cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

venc_vp8_if.c (12889B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2016 MediaTek Inc.
      4 * Author: Daniel Hsiao <daniel.hsiao@mediatek.com>
      5 *         PoChun Lin <pochun.lin@mediatek.com>
      6 */
      7
      8#include <linux/interrupt.h>
      9#include <linux/kernel.h>
     10#include <linux/slab.h>
     11
     12#include "../mtk_vcodec_drv.h"
     13#include "../mtk_vcodec_util.h"
     14#include "../mtk_vcodec_intr.h"
     15#include "../mtk_vcodec_enc.h"
     16#include "../mtk_vcodec_enc_pm.h"
     17#include "../venc_drv_base.h"
     18#include "../venc_ipi_msg.h"
     19#include "../venc_vpu_if.h"
     20
     21#define VENC_BITSTREAM_FRAME_SIZE 0x0098
     22#define VENC_BITSTREAM_HEADER_LEN 0x00e8
     23
     24/* This ac_tag is vp8 frame tag. */
     25#define MAX_AC_TAG_SIZE 10
     26
     27/*
     28 * enum venc_vp8_vpu_work_buf - vp8 encoder buffer index
     29 */
     30enum venc_vp8_vpu_work_buf {
     31	VENC_VP8_VPU_WORK_BUF_LUMA,
     32	VENC_VP8_VPU_WORK_BUF_LUMA2,
     33	VENC_VP8_VPU_WORK_BUF_LUMA3,
     34	VENC_VP8_VPU_WORK_BUF_CHROMA,
     35	VENC_VP8_VPU_WORK_BUF_CHROMA2,
     36	VENC_VP8_VPU_WORK_BUF_CHROMA3,
     37	VENC_VP8_VPU_WORK_BUF_MV_INFO,
     38	VENC_VP8_VPU_WORK_BUF_BS_HEADER,
     39	VENC_VP8_VPU_WORK_BUF_PROB_BUF,
     40	VENC_VP8_VPU_WORK_BUF_RC_INFO,
     41	VENC_VP8_VPU_WORK_BUF_RC_CODE,
     42	VENC_VP8_VPU_WORK_BUF_RC_CODE2,
     43	VENC_VP8_VPU_WORK_BUF_RC_CODE3,
     44	VENC_VP8_VPU_WORK_BUF_MAX,
     45};
     46
     47/*
     48 * struct venc_vp8_vpu_config - Structure for vp8 encoder configuration
     49 *                              AP-W/R : AP is writer/reader on this item
     50 *                              VPU-W/R: VPU is write/reader on this item
     51 * @input_fourcc: input fourcc
     52 * @bitrate: target bitrate (in bps)
     53 * @pic_w: picture width. Picture size is visible stream resolution, in pixels,
     54 *         to be used for display purposes; must be smaller or equal to buffer
     55 *         size.
     56 * @pic_h: picture height
     57 * @buf_w: buffer width (with 16 alignment). Buffer size is stream resolution
     58 *         in pixels aligned to hardware requirements.
     59 * @buf_h: buffer height (with 16 alignment)
     60 * @gop_size: group of picture size (key frame)
     61 * @framerate: frame rate in fps
     62 * @ts_mode: temporal scalability mode (0: disable, 1: enable)
     63 *	     support three temporal layers - 0: 7.5fps 1: 7.5fps 2: 15fps.
     64 */
     65struct venc_vp8_vpu_config {
     66	u32 input_fourcc;
     67	u32 bitrate;
     68	u32 pic_w;
     69	u32 pic_h;
     70	u32 buf_w;
     71	u32 buf_h;
     72	u32 gop_size;
     73	u32 framerate;
     74	u32 ts_mode;
     75};
     76
     77/*
     78 * struct venc_vp8_vpu_buf - Structure for buffer information
     79 *                           AP-W/R : AP is writer/reader on this item
     80 *                           VPU-W/R: VPU is write/reader on this item
     81 * @iova: IO virtual address
     82 * @vpua: VPU side memory addr which is used by RC_CODE
     83 * @size: buffer size (in bytes)
     84 */
     85struct venc_vp8_vpu_buf {
     86	u32 iova;
     87	u32 vpua;
     88	u32 size;
     89};
     90
     91/*
     92 * struct venc_vp8_vsi - Structure for VPU driver control and info share
     93 *                       AP-W/R : AP is writer/reader on this item
     94 *                       VPU-W/R: VPU is write/reader on this item
     95 * This structure is allocated in VPU side and shared to AP side.
     96 * @config: vp8 encoder configuration
     97 * @work_bufs: working buffer information in VPU side
     98 * The work_bufs here is for storing the 'size' info shared to AP side.
     99 * The similar item in struct venc_vp8_inst is for memory allocation
    100 * in AP side. The AP driver will copy the 'size' from here to the one in
    101 * struct mtk_vcodec_mem, then invoke mtk_vcodec_mem_alloc to allocate
    102 * the buffer. After that, bypass the 'dma_addr' to the 'iova' field here for
    103 * register setting in VPU side.
    104 */
    105struct venc_vp8_vsi {
    106	struct venc_vp8_vpu_config config;
    107	struct venc_vp8_vpu_buf work_bufs[VENC_VP8_VPU_WORK_BUF_MAX];
    108};
    109
    110/*
    111 * struct venc_vp8_inst - vp8 encoder AP driver instance
    112 * @hw_base: vp8 encoder hardware register base
    113 * @work_bufs: working buffer
    114 * @work_buf_allocated: working buffer allocated flag
    115 * @frm_cnt: encoded frame count, it's used for I-frame judgement and
    116 *	     reset when force intra cmd received.
    117 * @ts_mode: temporal scalability mode (0: disable, 1: enable)
    118 *	     support three temporal layers - 0: 7.5fps 1: 7.5fps 2: 15fps.
    119 * @vpu_inst: VPU instance to exchange information between AP and VPU
    120 * @vsi: driver structure allocated by VPU side and shared to AP side for
    121 *	 control and info share
    122 * @ctx: context for v4l2 layer integration
    123 */
    124struct venc_vp8_inst {
    125	void __iomem *hw_base;
    126	struct mtk_vcodec_mem work_bufs[VENC_VP8_VPU_WORK_BUF_MAX];
    127	bool work_buf_allocated;
    128	unsigned int frm_cnt;
    129	unsigned int ts_mode;
    130	struct venc_vpu_inst vpu_inst;
    131	struct venc_vp8_vsi *vsi;
    132	struct mtk_vcodec_ctx *ctx;
    133};
    134
    135static inline u32 vp8_enc_read_reg(struct venc_vp8_inst *inst, u32 addr)
    136{
    137	return readl(inst->hw_base + addr);
    138}
    139
    140static void vp8_enc_free_work_buf(struct venc_vp8_inst *inst)
    141{
    142	int i;
    143
    144	mtk_vcodec_debug_enter(inst);
    145
    146	/* Buffers need to be freed by AP. */
    147	for (i = 0; i < VENC_VP8_VPU_WORK_BUF_MAX; i++) {
    148		if (inst->work_bufs[i].size == 0)
    149			continue;
    150		mtk_vcodec_mem_free(inst->ctx, &inst->work_bufs[i]);
    151	}
    152
    153	mtk_vcodec_debug_leave(inst);
    154}
    155
    156static int vp8_enc_alloc_work_buf(struct venc_vp8_inst *inst)
    157{
    158	int i;
    159	int ret = 0;
    160	struct venc_vp8_vpu_buf *wb = inst->vsi->work_bufs;
    161
    162	mtk_vcodec_debug_enter(inst);
    163
    164	for (i = 0; i < VENC_VP8_VPU_WORK_BUF_MAX; i++) {
    165		if (wb[i].size == 0)
    166			continue;
    167		/*
    168		 * This 'wb' structure is set by VPU side and shared to AP for
    169		 * buffer allocation and IO virtual addr mapping. For most of
    170		 * the buffers, AP will allocate the buffer according to 'size'
    171		 * field and store the IO virtual addr in 'iova' field. For the
    172		 * RC_CODEx buffers, they are pre-allocated in the VPU side
    173		 * because they are inside VPU SRAM, and save the VPU addr in
    174		 * the 'vpua' field. The AP will translate the VPU addr to the
    175		 * corresponding IO virtual addr and store in 'iova' field.
    176		 */
    177		inst->work_bufs[i].size = wb[i].size;
    178		ret = mtk_vcodec_mem_alloc(inst->ctx, &inst->work_bufs[i]);
    179		if (ret) {
    180			mtk_vcodec_err(inst,
    181				       "cannot alloc work_bufs[%d]", i);
    182			goto err_alloc;
    183		}
    184		/*
    185		 * This RC_CODEx is pre-allocated by VPU and saved in VPU addr.
    186		 * So we need use memcpy to copy RC_CODEx from VPU addr into IO
    187		 * virtual addr in 'iova' field for reg setting in VPU side.
    188		 */
    189		if (i == VENC_VP8_VPU_WORK_BUF_RC_CODE ||
    190		    i == VENC_VP8_VPU_WORK_BUF_RC_CODE2 ||
    191		    i == VENC_VP8_VPU_WORK_BUF_RC_CODE3) {
    192			struct mtk_vcodec_fw *handler;
    193			void *tmp_va;
    194
    195			handler = inst->vpu_inst.ctx->dev->fw_handler;
    196			tmp_va = mtk_vcodec_fw_map_dm_addr(handler,
    197							   wb[i].vpua);
    198			memcpy(inst->work_bufs[i].va, tmp_va, wb[i].size);
    199		}
    200		wb[i].iova = inst->work_bufs[i].dma_addr;
    201
    202		mtk_vcodec_debug(inst,
    203				 "work_bufs[%d] va=0x%p,iova=%pad,size=%zu",
    204				 i, inst->work_bufs[i].va,
    205				 &inst->work_bufs[i].dma_addr,
    206				 inst->work_bufs[i].size);
    207	}
    208
    209	mtk_vcodec_debug_leave(inst);
    210
    211	return ret;
    212
    213err_alloc:
    214	vp8_enc_free_work_buf(inst);
    215
    216	return ret;
    217}
    218
    219static unsigned int vp8_enc_wait_venc_done(struct venc_vp8_inst *inst)
    220{
    221	unsigned int irq_status = 0;
    222	struct mtk_vcodec_ctx *ctx = (struct mtk_vcodec_ctx *)inst->ctx;
    223
    224	if (!mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED,
    225					  WAIT_INTR_TIMEOUT_MS, 0)) {
    226		irq_status = ctx->irq_status;
    227		mtk_vcodec_debug(inst, "isr return %x", irq_status);
    228	}
    229	return irq_status;
    230}
    231
    232/*
    233 * Compose ac_tag, bitstream header and bitstream payload into
    234 * one bitstream buffer.
    235 */
    236static int vp8_enc_compose_one_frame(struct venc_vp8_inst *inst,
    237				     struct mtk_vcodec_mem *bs_buf,
    238				     unsigned int *bs_size)
    239{
    240	unsigned int not_key;
    241	u32 bs_frm_size;
    242	u32 bs_hdr_len;
    243	unsigned int ac_tag_size;
    244	u8 ac_tag[MAX_AC_TAG_SIZE];
    245	u32 tag;
    246
    247	bs_frm_size = vp8_enc_read_reg(inst, VENC_BITSTREAM_FRAME_SIZE);
    248	bs_hdr_len = vp8_enc_read_reg(inst, VENC_BITSTREAM_HEADER_LEN);
    249
    250	/* if a frame is key frame, not_key is 0 */
    251	not_key = !inst->vpu_inst.is_key_frm;
    252	tag = (bs_hdr_len << 5) | 0x10 | not_key;
    253	ac_tag[0] = tag & 0xff;
    254	ac_tag[1] = (tag >> 8) & 0xff;
    255	ac_tag[2] = (tag >> 16) & 0xff;
    256
    257	/* key frame */
    258	if (not_key == 0) {
    259		ac_tag_size = MAX_AC_TAG_SIZE;
    260		ac_tag[3] = 0x9d;
    261		ac_tag[4] = 0x01;
    262		ac_tag[5] = 0x2a;
    263		ac_tag[6] = inst->vsi->config.pic_w;
    264		ac_tag[7] = inst->vsi->config.pic_w >> 8;
    265		ac_tag[8] = inst->vsi->config.pic_h;
    266		ac_tag[9] = inst->vsi->config.pic_h >> 8;
    267	} else {
    268		ac_tag_size = 3;
    269	}
    270
    271	if (bs_buf->size < bs_hdr_len + bs_frm_size + ac_tag_size) {
    272		mtk_vcodec_err(inst, "bitstream buf size is too small(%zu)",
    273			       bs_buf->size);
    274		return -EINVAL;
    275	}
    276
    277	/*
    278	* (1) The vp8 bitstream header and body are generated by the HW vp8
    279	* encoder separately at the same time. We cannot know the bitstream
    280	* header length in advance.
    281	* (2) From the vp8 spec, there is no stuffing byte allowed between the
    282	* ac tag, bitstream header and bitstream body.
    283	*/
    284	memmove(bs_buf->va + bs_hdr_len + ac_tag_size,
    285		bs_buf->va, bs_frm_size);
    286	memcpy(bs_buf->va + ac_tag_size,
    287	       inst->work_bufs[VENC_VP8_VPU_WORK_BUF_BS_HEADER].va,
    288	       bs_hdr_len);
    289	memcpy(bs_buf->va, ac_tag, ac_tag_size);
    290	*bs_size = bs_frm_size + bs_hdr_len + ac_tag_size;
    291
    292	return 0;
    293}
    294
    295static int vp8_enc_encode_frame(struct venc_vp8_inst *inst,
    296				struct venc_frm_buf *frm_buf,
    297				struct mtk_vcodec_mem *bs_buf,
    298				unsigned int *bs_size)
    299{
    300	int ret = 0;
    301	unsigned int irq_status;
    302
    303	mtk_vcodec_debug(inst, "->frm_cnt=%d", inst->frm_cnt);
    304
    305	ret = vpu_enc_encode(&inst->vpu_inst, 0, frm_buf, bs_buf, NULL);
    306	if (ret)
    307		return ret;
    308
    309	irq_status = vp8_enc_wait_venc_done(inst);
    310	if (irq_status != MTK_VENC_IRQ_STATUS_FRM) {
    311		mtk_vcodec_err(inst, "irq_status=%d failed", irq_status);
    312		return -EIO;
    313	}
    314
    315	if (vp8_enc_compose_one_frame(inst, bs_buf, bs_size)) {
    316		mtk_vcodec_err(inst, "vp8_enc_compose_one_frame failed");
    317		return -EINVAL;
    318	}
    319
    320	inst->frm_cnt++;
    321	mtk_vcodec_debug(inst, "<-size=%d key_frm=%d", *bs_size,
    322			 inst->vpu_inst.is_key_frm);
    323
    324	return ret;
    325}
    326
    327static int vp8_enc_init(struct mtk_vcodec_ctx *ctx)
    328{
    329	int ret = 0;
    330	struct venc_vp8_inst *inst;
    331
    332	inst = kzalloc(sizeof(*inst), GFP_KERNEL);
    333	if (!inst)
    334		return -ENOMEM;
    335
    336	inst->ctx = ctx;
    337	inst->vpu_inst.ctx = ctx;
    338	inst->vpu_inst.id = IPI_VENC_VP8;
    339	inst->hw_base = mtk_vcodec_get_reg_addr(inst->ctx, VENC_LT_SYS);
    340
    341	mtk_vcodec_debug_enter(inst);
    342
    343	ret = vpu_enc_init(&inst->vpu_inst);
    344
    345	inst->vsi = (struct venc_vp8_vsi *)inst->vpu_inst.vsi;
    346
    347	mtk_vcodec_debug_leave(inst);
    348
    349	if (ret)
    350		kfree(inst);
    351	else
    352		ctx->drv_handle = inst;
    353
    354	return ret;
    355}
    356
    357static int vp8_enc_encode(void *handle,
    358			  enum venc_start_opt opt,
    359			  struct venc_frm_buf *frm_buf,
    360			  struct mtk_vcodec_mem *bs_buf,
    361			  struct venc_done_result *result)
    362{
    363	int ret = 0;
    364	struct venc_vp8_inst *inst = (struct venc_vp8_inst *)handle;
    365	struct mtk_vcodec_ctx *ctx = inst->ctx;
    366
    367	mtk_vcodec_debug_enter(inst);
    368
    369	enable_irq(ctx->dev->enc_irq);
    370
    371	switch (opt) {
    372	case VENC_START_OPT_ENCODE_FRAME:
    373		ret = vp8_enc_encode_frame(inst, frm_buf, bs_buf,
    374					   &result->bs_size);
    375		if (ret)
    376			goto encode_err;
    377		result->is_key_frm = inst->vpu_inst.is_key_frm;
    378		break;
    379
    380	default:
    381		mtk_vcodec_err(inst, "opt not support:%d", opt);
    382		ret = -EINVAL;
    383		break;
    384	}
    385
    386encode_err:
    387
    388	disable_irq(ctx->dev->enc_irq);
    389	mtk_vcodec_debug_leave(inst);
    390
    391	return ret;
    392}
    393
    394static int vp8_enc_set_param(void *handle,
    395			     enum venc_set_param_type type,
    396			     struct venc_enc_param *enc_prm)
    397{
    398	int ret = 0;
    399	struct venc_vp8_inst *inst = (struct venc_vp8_inst *)handle;
    400
    401	mtk_vcodec_debug(inst, "->type=%d", type);
    402
    403	switch (type) {
    404	case VENC_SET_PARAM_ENC:
    405		inst->vsi->config.input_fourcc = enc_prm->input_yuv_fmt;
    406		inst->vsi->config.bitrate = enc_prm->bitrate;
    407		inst->vsi->config.pic_w = enc_prm->width;
    408		inst->vsi->config.pic_h = enc_prm->height;
    409		inst->vsi->config.buf_w = enc_prm->buf_width;
    410		inst->vsi->config.buf_h = enc_prm->buf_height;
    411		inst->vsi->config.gop_size = enc_prm->gop_size;
    412		inst->vsi->config.framerate = enc_prm->frm_rate;
    413		inst->vsi->config.ts_mode = inst->ts_mode;
    414		ret = vpu_enc_set_param(&inst->vpu_inst, type, enc_prm);
    415		if (ret)
    416			break;
    417		if (inst->work_buf_allocated) {
    418			vp8_enc_free_work_buf(inst);
    419			inst->work_buf_allocated = false;
    420		}
    421		ret = vp8_enc_alloc_work_buf(inst);
    422		if (ret)
    423			break;
    424		inst->work_buf_allocated = true;
    425		break;
    426
    427	/*
    428	 * VENC_SET_PARAM_TS_MODE must be called before VENC_SET_PARAM_ENC
    429	 */
    430	case VENC_SET_PARAM_TS_MODE:
    431		inst->ts_mode = 1;
    432		mtk_vcodec_debug(inst, "set ts_mode");
    433		break;
    434
    435	default:
    436		ret = vpu_enc_set_param(&inst->vpu_inst, type, enc_prm);
    437		break;
    438	}
    439
    440	mtk_vcodec_debug_leave(inst);
    441
    442	return ret;
    443}
    444
    445static int vp8_enc_deinit(void *handle)
    446{
    447	int ret = 0;
    448	struct venc_vp8_inst *inst = (struct venc_vp8_inst *)handle;
    449
    450	mtk_vcodec_debug_enter(inst);
    451
    452	ret = vpu_enc_deinit(&inst->vpu_inst);
    453
    454	if (inst->work_buf_allocated)
    455		vp8_enc_free_work_buf(inst);
    456
    457	mtk_vcodec_debug_leave(inst);
    458	kfree(inst);
    459
    460	return ret;
    461}
    462
    463const struct venc_common_if venc_vp8_if = {
    464	.init = vp8_enc_init,
    465	.encode = vp8_enc_encode,
    466	.set_param = vp8_enc_set_param,
    467	.deinit = vp8_enc_deinit,
    468};