cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cx25840-ir.c (34868B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
      4 *
      5 *  Integrated Consumer Infrared Controller
      6 *
      7 *  Copyright (C) 2010  Andy Walls <awalls@md.metrocast.net>
      8 */
      9
     10#include <linux/slab.h>
     11#include <linux/kfifo.h>
     12#include <linux/module.h>
     13#include <media/drv-intf/cx25840.h>
     14#include <media/rc-core.h>
     15
     16#include "cx25840-core.h"
     17
     18static unsigned int ir_debug;
     19module_param(ir_debug, int, 0644);
     20MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
     21
     22#define CX25840_IR_REG_BASE	0x200
     23
     24#define CX25840_IR_CNTRL_REG	0x200
     25#define CNTRL_WIN_3_3	0x00000000
     26#define CNTRL_WIN_4_3	0x00000001
     27#define CNTRL_WIN_3_4	0x00000002
     28#define CNTRL_WIN_4_4	0x00000003
     29#define CNTRL_WIN	0x00000003
     30#define CNTRL_EDG_NONE	0x00000000
     31#define CNTRL_EDG_FALL	0x00000004
     32#define CNTRL_EDG_RISE	0x00000008
     33#define CNTRL_EDG_BOTH	0x0000000C
     34#define CNTRL_EDG	0x0000000C
     35#define CNTRL_DMD	0x00000010
     36#define CNTRL_MOD	0x00000020
     37#define CNTRL_RFE	0x00000040
     38#define CNTRL_TFE	0x00000080
     39#define CNTRL_RXE	0x00000100
     40#define CNTRL_TXE	0x00000200
     41#define CNTRL_RIC	0x00000400
     42#define CNTRL_TIC	0x00000800
     43#define CNTRL_CPL	0x00001000
     44#define CNTRL_LBM	0x00002000
     45#define CNTRL_R		0x00004000
     46
     47#define CX25840_IR_TXCLK_REG	0x204
     48#define TXCLK_TCD	0x0000FFFF
     49
     50#define CX25840_IR_RXCLK_REG	0x208
     51#define RXCLK_RCD	0x0000FFFF
     52
     53#define CX25840_IR_CDUTY_REG	0x20C
     54#define CDUTY_CDC	0x0000000F
     55
     56#define CX25840_IR_STATS_REG	0x210
     57#define STATS_RTO	0x00000001
     58#define STATS_ROR	0x00000002
     59#define STATS_RBY	0x00000004
     60#define STATS_TBY	0x00000008
     61#define STATS_RSR	0x00000010
     62#define STATS_TSR	0x00000020
     63
     64#define CX25840_IR_IRQEN_REG	0x214
     65#define IRQEN_RTE	0x00000001
     66#define IRQEN_ROE	0x00000002
     67#define IRQEN_RSE	0x00000010
     68#define IRQEN_TSE	0x00000020
     69#define IRQEN_MSK	0x00000033
     70
     71#define CX25840_IR_FILTR_REG	0x218
     72#define FILTR_LPF	0x0000FFFF
     73
     74#define CX25840_IR_FIFO_REG	0x23C
     75#define FIFO_RXTX	0x0000FFFF
     76#define FIFO_RXTX_LVL	0x00010000
     77#define FIFO_RXTX_RTO	0x0001FFFF
     78#define FIFO_RX_NDV	0x00020000
     79#define FIFO_RX_DEPTH	8
     80#define FIFO_TX_DEPTH	8
     81
     82#define CX25840_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
     83#define CX25840_IR_REFCLK_FREQ	(CX25840_VIDCLK_FREQ / 2)
     84
     85/*
     86 * We use this union internally for convenience, but callers to tx_write
     87 * and rx_read will be expecting records of type struct ir_raw_event.
     88 * Always ensure the size of this union is dictated by struct ir_raw_event.
     89 */
     90union cx25840_ir_fifo_rec {
     91	u32 hw_fifo_data;
     92	struct ir_raw_event ir_core_data;
     93};
     94
     95#define CX25840_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
     96#define CX25840_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
     97
     98struct cx25840_ir_state {
     99	struct i2c_client *c;
    100
    101	struct v4l2_subdev_ir_parameters rx_params;
    102	struct mutex rx_params_lock; /* protects Rx parameter settings cache */
    103	atomic_t rxclk_divider;
    104	atomic_t rx_invert;
    105
    106	struct kfifo rx_kfifo;
    107	spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
    108
    109	struct v4l2_subdev_ir_parameters tx_params;
    110	struct mutex tx_params_lock; /* protects Tx parameter settings cache */
    111	atomic_t txclk_divider;
    112};
    113
    114static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
    115{
    116	struct cx25840_state *state = to_state(sd);
    117	return state ? state->ir_state : NULL;
    118}
    119
    120
    121/*
    122 * Rx and Tx Clock Divider register computations
    123 *
    124 * Note the largest clock divider value of 0xffff corresponds to:
    125 *	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
    126 * which fits in 21 bits, so we'll use unsigned int for time arguments.
    127 */
    128static inline u16 count_to_clock_divider(unsigned int d)
    129{
    130	if (d > RXCLK_RCD + 1)
    131		d = RXCLK_RCD;
    132	else if (d < 2)
    133		d = 1;
    134	else
    135		d--;
    136	return (u16) d;
    137}
    138
    139static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
    140{
    141	return count_to_clock_divider(
    142			  DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
    143}
    144
    145static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
    146{
    147	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
    148}
    149
    150static inline unsigned int clock_divider_to_freq(unsigned int divider,
    151						 unsigned int rollovers)
    152{
    153	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
    154				 (divider + 1) * rollovers);
    155}
    156
    157/*
    158 * Low Pass Filter register calculations
    159 *
    160 * Note the largest count value of 0xffff corresponds to:
    161 *	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
    162 * which fits in 21 bits, so we'll use unsigned int for time arguments.
    163 */
    164static inline u16 count_to_lpf_count(unsigned int d)
    165{
    166	if (d > FILTR_LPF)
    167		d = FILTR_LPF;
    168	else if (d < 4)
    169		d = 0;
    170	return (u16) d;
    171}
    172
    173static inline u16 ns_to_lpf_count(unsigned int ns)
    174{
    175	return count_to_lpf_count(
    176		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
    177}
    178
    179static inline unsigned int lpf_count_to_ns(unsigned int count)
    180{
    181	/* Duration of the Low Pass Filter rejection window in ns */
    182	return DIV_ROUND_CLOSEST(count * 1000,
    183				 CX25840_IR_REFCLK_FREQ / 1000000);
    184}
    185
    186static inline unsigned int lpf_count_to_us(unsigned int count)
    187{
    188	/* Duration of the Low Pass Filter rejection window in us */
    189	return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
    190}
    191
    192/*
    193 * FIFO register pulse width count computations
    194 */
    195static u32 clock_divider_to_resolution(u16 divider)
    196{
    197	/*
    198	 * Resolution is the duration of 1 tick of the readable portion of
    199	 * of the pulse width counter as read from the FIFO.  The two lsb's are
    200	 * not readable, hence the << 2.  This function returns ns.
    201	 */
    202	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
    203				 CX25840_IR_REFCLK_FREQ / 1000000);
    204}
    205
    206static u64 pulse_width_count_to_ns(u16 count, u16 divider)
    207{
    208	u64 n;
    209	u32 rem;
    210
    211	/*
    212	 * The 2 lsb's of the pulse width timer count are not readable, hence
    213	 * the (count << 2) | 0x3
    214	 */
    215	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
    216	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
    217	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
    218		n++;
    219	return n;
    220}
    221
    222#if 0
    223/* Keep as we will need this for Transmit functionality */
    224static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
    225{
    226	u64 n;
    227	u32 d;
    228	u32 rem;
    229
    230	/*
    231	 * The 2 lsb's of the pulse width timer count are not accessible, hence
    232	 * the (1 << 2)
    233	 */
    234	n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
    235	d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
    236	rem = do_div(n, d);
    237	if (rem >= d / 2)
    238		n++;
    239
    240	if (n > FIFO_RXTX)
    241		n = FIFO_RXTX;
    242	else if (n == 0)
    243		n = 1;
    244	return (u16) n;
    245}
    246
    247#endif
    248static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
    249{
    250	u64 n;
    251	u32 rem;
    252
    253	/*
    254	 * The 2 lsb's of the pulse width timer count are not readable, hence
    255	 * the (count << 2) | 0x3
    256	 */
    257	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
    258	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
    259	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
    260		n++;
    261	return (unsigned int) n;
    262}
    263
    264/*
    265 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
    266 *
    267 * The total pulse clock count is an 18 bit pulse width timer count as the most
    268 * significant part and (up to) 16 bit clock divider count as a modulus.
    269 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
    270 * width timer count's least significant bit.
    271 */
    272static u64 ns_to_pulse_clocks(u32 ns)
    273{
    274	u64 clocks;
    275	u32 rem;
    276	clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
    277	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
    278	if (rem >= 1000 / 2)
    279		clocks++;
    280	return clocks;
    281}
    282
    283static u16 pulse_clocks_to_clock_divider(u64 count)
    284{
    285	do_div(count, (FIFO_RXTX << 2) | 0x3);
    286
    287	/* net result needs to be rounded down and decremented by 1 */
    288	if (count > RXCLK_RCD + 1)
    289		count = RXCLK_RCD;
    290	else if (count < 2)
    291		count = 1;
    292	else
    293		count--;
    294	return (u16) count;
    295}
    296
    297/*
    298 * IR Control Register helpers
    299 */
    300enum tx_fifo_watermark {
    301	TX_FIFO_HALF_EMPTY = 0,
    302	TX_FIFO_EMPTY      = CNTRL_TIC,
    303};
    304
    305enum rx_fifo_watermark {
    306	RX_FIFO_HALF_FULL = 0,
    307	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
    308};
    309
    310static inline void control_tx_irq_watermark(struct i2c_client *c,
    311					    enum tx_fifo_watermark level)
    312{
    313	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
    314}
    315
    316static inline void control_rx_irq_watermark(struct i2c_client *c,
    317					    enum rx_fifo_watermark level)
    318{
    319	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
    320}
    321
    322static inline void control_tx_enable(struct i2c_client *c, bool enable)
    323{
    324	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
    325			enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
    326}
    327
    328static inline void control_rx_enable(struct i2c_client *c, bool enable)
    329{
    330	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
    331			enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
    332}
    333
    334static inline void control_tx_modulation_enable(struct i2c_client *c,
    335						bool enable)
    336{
    337	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
    338			enable ? CNTRL_MOD : 0);
    339}
    340
    341static inline void control_rx_demodulation_enable(struct i2c_client *c,
    342						  bool enable)
    343{
    344	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
    345			enable ? CNTRL_DMD : 0);
    346}
    347
    348static inline void control_rx_s_edge_detection(struct i2c_client *c,
    349					       u32 edge_types)
    350{
    351	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
    352			edge_types & CNTRL_EDG_BOTH);
    353}
    354
    355static void control_rx_s_carrier_window(struct i2c_client *c,
    356					unsigned int carrier,
    357					unsigned int *carrier_range_low,
    358					unsigned int *carrier_range_high)
    359{
    360	u32 v;
    361	unsigned int c16 = carrier * 16;
    362
    363	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
    364		v = CNTRL_WIN_3_4;
    365		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
    366	} else {
    367		v = CNTRL_WIN_3_3;
    368		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
    369	}
    370
    371	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
    372		v |= CNTRL_WIN_4_3;
    373		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
    374	} else {
    375		v |= CNTRL_WIN_3_3;
    376		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
    377	}
    378	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
    379}
    380
    381static inline void control_tx_polarity_invert(struct i2c_client *c,
    382					      bool invert)
    383{
    384	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
    385			invert ? CNTRL_CPL : 0);
    386}
    387
    388/*
    389 * IR Rx & Tx Clock Register helpers
    390 */
    391static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
    392				       unsigned int freq,
    393				       u16 *divider)
    394{
    395	*divider = carrier_freq_to_clock_divider(freq);
    396	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
    397	return clock_divider_to_carrier_freq(*divider);
    398}
    399
    400static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
    401				       unsigned int freq,
    402				       u16 *divider)
    403{
    404	*divider = carrier_freq_to_clock_divider(freq);
    405	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
    406	return clock_divider_to_carrier_freq(*divider);
    407}
    408
    409static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
    410				      u16 *divider)
    411{
    412	u64 pulse_clocks;
    413
    414	if (ns > IR_MAX_DURATION)
    415		ns = IR_MAX_DURATION;
    416	pulse_clocks = ns_to_pulse_clocks(ns);
    417	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
    418	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
    419	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
    420}
    421
    422static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
    423				      u16 *divider)
    424{
    425	u64 pulse_clocks;
    426
    427	if (ns > IR_MAX_DURATION)
    428		ns = IR_MAX_DURATION;
    429	pulse_clocks = ns_to_pulse_clocks(ns);
    430	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
    431	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
    432	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
    433}
    434
    435/*
    436 * IR Tx Carrier Duty Cycle register helpers
    437 */
    438static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
    439					  unsigned int duty_cycle)
    440{
    441	u32 n;
    442	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
    443	if (n != 0)
    444		n--;
    445	if (n > 15)
    446		n = 15;
    447	cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
    448	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
    449}
    450
    451/*
    452 * IR Filter Register helpers
    453 */
    454static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
    455{
    456	u32 count = ns_to_lpf_count(min_width_ns);
    457	cx25840_write4(c, CX25840_IR_FILTR_REG, count);
    458	return lpf_count_to_ns(count);
    459}
    460
    461/*
    462 * IR IRQ Enable Register helpers
    463 */
    464static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
    465{
    466	struct cx25840_state *state = to_state(sd);
    467
    468	if (is_cx23885(state) || is_cx23887(state))
    469		mask ^= IRQEN_MSK;
    470	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
    471	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
    472			~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
    473}
    474
    475static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
    476{
    477	struct cx25840_state *state = to_state(sd);
    478
    479	if (is_cx23885(state) || is_cx23887(state))
    480		mask ^= IRQEN_MSK;
    481	mask &= IRQEN_TSE;
    482	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
    483}
    484
    485/*
    486 * V4L2 Subdevice IR Ops
    487 */
    488int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
    489{
    490	struct cx25840_state *state = to_state(sd);
    491	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    492	struct i2c_client *c = NULL;
    493	unsigned long flags;
    494
    495	union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
    496	unsigned int i, j, k;
    497	u32 events, v;
    498	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
    499	u32 cntrl, irqen, stats;
    500
    501	*handled = false;
    502	if (ir_state == NULL)
    503		return -ENODEV;
    504
    505	c = ir_state->c;
    506
    507	/* Only support the IR controller for the CX2388[57] AV Core for now */
    508	if (!(is_cx23885(state) || is_cx23887(state)))
    509		return -ENODEV;
    510
    511	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
    512	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
    513	if (is_cx23885(state) || is_cx23887(state))
    514		irqen ^= IRQEN_MSK;
    515	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
    516
    517	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
    518	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
    519	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
    520	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
    521
    522	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
    523	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
    524	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
    525	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
    526
    527	v4l2_dbg(2, ir_debug, sd, "IR IRQ Status:  %s %s %s %s %s %s\n",
    528		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
    529		 rto ? "rto" : "   ", ror ? "ror" : "   ",
    530		 stats & STATS_TBY ? "tby" : "   ",
    531		 stats & STATS_RBY ? "rby" : "   ");
    532
    533	v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
    534		 tse ? "tse" : "   ", rse ? "rse" : "   ",
    535		 rte ? "rte" : "   ", roe ? "roe" : "   ");
    536
    537	/*
    538	 * Transmitter interrupt service
    539	 */
    540	if (tse && tsr) {
    541		/*
    542		 * TODO:
    543		 * Check the watermark threshold setting
    544		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
    545		 * Push the data to the hardware FIFO.
    546		 * If there was nothing more to send in the tx_kfifo, disable
    547		 *	the TSR IRQ and notify the v4l2_device.
    548		 * If there was something in the tx_kfifo, check the tx_kfifo
    549		 *      level and notify the v4l2_device, if it is low.
    550		 */
    551		/* For now, inhibit TSR interrupt until Tx is implemented */
    552		irqenable_tx(sd, 0);
    553		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
    554		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
    555		*handled = true;
    556	}
    557
    558	/*
    559	 * Receiver interrupt service
    560	 */
    561	kror = 0;
    562	if ((rse && rsr) || (rte && rto)) {
    563		/*
    564		 * Receive data on RSR to clear the STATS_RSR.
    565		 * Receive data on RTO, since we may not have yet hit the RSR
    566		 * watermark when we receive the RTO.
    567		 */
    568		for (i = 0, v = FIFO_RX_NDV;
    569		     (v & FIFO_RX_NDV) && !kror; i = 0) {
    570			for (j = 0;
    571			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
    572				v = cx25840_read4(c, CX25840_IR_FIFO_REG);
    573				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
    574				i++;
    575			}
    576			if (i == 0)
    577				break;
    578			j = i * sizeof(union cx25840_ir_fifo_rec);
    579			k = kfifo_in_locked(&ir_state->rx_kfifo,
    580					    (unsigned char *) rx_data, j,
    581					    &ir_state->rx_kfifo_lock);
    582			if (k != j)
    583				kror++; /* rx_kfifo over run */
    584		}
    585		*handled = true;
    586	}
    587
    588	events = 0;
    589	v = 0;
    590	if (kror) {
    591		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
    592		v4l2_err(sd, "IR receiver software FIFO overrun\n");
    593	}
    594	if (roe && ror) {
    595		/*
    596		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
    597		 * the Rx FIFO Over Run status (STATS_ROR)
    598		 */
    599		v |= CNTRL_RFE;
    600		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
    601		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
    602	}
    603	if (rte && rto) {
    604		/*
    605		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
    606		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
    607		 */
    608		v |= CNTRL_RXE;
    609		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
    610	}
    611	if (v) {
    612		/* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
    613		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
    614		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
    615		*handled = true;
    616	}
    617	spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
    618	if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
    619		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
    620	spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
    621
    622	if (events)
    623		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
    624	return 0;
    625}
    626
    627/* Receiver */
    628static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
    629			      ssize_t *num)
    630{
    631	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    632	bool invert;
    633	u16 divider;
    634	unsigned int i, n;
    635	union cx25840_ir_fifo_rec *p;
    636	unsigned u, v, w;
    637
    638	if (ir_state == NULL)
    639		return -ENODEV;
    640
    641	invert = (bool) atomic_read(&ir_state->rx_invert);
    642	divider = (u16) atomic_read(&ir_state->rxclk_divider);
    643
    644	n = count / sizeof(union cx25840_ir_fifo_rec)
    645		* sizeof(union cx25840_ir_fifo_rec);
    646	if (n == 0) {
    647		*num = 0;
    648		return 0;
    649	}
    650
    651	n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
    652			     &ir_state->rx_kfifo_lock);
    653
    654	n /= sizeof(union cx25840_ir_fifo_rec);
    655	*num = n * sizeof(union cx25840_ir_fifo_rec);
    656
    657	for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
    658
    659		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
    660			/* Assume RTO was because of no IR light input */
    661			u = 0;
    662			w = 1;
    663		} else {
    664			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
    665			if (invert)
    666				u = u ? 0 : 1;
    667			w = 0;
    668		}
    669
    670		v = (unsigned) pulse_width_count_to_ns(
    671				  (u16)(p->hw_fifo_data & FIFO_RXTX), divider) / 1000;
    672		if (v > IR_MAX_DURATION)
    673			v = IR_MAX_DURATION;
    674
    675		p->ir_core_data = (struct ir_raw_event)
    676			{ .pulse = u, .duration = v, .timeout = w };
    677
    678		v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s  %s\n",
    679			 v, u ? "mark" : "space", w ? "(timed out)" : "");
    680		if (w)
    681			v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
    682	}
    683	return 0;
    684}
    685
    686static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
    687				      struct v4l2_subdev_ir_parameters *p)
    688{
    689	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    690
    691	if (ir_state == NULL)
    692		return -ENODEV;
    693
    694	mutex_lock(&ir_state->rx_params_lock);
    695	memcpy(p, &ir_state->rx_params,
    696				      sizeof(struct v4l2_subdev_ir_parameters));
    697	mutex_unlock(&ir_state->rx_params_lock);
    698	return 0;
    699}
    700
    701static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
    702{
    703	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    704	struct i2c_client *c;
    705
    706	if (ir_state == NULL)
    707		return -ENODEV;
    708
    709	c = ir_state->c;
    710	mutex_lock(&ir_state->rx_params_lock);
    711
    712	/* Disable or slow down all IR Rx circuits and counters */
    713	irqenable_rx(sd, 0);
    714	control_rx_enable(c, false);
    715	control_rx_demodulation_enable(c, false);
    716	control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
    717	filter_rx_s_min_width(c, 0);
    718	cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
    719
    720	ir_state->rx_params.shutdown = true;
    721
    722	mutex_unlock(&ir_state->rx_params_lock);
    723	return 0;
    724}
    725
    726static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
    727				      struct v4l2_subdev_ir_parameters *p)
    728{
    729	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    730	struct i2c_client *c;
    731	struct v4l2_subdev_ir_parameters *o;
    732	u16 rxclk_divider;
    733
    734	if (ir_state == NULL)
    735		return -ENODEV;
    736
    737	if (p->shutdown)
    738		return cx25840_ir_rx_shutdown(sd);
    739
    740	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
    741		return -ENOSYS;
    742
    743	c = ir_state->c;
    744	o = &ir_state->rx_params;
    745
    746	mutex_lock(&ir_state->rx_params_lock);
    747
    748	o->shutdown = p->shutdown;
    749
    750	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
    751	o->mode = p->mode;
    752
    753	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
    754	o->bytes_per_data_element = p->bytes_per_data_element;
    755
    756	/* Before we tweak the hardware, we have to disable the receiver */
    757	irqenable_rx(sd, 0);
    758	control_rx_enable(c, false);
    759
    760	control_rx_demodulation_enable(c, p->modulation);
    761	o->modulation = p->modulation;
    762
    763	if (p->modulation) {
    764		p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
    765						     &rxclk_divider);
    766
    767		o->carrier_freq = p->carrier_freq;
    768
    769		p->duty_cycle = 50;
    770		o->duty_cycle = p->duty_cycle;
    771
    772		control_rx_s_carrier_window(c, p->carrier_freq,
    773					    &p->carrier_range_lower,
    774					    &p->carrier_range_upper);
    775		o->carrier_range_lower = p->carrier_range_lower;
    776		o->carrier_range_upper = p->carrier_range_upper;
    777
    778		p->max_pulse_width =
    779			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
    780	} else {
    781		p->max_pulse_width =
    782			    rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
    783						       &rxclk_divider);
    784	}
    785	o->max_pulse_width = p->max_pulse_width;
    786	atomic_set(&ir_state->rxclk_divider, rxclk_divider);
    787
    788	p->noise_filter_min_width =
    789			    filter_rx_s_min_width(c, p->noise_filter_min_width);
    790	o->noise_filter_min_width = p->noise_filter_min_width;
    791
    792	p->resolution = clock_divider_to_resolution(rxclk_divider);
    793	o->resolution = p->resolution;
    794
    795	/* FIXME - make this dependent on resolution for better performance */
    796	control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
    797
    798	control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
    799
    800	o->invert_level = p->invert_level;
    801	atomic_set(&ir_state->rx_invert, p->invert_level);
    802
    803	o->interrupt_enable = p->interrupt_enable;
    804	o->enable = p->enable;
    805	if (p->enable) {
    806		unsigned long flags;
    807
    808		spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
    809		kfifo_reset(&ir_state->rx_kfifo);
    810		spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
    811		if (p->interrupt_enable)
    812			irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
    813		control_rx_enable(c, p->enable);
    814	}
    815
    816	mutex_unlock(&ir_state->rx_params_lock);
    817	return 0;
    818}
    819
    820/* Transmitter */
    821static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
    822			       ssize_t *num)
    823{
    824	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    825
    826	if (ir_state == NULL)
    827		return -ENODEV;
    828
    829#if 0
    830	/*
    831	 * FIXME - the code below is an incomplete and untested sketch of what
    832	 * may need to be done.  The critical part is to get 4 (or 8) pulses
    833	 * from the tx_kfifo, or converted from ns to the proper units from the
    834	 * input, and push them off to the hardware Tx FIFO right away, if the
    835	 * HW TX fifo needs service.  The rest can be pushed to the tx_kfifo in
    836	 * a less critical timeframe.  Also watch out for overruning the
    837	 * tx_kfifo - don't let it happen and let the caller know not all his
    838	 * pulses were written.
    839	 */
    840	u32 *ns_pulse = (u32 *) buf;
    841	unsigned int n;
    842	u32 fifo_pulse[FIFO_TX_DEPTH];
    843	u32 mark;
    844
    845	/* Compute how much we can fit in the tx kfifo */
    846	n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
    847	n = min(n, (unsigned int) count);
    848	n /= sizeof(u32);
    849
    850	/* FIXME - turn on Tx Fifo service interrupt
    851	 * check hardware fifo level, and other stuff
    852	 */
    853	for (i = 0; i < n; ) {
    854		for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
    855			mark = ns_pulse[i] & LEVEL_MASK;
    856			fifo_pulse[j] = ns_to_pulse_width_count(
    857					 ns_pulse[i] &
    858					       ~LEVEL_MASK,
    859					 ir_state->txclk_divider);
    860			if (mark)
    861				fifo_pulse[j] &= FIFO_RXTX_LVL;
    862			i++;
    863		}
    864		kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
    865							       j * sizeof(u32));
    866	}
    867	*num = n * sizeof(u32);
    868#else
    869	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
    870	irqenable_tx(sd, IRQEN_TSE);
    871	*num = count;
    872#endif
    873	return 0;
    874}
    875
    876static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
    877				      struct v4l2_subdev_ir_parameters *p)
    878{
    879	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    880
    881	if (ir_state == NULL)
    882		return -ENODEV;
    883
    884	mutex_lock(&ir_state->tx_params_lock);
    885	memcpy(p, &ir_state->tx_params,
    886				      sizeof(struct v4l2_subdev_ir_parameters));
    887	mutex_unlock(&ir_state->tx_params_lock);
    888	return 0;
    889}
    890
    891static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
    892{
    893	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    894	struct i2c_client *c;
    895
    896	if (ir_state == NULL)
    897		return -ENODEV;
    898
    899	c = ir_state->c;
    900	mutex_lock(&ir_state->tx_params_lock);
    901
    902	/* Disable or slow down all IR Tx circuits and counters */
    903	irqenable_tx(sd, 0);
    904	control_tx_enable(c, false);
    905	control_tx_modulation_enable(c, false);
    906	cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
    907
    908	ir_state->tx_params.shutdown = true;
    909
    910	mutex_unlock(&ir_state->tx_params_lock);
    911	return 0;
    912}
    913
    914static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
    915				      struct v4l2_subdev_ir_parameters *p)
    916{
    917	struct cx25840_ir_state *ir_state = to_ir_state(sd);
    918	struct i2c_client *c;
    919	struct v4l2_subdev_ir_parameters *o;
    920	u16 txclk_divider;
    921
    922	if (ir_state == NULL)
    923		return -ENODEV;
    924
    925	if (p->shutdown)
    926		return cx25840_ir_tx_shutdown(sd);
    927
    928	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
    929		return -ENOSYS;
    930
    931	c = ir_state->c;
    932	o = &ir_state->tx_params;
    933	mutex_lock(&ir_state->tx_params_lock);
    934
    935	o->shutdown = p->shutdown;
    936
    937	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
    938	o->mode = p->mode;
    939
    940	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
    941	o->bytes_per_data_element = p->bytes_per_data_element;
    942
    943	/* Before we tweak the hardware, we have to disable the transmitter */
    944	irqenable_tx(sd, 0);
    945	control_tx_enable(c, false);
    946
    947	control_tx_modulation_enable(c, p->modulation);
    948	o->modulation = p->modulation;
    949
    950	if (p->modulation) {
    951		p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
    952						     &txclk_divider);
    953		o->carrier_freq = p->carrier_freq;
    954
    955		p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
    956		o->duty_cycle = p->duty_cycle;
    957
    958		p->max_pulse_width =
    959			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
    960	} else {
    961		p->max_pulse_width =
    962			    txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
    963						       &txclk_divider);
    964	}
    965	o->max_pulse_width = p->max_pulse_width;
    966	atomic_set(&ir_state->txclk_divider, txclk_divider);
    967
    968	p->resolution = clock_divider_to_resolution(txclk_divider);
    969	o->resolution = p->resolution;
    970
    971	/* FIXME - make this dependent on resolution for better performance */
    972	control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
    973
    974	control_tx_polarity_invert(c, p->invert_carrier_sense);
    975	o->invert_carrier_sense = p->invert_carrier_sense;
    976
    977	/*
    978	 * FIXME: we don't have hardware help for IO pin level inversion
    979	 * here like we have on the CX23888.
    980	 * Act on this with some mix of logical inversion of data levels,
    981	 * carrier polarity, and carrier duty cycle.
    982	 */
    983	o->invert_level = p->invert_level;
    984
    985	o->interrupt_enable = p->interrupt_enable;
    986	o->enable = p->enable;
    987	if (p->enable) {
    988		/* reset tx_fifo here */
    989		if (p->interrupt_enable)
    990			irqenable_tx(sd, IRQEN_TSE);
    991		control_tx_enable(c, p->enable);
    992	}
    993
    994	mutex_unlock(&ir_state->tx_params_lock);
    995	return 0;
    996}
    997
    998
    999/*
   1000 * V4L2 Subdevice Core Ops support
   1001 */
   1002int cx25840_ir_log_status(struct v4l2_subdev *sd)
   1003{
   1004	struct cx25840_state *state = to_state(sd);
   1005	struct i2c_client *c = state->c;
   1006	char *s;
   1007	int i, j;
   1008	u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
   1009
   1010	/* The CX23888 chip doesn't have an IR controller on the A/V core */
   1011	if (is_cx23888(state))
   1012		return 0;
   1013
   1014	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
   1015	txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
   1016	rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
   1017	cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
   1018	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
   1019	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
   1020	if (is_cx23885(state) || is_cx23887(state))
   1021		irqen ^= IRQEN_MSK;
   1022	filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
   1023
   1024	v4l2_info(sd, "IR Receiver:\n");
   1025	v4l2_info(sd, "\tEnabled:                           %s\n",
   1026		  cntrl & CNTRL_RXE ? "yes" : "no");
   1027	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
   1028		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
   1029	v4l2_info(sd, "\tFIFO:                              %s\n",
   1030		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
   1031	switch (cntrl & CNTRL_EDG) {
   1032	case CNTRL_EDG_NONE:
   1033		s = "disabled";
   1034		break;
   1035	case CNTRL_EDG_FALL:
   1036		s = "falling edge";
   1037		break;
   1038	case CNTRL_EDG_RISE:
   1039		s = "rising edge";
   1040		break;
   1041	case CNTRL_EDG_BOTH:
   1042		s = "rising & falling edges";
   1043		break;
   1044	default:
   1045		s = "??? edge";
   1046		break;
   1047	}
   1048	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
   1049	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
   1050		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
   1051	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
   1052		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
   1053	v4l2_info(sd, "\tLoopback mode:                     %s\n",
   1054		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
   1055	if (cntrl & CNTRL_DMD) {
   1056		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
   1057			  clock_divider_to_carrier_freq(rxclk));
   1058		switch (cntrl & CNTRL_WIN) {
   1059		case CNTRL_WIN_3_3:
   1060			i = 3;
   1061			j = 3;
   1062			break;
   1063		case CNTRL_WIN_4_3:
   1064			i = 4;
   1065			j = 3;
   1066			break;
   1067		case CNTRL_WIN_3_4:
   1068			i = 3;
   1069			j = 4;
   1070			break;
   1071		case CNTRL_WIN_4_4:
   1072			i = 4;
   1073			j = 4;
   1074			break;
   1075		default:
   1076			i = 0;
   1077			j = 0;
   1078			break;
   1079		}
   1080		v4l2_info(sd, "\tNext carrier edge window:	    16 clocks -%1d/+%1d, %u to %u Hz\n",
   1081			  i, j,
   1082			  clock_divider_to_freq(rxclk, 16 + j),
   1083			  clock_divider_to_freq(rxclk, 16 - i));
   1084	}
   1085	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
   1086		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
   1087		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
   1088	v4l2_info(sd, "\tLow pass filter:                   %s\n",
   1089		  filtr ? "enabled" : "disabled");
   1090	if (filtr)
   1091		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, %u ns\n",
   1092			  lpf_count_to_us(filtr),
   1093			  lpf_count_to_ns(filtr));
   1094	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
   1095		  stats & STATS_RTO ? "yes" : "no");
   1096	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
   1097		  irqen & IRQEN_RTE ? "enabled" : "disabled");
   1098	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
   1099		  stats & STATS_ROR ? "yes" : "no");
   1100	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
   1101		  irqen & IRQEN_ROE ? "enabled" : "disabled");
   1102	v4l2_info(sd, "\tBusy:                              %s\n",
   1103		  stats & STATS_RBY ? "yes" : "no");
   1104	v4l2_info(sd, "\tFIFO service requested:            %s\n",
   1105		  stats & STATS_RSR ? "yes" : "no");
   1106	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
   1107		  irqen & IRQEN_RSE ? "enabled" : "disabled");
   1108
   1109	v4l2_info(sd, "IR Transmitter:\n");
   1110	v4l2_info(sd, "\tEnabled:                           %s\n",
   1111		  cntrl & CNTRL_TXE ? "yes" : "no");
   1112	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
   1113		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
   1114	v4l2_info(sd, "\tFIFO:                              %s\n",
   1115		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
   1116	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
   1117		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
   1118	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
   1119		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
   1120				    : "space:noburst mark:burst");
   1121	if (cntrl & CNTRL_MOD) {
   1122		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
   1123			  clock_divider_to_carrier_freq(txclk));
   1124		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
   1125			  cduty + 1);
   1126	}
   1127	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
   1128		  pulse_width_count_to_us(FIFO_RXTX, txclk),
   1129		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
   1130	v4l2_info(sd, "\tBusy:                              %s\n",
   1131		  stats & STATS_TBY ? "yes" : "no");
   1132	v4l2_info(sd, "\tFIFO service requested:            %s\n",
   1133		  stats & STATS_TSR ? "yes" : "no");
   1134	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
   1135		  irqen & IRQEN_TSE ? "enabled" : "disabled");
   1136
   1137	return 0;
   1138}
   1139
   1140
   1141const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
   1142	.rx_read = cx25840_ir_rx_read,
   1143	.rx_g_parameters = cx25840_ir_rx_g_parameters,
   1144	.rx_s_parameters = cx25840_ir_rx_s_parameters,
   1145
   1146	.tx_write = cx25840_ir_tx_write,
   1147	.tx_g_parameters = cx25840_ir_tx_g_parameters,
   1148	.tx_s_parameters = cx25840_ir_tx_s_parameters,
   1149};
   1150
   1151
   1152static const struct v4l2_subdev_ir_parameters default_rx_params = {
   1153	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
   1154	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
   1155
   1156	.enable = false,
   1157	.interrupt_enable = false,
   1158	.shutdown = true,
   1159
   1160	.modulation = true,
   1161	.carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
   1162
   1163	/* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
   1164	/* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
   1165	.noise_filter_min_width = 333333, /* ns */
   1166	.carrier_range_lower = 35000,
   1167	.carrier_range_upper = 37000,
   1168	.invert_level = false,
   1169};
   1170
   1171static const struct v4l2_subdev_ir_parameters default_tx_params = {
   1172	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
   1173	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
   1174
   1175	.enable = false,
   1176	.interrupt_enable = false,
   1177	.shutdown = true,
   1178
   1179	.modulation = true,
   1180	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
   1181	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
   1182	.invert_level = false,
   1183	.invert_carrier_sense = false,
   1184};
   1185
   1186int cx25840_ir_probe(struct v4l2_subdev *sd)
   1187{
   1188	struct cx25840_state *state = to_state(sd);
   1189	struct cx25840_ir_state *ir_state;
   1190	struct v4l2_subdev_ir_parameters default_params;
   1191
   1192	/* Only init the IR controller for the CX2388[57] AV Core for now */
   1193	if (!(is_cx23885(state) || is_cx23887(state)))
   1194		return 0;
   1195
   1196	ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL);
   1197	if (ir_state == NULL)
   1198		return -ENOMEM;
   1199
   1200	spin_lock_init(&ir_state->rx_kfifo_lock);
   1201	if (kfifo_alloc(&ir_state->rx_kfifo,
   1202			CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL))
   1203		return -ENOMEM;
   1204
   1205	ir_state->c = state->c;
   1206	state->ir_state = ir_state;
   1207
   1208	/* Ensure no interrupts arrive yet */
   1209	if (is_cx23885(state) || is_cx23887(state))
   1210		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
   1211	else
   1212		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
   1213
   1214	mutex_init(&ir_state->rx_params_lock);
   1215	default_params = default_rx_params;
   1216	v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
   1217
   1218	mutex_init(&ir_state->tx_params_lock);
   1219	default_params = default_tx_params;
   1220	v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
   1221
   1222	return 0;
   1223}
   1224
   1225int cx25840_ir_remove(struct v4l2_subdev *sd)
   1226{
   1227	struct cx25840_state *state = to_state(sd);
   1228	struct cx25840_ir_state *ir_state = to_ir_state(sd);
   1229
   1230	if (ir_state == NULL)
   1231		return -ENODEV;
   1232
   1233	cx25840_ir_rx_shutdown(sd);
   1234	cx25840_ir_tx_shutdown(sd);
   1235
   1236	kfifo_free(&ir_state->rx_kfifo);
   1237	state->ir_state = NULL;
   1238	return 0;
   1239}