ccs-reg-access.c (8984B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * drivers/media/i2c/ccs/ccs-reg-access.c 4 * 5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors 6 * 7 * Copyright (C) 2020 Intel Corporation 8 * Copyright (C) 2011--2012 Nokia Corporation 9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com> 10 */ 11 12#include <asm/unaligned.h> 13 14#include <linux/delay.h> 15#include <linux/i2c.h> 16 17#include "ccs.h" 18#include "ccs-limits.h" 19 20static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat) 21{ 22 s32 exp; 23 u64 man; 24 25 if (phloat >= 0x80000000) { 26 dev_err(&client->dev, "this is a negative number\n"); 27 return 0; 28 } 29 30 if (phloat == 0x7f800000) 31 return ~0; /* Inf. */ 32 33 if ((phloat & 0x7f800000) == 0x7f800000) { 34 dev_err(&client->dev, "NaN or other special number\n"); 35 return 0; 36 } 37 38 /* Valid cases begin here */ 39 if (phloat == 0) 40 return 0; /* Valid zero */ 41 42 if (phloat > 0x4f800000) 43 return ~0; /* larger than 4294967295 */ 44 45 /* 46 * Unbias exponent (note how phloat is now guaranteed to 47 * have 0 in the high bit) 48 */ 49 exp = ((int32_t)phloat >> 23) - 127; 50 51 /* Extract mantissa, add missing '1' bit and it's in MHz */ 52 man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL; 53 54 if (exp < 0) 55 man >>= -exp; 56 else 57 man <<= exp; 58 59 man >>= 23; /* Remove mantissa bias */ 60 61 return man & 0xffffffff; 62} 63 64 65/* 66 * Read a 8/16/32-bit i2c register. The value is returned in 'val'. 67 * Returns zero if successful, or non-zero otherwise. 68 */ 69static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len, 70 u32 *val) 71{ 72 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 73 struct i2c_msg msg; 74 unsigned char data_buf[sizeof(u32)] = { 0 }; 75 unsigned char offset_buf[sizeof(u16)]; 76 int r; 77 78 if (len > sizeof(data_buf)) 79 return -EINVAL; 80 81 msg.addr = client->addr; 82 msg.flags = 0; 83 msg.len = sizeof(offset_buf); 84 msg.buf = offset_buf; 85 put_unaligned_be16(reg, offset_buf); 86 87 r = i2c_transfer(client->adapter, &msg, 1); 88 if (r != 1) { 89 if (r >= 0) 90 r = -EBUSY; 91 goto err; 92 } 93 94 msg.len = len; 95 msg.flags = I2C_M_RD; 96 msg.buf = &data_buf[sizeof(data_buf) - len]; 97 98 r = i2c_transfer(client->adapter, &msg, 1); 99 if (r != 1) { 100 if (r >= 0) 101 r = -EBUSY; 102 goto err; 103 } 104 105 *val = get_unaligned_be32(data_buf); 106 107 return 0; 108 109err: 110 dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r); 111 112 return r; 113} 114 115/* Read a register using 8-bit access only. */ 116static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg, 117 u16 len, u32 *val) 118{ 119 unsigned int i; 120 int rval; 121 122 *val = 0; 123 124 for (i = 0; i < len; i++) { 125 u32 val8; 126 127 rval = ____ccs_read_addr(sensor, reg + i, 1, &val8); 128 if (rval < 0) 129 return rval; 130 *val |= val8 << ((len - i - 1) << 3); 131 } 132 133 return 0; 134} 135 136unsigned int ccs_reg_width(u32 reg) 137{ 138 if (reg & CCS_FL_16BIT) 139 return sizeof(u16); 140 if (reg & CCS_FL_32BIT) 141 return sizeof(u32); 142 143 return sizeof(u8); 144} 145 146static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val) 147{ 148 if (val >> 10 > U32_MAX / 15625) { 149 dev_warn(&client->dev, "value %u overflows!\n", val); 150 return U32_MAX; 151 } 152 153 return ((val >> 10) * 15625) + 154 (val & GENMASK(9, 0)) * 15625 / 1024; 155} 156 157u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val) 158{ 159 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 160 161 if (reg & CCS_FL_FLOAT_IREAL) { 162 if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) & 163 CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL) 164 val = ireal32_to_u32_mul_1000000(client, val); 165 else 166 val = float_to_u32_mul_1000000(client, val); 167 } else if (reg & CCS_FL_IREAL) { 168 val = ireal32_to_u32_mul_1000000(client, val); 169 } 170 171 return val; 172} 173 174/* 175 * Read a 8/16/32-bit i2c register. The value is returned in 'val'. 176 * Returns zero if successful, or non-zero otherwise. 177 */ 178static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val, 179 bool only8, bool conv) 180{ 181 unsigned int len = ccs_reg_width(reg); 182 int rval; 183 184 if (!only8) 185 rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val); 186 else 187 rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len, 188 val); 189 if (rval < 0) 190 return rval; 191 192 if (!conv) 193 return 0; 194 195 *val = ccs_reg_conv(sensor, reg, *val); 196 197 return 0; 198} 199 200static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs, 201 u32 reg, u32 *val) 202{ 203 unsigned int width = ccs_reg_width(reg); 204 size_t i; 205 206 for (i = 0; i < num_regs; i++, regs++) { 207 u8 *data; 208 209 if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width) 210 continue; 211 212 if (regs->addr > CCS_REG_ADDR(reg)) 213 break; 214 215 data = ®s->value[CCS_REG_ADDR(reg) - regs->addr]; 216 217 switch (width) { 218 case sizeof(u8): 219 *val = *data; 220 break; 221 case sizeof(u16): 222 *val = get_unaligned_be16(data); 223 break; 224 case sizeof(u32): 225 *val = get_unaligned_be32(data); 226 break; 227 default: 228 WARN_ON(1); 229 return -EINVAL; 230 } 231 232 return 0; 233 } 234 235 return -ENOENT; 236} 237 238static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val) 239{ 240 if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs, 241 sensor->sdata.num_sensor_read_only_regs, 242 reg, val)) 243 return 0; 244 245 return __ccs_read_data(sensor->mdata.module_read_only_regs, 246 sensor->mdata.num_module_read_only_regs, 247 reg, val); 248} 249 250static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val, 251 bool force8, bool quirk, bool conv, bool data) 252{ 253 int rval; 254 255 if (data) { 256 rval = ccs_read_data(sensor, reg, val); 257 if (!rval) 258 return 0; 259 } 260 261 if (quirk) { 262 *val = 0; 263 rval = ccs_call_quirk(sensor, reg_access, false, ®, val); 264 if (rval == -ENOIOCTLCMD) 265 return 0; 266 if (rval < 0) 267 return rval; 268 269 if (force8) 270 return __ccs_read_addr(sensor, reg, val, true, conv); 271 } 272 273 return __ccs_read_addr(sensor, reg, val, 274 ccs_needs_quirk(sensor, 275 CCS_QUIRK_FLAG_8BIT_READ_ONLY), 276 conv); 277} 278 279int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val) 280{ 281 return ccs_read_addr_raw(sensor, reg, val, false, true, true, true); 282} 283 284int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val) 285{ 286 return ccs_read_addr_raw(sensor, reg, val, true, true, true, true); 287} 288 289int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val) 290{ 291 return ccs_read_addr_raw(sensor, reg, val, false, true, false, true); 292} 293 294static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg) 295{ 296 unsigned int retries; 297 int r; 298 299 for (retries = 0; retries < 10; retries++) { 300 /* 301 * Due to unknown reason sensor stops responding. This 302 * loop is a temporaty solution until the root cause 303 * is found. 304 */ 305 r = i2c_transfer(client->adapter, msg, 1); 306 if (r != 1) { 307 usleep_range(1000, 2000); 308 continue; 309 } 310 311 if (retries) 312 dev_err(&client->dev, 313 "sensor i2c stall encountered. retries: %d\n", 314 retries); 315 return 0; 316 } 317 318 return r; 319} 320 321int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val) 322{ 323 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 324 struct i2c_msg msg; 325 unsigned char data[6]; 326 unsigned int len = ccs_reg_width(reg); 327 int r; 328 329 if (len > sizeof(data) - 2) 330 return -EINVAL; 331 332 msg.addr = client->addr; 333 msg.flags = 0; /* Write */ 334 msg.len = 2 + len; 335 msg.buf = data; 336 337 put_unaligned_be16(CCS_REG_ADDR(reg), data); 338 put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2); 339 340 dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n", 341 CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1, 342 ccs_reg_width(reg) << 1, val, val); 343 344 r = ccs_write_retry(client, &msg); 345 if (r) 346 dev_err(&client->dev, 347 "wrote 0x%x to offset 0x%x error %d\n", val, 348 CCS_REG_ADDR(reg), r); 349 350 return r; 351} 352 353/* 354 * Write to a 8/16-bit register. 355 * Returns zero if successful, or non-zero otherwise. 356 */ 357int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val) 358{ 359 int rval; 360 361 rval = ccs_call_quirk(sensor, reg_access, true, ®, &val); 362 if (rval == -ENOIOCTLCMD) 363 return 0; 364 if (rval < 0) 365 return rval; 366 367 return ccs_write_addr_no_quirk(sensor, reg, val); 368} 369 370#define MAX_WRITE_LEN 32U 371 372int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs, 373 size_t num_regs) 374{ 375 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 376 unsigned char buf[2 + MAX_WRITE_LEN]; 377 struct i2c_msg msg = { 378 .addr = client->addr, 379 .buf = buf, 380 }; 381 size_t i; 382 383 for (i = 0; i < num_regs; i++, regs++) { 384 unsigned char *regdata = regs->value; 385 unsigned int j; 386 387 for (j = 0; j < regs->len; 388 j += msg.len - 2, regdata += msg.len - 2) { 389 char printbuf[(MAX_WRITE_LEN << 1) + 390 1 /* \0 */] = { 0 }; 391 int rval; 392 393 msg.len = min(regs->len - j, MAX_WRITE_LEN); 394 395 bin2hex(printbuf, regdata, msg.len); 396 dev_dbg(&client->dev, 397 "writing msr reg 0x%4.4x value 0x%s\n", 398 regs->addr + j, printbuf); 399 400 put_unaligned_be16(regs->addr + j, buf); 401 memcpy(buf + 2, regdata, msg.len); 402 403 msg.len += 2; 404 405 rval = ccs_write_retry(client, &msg); 406 if (rval) { 407 dev_err(&client->dev, 408 "error writing %u octets to address 0x%4.4x\n", 409 msg.len, regs->addr + j); 410 return rval; 411 } 412 } 413 } 414 415 return 0; 416}