xshutdown);
   3379
   3380	rval = ccs_power_on(&client->dev);
   3381	if (rval < 0)
   3382		return rval;
   3383
   3384	mutex_init(&sensor->mutex);
   3385
   3386	rval = ccs_identify_module(sensor);
   3387	if (rval) {
   3388		rval = -ENODEV;
   3389		goto out_power_off;
   3390	}
   3391
   3392	rval = snprintf(filename, sizeof(filename),
   3393			"ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw",
   3394			sensor->minfo.sensor_mipi_manufacturer_id,
   3395			sensor->minfo.sensor_model_id,
   3396			sensor->minfo.sensor_revision_number);
   3397	if (rval >= sizeof(filename)) {
   3398		rval = -ENOMEM;
   3399		goto out_power_off;
   3400	}
   3401
   3402	rval = request_firmware(&fw, filename, &client->dev);
   3403	if (!rval) {
   3404		ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
   3405			       true);
   3406		release_firmware(fw);
   3407	}
   3408
   3409	rval = snprintf(filename, sizeof(filename),
   3410			"ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw",
   3411			sensor->minfo.mipi_manufacturer_id,
   3412			sensor->minfo.model_id,
   3413			sensor->minfo.revision_number);
   3414	if (rval >= sizeof(filename)) {
   3415		rval = -ENOMEM;
   3416		goto out_release_sdata;
   3417	}
   3418
   3419	rval = request_firmware(&fw, filename, &client->dev);
   3420	if (!rval) {
   3421		ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev,
   3422			       true);
   3423		release_firmware(fw);
   3424	}
   3425
   3426	rval = ccs_read_all_limits(sensor);
   3427	if (rval)
   3428		goto out_release_mdata;
   3429
   3430	rval = ccs_read_frame_fmt(sensor);
   3431	if (rval) {
   3432		rval = -ENODEV;
   3433		goto out_free_ccs_limits;
   3434	}
   3435
   3436	rval = ccs_update_phy_ctrl(sensor);
   3437	if (rval < 0)
   3438		goto out_free_ccs_limits;
   3439
   3440	/*
   3441	 * Handle Sensor Module orientation on the board.
   3442	 *
   3443	 * The application of H-FLIP and V-FLIP on the sensor is modified by
   3444	 * the sensor orientation on the board.
   3445	 *
   3446	 * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
   3447	 * both H-FLIP and V-FLIP for normal operation which also implies
   3448	 * that a set/unset operation for user space HFLIP and VFLIP v4l2
   3449	 * controls will need to be internally inverted.
   3450	 *
   3451	 * Rotation also changes the bayer pattern.
   3452	 */
   3453	if (sensor->hwcfg.module_board_orient ==
   3454	    CCS_MODULE_BOARD_ORIENT_180)
   3455		sensor->hvflip_inv_mask =
   3456			CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR |
   3457			CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
   3458
   3459	rval = ccs_call_quirk(sensor, limits);
   3460	if (rval) {
   3461		dev_err(&client->dev, "limits quirks failed\n");
   3462		goto out_free_ccs_limits;
   3463	}
   3464
   3465	if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
   3466		sensor->nbinning_subtypes =
   3467			min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
   3468			      CCS_LIM_BINNING_SUB_TYPE_MAX_N);
   3469
   3470		for (i = 0; i < sensor->nbinning_subtypes; i++) {
   3471			sensor->binning_subtypes[i].horizontal =
   3472				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
   3473				CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
   3474			sensor->binning_subtypes[i].vertical =
   3475				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
   3476				CCS_BINNING_SUB_TYPE_ROW_MASK;
   3477
   3478			dev_dbg(&client->dev, "binning %xx%x\n",
   3479				sensor->binning_subtypes[i].horizontal,
   3480				sensor->binning_subtypes[i].vertical);
   3481		}
   3482	}
   3483	sensor->binning_horizontal = 1;
   3484	sensor->binning_vertical = 1;
   3485
   3486	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
   3487		dev_err(&client->dev, "sysfs ident entry creation failed\n");
   3488		rval = -ENOENT;
   3489		goto out_free_ccs_limits;
   3490	}
   3491
   3492	if (sensor->minfo.smiapp_version &&
   3493	    CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
   3494	    CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
   3495		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
   3496			dev_err(&client->dev, "sysfs nvm entry failed\n");
   3497			rval = -EBUSY;
   3498			goto out_cleanup;
   3499		}
   3500	}
   3501
   3502	if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
   3503	    !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
   3504	    !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
   3505	    !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
   3506		/* No OP clock branch */
   3507		sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
   3508	} else if (CCS_LIM(sensor, SCALING_CAPABILITY)
   3509		   != CCS_SCALING_CAPABILITY_NONE ||
   3510		   CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
   3511		   == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
   3512		/* We have a scaler or digital crop. */
   3513		sensor->scaler = &sensor->ssds[sensor->ssds_used];
   3514		sensor->ssds_used++;
   3515	}
   3516	sensor->binner = &sensor->ssds[sensor->ssds_used];
   3517	sensor->ssds_used++;
   3518	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
   3519	sensor->ssds_used++;
   3520
   3521	sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
   3522
   3523	/* prepare PLL configuration input values */
   3524	sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
   3525	sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
   3526	if (CCS_LIM(sensor, CLOCK_CALCULATION) &
   3527	    CCS_CLOCK_CALCULATION_LANE_SPEED) {
   3528		sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
   3529		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
   3530		    CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
   3531			sensor->pll.vt_lanes =
   3532				CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
   3533			sensor->pll.op_lanes =
   3534				CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
   3535			sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
   3536		} else {
   3537			sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
   3538			sensor->pll.op_lanes = sensor->pll.csi2.lanes;
   3539		}
   3540	}
   3541	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
   3542	    CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
   3543		sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
   3544	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
   3545	    CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
   3546		sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
   3547	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
   3548	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
   3549		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
   3550	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
   3551	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
   3552		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
   3553				     CCS_PLL_FLAG_FIFO_OVERRATING;
   3554	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
   3555	    CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
   3556		if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
   3557		    CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
   3558			u32 v;
   3559
   3560			/* Use sensor default in PLL mode selection */
   3561			rval = ccs_read(sensor, PLL_MODE, &v);
   3562			if (rval)
   3563				goto out_cleanup;
   3564
   3565			if (v == CCS_PLL_MODE_DUAL)
   3566				sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
   3567		} else {
   3568			sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
   3569		}
   3570		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
   3571		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
   3572			sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
   3573		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
   3574		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
   3575			sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
   3576	}
   3577	sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
   3578	sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
   3579	sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
   3580
   3581	ccs_create_subdev(sensor, sensor->scaler, " scaler", 2,
   3582			  MEDIA_ENT_F_PROC_VIDEO_SCALER);
   3583	ccs_create_subdev(sensor, sensor->binner, " binner", 2,
   3584			  MEDIA_ENT_F_PROC_VIDEO_SCALER);
   3585	ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
   3586			  MEDIA_ENT_F_CAM_SENSOR);
   3587
   3588	rval = ccs_init_controls(sensor);
   3589	if (rval < 0)
   3590		goto out_cleanup;
   3591
   3592	rval = ccs_call_quirk(sensor, init);
   3593	if (rval)
   3594		goto out_cleanup;
   3595
   3596	rval = ccs_get_mbus_formats(sensor);
   3597	if (rval) {
   3598		rval = -ENODEV;
   3599		goto out_cleanup;
   3600	}
   3601
   3602	rval = ccs_init_late_controls(sensor);
   3603	if (rval) {
   3604		rval = -ENODEV;
   3605		goto out_cleanup;
   3606	}
   3607
   3608	mutex_lock(&sensor->mutex);
   3609	rval = ccs_pll_blanking_update(sensor);
   3610	mutex_unlock(&sensor->mutex);
   3611	if (rval) {
   3612		dev_err(&client->dev, "update mode failed\n");
   3613		goto out_cleanup;
   3614	}
   3615
   3616	sensor->streaming = false;
   3617	sensor->dev_init_done = true;
   3618
   3619	rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
   3620				 sensor->src->pads);
   3621	if (rval < 0)
   3622		goto out_media_entity_cleanup;
   3623
   3624	rval = ccs_write_msr_regs(sensor);
   3625	if (rval)
   3626		goto out_media_entity_cleanup;
   3627
   3628	pm_runtime_set_active(&client->dev);
   3629	pm_runtime_get_noresume(&client->dev);
   3630	pm_runtime_enable(&client->dev);
   3631
   3632	rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
   3633	if (rval < 0)
   3634		goto out_disable_runtime_pm;
   3635
   3636	pm_runtime_set_autosuspend_delay(&client->dev, 1000);
   3637	pm_runtime_use_autosuspend(&client->dev);
   3638	pm_runtime_put_autosuspend(&client->dev);
   3639
   3640	return 0;
   3641
   3642out_disable_runtime_pm:
   3643	pm_runtime_put_noidle(&client->dev);
   3644	pm_runtime_disable(&client->dev);
   3645
   3646out_media_entity_cleanup:
   3647	media_entity_cleanup(&sensor->src->sd.entity);
   3648
   3649out_cleanup:
   3650	ccs_cleanup(sensor);
   3651
   3652out_release_mdata:
   3653	kvfree(sensor->mdata.backing);
   3654
   3655out_release_sdata:
   3656	kvfree(sensor->sdata.backing);
   3657
   3658out_free_ccs_limits:
   3659	kfree(sensor->ccs_limits);
   3660
   3661out_power_off:
   3662	ccs_power_off(&client->dev);
   3663	mutex_destroy(&sensor->mutex);
   3664
   3665	return rval;
   3666}
   3667
   3668static int ccs_remove(struct i2c_client *client)
   3669{
   3670	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
   3671	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
   3672	unsigned int i;
   3673
   3674	v4l2_async_unregister_subdev(subdev);
   3675
   3676	pm_runtime_disable(&client->dev);
   3677	if (!pm_runtime_status_suspended(&client->dev))
   3678		ccs_power_off(&client->dev);
   3679	pm_runtime_set_suspended(&client->dev);
   3680
   3681	for (i = 0; i < sensor->ssds_used; i++) {
   3682		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
   3683		media_entity_cleanup(&sensor->ssds[i].sd.entity);
   3684	}
   3685	ccs_cleanup(sensor);
   3686	mutex_destroy(&sensor->mutex);
   3687	kfree(sensor->ccs_limits);
   3688	kvfree(sensor->sdata.backing);
   3689	kvfree(sensor->mdata.backing);
   3690
   3691	return 0;
   3692}
   3693
   3694static const struct ccs_device smia_device = {
   3695	.flags = CCS_DEVICE_FLAG_IS_SMIA,
   3696};
   3697
   3698static const struct ccs_device ccs_device = {};
   3699
   3700static const struct acpi_device_id ccs_acpi_table[] = {
   3701	{ .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
   3702	{ },
   3703};
   3704MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
   3705
   3706static const struct of_device_id ccs_of_table[] = {
   3707	{ .compatible = "mipi-ccs-1.1", .data = &ccs_device },
   3708	{ .compatible = "mipi-ccs-1.0", .data = &ccs_device },
   3709	{ .compatible = "mipi-ccs", .data = &ccs_device },
   3710	{ .compatible = "nokia,smia", .data = &smia_device },
   3711	{ },
   3712};
   3713MODULE_DEVICE_TABLE(of, ccs_of_table);
   3714
   3715static const struct dev_pm_ops ccs_pm_ops = {
   3716	SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume)
   3717	SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
   3718};
   3719
   3720static struct i2c_driver ccs_i2c_driver = {
   3721	.driver	= {
   3722		.acpi_match_table = ccs_acpi_table,
   3723		.of_match_table = ccs_of_table,
   3724		.name = CCS_NAME,
   3725		.pm = &ccs_pm_ops,
   3726	},
   3727	.probe_new = ccs_probe,
   3728	.remove	= ccs_remove,
   3729};
   3730
   3731static int ccs_module_init(void)
   3732{
   3733	unsigned int i, l;
   3734
   3735	for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
   3736		if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
   3737			ccs_limit_offsets[l + 1].lim =
   3738				ALIGN(ccs_limit_offsets[l].lim +
   3739				      ccs_limits[i].size,
   3740				      ccs_reg_width(ccs_limits[i + 1].reg));
   3741			ccs_limit_offsets[l].info = i;
   3742			l++;
   3743		} else {
   3744			ccs_limit_offsets[l].lim += ccs_limits[i].size;
   3745		}
   3746	}
   3747
   3748	if (WARN_ON(ccs_limits[i].size))
   3749		return -EINVAL;
   3750
   3751	if (WARN_ON(l != CCS_L_LAST))
   3752		return -EINVAL;
   3753
   3754	return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
   3755}
   3756
   3757static void ccs_module_cleanup(void)
   3758{
   3759	i2c_del_driver(&ccs_i2c_driver);
   3760}
   3761
   3762module_init(ccs_module_init);
   3763module_exit(ccs_module_cleanup);
   3764
   3765MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
   3766MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
   3767MODULE_LICENSE("GPL v2");
   3768MODULE_ALIAS("smiapp");