cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vsp1_rpf.c (11127B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
      4 *
      5 * Copyright (C) 2013-2014 Renesas Electronics Corporation
      6 *
      7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
      8 */
      9
     10#include <linux/device.h>
     11
     12#include <media/v4l2-subdev.h>
     13
     14#include "vsp1.h"
     15#include "vsp1_dl.h"
     16#include "vsp1_pipe.h"
     17#include "vsp1_rwpf.h"
     18#include "vsp1_video.h"
     19
     20#define RPF_MAX_WIDTH				8190
     21#define RPF_MAX_HEIGHT				8190
     22
     23/* Pre extended display list command data structure. */
     24struct vsp1_extcmd_auto_fld_body {
     25	u32 top_y0;
     26	u32 bottom_y0;
     27	u32 top_c0;
     28	u32 bottom_c0;
     29	u32 top_c1;
     30	u32 bottom_c1;
     31	u32 reserved0;
     32	u32 reserved1;
     33} __packed;
     34
     35/* -----------------------------------------------------------------------------
     36 * Device Access
     37 */
     38
     39static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
     40				  struct vsp1_dl_body *dlb, u32 reg, u32 data)
     41{
     42	vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
     43			       data);
     44}
     45
     46/* -----------------------------------------------------------------------------
     47 * V4L2 Subdevice Operations
     48 */
     49
     50static const struct v4l2_subdev_ops rpf_ops = {
     51	.pad    = &vsp1_rwpf_pad_ops,
     52};
     53
     54/* -----------------------------------------------------------------------------
     55 * VSP1 Entity Operations
     56 */
     57
     58static void rpf_configure_stream(struct vsp1_entity *entity,
     59				 struct vsp1_pipeline *pipe,
     60				 struct vsp1_dl_list *dl,
     61				 struct vsp1_dl_body *dlb)
     62{
     63	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
     64	const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
     65	const struct v4l2_pix_format_mplane *format = &rpf->format;
     66	const struct v4l2_mbus_framefmt *source_format;
     67	const struct v4l2_mbus_framefmt *sink_format;
     68	unsigned int left = 0;
     69	unsigned int top = 0;
     70	u32 pstride;
     71	u32 infmt;
     72
     73	/* Stride */
     74	pstride = format->plane_fmt[0].bytesperline
     75		<< VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
     76	if (format->num_planes > 1)
     77		pstride |= format->plane_fmt[1].bytesperline
     78			<< VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
     79
     80	/*
     81	 * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
     82	 * of pstride by 2 is conveniently OK here as we are multiplying both
     83	 * values.
     84	 */
     85	if (pipe->interlaced)
     86		pstride *= 2;
     87
     88	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
     89
     90	/* Format */
     91	sink_format = vsp1_entity_get_pad_format(&rpf->entity,
     92						 rpf->entity.config,
     93						 RWPF_PAD_SINK);
     94	source_format = vsp1_entity_get_pad_format(&rpf->entity,
     95						   rpf->entity.config,
     96						   RWPF_PAD_SOURCE);
     97
     98	infmt = VI6_RPF_INFMT_CIPM
     99	      | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
    100
    101	if (fmtinfo->swap_yc)
    102		infmt |= VI6_RPF_INFMT_SPYCS;
    103	if (fmtinfo->swap_uv)
    104		infmt |= VI6_RPF_INFMT_SPUVS;
    105
    106	if (sink_format->code != source_format->code)
    107		infmt |= VI6_RPF_INFMT_CSC;
    108
    109	vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
    110	vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
    111
    112	/* Output location. */
    113	if (pipe->brx) {
    114		const struct v4l2_rect *compose;
    115
    116		compose = vsp1_entity_get_pad_selection(pipe->brx,
    117							pipe->brx->config,
    118							rpf->brx_input,
    119							V4L2_SEL_TGT_COMPOSE);
    120		left = compose->left;
    121		top = compose->top;
    122	}
    123
    124	if (pipe->interlaced)
    125		top /= 2;
    126
    127	vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
    128		       (left << VI6_RPF_LOC_HCOORD_SHIFT) |
    129		       (top << VI6_RPF_LOC_VCOORD_SHIFT));
    130
    131	/*
    132	 * On Gen2 use the alpha channel (extended to 8 bits) when available or
    133	 * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
    134	 * otherwise.
    135	 *
    136	 * The Gen3 RPF has extended alpha capability and can both multiply the
    137	 * alpha channel by a fixed global alpha value, and multiply the pixel
    138	 * components to convert the input to premultiplied alpha.
    139	 *
    140	 * As alpha premultiplication is available in the BRx for both Gen2 and
    141	 * Gen3 we handle it there and use the Gen3 alpha multiplier for global
    142	 * alpha multiplication only. This however prevents conversion to
    143	 * premultiplied alpha if no BRx is present in the pipeline. If that use
    144	 * case turns out to be useful we will revisit the implementation (for
    145	 * Gen3 only).
    146	 *
    147	 * We enable alpha multiplication on Gen3 using the fixed alpha value
    148	 * set through the V4L2_CID_ALPHA_COMPONENT control when the input
    149	 * contains an alpha channel. On Gen2 the global alpha is ignored in
    150	 * that case.
    151	 *
    152	 * In all cases, disable color keying.
    153	 */
    154	vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
    155		       (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
    156				       : VI6_RPF_ALPH_SEL_ASEL_FIXED));
    157
    158	if (entity->vsp1->info->gen == 3) {
    159		u32 mult;
    160
    161		if (fmtinfo->alpha) {
    162			/*
    163			 * When the input contains an alpha channel enable the
    164			 * alpha multiplier. If the input is premultiplied we
    165			 * need to multiply both the alpha channel and the pixel
    166			 * components by the global alpha value to keep them
    167			 * premultiplied. Otherwise multiply the alpha channel
    168			 * only.
    169			 */
    170			bool premultiplied = format->flags
    171					   & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
    172
    173			mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
    174			     | (premultiplied ?
    175				VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
    176				VI6_RPF_MULT_ALPHA_P_MMD_NONE);
    177		} else {
    178			/*
    179			 * When the input doesn't contain an alpha channel the
    180			 * global alpha value is applied in the unpacking unit,
    181			 * the alpha multiplier isn't needed and must be
    182			 * disabled.
    183			 */
    184			mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
    185			     | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
    186		}
    187
    188		rpf->mult_alpha = mult;
    189	}
    190
    191	vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
    192	vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
    193
    194}
    195
    196static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
    197				       struct vsp1_dl_list *dl)
    198{
    199	const struct v4l2_pix_format_mplane *format = &rpf->format;
    200	struct vsp1_dl_ext_cmd *cmd;
    201	struct vsp1_extcmd_auto_fld_body *auto_fld;
    202	u32 offset_y, offset_c;
    203
    204	cmd = vsp1_dl_get_pre_cmd(dl);
    205	if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
    206		return;
    207
    208	/* Re-index our auto_fld to match the current RPF. */
    209	auto_fld = cmd->data;
    210	auto_fld = &auto_fld[rpf->entity.index];
    211
    212	auto_fld->top_y0 = rpf->mem.addr[0];
    213	auto_fld->top_c0 = rpf->mem.addr[1];
    214	auto_fld->top_c1 = rpf->mem.addr[2];
    215
    216	offset_y = format->plane_fmt[0].bytesperline;
    217	offset_c = format->plane_fmt[1].bytesperline;
    218
    219	auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
    220	auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
    221	auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
    222
    223	cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
    224}
    225
    226static void rpf_configure_frame(struct vsp1_entity *entity,
    227				struct vsp1_pipeline *pipe,
    228				struct vsp1_dl_list *dl,
    229				struct vsp1_dl_body *dlb)
    230{
    231	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
    232
    233	vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
    234		       rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
    235	vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
    236		       (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
    237
    238	vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
    239}
    240
    241static void rpf_configure_partition(struct vsp1_entity *entity,
    242				    struct vsp1_pipeline *pipe,
    243				    struct vsp1_dl_list *dl,
    244				    struct vsp1_dl_body *dlb)
    245{
    246	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
    247	struct vsp1_rwpf_memory mem = rpf->mem;
    248	struct vsp1_device *vsp1 = rpf->entity.vsp1;
    249	const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
    250	const struct v4l2_pix_format_mplane *format = &rpf->format;
    251	struct v4l2_rect crop;
    252
    253	/*
    254	 * Source size and crop offsets.
    255	 *
    256	 * The crop offsets correspond to the location of the crop
    257	 * rectangle top left corner in the plane buffer. Only two
    258	 * offsets are needed, as planes 2 and 3 always have identical
    259	 * strides.
    260	 */
    261	crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
    262
    263	/*
    264	 * Partition Algorithm Control
    265	 *
    266	 * The partition algorithm can split this frame into multiple
    267	 * slices. We must scale our partition window based on the pipe
    268	 * configuration to match the destination partition window.
    269	 * To achieve this, we adjust our crop to provide a 'sub-crop'
    270	 * matching the expected partition window. Only 'left' and
    271	 * 'width' need to be adjusted.
    272	 */
    273	if (pipe->partitions > 1) {
    274		crop.width = pipe->partition->rpf.width;
    275		crop.left += pipe->partition->rpf.left;
    276	}
    277
    278	if (pipe->interlaced) {
    279		crop.height = round_down(crop.height / 2, fmtinfo->vsub);
    280		crop.top = round_down(crop.top / 2, fmtinfo->vsub);
    281	}
    282
    283	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
    284		       (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
    285		       (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
    286	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
    287		       (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
    288		       (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
    289
    290	mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
    291		     + crop.left * fmtinfo->bpp[0] / 8;
    292
    293	if (format->num_planes > 1) {
    294		unsigned int bpl = format->plane_fmt[1].bytesperline;
    295		unsigned int offset;
    296
    297		offset = crop.top / fmtinfo->vsub * bpl
    298		       + crop.left / fmtinfo->hsub * fmtinfo->bpp[1] / 8;
    299		mem.addr[1] += offset;
    300		mem.addr[2] += offset;
    301	}
    302
    303	/*
    304	 * On Gen3 hardware the SPUVS bit has no effect on 3-planar
    305	 * formats. Swap the U and V planes manually in that case.
    306	 */
    307	if (vsp1->info->gen == 3 && format->num_planes == 3 &&
    308	    fmtinfo->swap_uv)
    309		swap(mem.addr[1], mem.addr[2]);
    310
    311	/*
    312	 * Interlaced pipelines will use the extended pre-cmd to process
    313	 * SRCM_ADDR_{Y,C0,C1}.
    314	 */
    315	if (pipe->interlaced) {
    316		vsp1_rpf_configure_autofld(rpf, dl);
    317	} else {
    318		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
    319		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
    320		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
    321	}
    322}
    323
    324static void rpf_partition(struct vsp1_entity *entity,
    325			  struct vsp1_pipeline *pipe,
    326			  struct vsp1_partition *partition,
    327			  unsigned int partition_idx,
    328			  struct vsp1_partition_window *window)
    329{
    330	partition->rpf = *window;
    331}
    332
    333static const struct vsp1_entity_operations rpf_entity_ops = {
    334	.configure_stream = rpf_configure_stream,
    335	.configure_frame = rpf_configure_frame,
    336	.configure_partition = rpf_configure_partition,
    337	.partition = rpf_partition,
    338};
    339
    340/* -----------------------------------------------------------------------------
    341 * Initialization and Cleanup
    342 */
    343
    344struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
    345{
    346	struct vsp1_rwpf *rpf;
    347	char name[6];
    348	int ret;
    349
    350	rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
    351	if (rpf == NULL)
    352		return ERR_PTR(-ENOMEM);
    353
    354	rpf->max_width = RPF_MAX_WIDTH;
    355	rpf->max_height = RPF_MAX_HEIGHT;
    356
    357	rpf->entity.ops = &rpf_entity_ops;
    358	rpf->entity.type = VSP1_ENTITY_RPF;
    359	rpf->entity.index = index;
    360
    361	sprintf(name, "rpf.%u", index);
    362	ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
    363			       MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
    364	if (ret < 0)
    365		return ERR_PTR(ret);
    366
    367	/* Initialize the control handler. */
    368	ret = vsp1_rwpf_init_ctrls(rpf, 0);
    369	if (ret < 0) {
    370		dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
    371			index);
    372		goto error;
    373	}
    374
    375	v4l2_ctrl_handler_setup(&rpf->ctrls);
    376
    377	return rpf;
    378
    379error:
    380	vsp1_entity_destroy(&rpf->entity);
    381	return ERR_PTR(ret);
    382}