cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cx23888-ir.c (34671B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  Driver for the Conexant CX23885/7/8 PCIe bridge
      4 *
      5 *  CX23888 Integrated Consumer Infrared Controller
      6 *
      7 *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
      8 */
      9
     10#include "cx23885.h"
     11#include "cx23888-ir.h"
     12
     13#include <linux/kfifo.h>
     14#include <linux/slab.h>
     15
     16#include <media/v4l2-device.h>
     17#include <media/rc-core.h>
     18
     19static unsigned int ir_888_debug;
     20module_param(ir_888_debug, int, 0644);
     21MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
     22
     23#define CX23888_IR_REG_BASE	0x170000
     24/*
     25 * These CX23888 register offsets have a straightforward one to one mapping
     26 * to the CX23885 register offsets of 0x200 through 0x218
     27 */
     28#define CX23888_IR_CNTRL_REG	0x170000
     29#define CNTRL_WIN_3_3	0x00000000
     30#define CNTRL_WIN_4_3	0x00000001
     31#define CNTRL_WIN_3_4	0x00000002
     32#define CNTRL_WIN_4_4	0x00000003
     33#define CNTRL_WIN	0x00000003
     34#define CNTRL_EDG_NONE	0x00000000
     35#define CNTRL_EDG_FALL	0x00000004
     36#define CNTRL_EDG_RISE	0x00000008
     37#define CNTRL_EDG_BOTH	0x0000000C
     38#define CNTRL_EDG	0x0000000C
     39#define CNTRL_DMD	0x00000010
     40#define CNTRL_MOD	0x00000020
     41#define CNTRL_RFE	0x00000040
     42#define CNTRL_TFE	0x00000080
     43#define CNTRL_RXE	0x00000100
     44#define CNTRL_TXE	0x00000200
     45#define CNTRL_RIC	0x00000400
     46#define CNTRL_TIC	0x00000800
     47#define CNTRL_CPL	0x00001000
     48#define CNTRL_LBM	0x00002000
     49#define CNTRL_R		0x00004000
     50/* CX23888 specific control flag */
     51#define CNTRL_IVO	0x00008000
     52
     53#define CX23888_IR_TXCLK_REG	0x170004
     54#define TXCLK_TCD	0x0000FFFF
     55
     56#define CX23888_IR_RXCLK_REG	0x170008
     57#define RXCLK_RCD	0x0000FFFF
     58
     59#define CX23888_IR_CDUTY_REG	0x17000C
     60#define CDUTY_CDC	0x0000000F
     61
     62#define CX23888_IR_STATS_REG	0x170010
     63#define STATS_RTO	0x00000001
     64#define STATS_ROR	0x00000002
     65#define STATS_RBY	0x00000004
     66#define STATS_TBY	0x00000008
     67#define STATS_RSR	0x00000010
     68#define STATS_TSR	0x00000020
     69
     70#define CX23888_IR_IRQEN_REG	0x170014
     71#define IRQEN_RTE	0x00000001
     72#define IRQEN_ROE	0x00000002
     73#define IRQEN_RSE	0x00000010
     74#define IRQEN_TSE	0x00000020
     75
     76#define CX23888_IR_FILTR_REG	0x170018
     77#define FILTR_LPF	0x0000FFFF
     78
     79/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
     80#define CX23888_IR_FIFO_REG	0x170040
     81#define FIFO_RXTX	0x0000FFFF
     82#define FIFO_RXTX_LVL	0x00010000
     83#define FIFO_RXTX_RTO	0x0001FFFF
     84#define FIFO_RX_NDV	0x00020000
     85#define FIFO_RX_DEPTH	8
     86#define FIFO_TX_DEPTH	8
     87
     88/* CX23888 unique registers */
     89#define CX23888_IR_SEEDP_REG	0x17001C
     90#define CX23888_IR_TIMOL_REG	0x170020
     91#define CX23888_IR_WAKE0_REG	0x170024
     92#define CX23888_IR_WAKE1_REG	0x170028
     93#define CX23888_IR_WAKE2_REG	0x17002C
     94#define CX23888_IR_MASK0_REG	0x170030
     95#define CX23888_IR_MASK1_REG	0x170034
     96#define CX23888_IR_MAKS2_REG	0x170038
     97#define CX23888_IR_DPIPG_REG	0x17003C
     98#define CX23888_IR_LEARN_REG	0x170044
     99
    100#define CX23888_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
    101#define CX23888_IR_REFCLK_FREQ	(CX23888_VIDCLK_FREQ / 2)
    102
    103/*
    104 * We use this union internally for convenience, but callers to tx_write
    105 * and rx_read will be expecting records of type struct ir_raw_event.
    106 * Always ensure the size of this union is dictated by struct ir_raw_event.
    107 */
    108union cx23888_ir_fifo_rec {
    109	u32 hw_fifo_data;
    110	struct ir_raw_event ir_core_data;
    111};
    112
    113#define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
    114#define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
    115
    116struct cx23888_ir_state {
    117	struct v4l2_subdev sd;
    118	struct cx23885_dev *dev;
    119
    120	struct v4l2_subdev_ir_parameters rx_params;
    121	struct mutex rx_params_lock;
    122	atomic_t rxclk_divider;
    123	atomic_t rx_invert;
    124
    125	struct kfifo rx_kfifo;
    126	spinlock_t rx_kfifo_lock;
    127
    128	struct v4l2_subdev_ir_parameters tx_params;
    129	struct mutex tx_params_lock;
    130	atomic_t txclk_divider;
    131};
    132
    133static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
    134{
    135	return v4l2_get_subdevdata(sd);
    136}
    137
    138/*
    139 * IR register block read and write functions
    140 */
    141static
    142inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
    143{
    144	cx_write(addr, value);
    145	return 0;
    146}
    147
    148static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
    149{
    150	return cx_read(addr);
    151}
    152
    153static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
    154				     u32 and_mask, u32 or_value)
    155{
    156	cx_andor(addr, ~and_mask, or_value);
    157	return 0;
    158}
    159
    160/*
    161 * Rx and Tx Clock Divider register computations
    162 *
    163 * Note the largest clock divider value of 0xffff corresponds to:
    164 *	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
    165 * which fits in 21 bits, so we'll use unsigned int for time arguments.
    166 */
    167static inline u16 count_to_clock_divider(unsigned int d)
    168{
    169	if (d > RXCLK_RCD + 1)
    170		d = RXCLK_RCD;
    171	else if (d < 2)
    172		d = 1;
    173	else
    174		d--;
    175	return (u16) d;
    176}
    177
    178static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
    179{
    180	return count_to_clock_divider(
    181			  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
    182}
    183
    184static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
    185{
    186	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
    187}
    188
    189static inline unsigned int clock_divider_to_freq(unsigned int divider,
    190						 unsigned int rollovers)
    191{
    192	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
    193				 (divider + 1) * rollovers);
    194}
    195
    196/*
    197 * Low Pass Filter register calculations
    198 *
    199 * Note the largest count value of 0xffff corresponds to:
    200 *	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
    201 * which fits in 21 bits, so we'll use unsigned int for time arguments.
    202 */
    203static inline u16 count_to_lpf_count(unsigned int d)
    204{
    205	if (d > FILTR_LPF)
    206		d = FILTR_LPF;
    207	else if (d < 4)
    208		d = 0;
    209	return (u16) d;
    210}
    211
    212static inline u16 ns_to_lpf_count(unsigned int ns)
    213{
    214	return count_to_lpf_count(
    215		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
    216}
    217
    218static inline unsigned int lpf_count_to_ns(unsigned int count)
    219{
    220	/* Duration of the Low Pass Filter rejection window in ns */
    221	return DIV_ROUND_CLOSEST(count * 1000,
    222				 CX23888_IR_REFCLK_FREQ / 1000000);
    223}
    224
    225static inline unsigned int lpf_count_to_us(unsigned int count)
    226{
    227	/* Duration of the Low Pass Filter rejection window in us */
    228	return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
    229}
    230
    231/*
    232 * FIFO register pulse width count computations
    233 */
    234static u32 clock_divider_to_resolution(u16 divider)
    235{
    236	/*
    237	 * Resolution is the duration of 1 tick of the readable portion of
    238	 * of the pulse width counter as read from the FIFO.  The two lsb's are
    239	 * not readable, hence the << 2.  This function returns ns.
    240	 */
    241	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
    242				 CX23888_IR_REFCLK_FREQ / 1000000);
    243}
    244
    245static u64 pulse_width_count_to_ns(u16 count, u16 divider)
    246{
    247	u64 n;
    248	u32 rem;
    249
    250	/*
    251	 * The 2 lsb's of the pulse width timer count are not readable, hence
    252	 * the (count << 2) | 0x3
    253	 */
    254	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
    255	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
    256	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
    257		n++;
    258	return n;
    259}
    260
    261static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
    262{
    263	u64 n;
    264	u32 rem;
    265
    266	/*
    267	 * The 2 lsb's of the pulse width timer count are not readable, hence
    268	 * the (count << 2) | 0x3
    269	 */
    270	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
    271	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
    272	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
    273		n++;
    274	return (unsigned int) n;
    275}
    276
    277/*
    278 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
    279 *
    280 * The total pulse clock count is an 18 bit pulse width timer count as the most
    281 * significant part and (up to) 16 bit clock divider count as a modulus.
    282 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
    283 * width timer count's least significant bit.
    284 */
    285static u64 ns_to_pulse_clocks(u32 ns)
    286{
    287	u64 clocks;
    288	u32 rem;
    289	clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
    290	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
    291	if (rem >= 1000 / 2)
    292		clocks++;
    293	return clocks;
    294}
    295
    296static u16 pulse_clocks_to_clock_divider(u64 count)
    297{
    298	do_div(count, (FIFO_RXTX << 2) | 0x3);
    299
    300	/* net result needs to be rounded down and decremented by 1 */
    301	if (count > RXCLK_RCD + 1)
    302		count = RXCLK_RCD;
    303	else if (count < 2)
    304		count = 1;
    305	else
    306		count--;
    307	return (u16) count;
    308}
    309
    310/*
    311 * IR Control Register helpers
    312 */
    313enum tx_fifo_watermark {
    314	TX_FIFO_HALF_EMPTY = 0,
    315	TX_FIFO_EMPTY      = CNTRL_TIC,
    316};
    317
    318enum rx_fifo_watermark {
    319	RX_FIFO_HALF_FULL = 0,
    320	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
    321};
    322
    323static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
    324					    enum tx_fifo_watermark level)
    325{
    326	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
    327}
    328
    329static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
    330					    enum rx_fifo_watermark level)
    331{
    332	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
    333}
    334
    335static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
    336{
    337	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
    338			   enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
    339}
    340
    341static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
    342{
    343	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
    344			   enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
    345}
    346
    347static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
    348						bool enable)
    349{
    350	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
    351			   enable ? CNTRL_MOD : 0);
    352}
    353
    354static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
    355						  bool enable)
    356{
    357	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
    358			   enable ? CNTRL_DMD : 0);
    359}
    360
    361static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
    362					       u32 edge_types)
    363{
    364	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
    365			   edge_types & CNTRL_EDG_BOTH);
    366}
    367
    368static void control_rx_s_carrier_window(struct cx23885_dev *dev,
    369					unsigned int carrier,
    370					unsigned int *carrier_range_low,
    371					unsigned int *carrier_range_high)
    372{
    373	u32 v;
    374	unsigned int c16 = carrier * 16;
    375
    376	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
    377		v = CNTRL_WIN_3_4;
    378		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
    379	} else {
    380		v = CNTRL_WIN_3_3;
    381		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
    382	}
    383
    384	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
    385		v |= CNTRL_WIN_4_3;
    386		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
    387	} else {
    388		v |= CNTRL_WIN_3_3;
    389		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
    390	}
    391	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
    392}
    393
    394static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
    395					      bool invert)
    396{
    397	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
    398			   invert ? CNTRL_CPL : 0);
    399}
    400
    401static inline void control_tx_level_invert(struct cx23885_dev *dev,
    402					  bool invert)
    403{
    404	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
    405			   invert ? CNTRL_IVO : 0);
    406}
    407
    408/*
    409 * IR Rx & Tx Clock Register helpers
    410 */
    411static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
    412				       unsigned int freq,
    413				       u16 *divider)
    414{
    415	*divider = carrier_freq_to_clock_divider(freq);
    416	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
    417	return clock_divider_to_carrier_freq(*divider);
    418}
    419
    420static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
    421				       unsigned int freq,
    422				       u16 *divider)
    423{
    424	*divider = carrier_freq_to_clock_divider(freq);
    425	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
    426	return clock_divider_to_carrier_freq(*divider);
    427}
    428
    429static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
    430				      u16 *divider)
    431{
    432	u64 pulse_clocks;
    433
    434	if (ns > IR_MAX_DURATION)
    435		ns = IR_MAX_DURATION;
    436	pulse_clocks = ns_to_pulse_clocks(ns);
    437	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
    438	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
    439	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
    440}
    441
    442static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
    443				      u16 *divider)
    444{
    445	u64 pulse_clocks;
    446
    447	if (ns > IR_MAX_DURATION)
    448		ns = IR_MAX_DURATION;
    449	pulse_clocks = ns_to_pulse_clocks(ns);
    450	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
    451	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
    452	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
    453}
    454
    455/*
    456 * IR Tx Carrier Duty Cycle register helpers
    457 */
    458static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
    459					  unsigned int duty_cycle)
    460{
    461	u32 n;
    462	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
    463	if (n != 0)
    464		n--;
    465	if (n > 15)
    466		n = 15;
    467	cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
    468	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
    469}
    470
    471/*
    472 * IR Filter Register helpers
    473 */
    474static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
    475{
    476	u32 count = ns_to_lpf_count(min_width_ns);
    477	cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
    478	return lpf_count_to_ns(count);
    479}
    480
    481/*
    482 * IR IRQ Enable Register helpers
    483 */
    484static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
    485{
    486	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
    487	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
    488			   ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
    489}
    490
    491static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
    492{
    493	mask &= IRQEN_TSE;
    494	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
    495}
    496
    497/*
    498 * V4L2 Subdevice IR Ops
    499 */
    500static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
    501				  bool *handled)
    502{
    503	struct cx23888_ir_state *state = to_state(sd);
    504	struct cx23885_dev *dev = state->dev;
    505	unsigned long flags;
    506
    507	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
    508	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
    509	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
    510
    511	union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
    512	unsigned int i, j, k;
    513	u32 events, v;
    514	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
    515
    516	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
    517	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
    518	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
    519	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
    520
    521	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
    522	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
    523	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
    524	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
    525
    526	*handled = false;
    527	v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
    528		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
    529		 rto ? "rto" : "   ", ror ? "ror" : "   ",
    530		 stats & STATS_TBY ? "tby" : "   ",
    531		 stats & STATS_RBY ? "rby" : "   ");
    532
    533	v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
    534		 tse ? "tse" : "   ", rse ? "rse" : "   ",
    535		 rte ? "rte" : "   ", roe ? "roe" : "   ");
    536
    537	/*
    538	 * Transmitter interrupt service
    539	 */
    540	if (tse && tsr) {
    541		/*
    542		 * TODO:
    543		 * Check the watermark threshold setting
    544		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
    545		 * Push the data to the hardware FIFO.
    546		 * If there was nothing more to send in the tx_kfifo, disable
    547		 *	the TSR IRQ and notify the v4l2_device.
    548		 * If there was something in the tx_kfifo, check the tx_kfifo
    549		 *      level and notify the v4l2_device, if it is low.
    550		 */
    551		/* For now, inhibit TSR interrupt until Tx is implemented */
    552		irqenable_tx(dev, 0);
    553		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
    554		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
    555		*handled = true;
    556	}
    557
    558	/*
    559	 * Receiver interrupt service
    560	 */
    561	kror = 0;
    562	if ((rse && rsr) || (rte && rto)) {
    563		/*
    564		 * Receive data on RSR to clear the STATS_RSR.
    565		 * Receive data on RTO, since we may not have yet hit the RSR
    566		 * watermark when we receive the RTO.
    567		 */
    568		for (i = 0, v = FIFO_RX_NDV;
    569		     (v & FIFO_RX_NDV) && !kror; i = 0) {
    570			for (j = 0;
    571			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
    572				v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
    573				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
    574				i++;
    575			}
    576			if (i == 0)
    577				break;
    578			j = i * sizeof(union cx23888_ir_fifo_rec);
    579			k = kfifo_in_locked(&state->rx_kfifo,
    580				      (unsigned char *) rx_data, j,
    581				      &state->rx_kfifo_lock);
    582			if (k != j)
    583				kror++; /* rx_kfifo over run */
    584		}
    585		*handled = true;
    586	}
    587
    588	events = 0;
    589	v = 0;
    590	if (kror) {
    591		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
    592		v4l2_err(sd, "IR receiver software FIFO overrun\n");
    593	}
    594	if (roe && ror) {
    595		/*
    596		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
    597		 * the Rx FIFO Over Run status (STATS_ROR)
    598		 */
    599		v |= CNTRL_RFE;
    600		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
    601		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
    602	}
    603	if (rte && rto) {
    604		/*
    605		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
    606		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
    607		 */
    608		v |= CNTRL_RXE;
    609		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
    610	}
    611	if (v) {
    612		/* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
    613		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
    614		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
    615		*handled = true;
    616	}
    617
    618	spin_lock_irqsave(&state->rx_kfifo_lock, flags);
    619	if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
    620		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
    621	spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
    622
    623	if (events)
    624		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
    625	return 0;
    626}
    627
    628/* Receiver */
    629static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
    630			      ssize_t *num)
    631{
    632	struct cx23888_ir_state *state = to_state(sd);
    633	bool invert = (bool) atomic_read(&state->rx_invert);
    634	u16 divider = (u16) atomic_read(&state->rxclk_divider);
    635
    636	unsigned int i, n;
    637	union cx23888_ir_fifo_rec *p;
    638	unsigned u, v, w;
    639
    640	n = count / sizeof(union cx23888_ir_fifo_rec)
    641		* sizeof(union cx23888_ir_fifo_rec);
    642	if (n == 0) {
    643		*num = 0;
    644		return 0;
    645	}
    646
    647	n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
    648
    649	n /= sizeof(union cx23888_ir_fifo_rec);
    650	*num = n * sizeof(union cx23888_ir_fifo_rec);
    651
    652	for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
    653
    654		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
    655			/* Assume RTO was because of no IR light input */
    656			u = 0;
    657			w = 1;
    658		} else {
    659			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
    660			if (invert)
    661				u = u ? 0 : 1;
    662			w = 0;
    663		}
    664
    665		v = (unsigned) pulse_width_count_to_ns(
    666				  (u16)(p->hw_fifo_data & FIFO_RXTX), divider) / 1000;
    667		if (v > IR_MAX_DURATION)
    668			v = IR_MAX_DURATION;
    669
    670		p->ir_core_data = (struct ir_raw_event)
    671			{ .pulse = u, .duration = v, .timeout = w };
    672
    673		v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s  %s\n",
    674			 v, u ? "mark" : "space", w ? "(timed out)" : "");
    675		if (w)
    676			v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
    677	}
    678	return 0;
    679}
    680
    681static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
    682				      struct v4l2_subdev_ir_parameters *p)
    683{
    684	struct cx23888_ir_state *state = to_state(sd);
    685	mutex_lock(&state->rx_params_lock);
    686	memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
    687	mutex_unlock(&state->rx_params_lock);
    688	return 0;
    689}
    690
    691static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
    692{
    693	struct cx23888_ir_state *state = to_state(sd);
    694	struct cx23885_dev *dev = state->dev;
    695
    696	mutex_lock(&state->rx_params_lock);
    697
    698	/* Disable or slow down all IR Rx circuits and counters */
    699	irqenable_rx(dev, 0);
    700	control_rx_enable(dev, false);
    701	control_rx_demodulation_enable(dev, false);
    702	control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
    703	filter_rx_s_min_width(dev, 0);
    704	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
    705
    706	state->rx_params.shutdown = true;
    707
    708	mutex_unlock(&state->rx_params_lock);
    709	return 0;
    710}
    711
    712static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
    713				      struct v4l2_subdev_ir_parameters *p)
    714{
    715	struct cx23888_ir_state *state = to_state(sd);
    716	struct cx23885_dev *dev = state->dev;
    717	struct v4l2_subdev_ir_parameters *o = &state->rx_params;
    718	u16 rxclk_divider;
    719
    720	if (p->shutdown)
    721		return cx23888_ir_rx_shutdown(sd);
    722
    723	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
    724		return -ENOSYS;
    725
    726	mutex_lock(&state->rx_params_lock);
    727
    728	o->shutdown = p->shutdown;
    729
    730	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
    731
    732	o->bytes_per_data_element = p->bytes_per_data_element
    733				  = sizeof(union cx23888_ir_fifo_rec);
    734
    735	/* Before we tweak the hardware, we have to disable the receiver */
    736	irqenable_rx(dev, 0);
    737	control_rx_enable(dev, false);
    738
    739	control_rx_demodulation_enable(dev, p->modulation);
    740	o->modulation = p->modulation;
    741
    742	if (p->modulation) {
    743		p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
    744						     &rxclk_divider);
    745
    746		o->carrier_freq = p->carrier_freq;
    747
    748		o->duty_cycle = p->duty_cycle = 50;
    749
    750		control_rx_s_carrier_window(dev, p->carrier_freq,
    751					    &p->carrier_range_lower,
    752					    &p->carrier_range_upper);
    753		o->carrier_range_lower = p->carrier_range_lower;
    754		o->carrier_range_upper = p->carrier_range_upper;
    755
    756		p->max_pulse_width =
    757			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
    758	} else {
    759		p->max_pulse_width =
    760			    rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
    761						       &rxclk_divider);
    762	}
    763	o->max_pulse_width = p->max_pulse_width;
    764	atomic_set(&state->rxclk_divider, rxclk_divider);
    765
    766	p->noise_filter_min_width =
    767			  filter_rx_s_min_width(dev, p->noise_filter_min_width);
    768	o->noise_filter_min_width = p->noise_filter_min_width;
    769
    770	p->resolution = clock_divider_to_resolution(rxclk_divider);
    771	o->resolution = p->resolution;
    772
    773	/* FIXME - make this dependent on resolution for better performance */
    774	control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
    775
    776	control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
    777
    778	o->invert_level = p->invert_level;
    779	atomic_set(&state->rx_invert, p->invert_level);
    780
    781	o->interrupt_enable = p->interrupt_enable;
    782	o->enable = p->enable;
    783	if (p->enable) {
    784		unsigned long flags;
    785
    786		spin_lock_irqsave(&state->rx_kfifo_lock, flags);
    787		kfifo_reset(&state->rx_kfifo);
    788		/* reset tx_fifo too if there is one... */
    789		spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
    790		if (p->interrupt_enable)
    791			irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
    792		control_rx_enable(dev, p->enable);
    793	}
    794
    795	mutex_unlock(&state->rx_params_lock);
    796	return 0;
    797}
    798
    799/* Transmitter */
    800static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
    801			       ssize_t *num)
    802{
    803	struct cx23888_ir_state *state = to_state(sd);
    804	struct cx23885_dev *dev = state->dev;
    805	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
    806	irqenable_tx(dev, IRQEN_TSE);
    807	*num = count;
    808	return 0;
    809}
    810
    811static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
    812				      struct v4l2_subdev_ir_parameters *p)
    813{
    814	struct cx23888_ir_state *state = to_state(sd);
    815	mutex_lock(&state->tx_params_lock);
    816	memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
    817	mutex_unlock(&state->tx_params_lock);
    818	return 0;
    819}
    820
    821static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
    822{
    823	struct cx23888_ir_state *state = to_state(sd);
    824	struct cx23885_dev *dev = state->dev;
    825
    826	mutex_lock(&state->tx_params_lock);
    827
    828	/* Disable or slow down all IR Tx circuits and counters */
    829	irqenable_tx(dev, 0);
    830	control_tx_enable(dev, false);
    831	control_tx_modulation_enable(dev, false);
    832	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
    833
    834	state->tx_params.shutdown = true;
    835
    836	mutex_unlock(&state->tx_params_lock);
    837	return 0;
    838}
    839
    840static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
    841				      struct v4l2_subdev_ir_parameters *p)
    842{
    843	struct cx23888_ir_state *state = to_state(sd);
    844	struct cx23885_dev *dev = state->dev;
    845	struct v4l2_subdev_ir_parameters *o = &state->tx_params;
    846	u16 txclk_divider;
    847
    848	if (p->shutdown)
    849		return cx23888_ir_tx_shutdown(sd);
    850
    851	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
    852		return -ENOSYS;
    853
    854	mutex_lock(&state->tx_params_lock);
    855
    856	o->shutdown = p->shutdown;
    857
    858	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
    859
    860	o->bytes_per_data_element = p->bytes_per_data_element
    861				  = sizeof(union cx23888_ir_fifo_rec);
    862
    863	/* Before we tweak the hardware, we have to disable the transmitter */
    864	irqenable_tx(dev, 0);
    865	control_tx_enable(dev, false);
    866
    867	control_tx_modulation_enable(dev, p->modulation);
    868	o->modulation = p->modulation;
    869
    870	if (p->modulation) {
    871		p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
    872						     &txclk_divider);
    873		o->carrier_freq = p->carrier_freq;
    874
    875		p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
    876		o->duty_cycle = p->duty_cycle;
    877
    878		p->max_pulse_width =
    879			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
    880	} else {
    881		p->max_pulse_width =
    882			    txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
    883						       &txclk_divider);
    884	}
    885	o->max_pulse_width = p->max_pulse_width;
    886	atomic_set(&state->txclk_divider, txclk_divider);
    887
    888	p->resolution = clock_divider_to_resolution(txclk_divider);
    889	o->resolution = p->resolution;
    890
    891	/* FIXME - make this dependent on resolution for better performance */
    892	control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
    893
    894	control_tx_polarity_invert(dev, p->invert_carrier_sense);
    895	o->invert_carrier_sense = p->invert_carrier_sense;
    896
    897	control_tx_level_invert(dev, p->invert_level);
    898	o->invert_level = p->invert_level;
    899
    900	o->interrupt_enable = p->interrupt_enable;
    901	o->enable = p->enable;
    902	if (p->enable) {
    903		if (p->interrupt_enable)
    904			irqenable_tx(dev, IRQEN_TSE);
    905		control_tx_enable(dev, p->enable);
    906	}
    907
    908	mutex_unlock(&state->tx_params_lock);
    909	return 0;
    910}
    911
    912
    913/*
    914 * V4L2 Subdevice Core Ops
    915 */
    916static int cx23888_ir_log_status(struct v4l2_subdev *sd)
    917{
    918	struct cx23888_ir_state *state = to_state(sd);
    919	struct cx23885_dev *dev = state->dev;
    920	char *s;
    921	int i, j;
    922
    923	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
    924	u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
    925	u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
    926	u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
    927	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
    928	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
    929	u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
    930
    931	v4l2_info(sd, "IR Receiver:\n");
    932	v4l2_info(sd, "\tEnabled:                           %s\n",
    933		  cntrl & CNTRL_RXE ? "yes" : "no");
    934	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
    935		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
    936	v4l2_info(sd, "\tFIFO:                              %s\n",
    937		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
    938	switch (cntrl & CNTRL_EDG) {
    939	case CNTRL_EDG_NONE:
    940		s = "disabled";
    941		break;
    942	case CNTRL_EDG_FALL:
    943		s = "falling edge";
    944		break;
    945	case CNTRL_EDG_RISE:
    946		s = "rising edge";
    947		break;
    948	case CNTRL_EDG_BOTH:
    949		s = "rising & falling edges";
    950		break;
    951	default:
    952		s = "??? edge";
    953		break;
    954	}
    955	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
    956	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
    957		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
    958	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
    959		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
    960	v4l2_info(sd, "\tLoopback mode:                     %s\n",
    961		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
    962	if (cntrl & CNTRL_DMD) {
    963		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
    964			  clock_divider_to_carrier_freq(rxclk));
    965		switch (cntrl & CNTRL_WIN) {
    966		case CNTRL_WIN_3_3:
    967			i = 3;
    968			j = 3;
    969			break;
    970		case CNTRL_WIN_4_3:
    971			i = 4;
    972			j = 3;
    973			break;
    974		case CNTRL_WIN_3_4:
    975			i = 3;
    976			j = 4;
    977			break;
    978		case CNTRL_WIN_4_4:
    979			i = 4;
    980			j = 4;
    981			break;
    982		default:
    983			i = 0;
    984			j = 0;
    985			break;
    986		}
    987		v4l2_info(sd, "\tNext carrier edge window:	    16 clocks -%1d/+%1d, %u to %u Hz\n",
    988			  i, j,
    989			  clock_divider_to_freq(rxclk, 16 + j),
    990			  clock_divider_to_freq(rxclk, 16 - i));
    991	}
    992	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
    993		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
    994		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
    995	v4l2_info(sd, "\tLow pass filter:                   %s\n",
    996		  filtr ? "enabled" : "disabled");
    997	if (filtr)
    998		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, %u ns\n",
    999			  lpf_count_to_us(filtr),
   1000			  lpf_count_to_ns(filtr));
   1001	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
   1002		  stats & STATS_RTO ? "yes" : "no");
   1003	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
   1004		  irqen & IRQEN_RTE ? "enabled" : "disabled");
   1005	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
   1006		  stats & STATS_ROR ? "yes" : "no");
   1007	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
   1008		  irqen & IRQEN_ROE ? "enabled" : "disabled");
   1009	v4l2_info(sd, "\tBusy:                              %s\n",
   1010		  stats & STATS_RBY ? "yes" : "no");
   1011	v4l2_info(sd, "\tFIFO service requested:            %s\n",
   1012		  stats & STATS_RSR ? "yes" : "no");
   1013	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
   1014		  irqen & IRQEN_RSE ? "enabled" : "disabled");
   1015
   1016	v4l2_info(sd, "IR Transmitter:\n");
   1017	v4l2_info(sd, "\tEnabled:                           %s\n",
   1018		  cntrl & CNTRL_TXE ? "yes" : "no");
   1019	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
   1020		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
   1021	v4l2_info(sd, "\tFIFO:                              %s\n",
   1022		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
   1023	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
   1024		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
   1025	v4l2_info(sd, "\tOutput pin level inversion         %s\n",
   1026		  cntrl & CNTRL_IVO ? "yes" : "no");
   1027	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
   1028		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
   1029				    : "space:noburst mark:burst");
   1030	if (cntrl & CNTRL_MOD) {
   1031		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
   1032			  clock_divider_to_carrier_freq(txclk));
   1033		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
   1034			  cduty + 1);
   1035	}
   1036	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
   1037		  pulse_width_count_to_us(FIFO_RXTX, txclk),
   1038		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
   1039	v4l2_info(sd, "\tBusy:                              %s\n",
   1040		  stats & STATS_TBY ? "yes" : "no");
   1041	v4l2_info(sd, "\tFIFO service requested:            %s\n",
   1042		  stats & STATS_TSR ? "yes" : "no");
   1043	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
   1044		  irqen & IRQEN_TSE ? "enabled" : "disabled");
   1045
   1046	return 0;
   1047}
   1048
   1049#ifdef CONFIG_VIDEO_ADV_DEBUG
   1050static int cx23888_ir_g_register(struct v4l2_subdev *sd,
   1051				 struct v4l2_dbg_register *reg)
   1052{
   1053	struct cx23888_ir_state *state = to_state(sd);
   1054	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
   1055
   1056	if ((addr & 0x3) != 0)
   1057		return -EINVAL;
   1058	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
   1059		return -EINVAL;
   1060	reg->size = 4;
   1061	reg->val = cx23888_ir_read4(state->dev, addr);
   1062	return 0;
   1063}
   1064
   1065static int cx23888_ir_s_register(struct v4l2_subdev *sd,
   1066				 const struct v4l2_dbg_register *reg)
   1067{
   1068	struct cx23888_ir_state *state = to_state(sd);
   1069	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
   1070
   1071	if ((addr & 0x3) != 0)
   1072		return -EINVAL;
   1073	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
   1074		return -EINVAL;
   1075	cx23888_ir_write4(state->dev, addr, reg->val);
   1076	return 0;
   1077}
   1078#endif
   1079
   1080static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
   1081	.log_status = cx23888_ir_log_status,
   1082#ifdef CONFIG_VIDEO_ADV_DEBUG
   1083	.g_register = cx23888_ir_g_register,
   1084	.s_register = cx23888_ir_s_register,
   1085#endif
   1086	.interrupt_service_routine = cx23888_ir_irq_handler,
   1087};
   1088
   1089static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
   1090	.rx_read = cx23888_ir_rx_read,
   1091	.rx_g_parameters = cx23888_ir_rx_g_parameters,
   1092	.rx_s_parameters = cx23888_ir_rx_s_parameters,
   1093
   1094	.tx_write = cx23888_ir_tx_write,
   1095	.tx_g_parameters = cx23888_ir_tx_g_parameters,
   1096	.tx_s_parameters = cx23888_ir_tx_s_parameters,
   1097};
   1098
   1099static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
   1100	.core = &cx23888_ir_core_ops,
   1101	.ir = &cx23888_ir_ir_ops,
   1102};
   1103
   1104static const struct v4l2_subdev_ir_parameters default_rx_params = {
   1105	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
   1106	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
   1107
   1108	.enable = false,
   1109	.interrupt_enable = false,
   1110	.shutdown = true,
   1111
   1112	.modulation = true,
   1113	.carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
   1114
   1115	/* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
   1116	/* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
   1117	.noise_filter_min_width = 333333, /* ns */
   1118	.carrier_range_lower = 35000,
   1119	.carrier_range_upper = 37000,
   1120	.invert_level = false,
   1121};
   1122
   1123static const struct v4l2_subdev_ir_parameters default_tx_params = {
   1124	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
   1125	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
   1126
   1127	.enable = false,
   1128	.interrupt_enable = false,
   1129	.shutdown = true,
   1130
   1131	.modulation = true,
   1132	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
   1133	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
   1134	.invert_level = false,
   1135	.invert_carrier_sense = false,
   1136};
   1137
   1138int cx23888_ir_probe(struct cx23885_dev *dev)
   1139{
   1140	struct cx23888_ir_state *state;
   1141	struct v4l2_subdev *sd;
   1142	struct v4l2_subdev_ir_parameters default_params;
   1143	int ret;
   1144
   1145	state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
   1146	if (state == NULL)
   1147		return -ENOMEM;
   1148
   1149	spin_lock_init(&state->rx_kfifo_lock);
   1150	if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE,
   1151			GFP_KERNEL)) {
   1152		kfree(state);
   1153		return -ENOMEM;
   1154	}
   1155
   1156	state->dev = dev;
   1157	sd = &state->sd;
   1158
   1159	v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
   1160	v4l2_set_subdevdata(sd, state);
   1161	/* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
   1162	snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
   1163	sd->grp_id = CX23885_HW_888_IR;
   1164
   1165	ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
   1166	if (ret == 0) {
   1167		/*
   1168		 * Ensure no interrupts arrive from '888 specific conditions,
   1169		 * since we ignore them in this driver to have commonality with
   1170		 * similar IR controller cores.
   1171		 */
   1172		cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
   1173
   1174		mutex_init(&state->rx_params_lock);
   1175		default_params = default_rx_params;
   1176		v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
   1177
   1178		mutex_init(&state->tx_params_lock);
   1179		default_params = default_tx_params;
   1180		v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
   1181	} else {
   1182		kfifo_free(&state->rx_kfifo);
   1183	}
   1184	return ret;
   1185}
   1186
   1187int cx23888_ir_remove(struct cx23885_dev *dev)
   1188{
   1189	struct v4l2_subdev *sd;
   1190	struct cx23888_ir_state *state;
   1191
   1192	sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
   1193	if (sd == NULL)
   1194		return -ENODEV;
   1195
   1196	cx23888_ir_rx_shutdown(sd);
   1197	cx23888_ir_tx_shutdown(sd);
   1198
   1199	state = to_state(sd);
   1200	v4l2_device_unregister_subdev(sd);
   1201	kfifo_free(&state->rx_kfifo);
   1202	kfree(state);
   1203	/* Nothing more to free() as state held the actual v4l2_subdev object */
   1204	return 0;
   1205}