cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cx23885-vbi.c (7639B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  Driver for the Conexant CX23885 PCIe bridge
      4 *
      5 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
      6 */
      7
      8#include "cx23885.h"
      9
     10#include <linux/kernel.h>
     11#include <linux/module.h>
     12#include <linux/moduleparam.h>
     13#include <linux/init.h>
     14
     15static unsigned int vbibufs = 4;
     16module_param(vbibufs, int, 0644);
     17MODULE_PARM_DESC(vbibufs, "number of vbi buffers, range 2-32");
     18
     19static unsigned int vbi_debug;
     20module_param(vbi_debug, int, 0644);
     21MODULE_PARM_DESC(vbi_debug, "enable debug messages [vbi]");
     22
     23#define dprintk(level, fmt, arg...)\
     24	do { if (vbi_debug >= level)\
     25		printk(KERN_DEBUG pr_fmt("%s: vbi:" fmt), \
     26			__func__, ##arg); \
     27	} while (0)
     28
     29/* ------------------------------------------------------------------ */
     30
     31#define VBI_LINE_LENGTH 1440
     32#define VBI_NTSC_LINE_COUNT 12
     33#define VBI_PAL_LINE_COUNT 18
     34
     35
     36int cx23885_vbi_fmt(struct file *file, void *priv,
     37	struct v4l2_format *f)
     38{
     39	struct cx23885_dev *dev = video_drvdata(file);
     40
     41	f->fmt.vbi.sampling_rate = 27000000;
     42	f->fmt.vbi.samples_per_line = VBI_LINE_LENGTH;
     43	f->fmt.vbi.sample_format = V4L2_PIX_FMT_GREY;
     44	f->fmt.vbi.offset = 0;
     45	f->fmt.vbi.flags = 0;
     46	if (dev->tvnorm & V4L2_STD_525_60) {
     47		/* ntsc */
     48		f->fmt.vbi.start[0] = V4L2_VBI_ITU_525_F1_START + 9;
     49		f->fmt.vbi.start[1] = V4L2_VBI_ITU_525_F2_START + 9;
     50		f->fmt.vbi.count[0] = VBI_NTSC_LINE_COUNT;
     51		f->fmt.vbi.count[1] = VBI_NTSC_LINE_COUNT;
     52	} else if (dev->tvnorm & V4L2_STD_625_50) {
     53		/* pal */
     54		f->fmt.vbi.start[0] = V4L2_VBI_ITU_625_F1_START + 5;
     55		f->fmt.vbi.start[1] = V4L2_VBI_ITU_625_F2_START + 5;
     56		f->fmt.vbi.count[0] = VBI_PAL_LINE_COUNT;
     57		f->fmt.vbi.count[1] = VBI_PAL_LINE_COUNT;
     58	}
     59
     60	return 0;
     61}
     62
     63/* We're given the Video Interrupt status register.
     64 * The cx23885_video_irq() func has already validated
     65 * the potential error bits, we just need to
     66 * deal with vbi payload and return indication if
     67 * we actually processed any payload.
     68 */
     69int cx23885_vbi_irq(struct cx23885_dev *dev, u32 status)
     70{
     71	u32 count;
     72	int handled = 0;
     73
     74	if (status & VID_BC_MSK_VBI_RISCI1) {
     75		dprintk(1, "%s() VID_BC_MSK_VBI_RISCI1\n", __func__);
     76		spin_lock(&dev->slock);
     77		count = cx_read(VBI_A_GPCNT);
     78		cx23885_video_wakeup(dev, &dev->vbiq, count);
     79		spin_unlock(&dev->slock);
     80		handled++;
     81	}
     82
     83	return handled;
     84}
     85
     86static int cx23885_start_vbi_dma(struct cx23885_dev    *dev,
     87			 struct cx23885_dmaqueue *q,
     88			 struct cx23885_buffer   *buf)
     89{
     90	dprintk(1, "%s()\n", __func__);
     91
     92	/* setup fifo + format */
     93	cx23885_sram_channel_setup(dev, &dev->sram_channels[SRAM_CH02],
     94				VBI_LINE_LENGTH, buf->risc.dma);
     95
     96	/* reset counter */
     97	cx_write(VID_A_VBI_CTRL, 3);
     98	cx_write(VBI_A_GPCNT_CTL, 3);
     99	q->count = 0;
    100
    101	/* enable irq */
    102	cx23885_irq_add_enable(dev, 0x01);
    103	cx_set(VID_A_INT_MSK, 0x000022);
    104
    105	/* start dma */
    106	cx_set(DEV_CNTRL2, (1<<5));
    107	cx_set(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */
    108
    109	return 0;
    110}
    111
    112/* ------------------------------------------------------------------ */
    113
    114static int queue_setup(struct vb2_queue *q,
    115			   unsigned int *num_buffers, unsigned int *num_planes,
    116			   unsigned int sizes[], struct device *alloc_devs[])
    117{
    118	struct cx23885_dev *dev = q->drv_priv;
    119	unsigned lines = VBI_PAL_LINE_COUNT;
    120
    121	if (dev->tvnorm & V4L2_STD_525_60)
    122		lines = VBI_NTSC_LINE_COUNT;
    123	*num_planes = 1;
    124	sizes[0] = lines * VBI_LINE_LENGTH * 2;
    125	return 0;
    126}
    127
    128static int buffer_prepare(struct vb2_buffer *vb)
    129{
    130	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
    131	struct cx23885_dev *dev = vb->vb2_queue->drv_priv;
    132	struct cx23885_buffer *buf = container_of(vbuf,
    133		struct cx23885_buffer, vb);
    134	struct sg_table *sgt = vb2_dma_sg_plane_desc(vb, 0);
    135	unsigned lines = VBI_PAL_LINE_COUNT;
    136
    137	if (dev->tvnorm & V4L2_STD_525_60)
    138		lines = VBI_NTSC_LINE_COUNT;
    139
    140	if (vb2_plane_size(vb, 0) < lines * VBI_LINE_LENGTH * 2)
    141		return -EINVAL;
    142	vb2_set_plane_payload(vb, 0, lines * VBI_LINE_LENGTH * 2);
    143
    144	cx23885_risc_vbibuffer(dev->pci, &buf->risc,
    145			 sgt->sgl,
    146			 0, VBI_LINE_LENGTH * lines,
    147			 VBI_LINE_LENGTH, 0,
    148			 lines);
    149	return 0;
    150}
    151
    152static void buffer_finish(struct vb2_buffer *vb)
    153{
    154	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
    155	struct cx23885_buffer *buf = container_of(vbuf,
    156		struct cx23885_buffer, vb);
    157
    158	cx23885_free_buffer(vb->vb2_queue->drv_priv, buf);
    159}
    160
    161/*
    162 * The risc program for each buffer works as follows: it starts with a simple
    163 * 'JUMP to addr + 12', which is effectively a NOP. Then the code to DMA the
    164 * buffer follows and at the end we have a JUMP back to the start + 12 (skipping
    165 * the initial JUMP).
    166 *
    167 * This is the risc program of the first buffer to be queued if the active list
    168 * is empty and it just keeps DMAing this buffer without generating any
    169 * interrupts.
    170 *
    171 * If a new buffer is added then the initial JUMP in the code for that buffer
    172 * will generate an interrupt which signals that the previous buffer has been
    173 * DMAed successfully and that it can be returned to userspace.
    174 *
    175 * It also sets the final jump of the previous buffer to the start of the new
    176 * buffer, thus chaining the new buffer into the DMA chain. This is a single
    177 * atomic u32 write, so there is no race condition.
    178 *
    179 * The end-result of all this that you only get an interrupt when a buffer
    180 * is ready, so the control flow is very easy.
    181 */
    182static void buffer_queue(struct vb2_buffer *vb)
    183{
    184	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
    185	struct cx23885_dev *dev = vb->vb2_queue->drv_priv;
    186	struct cx23885_buffer *buf = container_of(vbuf,
    187			struct cx23885_buffer, vb);
    188	struct cx23885_buffer *prev;
    189	struct cx23885_dmaqueue *q = &dev->vbiq;
    190	unsigned long flags;
    191
    192	buf->risc.cpu[1] = cpu_to_le32(buf->risc.dma + 12);
    193	buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP | RISC_CNT_INC);
    194	buf->risc.jmp[1] = cpu_to_le32(buf->risc.dma + 12);
    195	buf->risc.jmp[2] = cpu_to_le32(0); /* bits 63-32 */
    196
    197	if (list_empty(&q->active)) {
    198		spin_lock_irqsave(&dev->slock, flags);
    199		list_add_tail(&buf->queue, &q->active);
    200		spin_unlock_irqrestore(&dev->slock, flags);
    201		dprintk(2, "[%p/%d] vbi_queue - first active\n",
    202			buf, buf->vb.vb2_buf.index);
    203
    204	} else {
    205		buf->risc.cpu[0] |= cpu_to_le32(RISC_IRQ1);
    206		prev = list_entry(q->active.prev, struct cx23885_buffer,
    207			queue);
    208		spin_lock_irqsave(&dev->slock, flags);
    209		list_add_tail(&buf->queue, &q->active);
    210		spin_unlock_irqrestore(&dev->slock, flags);
    211		prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
    212		dprintk(2, "[%p/%d] buffer_queue - append to active\n",
    213			buf, buf->vb.vb2_buf.index);
    214	}
    215}
    216
    217static int cx23885_start_streaming(struct vb2_queue *q, unsigned int count)
    218{
    219	struct cx23885_dev *dev = q->drv_priv;
    220	struct cx23885_dmaqueue *dmaq = &dev->vbiq;
    221	struct cx23885_buffer *buf = list_entry(dmaq->active.next,
    222			struct cx23885_buffer, queue);
    223
    224	cx23885_start_vbi_dma(dev, dmaq, buf);
    225	return 0;
    226}
    227
    228static void cx23885_stop_streaming(struct vb2_queue *q)
    229{
    230	struct cx23885_dev *dev = q->drv_priv;
    231	struct cx23885_dmaqueue *dmaq = &dev->vbiq;
    232	unsigned long flags;
    233
    234	cx_clear(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */
    235	spin_lock_irqsave(&dev->slock, flags);
    236	while (!list_empty(&dmaq->active)) {
    237		struct cx23885_buffer *buf = list_entry(dmaq->active.next,
    238			struct cx23885_buffer, queue);
    239
    240		list_del(&buf->queue);
    241		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
    242	}
    243	spin_unlock_irqrestore(&dev->slock, flags);
    244}
    245
    246
    247const struct vb2_ops cx23885_vbi_qops = {
    248	.queue_setup    = queue_setup,
    249	.buf_prepare  = buffer_prepare,
    250	.buf_finish = buffer_finish,
    251	.buf_queue    = buffer_queue,
    252	.wait_prepare = vb2_ops_wait_prepare,
    253	.wait_finish = vb2_ops_wait_finish,
    254	.start_streaming = cx23885_start_streaming,
    255	.stop_streaming = cx23885_stop_streaming,
    256};