tw68-video.c (28351B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * tw68 functions to handle video data 4 * 5 * Much of this code is derived from the cx88 and sa7134 drivers, which 6 * were in turn derived from the bt87x driver. The original work was by 7 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab, 8 * Hans Verkuil, Andy Walls and many others. Their work is gratefully 9 * acknowledged. Full credit goes to them - any problems within this code 10 * are mine. 11 * 12 * Copyright (C) 2009 William M. Brack 13 * 14 * Refactored and updated to the latest v4l core frameworks: 15 * 16 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl> 17 */ 18 19#include <linux/module.h> 20#include <media/v4l2-common.h> 21#include <media/v4l2-event.h> 22#include <media/videobuf2-dma-sg.h> 23 24#include "tw68.h" 25#include "tw68-reg.h" 26 27/* ------------------------------------------------------------------ */ 28/* data structs for video */ 29/* 30 * FIXME - 31 * Note that the saa7134 has formats, e.g. YUV420, which are classified 32 * as "planar". These affect overlay mode, and are flagged with a field 33 * ".planar" in the format. Do we need to implement this in this driver? 34 */ 35static const struct tw68_format formats[] = { 36 { 37 .fourcc = V4L2_PIX_FMT_RGB555, 38 .depth = 16, 39 .twformat = ColorFormatRGB15, 40 }, { 41 .fourcc = V4L2_PIX_FMT_RGB555X, 42 .depth = 16, 43 .twformat = ColorFormatRGB15 | ColorFormatBSWAP, 44 }, { 45 .fourcc = V4L2_PIX_FMT_RGB565, 46 .depth = 16, 47 .twformat = ColorFormatRGB16, 48 }, { 49 .fourcc = V4L2_PIX_FMT_RGB565X, 50 .depth = 16, 51 .twformat = ColorFormatRGB16 | ColorFormatBSWAP, 52 }, { 53 .fourcc = V4L2_PIX_FMT_BGR24, 54 .depth = 24, 55 .twformat = ColorFormatRGB24, 56 }, { 57 .fourcc = V4L2_PIX_FMT_RGB24, 58 .depth = 24, 59 .twformat = ColorFormatRGB24 | ColorFormatBSWAP, 60 }, { 61 .fourcc = V4L2_PIX_FMT_BGR32, 62 .depth = 32, 63 .twformat = ColorFormatRGB32, 64 }, { 65 .fourcc = V4L2_PIX_FMT_RGB32, 66 .depth = 32, 67 .twformat = ColorFormatRGB32 | ColorFormatBSWAP | 68 ColorFormatWSWAP, 69 }, { 70 .fourcc = V4L2_PIX_FMT_YUYV, 71 .depth = 16, 72 .twformat = ColorFormatYUY2, 73 }, { 74 .fourcc = V4L2_PIX_FMT_UYVY, 75 .depth = 16, 76 .twformat = ColorFormatYUY2 | ColorFormatBSWAP, 77 } 78}; 79#define FORMATS ARRAY_SIZE(formats) 80 81#define NORM_625_50 \ 82 .h_delay = 3, \ 83 .h_delay0 = 133, \ 84 .h_start = 0, \ 85 .h_stop = 719, \ 86 .v_delay = 24, \ 87 .vbi_v_start_0 = 7, \ 88 .vbi_v_stop_0 = 22, \ 89 .video_v_start = 24, \ 90 .video_v_stop = 311, \ 91 .vbi_v_start_1 = 319 92 93#define NORM_525_60 \ 94 .h_delay = 8, \ 95 .h_delay0 = 138, \ 96 .h_start = 0, \ 97 .h_stop = 719, \ 98 .v_delay = 22, \ 99 .vbi_v_start_0 = 10, \ 100 .vbi_v_stop_0 = 21, \ 101 .video_v_start = 22, \ 102 .video_v_stop = 262, \ 103 .vbi_v_start_1 = 273 104 105/* 106 * The following table is searched by tw68_s_std, first for a specific 107 * match, then for an entry which contains the desired id. The table 108 * entries should therefore be ordered in ascending order of specificity. 109 */ 110static const struct tw68_tvnorm tvnorms[] = { 111 { 112 .name = "PAL", /* autodetect */ 113 .id = V4L2_STD_PAL, 114 NORM_625_50, 115 116 .sync_control = 0x18, 117 .luma_control = 0x40, 118 .chroma_ctrl1 = 0x81, 119 .chroma_gain = 0x2a, 120 .chroma_ctrl2 = 0x06, 121 .vgate_misc = 0x1c, 122 .format = VideoFormatPALBDGHI, 123 }, { 124 .name = "NTSC", 125 .id = V4L2_STD_NTSC, 126 NORM_525_60, 127 128 .sync_control = 0x59, 129 .luma_control = 0x40, 130 .chroma_ctrl1 = 0x89, 131 .chroma_gain = 0x2a, 132 .chroma_ctrl2 = 0x0e, 133 .vgate_misc = 0x18, 134 .format = VideoFormatNTSC, 135 }, { 136 .name = "SECAM", 137 .id = V4L2_STD_SECAM, 138 NORM_625_50, 139 140 .sync_control = 0x18, 141 .luma_control = 0x1b, 142 .chroma_ctrl1 = 0xd1, 143 .chroma_gain = 0x80, 144 .chroma_ctrl2 = 0x00, 145 .vgate_misc = 0x1c, 146 .format = VideoFormatSECAM, 147 }, { 148 .name = "PAL-M", 149 .id = V4L2_STD_PAL_M, 150 NORM_525_60, 151 152 .sync_control = 0x59, 153 .luma_control = 0x40, 154 .chroma_ctrl1 = 0xb9, 155 .chroma_gain = 0x2a, 156 .chroma_ctrl2 = 0x0e, 157 .vgate_misc = 0x18, 158 .format = VideoFormatPALM, 159 }, { 160 .name = "PAL-Nc", 161 .id = V4L2_STD_PAL_Nc, 162 NORM_625_50, 163 164 .sync_control = 0x18, 165 .luma_control = 0x40, 166 .chroma_ctrl1 = 0xa1, 167 .chroma_gain = 0x2a, 168 .chroma_ctrl2 = 0x06, 169 .vgate_misc = 0x1c, 170 .format = VideoFormatPALNC, 171 }, { 172 .name = "PAL-60", 173 .id = V4L2_STD_PAL_60, 174 .h_delay = 186, 175 .h_start = 0, 176 .h_stop = 719, 177 .v_delay = 26, 178 .video_v_start = 23, 179 .video_v_stop = 262, 180 .vbi_v_start_0 = 10, 181 .vbi_v_stop_0 = 21, 182 .vbi_v_start_1 = 273, 183 184 .sync_control = 0x18, 185 .luma_control = 0x40, 186 .chroma_ctrl1 = 0x81, 187 .chroma_gain = 0x2a, 188 .chroma_ctrl2 = 0x06, 189 .vgate_misc = 0x1c, 190 .format = VideoFormatPAL60, 191 } 192}; 193#define TVNORMS ARRAY_SIZE(tvnorms) 194 195static const struct tw68_format *format_by_fourcc(unsigned int fourcc) 196{ 197 unsigned int i; 198 199 for (i = 0; i < FORMATS; i++) 200 if (formats[i].fourcc == fourcc) 201 return formats+i; 202 return NULL; 203} 204 205 206/* ------------------------------------------------------------------ */ 207/* 208 * Note that the cropping rectangles are described in terms of a single 209 * frame, i.e. line positions are only 1/2 the interlaced equivalent 210 */ 211static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm) 212{ 213 if (norm != dev->tvnorm) { 214 dev->width = 720; 215 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576; 216 dev->tvnorm = norm; 217 tw68_set_tvnorm_hw(dev); 218 } 219} 220 221/* 222 * tw68_set_scale 223 * 224 * Scaling and Cropping for video decoding 225 * 226 * We are working with 3 values for horizontal and vertical - scale, 227 * delay and active. 228 * 229 * HACTIVE represent the actual number of pixels in the "usable" image, 230 * before scaling. HDELAY represents the number of pixels skipped 231 * between the start of the horizontal sync and the start of the image. 232 * HSCALE is calculated using the formula 233 * HSCALE = (HACTIVE / (#pixels desired)) * 256 234 * 235 * The vertical registers are similar, except based upon the total number 236 * of lines in the image, and the first line of the image (i.e. ignoring 237 * vertical sync and VBI). 238 * 239 * Note that the number of bytes reaching the FIFO (and hence needing 240 * to be processed by the DMAP program) is completely dependent upon 241 * these values, especially HSCALE. 242 * 243 * Parameters: 244 * @dev pointer to the device structure, needed for 245 * getting current norm (as well as debug print) 246 * @width actual image width (from user buffer) 247 * @height actual image height 248 * @field indicates Top, Bottom or Interlaced 249 */ 250static int tw68_set_scale(struct tw68_dev *dev, unsigned int width, 251 unsigned int height, enum v4l2_field field) 252{ 253 const struct tw68_tvnorm *norm = dev->tvnorm; 254 /* set individually for debugging clarity */ 255 int hactive, hdelay, hscale; 256 int vactive, vdelay, vscale; 257 int comb; 258 259 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */ 260 height /= 2; /* we must set for 1-frame */ 261 262 pr_debug("%s: width=%d, height=%d, both=%d\n" 263 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, v_delay=%d, v_start=%d, v_stop=%d\n", 264 __func__, width, height, V4L2_FIELD_HAS_BOTH(field), 265 norm->h_delay, norm->h_start, norm->h_stop, 266 norm->v_delay, norm->video_v_start, 267 norm->video_v_stop); 268 269 switch (dev->vdecoder) { 270 case TW6800: 271 hdelay = norm->h_delay0; 272 break; 273 default: 274 hdelay = norm->h_delay; 275 break; 276 } 277 278 hdelay += norm->h_start; 279 hactive = norm->h_stop - norm->h_start + 1; 280 281 hscale = (hactive * 256) / (width); 282 283 vdelay = norm->v_delay; 284 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start; 285 vscale = (vactive * 256) / height; 286 287 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__, 288 width, height, 289 V4L2_FIELD_HAS_TOP(field) ? "T" : "", 290 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "", 291 v4l2_norm_to_name(dev->tvnorm->id)); 292 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; vactive=%d, vdelay=%d, vscale=%d\n", 293 __func__, 294 hactive, hdelay, hscale, vactive, vdelay, vscale); 295 296 comb = ((vdelay & 0x300) >> 2) | 297 ((vactive & 0x300) >> 4) | 298 ((hdelay & 0x300) >> 6) | 299 ((hactive & 0x300) >> 8); 300 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n", 301 __func__, comb, vdelay, vactive, hdelay, hactive); 302 tw_writeb(TW68_CROP_HI, comb); 303 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff); 304 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff); 305 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff); 306 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff); 307 308 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8); 309 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, HSCALE_LO=%02x\n", 310 __func__, comb, vscale, hscale); 311 tw_writeb(TW68_SCALE_HI, comb); 312 tw_writeb(TW68_VSCALE_LO, vscale); 313 tw_writeb(TW68_HSCALE_LO, hscale); 314 315 return 0; 316} 317 318/* ------------------------------------------------------------------ */ 319 320int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf) 321{ 322 /* Set cropping and scaling */ 323 tw68_set_scale(dev, dev->width, dev->height, dev->field); 324 /* 325 * Set start address for RISC program. Note that if the DMAP 326 * processor is currently running, it must be stopped before 327 * a new address can be set. 328 */ 329 tw_clearl(TW68_DMAC, TW68_DMAP_EN); 330 tw_writel(TW68_DMAP_SA, buf->dma); 331 /* Clear any pending interrupts */ 332 tw_writel(TW68_INTSTAT, dev->board_virqmask); 333 /* Enable the risc engine and the fifo */ 334 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat | 335 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN); 336 dev->pci_irqmask |= dev->board_virqmask; 337 tw_setl(TW68_INTMASK, dev->pci_irqmask); 338 return 0; 339} 340 341/* ------------------------------------------------------------------ */ 342 343/* calc max # of buffers from size (must not exceed the 4MB virtual 344 * address space per DMA channel) */ 345static int tw68_buffer_count(unsigned int size, unsigned int count) 346{ 347 unsigned int maxcount; 348 349 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE); 350 if (count > maxcount) 351 count = maxcount; 352 return count; 353} 354 355/* ------------------------------------------------------------- */ 356/* vb2 queue operations */ 357 358static int tw68_queue_setup(struct vb2_queue *q, 359 unsigned int *num_buffers, unsigned int *num_planes, 360 unsigned int sizes[], struct device *alloc_devs[]) 361{ 362 struct tw68_dev *dev = vb2_get_drv_priv(q); 363 unsigned tot_bufs = q->num_buffers + *num_buffers; 364 unsigned size = (dev->fmt->depth * dev->width * dev->height) >> 3; 365 366 if (tot_bufs < 2) 367 tot_bufs = 2; 368 tot_bufs = tw68_buffer_count(size, tot_bufs); 369 *num_buffers = tot_bufs - q->num_buffers; 370 /* 371 * We allow create_bufs, but only if the sizeimage is >= as the 372 * current sizeimage. The tw68_buffer_count calculation becomes quite 373 * difficult otherwise. 374 */ 375 if (*num_planes) 376 return sizes[0] < size ? -EINVAL : 0; 377 *num_planes = 1; 378 sizes[0] = size; 379 380 return 0; 381} 382 383/* 384 * The risc program for each buffers works as follows: it starts with a simple 385 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the 386 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping 387 * the initial JUMP). 388 * 389 * This is the program of the first buffer to be queued if the active list is 390 * empty and it just keeps DMAing this buffer without generating any interrupts. 391 * 392 * If a new buffer is added then the initial JUMP in the program generates an 393 * interrupt as well which signals that the previous buffer has been DMAed 394 * successfully and that it can be returned to userspace. 395 * 396 * It also sets the final jump of the previous buffer to the start of the new 397 * buffer, thus chaining the new buffer into the DMA chain. This is a single 398 * atomic u32 write, so there is no race condition. 399 * 400 * The end-result of all this that you only get an interrupt when a buffer 401 * is ready, so the control flow is very easy. 402 */ 403static void tw68_buf_queue(struct vb2_buffer *vb) 404{ 405 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 406 struct vb2_queue *vq = vb->vb2_queue; 407 struct tw68_dev *dev = vb2_get_drv_priv(vq); 408 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 409 struct tw68_buf *prev; 410 unsigned long flags; 411 412 spin_lock_irqsave(&dev->slock, flags); 413 414 /* append a 'JUMP to start of buffer' to the buffer risc program */ 415 buf->jmp[0] = cpu_to_le32(RISC_JUMP); 416 buf->jmp[1] = cpu_to_le32(buf->dma + 8); 417 418 if (!list_empty(&dev->active)) { 419 prev = list_entry(dev->active.prev, struct tw68_buf, list); 420 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT); 421 prev->jmp[1] = cpu_to_le32(buf->dma); 422 } 423 list_add_tail(&buf->list, &dev->active); 424 spin_unlock_irqrestore(&dev->slock, flags); 425} 426 427/* 428 * buffer_prepare 429 * 430 * Set the ancillary information into the buffer structure. This 431 * includes generating the necessary risc program if it hasn't already 432 * been done for the current buffer format. 433 * The structure fh contains the details of the format requested by the 434 * user - type, width, height and #fields. This is compared with the 435 * last format set for the current buffer. If they differ, the risc 436 * code (which controls the filling of the buffer) is (re-)generated. 437 */ 438static int tw68_buf_prepare(struct vb2_buffer *vb) 439{ 440 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 441 struct vb2_queue *vq = vb->vb2_queue; 442 struct tw68_dev *dev = vb2_get_drv_priv(vq); 443 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 444 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0); 445 unsigned size, bpl; 446 447 size = (dev->width * dev->height * dev->fmt->depth) >> 3; 448 if (vb2_plane_size(vb, 0) < size) 449 return -EINVAL; 450 vb2_set_plane_payload(vb, 0, size); 451 452 bpl = (dev->width * dev->fmt->depth) >> 3; 453 switch (dev->field) { 454 case V4L2_FIELD_TOP: 455 tw68_risc_buffer(dev->pci, buf, dma->sgl, 456 0, UNSET, bpl, 0, dev->height); 457 break; 458 case V4L2_FIELD_BOTTOM: 459 tw68_risc_buffer(dev->pci, buf, dma->sgl, 460 UNSET, 0, bpl, 0, dev->height); 461 break; 462 case V4L2_FIELD_SEQ_TB: 463 tw68_risc_buffer(dev->pci, buf, dma->sgl, 464 0, bpl * (dev->height >> 1), 465 bpl, 0, dev->height >> 1); 466 break; 467 case V4L2_FIELD_SEQ_BT: 468 tw68_risc_buffer(dev->pci, buf, dma->sgl, 469 bpl * (dev->height >> 1), 0, 470 bpl, 0, dev->height >> 1); 471 break; 472 case V4L2_FIELD_INTERLACED: 473 default: 474 tw68_risc_buffer(dev->pci, buf, dma->sgl, 475 0, bpl, bpl, bpl, dev->height >> 1); 476 break; 477 } 478 return 0; 479} 480 481static void tw68_buf_finish(struct vb2_buffer *vb) 482{ 483 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 484 struct vb2_queue *vq = vb->vb2_queue; 485 struct tw68_dev *dev = vb2_get_drv_priv(vq); 486 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 487 488 dma_free_coherent(&dev->pci->dev, buf->size, buf->cpu, buf->dma); 489} 490 491static int tw68_start_streaming(struct vb2_queue *q, unsigned int count) 492{ 493 struct tw68_dev *dev = vb2_get_drv_priv(q); 494 struct tw68_buf *buf = 495 container_of(dev->active.next, struct tw68_buf, list); 496 497 dev->seqnr = 0; 498 tw68_video_start_dma(dev, buf); 499 return 0; 500} 501 502static void tw68_stop_streaming(struct vb2_queue *q) 503{ 504 struct tw68_dev *dev = vb2_get_drv_priv(q); 505 506 /* Stop risc & fifo */ 507 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN); 508 while (!list_empty(&dev->active)) { 509 struct tw68_buf *buf = 510 container_of(dev->active.next, struct tw68_buf, list); 511 512 list_del(&buf->list); 513 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); 514 } 515} 516 517static const struct vb2_ops tw68_video_qops = { 518 .queue_setup = tw68_queue_setup, 519 .buf_queue = tw68_buf_queue, 520 .buf_prepare = tw68_buf_prepare, 521 .buf_finish = tw68_buf_finish, 522 .start_streaming = tw68_start_streaming, 523 .stop_streaming = tw68_stop_streaming, 524 .wait_prepare = vb2_ops_wait_prepare, 525 .wait_finish = vb2_ops_wait_finish, 526}; 527 528/* ------------------------------------------------------------------ */ 529 530static int tw68_s_ctrl(struct v4l2_ctrl *ctrl) 531{ 532 struct tw68_dev *dev = 533 container_of(ctrl->handler, struct tw68_dev, hdl); 534 535 switch (ctrl->id) { 536 case V4L2_CID_BRIGHTNESS: 537 tw_writeb(TW68_BRIGHT, ctrl->val); 538 break; 539 case V4L2_CID_HUE: 540 tw_writeb(TW68_HUE, ctrl->val); 541 break; 542 case V4L2_CID_CONTRAST: 543 tw_writeb(TW68_CONTRAST, ctrl->val); 544 break; 545 case V4L2_CID_SATURATION: 546 tw_writeb(TW68_SAT_U, ctrl->val); 547 tw_writeb(TW68_SAT_V, ctrl->val); 548 break; 549 case V4L2_CID_COLOR_KILLER: 550 if (ctrl->val) 551 tw_andorb(TW68_MISC2, 0xe0, 0xe0); 552 else 553 tw_andorb(TW68_MISC2, 0xe0, 0x00); 554 break; 555 case V4L2_CID_CHROMA_AGC: 556 if (ctrl->val) 557 tw_andorb(TW68_LOOP, 0x30, 0x20); 558 else 559 tw_andorb(TW68_LOOP, 0x30, 0x00); 560 break; 561 } 562 return 0; 563} 564 565/* ------------------------------------------------------------------ */ 566 567/* 568 * Note that this routine returns what is stored in the fh structure, and 569 * does not interrogate any of the device registers. 570 */ 571static int tw68_g_fmt_vid_cap(struct file *file, void *priv, 572 struct v4l2_format *f) 573{ 574 struct tw68_dev *dev = video_drvdata(file); 575 576 f->fmt.pix.width = dev->width; 577 f->fmt.pix.height = dev->height; 578 f->fmt.pix.field = dev->field; 579 f->fmt.pix.pixelformat = dev->fmt->fourcc; 580 f->fmt.pix.bytesperline = 581 (f->fmt.pix.width * (dev->fmt->depth)) >> 3; 582 f->fmt.pix.sizeimage = 583 f->fmt.pix.height * f->fmt.pix.bytesperline; 584 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 585 return 0; 586} 587 588static int tw68_try_fmt_vid_cap(struct file *file, void *priv, 589 struct v4l2_format *f) 590{ 591 struct tw68_dev *dev = video_drvdata(file); 592 const struct tw68_format *fmt; 593 enum v4l2_field field; 594 unsigned int maxh; 595 596 fmt = format_by_fourcc(f->fmt.pix.pixelformat); 597 if (NULL == fmt) 598 return -EINVAL; 599 600 field = f->fmt.pix.field; 601 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576; 602 603 switch (field) { 604 case V4L2_FIELD_TOP: 605 case V4L2_FIELD_BOTTOM: 606 break; 607 case V4L2_FIELD_INTERLACED: 608 case V4L2_FIELD_SEQ_BT: 609 case V4L2_FIELD_SEQ_TB: 610 maxh = maxh * 2; 611 break; 612 default: 613 field = (f->fmt.pix.height > maxh / 2) 614 ? V4L2_FIELD_INTERLACED 615 : V4L2_FIELD_BOTTOM; 616 break; 617 } 618 619 f->fmt.pix.field = field; 620 if (f->fmt.pix.width < 48) 621 f->fmt.pix.width = 48; 622 if (f->fmt.pix.height < 32) 623 f->fmt.pix.height = 32; 624 if (f->fmt.pix.width > 720) 625 f->fmt.pix.width = 720; 626 if (f->fmt.pix.height > maxh) 627 f->fmt.pix.height = maxh; 628 f->fmt.pix.width &= ~0x03; 629 f->fmt.pix.bytesperline = 630 (f->fmt.pix.width * (fmt->depth)) >> 3; 631 f->fmt.pix.sizeimage = 632 f->fmt.pix.height * f->fmt.pix.bytesperline; 633 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 634 return 0; 635} 636 637/* 638 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure, 639 * and it will be used for all future new buffers. However, there could be 640 * some number of buffers on the "active" chain which will be filled before 641 * the change takes place. 642 */ 643static int tw68_s_fmt_vid_cap(struct file *file, void *priv, 644 struct v4l2_format *f) 645{ 646 struct tw68_dev *dev = video_drvdata(file); 647 int err; 648 649 err = tw68_try_fmt_vid_cap(file, priv, f); 650 if (0 != err) 651 return err; 652 653 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat); 654 dev->width = f->fmt.pix.width; 655 dev->height = f->fmt.pix.height; 656 dev->field = f->fmt.pix.field; 657 return 0; 658} 659 660static int tw68_enum_input(struct file *file, void *priv, 661 struct v4l2_input *i) 662{ 663 struct tw68_dev *dev = video_drvdata(file); 664 unsigned int n; 665 666 n = i->index; 667 if (n >= TW68_INPUT_MAX) 668 return -EINVAL; 669 i->index = n; 670 i->type = V4L2_INPUT_TYPE_CAMERA; 671 snprintf(i->name, sizeof(i->name), "Composite %d", n); 672 673 /* If the query is for the current input, get live data */ 674 if (n == dev->input) { 675 int v1 = tw_readb(TW68_STATUS1); 676 int v2 = tw_readb(TW68_MVSN); 677 678 if (0 != (v1 & (1 << 7))) 679 i->status |= V4L2_IN_ST_NO_SYNC; 680 if (0 != (v1 & (1 << 6))) 681 i->status |= V4L2_IN_ST_NO_H_LOCK; 682 if (0 != (v1 & (1 << 2))) 683 i->status |= V4L2_IN_ST_NO_SIGNAL; 684 if (0 != (v1 & 1 << 1)) 685 i->status |= V4L2_IN_ST_NO_COLOR; 686 if (0 != (v2 & (1 << 2))) 687 i->status |= V4L2_IN_ST_MACROVISION; 688 } 689 i->std = video_devdata(file)->tvnorms; 690 return 0; 691} 692 693static int tw68_g_input(struct file *file, void *priv, unsigned int *i) 694{ 695 struct tw68_dev *dev = video_drvdata(file); 696 697 *i = dev->input; 698 return 0; 699} 700 701static int tw68_s_input(struct file *file, void *priv, unsigned int i) 702{ 703 struct tw68_dev *dev = video_drvdata(file); 704 705 if (i >= TW68_INPUT_MAX) 706 return -EINVAL; 707 dev->input = i; 708 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2); 709 return 0; 710} 711 712static int tw68_querycap(struct file *file, void *priv, 713 struct v4l2_capability *cap) 714{ 715 strscpy(cap->driver, "tw68", sizeof(cap->driver)); 716 strscpy(cap->card, "Techwell Capture Card", 717 sizeof(cap->card)); 718 return 0; 719} 720 721static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id) 722{ 723 struct tw68_dev *dev = video_drvdata(file); 724 unsigned int i; 725 726 if (vb2_is_busy(&dev->vidq)) 727 return -EBUSY; 728 729 /* Look for match on complete norm id (may have mult bits) */ 730 for (i = 0; i < TVNORMS; i++) { 731 if (id == tvnorms[i].id) 732 break; 733 } 734 735 /* If no exact match, look for norm which contains this one */ 736 if (i == TVNORMS) { 737 for (i = 0; i < TVNORMS; i++) 738 if (id & tvnorms[i].id) 739 break; 740 } 741 /* If still not matched, give up */ 742 if (i == TVNORMS) 743 return -EINVAL; 744 745 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */ 746 return 0; 747} 748 749static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id) 750{ 751 struct tw68_dev *dev = video_drvdata(file); 752 753 *id = dev->tvnorm->id; 754 return 0; 755} 756 757static int tw68_enum_fmt_vid_cap(struct file *file, void *priv, 758 struct v4l2_fmtdesc *f) 759{ 760 if (f->index >= FORMATS) 761 return -EINVAL; 762 763 f->pixelformat = formats[f->index].fourcc; 764 765 return 0; 766} 767 768/* 769 * Used strictly for internal development and debugging, this routine 770 * prints out the current register contents for the tw68xx device. 771 */ 772static void tw68_dump_regs(struct tw68_dev *dev) 773{ 774 unsigned char line[80]; 775 int i, j, k; 776 unsigned char *cptr; 777 778 pr_info("Full dump of TW68 registers:\n"); 779 /* First we do the PCI regs, 8 4-byte regs per line */ 780 for (i = 0; i < 0x100; i += 32) { 781 cptr = line; 782 cptr += sprintf(cptr, "%03x ", i); 783 /* j steps through the next 4 words */ 784 for (j = i; j < i + 16; j += 4) 785 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 786 *cptr++ = ' '; 787 for (; j < i + 32; j += 4) 788 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 789 *cptr++ = '\n'; 790 *cptr = 0; 791 pr_info("%s", line); 792 } 793 /* Next the control regs, which are single-byte, address mod 4 */ 794 while (i < 0x400) { 795 cptr = line; 796 cptr += sprintf(cptr, "%03x ", i); 797 /* Print out 4 groups of 4 bytes */ 798 for (j = 0; j < 4; j++) { 799 for (k = 0; k < 4; k++) { 800 cptr += sprintf(cptr, "%02x ", 801 tw_readb(i)); 802 i += 4; 803 } 804 *cptr++ = ' '; 805 } 806 *cptr++ = '\n'; 807 *cptr = 0; 808 pr_info("%s", line); 809 } 810} 811 812static int vidioc_log_status(struct file *file, void *priv) 813{ 814 struct tw68_dev *dev = video_drvdata(file); 815 816 tw68_dump_regs(dev); 817 return v4l2_ctrl_log_status(file, priv); 818} 819 820#ifdef CONFIG_VIDEO_ADV_DEBUG 821static int vidioc_g_register(struct file *file, void *priv, 822 struct v4l2_dbg_register *reg) 823{ 824 struct tw68_dev *dev = video_drvdata(file); 825 826 if (reg->size == 1) 827 reg->val = tw_readb(reg->reg); 828 else 829 reg->val = tw_readl(reg->reg); 830 return 0; 831} 832 833static int vidioc_s_register(struct file *file, void *priv, 834 const struct v4l2_dbg_register *reg) 835{ 836 struct tw68_dev *dev = video_drvdata(file); 837 838 if (reg->size == 1) 839 tw_writeb(reg->reg, reg->val); 840 else 841 tw_writel(reg->reg & 0xffff, reg->val); 842 return 0; 843} 844#endif 845 846static const struct v4l2_ctrl_ops tw68_ctrl_ops = { 847 .s_ctrl = tw68_s_ctrl, 848}; 849 850static const struct v4l2_file_operations video_fops = { 851 .owner = THIS_MODULE, 852 .open = v4l2_fh_open, 853 .release = vb2_fop_release, 854 .read = vb2_fop_read, 855 .poll = vb2_fop_poll, 856 .mmap = vb2_fop_mmap, 857 .unlocked_ioctl = video_ioctl2, 858}; 859 860static const struct v4l2_ioctl_ops video_ioctl_ops = { 861 .vidioc_querycap = tw68_querycap, 862 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap, 863 .vidioc_reqbufs = vb2_ioctl_reqbufs, 864 .vidioc_create_bufs = vb2_ioctl_create_bufs, 865 .vidioc_querybuf = vb2_ioctl_querybuf, 866 .vidioc_qbuf = vb2_ioctl_qbuf, 867 .vidioc_dqbuf = vb2_ioctl_dqbuf, 868 .vidioc_s_std = tw68_s_std, 869 .vidioc_g_std = tw68_g_std, 870 .vidioc_enum_input = tw68_enum_input, 871 .vidioc_g_input = tw68_g_input, 872 .vidioc_s_input = tw68_s_input, 873 .vidioc_streamon = vb2_ioctl_streamon, 874 .vidioc_streamoff = vb2_ioctl_streamoff, 875 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap, 876 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap, 877 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap, 878 .vidioc_log_status = vidioc_log_status, 879 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, 880 .vidioc_unsubscribe_event = v4l2_event_unsubscribe, 881#ifdef CONFIG_VIDEO_ADV_DEBUG 882 .vidioc_g_register = vidioc_g_register, 883 .vidioc_s_register = vidioc_s_register, 884#endif 885}; 886 887static const struct video_device tw68_video_template = { 888 .name = "tw68_video", 889 .fops = &video_fops, 890 .ioctl_ops = &video_ioctl_ops, 891 .release = video_device_release_empty, 892 .tvnorms = TW68_NORMS, 893 .device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE | 894 V4L2_CAP_STREAMING, 895}; 896 897/* ------------------------------------------------------------------ */ 898/* exported stuff */ 899void tw68_set_tvnorm_hw(struct tw68_dev *dev) 900{ 901 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format); 902} 903 904int tw68_video_init1(struct tw68_dev *dev) 905{ 906 struct v4l2_ctrl_handler *hdl = &dev->hdl; 907 908 v4l2_ctrl_handler_init(hdl, 6); 909 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 910 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20); 911 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 912 V4L2_CID_CONTRAST, 0, 255, 1, 100); 913 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 914 V4L2_CID_SATURATION, 0, 255, 1, 128); 915 /* NTSC only */ 916 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 917 V4L2_CID_HUE, -128, 127, 1, 0); 918 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 919 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0); 920 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 921 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1); 922 if (hdl->error) { 923 v4l2_ctrl_handler_free(hdl); 924 return hdl->error; 925 } 926 dev->v4l2_dev.ctrl_handler = hdl; 927 v4l2_ctrl_handler_setup(hdl); 928 return 0; 929} 930 931int tw68_video_init2(struct tw68_dev *dev, int video_nr) 932{ 933 int ret; 934 935 set_tvnorm(dev, &tvnorms[0]); 936 937 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24); 938 dev->width = 720; 939 dev->height = 576; 940 dev->field = V4L2_FIELD_INTERLACED; 941 942 INIT_LIST_HEAD(&dev->active); 943 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; 944 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; 945 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF; 946 dev->vidq.ops = &tw68_video_qops; 947 dev->vidq.mem_ops = &vb2_dma_sg_memops; 948 dev->vidq.drv_priv = dev; 949 dev->vidq.gfp_flags = __GFP_DMA32 | __GFP_KSWAPD_RECLAIM; 950 dev->vidq.buf_struct_size = sizeof(struct tw68_buf); 951 dev->vidq.lock = &dev->lock; 952 dev->vidq.min_buffers_needed = 2; 953 dev->vidq.dev = &dev->pci->dev; 954 ret = vb2_queue_init(&dev->vidq); 955 if (ret) 956 return ret; 957 dev->vdev = tw68_video_template; 958 dev->vdev.v4l2_dev = &dev->v4l2_dev; 959 dev->vdev.lock = &dev->lock; 960 dev->vdev.queue = &dev->vidq; 961 video_set_drvdata(&dev->vdev, dev); 962 return video_register_device(&dev->vdev, VFL_TYPE_VIDEO, video_nr); 963} 964 965/* 966 * tw68_irq_video_done 967 */ 968void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status) 969{ 970 __u32 reg; 971 972 /* reset interrupts handled by this routine */ 973 tw_writel(TW68_INTSTAT, status); 974 /* 975 * Check most likely first 976 * 977 * DMAPI shows we have reached the end of the risc code 978 * for the current buffer. 979 */ 980 if (status & TW68_DMAPI) { 981 struct tw68_buf *buf; 982 983 spin_lock(&dev->slock); 984 buf = list_entry(dev->active.next, struct tw68_buf, list); 985 list_del(&buf->list); 986 spin_unlock(&dev->slock); 987 buf->vb.vb2_buf.timestamp = ktime_get_ns(); 988 buf->vb.field = dev->field; 989 buf->vb.sequence = dev->seqnr++; 990 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); 991 status &= ~(TW68_DMAPI); 992 if (0 == status) 993 return; 994 } 995 if (status & (TW68_VLOCK | TW68_HLOCK)) 996 dev_dbg(&dev->pci->dev, "Lost sync\n"); 997 if (status & TW68_PABORT) 998 dev_err(&dev->pci->dev, "PABORT interrupt\n"); 999 if (status & TW68_DMAPERR) 1000 dev_err(&dev->pci->dev, "DMAPERR interrupt\n"); 1001 /* 1002 * On TW6800, FDMIS is apparently generated if video input is switched 1003 * during operation. Therefore, it is not enabled for that chip. 1004 */ 1005 if (status & TW68_FDMIS) 1006 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n"); 1007 if (status & TW68_FFOF) { 1008 /* probably a logic error */ 1009 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN; 1010 tw_clearl(TW68_DMAC, TW68_FIFO_EN); 1011 dev_dbg(&dev->pci->dev, "FFOF interrupt\n"); 1012 tw_setl(TW68_DMAC, reg); 1013 } 1014 if (status & TW68_FFERR) 1015 dev_dbg(&dev->pci->dev, "FFERR interrupt\n"); 1016}