cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

isp.c (65229B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * isp.c
      4 *
      5 * TI OMAP3 ISP - Core
      6 *
      7 * Copyright (C) 2006-2010 Nokia Corporation
      8 * Copyright (C) 2007-2009 Texas Instruments, Inc.
      9 *
     10 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
     11 *	     Sakari Ailus <sakari.ailus@iki.fi>
     12 *
     13 * Contributors:
     14 *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
     15 *	Sakari Ailus <sakari.ailus@iki.fi>
     16 *	David Cohen <dacohen@gmail.com>
     17 *	Stanimir Varbanov <svarbanov@mm-sol.com>
     18 *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
     19 *	Tuukka Toivonen <tuukkat76@gmail.com>
     20 *	Sergio Aguirre <saaguirre@ti.com>
     21 *	Antti Koskipaa <akoskipa@gmail.com>
     22 *	Ivan T. Ivanov <iivanov@mm-sol.com>
     23 *	RaniSuneela <r-m@ti.com>
     24 *	Atanas Filipov <afilipov@mm-sol.com>
     25 *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
     26 *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
     27 *	Nayden Kanchev <nkanchev@mm-sol.com>
     28 *	Phil Carmody <ext-phil.2.carmody@nokia.com>
     29 *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
     30 *	Dominic Curran <dcurran@ti.com>
     31 *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
     32 *	Pallavi Kulkarni <p-kulkarni@ti.com>
     33 *	Vaibhav Hiremath <hvaibhav@ti.com>
     34 *	Mohit Jalori <mjalori@ti.com>
     35 *	Sameer Venkatraman <sameerv@ti.com>
     36 *	Senthilvadivu Guruswamy <svadivu@ti.com>
     37 *	Thara Gopinath <thara@ti.com>
     38 *	Toni Leinonen <toni.leinonen@nokia.com>
     39 *	Troy Laramy <t-laramy@ti.com>
     40 */
     41
     42#include <linux/clk.h>
     43#include <linux/clkdev.h>
     44#include <linux/delay.h>
     45#include <linux/device.h>
     46#include <linux/dma-mapping.h>
     47#include <linux/i2c.h>
     48#include <linux/interrupt.h>
     49#include <linux/mfd/syscon.h>
     50#include <linux/module.h>
     51#include <linux/omap-iommu.h>
     52#include <linux/platform_device.h>
     53#include <linux/property.h>
     54#include <linux/regulator/consumer.h>
     55#include <linux/slab.h>
     56#include <linux/sched.h>
     57#include <linux/vmalloc.h>
     58
     59#ifdef CONFIG_ARM_DMA_USE_IOMMU
     60#include <asm/dma-iommu.h>
     61#endif
     62
     63#include <media/v4l2-common.h>
     64#include <media/v4l2-fwnode.h>
     65#include <media/v4l2-device.h>
     66#include <media/v4l2-mc.h>
     67
     68#include "isp.h"
     69#include "ispreg.h"
     70#include "ispccdc.h"
     71#include "isppreview.h"
     72#include "ispresizer.h"
     73#include "ispcsi2.h"
     74#include "ispccp2.h"
     75#include "isph3a.h"
     76#include "isphist.h"
     77
     78static unsigned int autoidle;
     79module_param(autoidle, int, 0444);
     80MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
     81
     82static void isp_save_ctx(struct isp_device *isp);
     83
     84static void isp_restore_ctx(struct isp_device *isp);
     85
     86static const struct isp_res_mapping isp_res_maps[] = {
     87	{
     88		.isp_rev = ISP_REVISION_2_0,
     89		.offset = {
     90			/* first MMIO area */
     91			0x0000, /* base, len 0x0070 */
     92			0x0400, /* ccp2, len 0x01f0 */
     93			0x0600, /* ccdc, len 0x00a8 */
     94			0x0a00, /* hist, len 0x0048 */
     95			0x0c00, /* h3a, len 0x0060 */
     96			0x0e00, /* preview, len 0x00a0 */
     97			0x1000, /* resizer, len 0x00ac */
     98			0x1200, /* sbl, len 0x00fc */
     99			/* second MMIO area */
    100			0x0000, /* csi2a, len 0x0170 */
    101			0x0170, /* csiphy2, len 0x000c */
    102		},
    103		.phy_type = ISP_PHY_TYPE_3430,
    104	},
    105	{
    106		.isp_rev = ISP_REVISION_15_0,
    107		.offset = {
    108			/* first MMIO area */
    109			0x0000, /* base, len 0x0070 */
    110			0x0400, /* ccp2, len 0x01f0 */
    111			0x0600, /* ccdc, len 0x00a8 */
    112			0x0a00, /* hist, len 0x0048 */
    113			0x0c00, /* h3a, len 0x0060 */
    114			0x0e00, /* preview, len 0x00a0 */
    115			0x1000, /* resizer, len 0x00ac */
    116			0x1200, /* sbl, len 0x00fc */
    117			/* second MMIO area */
    118			0x0000, /* csi2a, len 0x0170 (1st area) */
    119			0x0170, /* csiphy2, len 0x000c */
    120			0x01c0, /* csi2a, len 0x0040 (2nd area) */
    121			0x0400, /* csi2c, len 0x0170 (1st area) */
    122			0x0570, /* csiphy1, len 0x000c */
    123			0x05c0, /* csi2c, len 0x0040 (2nd area) */
    124		},
    125		.phy_type = ISP_PHY_TYPE_3630,
    126	},
    127};
    128
    129/* Structure for saving/restoring ISP module registers */
    130static struct isp_reg isp_reg_list[] = {
    131	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
    132	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
    133	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
    134	{0, ISP_TOK_TERM, 0}
    135};
    136
    137/*
    138 * omap3isp_flush - Post pending L3 bus writes by doing a register readback
    139 * @isp: OMAP3 ISP device
    140 *
    141 * In order to force posting of pending writes, we need to write and
    142 * readback the same register, in this case the revision register.
    143 *
    144 * See this link for reference:
    145 *   https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
    146 */
    147void omap3isp_flush(struct isp_device *isp)
    148{
    149	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
    150	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
    151}
    152
    153/* -----------------------------------------------------------------------------
    154 * XCLK
    155 */
    156
    157#define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
    158
    159static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
    160{
    161	switch (xclk->id) {
    162	case ISP_XCLK_A:
    163		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
    164				ISPTCTRL_CTRL_DIVA_MASK,
    165				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
    166		break;
    167	case ISP_XCLK_B:
    168		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
    169				ISPTCTRL_CTRL_DIVB_MASK,
    170				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
    171		break;
    172	}
    173}
    174
    175static int isp_xclk_prepare(struct clk_hw *hw)
    176{
    177	struct isp_xclk *xclk = to_isp_xclk(hw);
    178
    179	omap3isp_get(xclk->isp);
    180
    181	return 0;
    182}
    183
    184static void isp_xclk_unprepare(struct clk_hw *hw)
    185{
    186	struct isp_xclk *xclk = to_isp_xclk(hw);
    187
    188	omap3isp_put(xclk->isp);
    189}
    190
    191static int isp_xclk_enable(struct clk_hw *hw)
    192{
    193	struct isp_xclk *xclk = to_isp_xclk(hw);
    194	unsigned long flags;
    195
    196	spin_lock_irqsave(&xclk->lock, flags);
    197	isp_xclk_update(xclk, xclk->divider);
    198	xclk->enabled = true;
    199	spin_unlock_irqrestore(&xclk->lock, flags);
    200
    201	return 0;
    202}
    203
    204static void isp_xclk_disable(struct clk_hw *hw)
    205{
    206	struct isp_xclk *xclk = to_isp_xclk(hw);
    207	unsigned long flags;
    208
    209	spin_lock_irqsave(&xclk->lock, flags);
    210	isp_xclk_update(xclk, 0);
    211	xclk->enabled = false;
    212	spin_unlock_irqrestore(&xclk->lock, flags);
    213}
    214
    215static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
    216					  unsigned long parent_rate)
    217{
    218	struct isp_xclk *xclk = to_isp_xclk(hw);
    219
    220	return parent_rate / xclk->divider;
    221}
    222
    223static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
    224{
    225	u32 divider;
    226
    227	if (*rate >= parent_rate) {
    228		*rate = parent_rate;
    229		return ISPTCTRL_CTRL_DIV_BYPASS;
    230	}
    231
    232	if (*rate == 0)
    233		*rate = 1;
    234
    235	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
    236	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
    237		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
    238
    239	*rate = parent_rate / divider;
    240	return divider;
    241}
    242
    243static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
    244				unsigned long *parent_rate)
    245{
    246	isp_xclk_calc_divider(&rate, *parent_rate);
    247	return rate;
    248}
    249
    250static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
    251			     unsigned long parent_rate)
    252{
    253	struct isp_xclk *xclk = to_isp_xclk(hw);
    254	unsigned long flags;
    255	u32 divider;
    256
    257	divider = isp_xclk_calc_divider(&rate, parent_rate);
    258
    259	spin_lock_irqsave(&xclk->lock, flags);
    260
    261	xclk->divider = divider;
    262	if (xclk->enabled)
    263		isp_xclk_update(xclk, divider);
    264
    265	spin_unlock_irqrestore(&xclk->lock, flags);
    266
    267	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
    268		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
    269	return 0;
    270}
    271
    272static const struct clk_ops isp_xclk_ops = {
    273	.prepare = isp_xclk_prepare,
    274	.unprepare = isp_xclk_unprepare,
    275	.enable = isp_xclk_enable,
    276	.disable = isp_xclk_disable,
    277	.recalc_rate = isp_xclk_recalc_rate,
    278	.round_rate = isp_xclk_round_rate,
    279	.set_rate = isp_xclk_set_rate,
    280};
    281
    282static const char *isp_xclk_parent_name = "cam_mclk";
    283
    284static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
    285{
    286	unsigned int idx = clkspec->args[0];
    287	struct isp_device *isp = data;
    288
    289	if (idx >= ARRAY_SIZE(isp->xclks))
    290		return ERR_PTR(-ENOENT);
    291
    292	return isp->xclks[idx].clk;
    293}
    294
    295static int isp_xclk_init(struct isp_device *isp)
    296{
    297	struct device_node *np = isp->dev->of_node;
    298	struct clk_init_data init = {};
    299	unsigned int i;
    300
    301	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
    302		isp->xclks[i].clk = ERR_PTR(-EINVAL);
    303
    304	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
    305		struct isp_xclk *xclk = &isp->xclks[i];
    306
    307		xclk->isp = isp;
    308		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
    309		xclk->divider = 1;
    310		spin_lock_init(&xclk->lock);
    311
    312		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
    313		init.ops = &isp_xclk_ops;
    314		init.parent_names = &isp_xclk_parent_name;
    315		init.num_parents = 1;
    316
    317		xclk->hw.init = &init;
    318		/*
    319		 * The first argument is NULL in order to avoid circular
    320		 * reference, as this driver takes reference on the
    321		 * sensor subdevice modules and the sensors would take
    322		 * reference on this module through clk_get().
    323		 */
    324		xclk->clk = clk_register(NULL, &xclk->hw);
    325		if (IS_ERR(xclk->clk))
    326			return PTR_ERR(xclk->clk);
    327	}
    328
    329	if (np)
    330		of_clk_add_provider(np, isp_xclk_src_get, isp);
    331
    332	return 0;
    333}
    334
    335static void isp_xclk_cleanup(struct isp_device *isp)
    336{
    337	struct device_node *np = isp->dev->of_node;
    338	unsigned int i;
    339
    340	if (np)
    341		of_clk_del_provider(np);
    342
    343	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
    344		struct isp_xclk *xclk = &isp->xclks[i];
    345
    346		if (!IS_ERR(xclk->clk))
    347			clk_unregister(xclk->clk);
    348	}
    349}
    350
    351/* -----------------------------------------------------------------------------
    352 * Interrupts
    353 */
    354
    355/*
    356 * isp_enable_interrupts - Enable ISP interrupts.
    357 * @isp: OMAP3 ISP device
    358 */
    359static void isp_enable_interrupts(struct isp_device *isp)
    360{
    361	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
    362			     | IRQ0ENABLE_CSIB_IRQ
    363			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
    364			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
    365			     | IRQ0ENABLE_CCDC_VD0_IRQ
    366			     | IRQ0ENABLE_CCDC_VD1_IRQ
    367			     | IRQ0ENABLE_HS_VS_IRQ
    368			     | IRQ0ENABLE_HIST_DONE_IRQ
    369			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
    370			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
    371			     | IRQ0ENABLE_PRV_DONE_IRQ
    372			     | IRQ0ENABLE_RSZ_DONE_IRQ;
    373
    374	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
    375	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
    376}
    377
    378/*
    379 * isp_disable_interrupts - Disable ISP interrupts.
    380 * @isp: OMAP3 ISP device
    381 */
    382static void isp_disable_interrupts(struct isp_device *isp)
    383{
    384	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
    385}
    386
    387/*
    388 * isp_core_init - ISP core settings
    389 * @isp: OMAP3 ISP device
    390 * @idle: Consider idle state.
    391 *
    392 * Set the power settings for the ISP and SBL bus and configure the HS/VS
    393 * interrupt source.
    394 *
    395 * We need to configure the HS/VS interrupt source before interrupts get
    396 * enabled, as the sensor might be free-running and the ISP default setting
    397 * (HS edge) would put an unnecessary burden on the CPU.
    398 */
    399static void isp_core_init(struct isp_device *isp, int idle)
    400{
    401	isp_reg_writel(isp,
    402		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
    403				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
    404			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
    405			((isp->revision == ISP_REVISION_15_0) ?
    406			  ISP_SYSCONFIG_AUTOIDLE : 0),
    407		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
    408
    409	isp_reg_writel(isp,
    410		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
    411		       ISPCTRL_SYNC_DETECT_VSRISE,
    412		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
    413}
    414
    415/*
    416 * Configure the bridge and lane shifter. Valid inputs are
    417 *
    418 * CCDC_INPUT_PARALLEL: Parallel interface
    419 * CCDC_INPUT_CSI2A: CSI2a receiver
    420 * CCDC_INPUT_CCP2B: CCP2b receiver
    421 * CCDC_INPUT_CSI2C: CSI2c receiver
    422 *
    423 * The bridge and lane shifter are configured according to the selected input
    424 * and the ISP platform data.
    425 */
    426void omap3isp_configure_bridge(struct isp_device *isp,
    427			       enum ccdc_input_entity input,
    428			       const struct isp_parallel_cfg *parcfg,
    429			       unsigned int shift, unsigned int bridge)
    430{
    431	u32 ispctrl_val;
    432
    433	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
    434	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
    435	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
    436	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
    437	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
    438	ispctrl_val |= bridge;
    439
    440	switch (input) {
    441	case CCDC_INPUT_PARALLEL:
    442		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
    443		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
    444		shift += parcfg->data_lane_shift;
    445		break;
    446
    447	case CCDC_INPUT_CSI2A:
    448		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
    449		break;
    450
    451	case CCDC_INPUT_CCP2B:
    452		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
    453		break;
    454
    455	case CCDC_INPUT_CSI2C:
    456		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
    457		break;
    458
    459	default:
    460		return;
    461	}
    462
    463	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
    464
    465	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
    466}
    467
    468void omap3isp_hist_dma_done(struct isp_device *isp)
    469{
    470	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
    471	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
    472		/* Histogram cannot be enabled in this frame anymore */
    473		atomic_set(&isp->isp_hist.buf_err, 1);
    474		dev_dbg(isp->dev,
    475			"hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
    476	}
    477}
    478
    479static inline void __maybe_unused isp_isr_dbg(struct isp_device *isp,
    480					      u32 irqstatus)
    481{
    482	static const char *name[] = {
    483		"CSIA_IRQ",
    484		"res1",
    485		"res2",
    486		"CSIB_LCM_IRQ",
    487		"CSIB_IRQ",
    488		"res5",
    489		"res6",
    490		"res7",
    491		"CCDC_VD0_IRQ",
    492		"CCDC_VD1_IRQ",
    493		"CCDC_VD2_IRQ",
    494		"CCDC_ERR_IRQ",
    495		"H3A_AF_DONE_IRQ",
    496		"H3A_AWB_DONE_IRQ",
    497		"res14",
    498		"res15",
    499		"HIST_DONE_IRQ",
    500		"CCDC_LSC_DONE",
    501		"CCDC_LSC_PREFETCH_COMPLETED",
    502		"CCDC_LSC_PREFETCH_ERROR",
    503		"PRV_DONE_IRQ",
    504		"CBUFF_IRQ",
    505		"res22",
    506		"res23",
    507		"RSZ_DONE_IRQ",
    508		"OVF_IRQ",
    509		"res26",
    510		"res27",
    511		"MMU_ERR_IRQ",
    512		"OCP_ERR_IRQ",
    513		"SEC_ERR_IRQ",
    514		"HS_VS_IRQ",
    515	};
    516	int i;
    517
    518	dev_dbg(isp->dev, "ISP IRQ: ");
    519
    520	for (i = 0; i < ARRAY_SIZE(name); i++) {
    521		if ((1 << i) & irqstatus)
    522			printk(KERN_CONT "%s ", name[i]);
    523	}
    524	printk(KERN_CONT "\n");
    525}
    526
    527static void isp_isr_sbl(struct isp_device *isp)
    528{
    529	struct device *dev = isp->dev;
    530	struct isp_pipeline *pipe;
    531	u32 sbl_pcr;
    532
    533	/*
    534	 * Handle shared buffer logic overflows for video buffers.
    535	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
    536	 */
    537	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
    538	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
    539	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
    540
    541	if (sbl_pcr)
    542		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
    543
    544	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
    545		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
    546		if (pipe != NULL)
    547			pipe->error = true;
    548	}
    549
    550	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
    551		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
    552		if (pipe != NULL)
    553			pipe->error = true;
    554	}
    555
    556	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
    557		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
    558		if (pipe != NULL)
    559			pipe->error = true;
    560	}
    561
    562	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
    563		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
    564		if (pipe != NULL)
    565			pipe->error = true;
    566	}
    567
    568	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
    569		       | ISPSBL_PCR_RSZ2_WBL_OVF
    570		       | ISPSBL_PCR_RSZ3_WBL_OVF
    571		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
    572		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
    573		if (pipe != NULL)
    574			pipe->error = true;
    575	}
    576
    577	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
    578		omap3isp_stat_sbl_overflow(&isp->isp_af);
    579
    580	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
    581		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
    582}
    583
    584/*
    585 * isp_isr - Interrupt Service Routine for Camera ISP module.
    586 * @irq: Not used currently.
    587 * @_isp: Pointer to the OMAP3 ISP device
    588 *
    589 * Handles the corresponding callback if plugged in.
    590 */
    591static irqreturn_t isp_isr(int irq, void *_isp)
    592{
    593	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
    594				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
    595				       IRQ0STATUS_CCDC_VD0_IRQ |
    596				       IRQ0STATUS_CCDC_VD1_IRQ |
    597				       IRQ0STATUS_HS_VS_IRQ;
    598	struct isp_device *isp = _isp;
    599	u32 irqstatus;
    600
    601	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
    602	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
    603
    604	isp_isr_sbl(isp);
    605
    606	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
    607		omap3isp_csi2_isr(&isp->isp_csi2a);
    608
    609	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
    610		omap3isp_ccp2_isr(&isp->isp_ccp2);
    611
    612	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
    613		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
    614			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
    615		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
    616			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
    617		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
    618		omap3isp_stat_isr_frame_sync(&isp->isp_af);
    619		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
    620	}
    621
    622	if (irqstatus & ccdc_events)
    623		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
    624
    625	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
    626		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
    627			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
    628		omap3isp_preview_isr(&isp->isp_prev);
    629	}
    630
    631	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
    632		omap3isp_resizer_isr(&isp->isp_res);
    633
    634	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
    635		omap3isp_stat_isr(&isp->isp_aewb);
    636
    637	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
    638		omap3isp_stat_isr(&isp->isp_af);
    639
    640	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
    641		omap3isp_stat_isr(&isp->isp_hist);
    642
    643	omap3isp_flush(isp);
    644
    645#if defined(DEBUG) && defined(ISP_ISR_DEBUG)
    646	isp_isr_dbg(isp, irqstatus);
    647#endif
    648
    649	return IRQ_HANDLED;
    650}
    651
    652static const struct media_device_ops isp_media_ops = {
    653	.link_notify = v4l2_pipeline_link_notify,
    654};
    655
    656/* -----------------------------------------------------------------------------
    657 * Pipeline stream management
    658 */
    659
    660/*
    661 * isp_pipeline_enable - Enable streaming on a pipeline
    662 * @pipe: ISP pipeline
    663 * @mode: Stream mode (single shot or continuous)
    664 *
    665 * Walk the entities chain starting at the pipeline output video node and start
    666 * all modules in the chain in the given mode.
    667 *
    668 * Return 0 if successful, or the return value of the failed video::s_stream
    669 * operation otherwise.
    670 */
    671static int isp_pipeline_enable(struct isp_pipeline *pipe,
    672			       enum isp_pipeline_stream_state mode)
    673{
    674	struct isp_device *isp = pipe->output->isp;
    675	struct media_entity *entity;
    676	struct media_pad *pad;
    677	struct v4l2_subdev *subdev;
    678	unsigned long flags;
    679	int ret;
    680
    681	/* Refuse to start streaming if an entity included in the pipeline has
    682	 * crashed. This check must be performed before the loop below to avoid
    683	 * starting entities if the pipeline won't start anyway (those entities
    684	 * would then likely fail to stop, making the problem worse).
    685	 */
    686	if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
    687		return -EIO;
    688
    689	spin_lock_irqsave(&pipe->lock, flags);
    690	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
    691	spin_unlock_irqrestore(&pipe->lock, flags);
    692
    693	pipe->do_propagation = false;
    694
    695	mutex_lock(&isp->media_dev.graph_mutex);
    696
    697	entity = &pipe->output->video.entity;
    698	while (1) {
    699		pad = &entity->pads[0];
    700		if (!(pad->flags & MEDIA_PAD_FL_SINK))
    701			break;
    702
    703		pad = media_entity_remote_pad(pad);
    704		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
    705			break;
    706
    707		entity = pad->entity;
    708		subdev = media_entity_to_v4l2_subdev(entity);
    709
    710		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
    711		if (ret < 0 && ret != -ENOIOCTLCMD) {
    712			mutex_unlock(&isp->media_dev.graph_mutex);
    713			return ret;
    714		}
    715
    716		if (subdev == &isp->isp_ccdc.subdev) {
    717			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
    718					s_stream, mode);
    719			v4l2_subdev_call(&isp->isp_af.subdev, video,
    720					s_stream, mode);
    721			v4l2_subdev_call(&isp->isp_hist.subdev, video,
    722					s_stream, mode);
    723			pipe->do_propagation = true;
    724		}
    725
    726		/* Stop at the first external sub-device. */
    727		if (subdev->dev != isp->dev)
    728			break;
    729	}
    730
    731	mutex_unlock(&isp->media_dev.graph_mutex);
    732
    733	return 0;
    734}
    735
    736static int isp_pipeline_wait_resizer(struct isp_device *isp)
    737{
    738	return omap3isp_resizer_busy(&isp->isp_res);
    739}
    740
    741static int isp_pipeline_wait_preview(struct isp_device *isp)
    742{
    743	return omap3isp_preview_busy(&isp->isp_prev);
    744}
    745
    746static int isp_pipeline_wait_ccdc(struct isp_device *isp)
    747{
    748	return omap3isp_stat_busy(&isp->isp_af)
    749	    || omap3isp_stat_busy(&isp->isp_aewb)
    750	    || omap3isp_stat_busy(&isp->isp_hist)
    751	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
    752}
    753
    754#define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
    755
    756static int isp_pipeline_wait(struct isp_device *isp,
    757			     int(*busy)(struct isp_device *isp))
    758{
    759	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
    760
    761	while (!time_after(jiffies, timeout)) {
    762		if (!busy(isp))
    763			return 0;
    764	}
    765
    766	return 1;
    767}
    768
    769/*
    770 * isp_pipeline_disable - Disable streaming on a pipeline
    771 * @pipe: ISP pipeline
    772 *
    773 * Walk the entities chain starting at the pipeline output video node and stop
    774 * all modules in the chain. Wait synchronously for the modules to be stopped if
    775 * necessary.
    776 *
    777 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
    778 * can't be stopped (in which case a software reset of the ISP is probably
    779 * necessary).
    780 */
    781static int isp_pipeline_disable(struct isp_pipeline *pipe)
    782{
    783	struct isp_device *isp = pipe->output->isp;
    784	struct media_entity *entity;
    785	struct media_pad *pad;
    786	struct v4l2_subdev *subdev;
    787	int failure = 0;
    788	int ret;
    789
    790	/*
    791	 * We need to stop all the modules after CCDC first or they'll
    792	 * never stop since they may not get a full frame from CCDC.
    793	 */
    794	entity = &pipe->output->video.entity;
    795	while (1) {
    796		pad = &entity->pads[0];
    797		if (!(pad->flags & MEDIA_PAD_FL_SINK))
    798			break;
    799
    800		pad = media_entity_remote_pad(pad);
    801		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
    802			break;
    803
    804		entity = pad->entity;
    805		subdev = media_entity_to_v4l2_subdev(entity);
    806
    807		if (subdev == &isp->isp_ccdc.subdev) {
    808			v4l2_subdev_call(&isp->isp_aewb.subdev,
    809					 video, s_stream, 0);
    810			v4l2_subdev_call(&isp->isp_af.subdev,
    811					 video, s_stream, 0);
    812			v4l2_subdev_call(&isp->isp_hist.subdev,
    813					 video, s_stream, 0);
    814		}
    815
    816		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
    817
    818		/* Stop at the first external sub-device. */
    819		if (subdev->dev != isp->dev)
    820			break;
    821
    822		if (subdev == &isp->isp_res.subdev)
    823			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
    824		else if (subdev == &isp->isp_prev.subdev)
    825			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
    826		else if (subdev == &isp->isp_ccdc.subdev)
    827			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
    828
    829		/* Handle stop failures. An entity that fails to stop can
    830		 * usually just be restarted. Flag the stop failure nonetheless
    831		 * to trigger an ISP reset the next time the device is released,
    832		 * just in case.
    833		 *
    834		 * The preview engine is a special case. A failure to stop can
    835		 * mean a hardware crash. When that happens the preview engine
    836		 * won't respond to read/write operations on the L4 bus anymore,
    837		 * resulting in a bus fault and a kernel oops next time it gets
    838		 * accessed. Mark it as crashed to prevent pipelines including
    839		 * it from being started.
    840		 */
    841		if (ret) {
    842			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
    843			isp->stop_failure = true;
    844			if (subdev == &isp->isp_prev.subdev)
    845				media_entity_enum_set(&isp->crashed,
    846						      &subdev->entity);
    847			failure = -ETIMEDOUT;
    848		}
    849	}
    850
    851	return failure;
    852}
    853
    854/*
    855 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
    856 * @pipe: ISP pipeline
    857 * @state: Stream state (stopped, single shot or continuous)
    858 *
    859 * Set the pipeline to the given stream state. Pipelines can be started in
    860 * single-shot or continuous mode.
    861 *
    862 * Return 0 if successful, or the return value of the failed video::s_stream
    863 * operation otherwise. The pipeline state is not updated when the operation
    864 * fails, except when stopping the pipeline.
    865 */
    866int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
    867				 enum isp_pipeline_stream_state state)
    868{
    869	int ret;
    870
    871	if (state == ISP_PIPELINE_STREAM_STOPPED)
    872		ret = isp_pipeline_disable(pipe);
    873	else
    874		ret = isp_pipeline_enable(pipe, state);
    875
    876	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
    877		pipe->stream_state = state;
    878
    879	return ret;
    880}
    881
    882/*
    883 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
    884 * @pipe: ISP pipeline
    885 *
    886 * Cancelling a stream mark all buffers on all video nodes in the pipeline as
    887 * erroneous and makes sure no new buffer can be queued. This function is called
    888 * when a fatal error that prevents any further operation on the pipeline
    889 * occurs.
    890 */
    891void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
    892{
    893	if (pipe->input)
    894		omap3isp_video_cancel_stream(pipe->input);
    895	if (pipe->output)
    896		omap3isp_video_cancel_stream(pipe->output);
    897}
    898
    899/*
    900 * isp_pipeline_resume - Resume streaming on a pipeline
    901 * @pipe: ISP pipeline
    902 *
    903 * Resume video output and input and re-enable pipeline.
    904 */
    905static void isp_pipeline_resume(struct isp_pipeline *pipe)
    906{
    907	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
    908
    909	omap3isp_video_resume(pipe->output, !singleshot);
    910	if (singleshot)
    911		omap3isp_video_resume(pipe->input, 0);
    912	isp_pipeline_enable(pipe, pipe->stream_state);
    913}
    914
    915/*
    916 * isp_pipeline_suspend - Suspend streaming on a pipeline
    917 * @pipe: ISP pipeline
    918 *
    919 * Suspend pipeline.
    920 */
    921static void isp_pipeline_suspend(struct isp_pipeline *pipe)
    922{
    923	isp_pipeline_disable(pipe);
    924}
    925
    926/*
    927 * isp_pipeline_is_last - Verify if entity has an enabled link to the output
    928 *			  video node
    929 * @me: ISP module's media entity
    930 *
    931 * Returns 1 if the entity has an enabled link to the output video node or 0
    932 * otherwise. It's true only while pipeline can have no more than one output
    933 * node.
    934 */
    935static int isp_pipeline_is_last(struct media_entity *me)
    936{
    937	struct isp_pipeline *pipe;
    938	struct media_pad *pad;
    939
    940	if (!me->pipe)
    941		return 0;
    942	pipe = to_isp_pipeline(me);
    943	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
    944		return 0;
    945	pad = media_entity_remote_pad(&pipe->output->pad);
    946	return pad->entity == me;
    947}
    948
    949/*
    950 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
    951 * @me: ISP module's media entity
    952 *
    953 * Suspend the whole pipeline if module's entity has an enabled link to the
    954 * output video node. It works only while pipeline can have no more than one
    955 * output node.
    956 */
    957static void isp_suspend_module_pipeline(struct media_entity *me)
    958{
    959	if (isp_pipeline_is_last(me))
    960		isp_pipeline_suspend(to_isp_pipeline(me));
    961}
    962
    963/*
    964 * isp_resume_module_pipeline - Resume pipeline to which belongs the module
    965 * @me: ISP module's media entity
    966 *
    967 * Resume the whole pipeline if module's entity has an enabled link to the
    968 * output video node. It works only while pipeline can have no more than one
    969 * output node.
    970 */
    971static void isp_resume_module_pipeline(struct media_entity *me)
    972{
    973	if (isp_pipeline_is_last(me))
    974		isp_pipeline_resume(to_isp_pipeline(me));
    975}
    976
    977/*
    978 * isp_suspend_modules - Suspend ISP submodules.
    979 * @isp: OMAP3 ISP device
    980 *
    981 * Returns 0 if suspend left in idle state all the submodules properly,
    982 * or returns 1 if a general Reset is required to suspend the submodules.
    983 */
    984static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
    985{
    986	unsigned long timeout;
    987
    988	omap3isp_stat_suspend(&isp->isp_aewb);
    989	omap3isp_stat_suspend(&isp->isp_af);
    990	omap3isp_stat_suspend(&isp->isp_hist);
    991	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
    992	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
    993	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
    994	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
    995	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
    996
    997	timeout = jiffies + ISP_STOP_TIMEOUT;
    998	while (omap3isp_stat_busy(&isp->isp_af)
    999	    || omap3isp_stat_busy(&isp->isp_aewb)
   1000	    || omap3isp_stat_busy(&isp->isp_hist)
   1001	    || omap3isp_preview_busy(&isp->isp_prev)
   1002	    || omap3isp_resizer_busy(&isp->isp_res)
   1003	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
   1004		if (time_after(jiffies, timeout)) {
   1005			dev_info(isp->dev, "can't stop modules.\n");
   1006			return 1;
   1007		}
   1008		msleep(1);
   1009	}
   1010
   1011	return 0;
   1012}
   1013
   1014/*
   1015 * isp_resume_modules - Resume ISP submodules.
   1016 * @isp: OMAP3 ISP device
   1017 */
   1018static void __maybe_unused isp_resume_modules(struct isp_device *isp)
   1019{
   1020	omap3isp_stat_resume(&isp->isp_aewb);
   1021	omap3isp_stat_resume(&isp->isp_af);
   1022	omap3isp_stat_resume(&isp->isp_hist);
   1023	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
   1024	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
   1025	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
   1026	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
   1027	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
   1028}
   1029
   1030/*
   1031 * isp_reset - Reset ISP with a timeout wait for idle.
   1032 * @isp: OMAP3 ISP device
   1033 */
   1034static int isp_reset(struct isp_device *isp)
   1035{
   1036	unsigned long timeout = 0;
   1037
   1038	isp_reg_writel(isp,
   1039		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
   1040		       | ISP_SYSCONFIG_SOFTRESET,
   1041		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
   1042	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
   1043			       ISP_SYSSTATUS) & 0x1)) {
   1044		if (timeout++ > 10000) {
   1045			dev_alert(isp->dev, "cannot reset ISP\n");
   1046			return -ETIMEDOUT;
   1047		}
   1048		udelay(1);
   1049	}
   1050
   1051	isp->stop_failure = false;
   1052	media_entity_enum_zero(&isp->crashed);
   1053	return 0;
   1054}
   1055
   1056/*
   1057 * isp_save_context - Saves the values of the ISP module registers.
   1058 * @isp: OMAP3 ISP device
   1059 * @reg_list: Structure containing pairs of register address and value to
   1060 *            modify on OMAP.
   1061 */
   1062static void
   1063isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
   1064{
   1065	struct isp_reg *next = reg_list;
   1066
   1067	for (; next->reg != ISP_TOK_TERM; next++)
   1068		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
   1069}
   1070
   1071/*
   1072 * isp_restore_context - Restores the values of the ISP module registers.
   1073 * @isp: OMAP3 ISP device
   1074 * @reg_list: Structure containing pairs of register address and value to
   1075 *            modify on OMAP.
   1076 */
   1077static void
   1078isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
   1079{
   1080	struct isp_reg *next = reg_list;
   1081
   1082	for (; next->reg != ISP_TOK_TERM; next++)
   1083		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
   1084}
   1085
   1086/*
   1087 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
   1088 * @isp: OMAP3 ISP device
   1089 *
   1090 * Routine for saving the context of each module in the ISP.
   1091 * CCDC, HIST, H3A, PREV, RESZ and MMU.
   1092 */
   1093static void isp_save_ctx(struct isp_device *isp)
   1094{
   1095	isp_save_context(isp, isp_reg_list);
   1096	omap_iommu_save_ctx(isp->dev);
   1097}
   1098
   1099/*
   1100 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
   1101 * @isp: OMAP3 ISP device
   1102 *
   1103 * Routine for restoring the context of each module in the ISP.
   1104 * CCDC, HIST, H3A, PREV, RESZ and MMU.
   1105 */
   1106static void isp_restore_ctx(struct isp_device *isp)
   1107{
   1108	isp_restore_context(isp, isp_reg_list);
   1109	omap_iommu_restore_ctx(isp->dev);
   1110	omap3isp_ccdc_restore_context(isp);
   1111	omap3isp_preview_restore_context(isp);
   1112}
   1113
   1114/* -----------------------------------------------------------------------------
   1115 * SBL resources management
   1116 */
   1117#define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
   1118				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
   1119				 OMAP3_ISP_SBL_PREVIEW_READ | \
   1120				 OMAP3_ISP_SBL_RESIZER_READ)
   1121#define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
   1122				 OMAP3_ISP_SBL_CSI2A_WRITE | \
   1123				 OMAP3_ISP_SBL_CSI2C_WRITE | \
   1124				 OMAP3_ISP_SBL_CCDC_WRITE | \
   1125				 OMAP3_ISP_SBL_PREVIEW_WRITE)
   1126
   1127void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
   1128{
   1129	u32 sbl = 0;
   1130
   1131	isp->sbl_resources |= res;
   1132
   1133	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
   1134		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
   1135
   1136	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
   1137		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
   1138
   1139	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
   1140		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
   1141
   1142	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
   1143		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
   1144
   1145	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
   1146		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
   1147
   1148	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
   1149		sbl |= ISPCTRL_SBL_RD_RAM_EN;
   1150
   1151	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
   1152}
   1153
   1154void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
   1155{
   1156	u32 sbl = 0;
   1157
   1158	isp->sbl_resources &= ~res;
   1159
   1160	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
   1161		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
   1162
   1163	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
   1164		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
   1165
   1166	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
   1167		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
   1168
   1169	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
   1170		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
   1171
   1172	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
   1173		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
   1174
   1175	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
   1176		sbl |= ISPCTRL_SBL_RD_RAM_EN;
   1177
   1178	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
   1179}
   1180
   1181/*
   1182 * isp_module_sync_idle - Helper to sync module with its idle state
   1183 * @me: ISP submodule's media entity
   1184 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
   1185 * @stopping: flag which tells module wants to stop
   1186 *
   1187 * This function checks if ISP submodule needs to wait for next interrupt. If
   1188 * yes, makes the caller to sleep while waiting for such event.
   1189 */
   1190int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
   1191			      atomic_t *stopping)
   1192{
   1193	struct isp_pipeline *pipe = to_isp_pipeline(me);
   1194
   1195	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
   1196	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
   1197	     !isp_pipeline_ready(pipe)))
   1198		return 0;
   1199
   1200	/*
   1201	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
   1202	 * scenario. We'll call it here to avoid race conditions.
   1203	 */
   1204	atomic_set(stopping, 1);
   1205	smp_mb();
   1206
   1207	/*
   1208	 * If module is the last one, it's writing to memory. In this case,
   1209	 * it's necessary to check if the module is already paused due to
   1210	 * DMA queue underrun or if it has to wait for next interrupt to be
   1211	 * idle.
   1212	 * If it isn't the last one, the function won't sleep but *stopping
   1213	 * will still be set to warn next submodule caller's interrupt the
   1214	 * module wants to be idle.
   1215	 */
   1216	if (isp_pipeline_is_last(me)) {
   1217		struct isp_video *video = pipe->output;
   1218		unsigned long flags;
   1219		spin_lock_irqsave(&video->irqlock, flags);
   1220		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
   1221			spin_unlock_irqrestore(&video->irqlock, flags);
   1222			atomic_set(stopping, 0);
   1223			smp_mb();
   1224			return 0;
   1225		}
   1226		spin_unlock_irqrestore(&video->irqlock, flags);
   1227		if (!wait_event_timeout(*wait, !atomic_read(stopping),
   1228					msecs_to_jiffies(1000))) {
   1229			atomic_set(stopping, 0);
   1230			smp_mb();
   1231			return -ETIMEDOUT;
   1232		}
   1233	}
   1234
   1235	return 0;
   1236}
   1237
   1238/*
   1239 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
   1240 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
   1241 * @stopping: flag which tells module wants to stop
   1242 *
   1243 * This function checks if ISP submodule was stopping. In case of yes, it
   1244 * notices the caller by setting stopping to 0 and waking up the wait queue.
   1245 * Returns 1 if it was stopping or 0 otherwise.
   1246 */
   1247int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
   1248				     atomic_t *stopping)
   1249{
   1250	if (atomic_cmpxchg(stopping, 1, 0)) {
   1251		wake_up(wait);
   1252		return 1;
   1253	}
   1254
   1255	return 0;
   1256}
   1257
   1258/* --------------------------------------------------------------------------
   1259 * Clock management
   1260 */
   1261
   1262#define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
   1263				 ISPCTRL_HIST_CLK_EN | \
   1264				 ISPCTRL_RSZ_CLK_EN | \
   1265				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
   1266				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
   1267
   1268static void __isp_subclk_update(struct isp_device *isp)
   1269{
   1270	u32 clk = 0;
   1271
   1272	/* AEWB and AF share the same clock. */
   1273	if (isp->subclk_resources &
   1274	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
   1275		clk |= ISPCTRL_H3A_CLK_EN;
   1276
   1277	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
   1278		clk |= ISPCTRL_HIST_CLK_EN;
   1279
   1280	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
   1281		clk |= ISPCTRL_RSZ_CLK_EN;
   1282
   1283	/* NOTE: For CCDC & Preview submodules, we need to affect internal
   1284	 *       RAM as well.
   1285	 */
   1286	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
   1287		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
   1288
   1289	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
   1290		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
   1291
   1292	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
   1293			ISPCTRL_CLKS_MASK, clk);
   1294}
   1295
   1296void omap3isp_subclk_enable(struct isp_device *isp,
   1297			    enum isp_subclk_resource res)
   1298{
   1299	isp->subclk_resources |= res;
   1300
   1301	__isp_subclk_update(isp);
   1302}
   1303
   1304void omap3isp_subclk_disable(struct isp_device *isp,
   1305			     enum isp_subclk_resource res)
   1306{
   1307	isp->subclk_resources &= ~res;
   1308
   1309	__isp_subclk_update(isp);
   1310}
   1311
   1312/*
   1313 * isp_enable_clocks - Enable ISP clocks
   1314 * @isp: OMAP3 ISP device
   1315 *
   1316 * Return 0 if successful, or clk_prepare_enable return value if any of them
   1317 * fails.
   1318 */
   1319static int isp_enable_clocks(struct isp_device *isp)
   1320{
   1321	int r;
   1322	unsigned long rate;
   1323
   1324	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
   1325	if (r) {
   1326		dev_err(isp->dev, "failed to enable cam_ick clock\n");
   1327		goto out_clk_enable_ick;
   1328	}
   1329	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
   1330	if (r) {
   1331		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
   1332		goto out_clk_enable_mclk;
   1333	}
   1334	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
   1335	if (r) {
   1336		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
   1337		goto out_clk_enable_mclk;
   1338	}
   1339	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
   1340	if (rate != CM_CAM_MCLK_HZ)
   1341		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
   1342				   " expected : %d\n"
   1343				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
   1344	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
   1345	if (r) {
   1346		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
   1347		goto out_clk_enable_csi2_fclk;
   1348	}
   1349	return 0;
   1350
   1351out_clk_enable_csi2_fclk:
   1352	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
   1353out_clk_enable_mclk:
   1354	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
   1355out_clk_enable_ick:
   1356	return r;
   1357}
   1358
   1359/*
   1360 * isp_disable_clocks - Disable ISP clocks
   1361 * @isp: OMAP3 ISP device
   1362 */
   1363static void isp_disable_clocks(struct isp_device *isp)
   1364{
   1365	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
   1366	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
   1367	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
   1368}
   1369
   1370static const char *isp_clocks[] = {
   1371	"cam_ick",
   1372	"cam_mclk",
   1373	"csi2_96m_fck",
   1374	"l3_ick",
   1375};
   1376
   1377static int isp_get_clocks(struct isp_device *isp)
   1378{
   1379	struct clk *clk;
   1380	unsigned int i;
   1381
   1382	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
   1383		clk = devm_clk_get(isp->dev, isp_clocks[i]);
   1384		if (IS_ERR(clk)) {
   1385			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
   1386			return PTR_ERR(clk);
   1387		}
   1388
   1389		isp->clock[i] = clk;
   1390	}
   1391
   1392	return 0;
   1393}
   1394
   1395/*
   1396 * omap3isp_get - Acquire the ISP resource.
   1397 *
   1398 * Initializes the clocks for the first acquire.
   1399 *
   1400 * Increment the reference count on the ISP. If the first reference is taken,
   1401 * enable clocks and power-up all submodules.
   1402 *
   1403 * Return a pointer to the ISP device structure, or NULL if an error occurred.
   1404 */
   1405static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
   1406{
   1407	struct isp_device *__isp = isp;
   1408
   1409	if (isp == NULL)
   1410		return NULL;
   1411
   1412	mutex_lock(&isp->isp_mutex);
   1413	if (isp->ref_count > 0)
   1414		goto out;
   1415
   1416	if (isp_enable_clocks(isp) < 0) {
   1417		__isp = NULL;
   1418		goto out;
   1419	}
   1420
   1421	/* We don't want to restore context before saving it! */
   1422	if (isp->has_context)
   1423		isp_restore_ctx(isp);
   1424
   1425	if (irq)
   1426		isp_enable_interrupts(isp);
   1427
   1428out:
   1429	if (__isp != NULL)
   1430		isp->ref_count++;
   1431	mutex_unlock(&isp->isp_mutex);
   1432
   1433	return __isp;
   1434}
   1435
   1436struct isp_device *omap3isp_get(struct isp_device *isp)
   1437{
   1438	return __omap3isp_get(isp, true);
   1439}
   1440
   1441/*
   1442 * omap3isp_put - Release the ISP
   1443 *
   1444 * Decrement the reference count on the ISP. If the last reference is released,
   1445 * power-down all submodules, disable clocks and free temporary buffers.
   1446 */
   1447static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
   1448{
   1449	if (isp == NULL)
   1450		return;
   1451
   1452	mutex_lock(&isp->isp_mutex);
   1453	BUG_ON(isp->ref_count == 0);
   1454	if (--isp->ref_count == 0) {
   1455		isp_disable_interrupts(isp);
   1456		if (save_ctx) {
   1457			isp_save_ctx(isp);
   1458			isp->has_context = 1;
   1459		}
   1460		/* Reset the ISP if an entity has failed to stop. This is the
   1461		 * only way to recover from such conditions.
   1462		 */
   1463		if (!media_entity_enum_empty(&isp->crashed) ||
   1464		    isp->stop_failure)
   1465			isp_reset(isp);
   1466		isp_disable_clocks(isp);
   1467	}
   1468	mutex_unlock(&isp->isp_mutex);
   1469}
   1470
   1471void omap3isp_put(struct isp_device *isp)
   1472{
   1473	__omap3isp_put(isp, true);
   1474}
   1475
   1476/* --------------------------------------------------------------------------
   1477 * Platform device driver
   1478 */
   1479
   1480/*
   1481 * omap3isp_print_status - Prints the values of the ISP Control Module registers
   1482 * @isp: OMAP3 ISP device
   1483 */
   1484#define ISP_PRINT_REGISTER(isp, name)\
   1485	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
   1486		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
   1487#define SBL_PRINT_REGISTER(isp, name)\
   1488	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
   1489		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
   1490
   1491void omap3isp_print_status(struct isp_device *isp)
   1492{
   1493	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
   1494
   1495	ISP_PRINT_REGISTER(isp, SYSCONFIG);
   1496	ISP_PRINT_REGISTER(isp, SYSSTATUS);
   1497	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
   1498	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
   1499	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
   1500	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
   1501	ISP_PRINT_REGISTER(isp, CTRL);
   1502	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
   1503	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
   1504	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
   1505	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
   1506	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
   1507	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
   1508	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
   1509	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
   1510
   1511	SBL_PRINT_REGISTER(isp, PCR);
   1512	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
   1513
   1514	dev_dbg(isp->dev, "--------------------------------------------\n");
   1515}
   1516
   1517#ifdef CONFIG_PM
   1518
   1519/*
   1520 * Power management support.
   1521 *
   1522 * As the ISP can't properly handle an input video stream interruption on a non
   1523 * frame boundary, the ISP pipelines need to be stopped before sensors get
   1524 * suspended. However, as suspending the sensors can require a running clock,
   1525 * which can be provided by the ISP, the ISP can't be completely suspended
   1526 * before the sensor.
   1527 *
   1528 * To solve this problem power management support is split into prepare/complete
   1529 * and suspend/resume operations. The pipelines are stopped in prepare() and the
   1530 * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
   1531 * resume(), and the the pipelines are restarted in complete().
   1532 *
   1533 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
   1534 * yet.
   1535 */
   1536static int isp_pm_prepare(struct device *dev)
   1537{
   1538	struct isp_device *isp = dev_get_drvdata(dev);
   1539	int reset;
   1540
   1541	WARN_ON(mutex_is_locked(&isp->isp_mutex));
   1542
   1543	if (isp->ref_count == 0)
   1544		return 0;
   1545
   1546	reset = isp_suspend_modules(isp);
   1547	isp_disable_interrupts(isp);
   1548	isp_save_ctx(isp);
   1549	if (reset)
   1550		isp_reset(isp);
   1551
   1552	return 0;
   1553}
   1554
   1555static int isp_pm_suspend(struct device *dev)
   1556{
   1557	struct isp_device *isp = dev_get_drvdata(dev);
   1558
   1559	WARN_ON(mutex_is_locked(&isp->isp_mutex));
   1560
   1561	if (isp->ref_count)
   1562		isp_disable_clocks(isp);
   1563
   1564	return 0;
   1565}
   1566
   1567static int isp_pm_resume(struct device *dev)
   1568{
   1569	struct isp_device *isp = dev_get_drvdata(dev);
   1570
   1571	if (isp->ref_count == 0)
   1572		return 0;
   1573
   1574	return isp_enable_clocks(isp);
   1575}
   1576
   1577static void isp_pm_complete(struct device *dev)
   1578{
   1579	struct isp_device *isp = dev_get_drvdata(dev);
   1580
   1581	if (isp->ref_count == 0)
   1582		return;
   1583
   1584	isp_restore_ctx(isp);
   1585	isp_enable_interrupts(isp);
   1586	isp_resume_modules(isp);
   1587}
   1588
   1589#else
   1590
   1591#define isp_pm_prepare	NULL
   1592#define isp_pm_suspend	NULL
   1593#define isp_pm_resume	NULL
   1594#define isp_pm_complete	NULL
   1595
   1596#endif /* CONFIG_PM */
   1597
   1598static void isp_unregister_entities(struct isp_device *isp)
   1599{
   1600	media_device_unregister(&isp->media_dev);
   1601
   1602	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
   1603	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
   1604	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
   1605	omap3isp_preview_unregister_entities(&isp->isp_prev);
   1606	omap3isp_resizer_unregister_entities(&isp->isp_res);
   1607	omap3isp_stat_unregister_entities(&isp->isp_aewb);
   1608	omap3isp_stat_unregister_entities(&isp->isp_af);
   1609	omap3isp_stat_unregister_entities(&isp->isp_hist);
   1610
   1611	v4l2_device_unregister(&isp->v4l2_dev);
   1612	media_device_cleanup(&isp->media_dev);
   1613}
   1614
   1615static int isp_link_entity(
   1616	struct isp_device *isp, struct media_entity *entity,
   1617	enum isp_interface_type interface)
   1618{
   1619	struct media_entity *input;
   1620	unsigned int flags;
   1621	unsigned int pad;
   1622	unsigned int i;
   1623
   1624	/* Connect the sensor to the correct interface module.
   1625	 * Parallel sensors are connected directly to the CCDC, while
   1626	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
   1627	 * receiver through CSIPHY1 or CSIPHY2.
   1628	 */
   1629	switch (interface) {
   1630	case ISP_INTERFACE_PARALLEL:
   1631		input = &isp->isp_ccdc.subdev.entity;
   1632		pad = CCDC_PAD_SINK;
   1633		flags = 0;
   1634		break;
   1635
   1636	case ISP_INTERFACE_CSI2A_PHY2:
   1637		input = &isp->isp_csi2a.subdev.entity;
   1638		pad = CSI2_PAD_SINK;
   1639		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
   1640		break;
   1641
   1642	case ISP_INTERFACE_CCP2B_PHY1:
   1643	case ISP_INTERFACE_CCP2B_PHY2:
   1644		input = &isp->isp_ccp2.subdev.entity;
   1645		pad = CCP2_PAD_SINK;
   1646		flags = 0;
   1647		break;
   1648
   1649	case ISP_INTERFACE_CSI2C_PHY1:
   1650		input = &isp->isp_csi2c.subdev.entity;
   1651		pad = CSI2_PAD_SINK;
   1652		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
   1653		break;
   1654
   1655	default:
   1656		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
   1657			interface);
   1658		return -EINVAL;
   1659	}
   1660
   1661	/*
   1662	 * Not all interfaces are available on all revisions of the
   1663	 * ISP. The sub-devices of those interfaces aren't initialised
   1664	 * in such a case. Check this by ensuring the num_pads is
   1665	 * non-zero.
   1666	 */
   1667	if (!input->num_pads) {
   1668		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
   1669			interface);
   1670		return -EINVAL;
   1671	}
   1672
   1673	for (i = 0; i < entity->num_pads; i++) {
   1674		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
   1675			break;
   1676	}
   1677	if (i == entity->num_pads) {
   1678		dev_err(isp->dev, "%s: no source pad in external entity %s\n",
   1679			__func__, entity->name);
   1680		return -EINVAL;
   1681	}
   1682
   1683	return media_create_pad_link(entity, i, input, pad, flags);
   1684}
   1685
   1686static int isp_register_entities(struct isp_device *isp)
   1687{
   1688	int ret;
   1689
   1690	isp->media_dev.dev = isp->dev;
   1691	strscpy(isp->media_dev.model, "TI OMAP3 ISP",
   1692		sizeof(isp->media_dev.model));
   1693	isp->media_dev.hw_revision = isp->revision;
   1694	isp->media_dev.ops = &isp_media_ops;
   1695	media_device_init(&isp->media_dev);
   1696
   1697	isp->v4l2_dev.mdev = &isp->media_dev;
   1698	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
   1699	if (ret < 0) {
   1700		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
   1701			__func__, ret);
   1702		goto done;
   1703	}
   1704
   1705	/* Register internal entities */
   1706	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
   1707	if (ret < 0)
   1708		goto done;
   1709
   1710	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
   1711	if (ret < 0)
   1712		goto done;
   1713
   1714	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
   1715	if (ret < 0)
   1716		goto done;
   1717
   1718	ret = omap3isp_preview_register_entities(&isp->isp_prev,
   1719						 &isp->v4l2_dev);
   1720	if (ret < 0)
   1721		goto done;
   1722
   1723	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
   1724	if (ret < 0)
   1725		goto done;
   1726
   1727	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
   1728	if (ret < 0)
   1729		goto done;
   1730
   1731	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
   1732	if (ret < 0)
   1733		goto done;
   1734
   1735	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
   1736	if (ret < 0)
   1737		goto done;
   1738
   1739done:
   1740	if (ret < 0)
   1741		isp_unregister_entities(isp);
   1742
   1743	return ret;
   1744}
   1745
   1746/*
   1747 * isp_create_links() - Create links for internal and external ISP entities
   1748 * @isp : Pointer to ISP device
   1749 *
   1750 * This function creates all links between ISP internal and external entities.
   1751 *
   1752 * Return: A negative error code on failure or zero on success. Possible error
   1753 * codes are those returned by media_create_pad_link().
   1754 */
   1755static int isp_create_links(struct isp_device *isp)
   1756{
   1757	int ret;
   1758
   1759	/* Create links between entities and video nodes. */
   1760	ret = media_create_pad_link(
   1761			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
   1762			&isp->isp_csi2a.video_out.video.entity, 0, 0);
   1763	if (ret < 0)
   1764		return ret;
   1765
   1766	ret = media_create_pad_link(
   1767			&isp->isp_ccp2.video_in.video.entity, 0,
   1768			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
   1769	if (ret < 0)
   1770		return ret;
   1771
   1772	ret = media_create_pad_link(
   1773			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
   1774			&isp->isp_ccdc.video_out.video.entity, 0, 0);
   1775	if (ret < 0)
   1776		return ret;
   1777
   1778	ret = media_create_pad_link(
   1779			&isp->isp_prev.video_in.video.entity, 0,
   1780			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
   1781	if (ret < 0)
   1782		return ret;
   1783
   1784	ret = media_create_pad_link(
   1785			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
   1786			&isp->isp_prev.video_out.video.entity, 0, 0);
   1787	if (ret < 0)
   1788		return ret;
   1789
   1790	ret = media_create_pad_link(
   1791			&isp->isp_res.video_in.video.entity, 0,
   1792			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
   1793	if (ret < 0)
   1794		return ret;
   1795
   1796	ret = media_create_pad_link(
   1797			&isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
   1798			&isp->isp_res.video_out.video.entity, 0, 0);
   1799
   1800	if (ret < 0)
   1801		return ret;
   1802
   1803	/* Create links between entities. */
   1804	ret = media_create_pad_link(
   1805			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
   1806			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
   1807	if (ret < 0)
   1808		return ret;
   1809
   1810	ret = media_create_pad_link(
   1811			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
   1812			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
   1813	if (ret < 0)
   1814		return ret;
   1815
   1816	ret = media_create_pad_link(
   1817			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
   1818			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
   1819	if (ret < 0)
   1820		return ret;
   1821
   1822	ret = media_create_pad_link(
   1823			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
   1824			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
   1825	if (ret < 0)
   1826		return ret;
   1827
   1828	ret = media_create_pad_link(
   1829			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
   1830			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
   1831	if (ret < 0)
   1832		return ret;
   1833
   1834	ret = media_create_pad_link(
   1835			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
   1836			&isp->isp_aewb.subdev.entity, 0,
   1837			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
   1838	if (ret < 0)
   1839		return ret;
   1840
   1841	ret = media_create_pad_link(
   1842			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
   1843			&isp->isp_af.subdev.entity, 0,
   1844			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
   1845	if (ret < 0)
   1846		return ret;
   1847
   1848	ret = media_create_pad_link(
   1849			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
   1850			&isp->isp_hist.subdev.entity, 0,
   1851			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
   1852	if (ret < 0)
   1853		return ret;
   1854
   1855	return 0;
   1856}
   1857
   1858static void isp_cleanup_modules(struct isp_device *isp)
   1859{
   1860	omap3isp_h3a_aewb_cleanup(isp);
   1861	omap3isp_h3a_af_cleanup(isp);
   1862	omap3isp_hist_cleanup(isp);
   1863	omap3isp_resizer_cleanup(isp);
   1864	omap3isp_preview_cleanup(isp);
   1865	omap3isp_ccdc_cleanup(isp);
   1866	omap3isp_ccp2_cleanup(isp);
   1867	omap3isp_csi2_cleanup(isp);
   1868	omap3isp_csiphy_cleanup(isp);
   1869}
   1870
   1871static int isp_initialize_modules(struct isp_device *isp)
   1872{
   1873	int ret;
   1874
   1875	ret = omap3isp_csiphy_init(isp);
   1876	if (ret < 0) {
   1877		dev_err(isp->dev, "CSI PHY initialization failed\n");
   1878		return ret;
   1879	}
   1880
   1881	ret = omap3isp_csi2_init(isp);
   1882	if (ret < 0) {
   1883		dev_err(isp->dev, "CSI2 initialization failed\n");
   1884		goto error_csi2;
   1885	}
   1886
   1887	ret = omap3isp_ccp2_init(isp);
   1888	if (ret < 0) {
   1889		if (ret != -EPROBE_DEFER)
   1890			dev_err(isp->dev, "CCP2 initialization failed\n");
   1891		goto error_ccp2;
   1892	}
   1893
   1894	ret = omap3isp_ccdc_init(isp);
   1895	if (ret < 0) {
   1896		dev_err(isp->dev, "CCDC initialization failed\n");
   1897		goto error_ccdc;
   1898	}
   1899
   1900	ret = omap3isp_preview_init(isp);
   1901	if (ret < 0) {
   1902		dev_err(isp->dev, "Preview initialization failed\n");
   1903		goto error_preview;
   1904	}
   1905
   1906	ret = omap3isp_resizer_init(isp);
   1907	if (ret < 0) {
   1908		dev_err(isp->dev, "Resizer initialization failed\n");
   1909		goto error_resizer;
   1910	}
   1911
   1912	ret = omap3isp_hist_init(isp);
   1913	if (ret < 0) {
   1914		dev_err(isp->dev, "Histogram initialization failed\n");
   1915		goto error_hist;
   1916	}
   1917
   1918	ret = omap3isp_h3a_aewb_init(isp);
   1919	if (ret < 0) {
   1920		dev_err(isp->dev, "H3A AEWB initialization failed\n");
   1921		goto error_h3a_aewb;
   1922	}
   1923
   1924	ret = omap3isp_h3a_af_init(isp);
   1925	if (ret < 0) {
   1926		dev_err(isp->dev, "H3A AF initialization failed\n");
   1927		goto error_h3a_af;
   1928	}
   1929
   1930	return 0;
   1931
   1932error_h3a_af:
   1933	omap3isp_h3a_aewb_cleanup(isp);
   1934error_h3a_aewb:
   1935	omap3isp_hist_cleanup(isp);
   1936error_hist:
   1937	omap3isp_resizer_cleanup(isp);
   1938error_resizer:
   1939	omap3isp_preview_cleanup(isp);
   1940error_preview:
   1941	omap3isp_ccdc_cleanup(isp);
   1942error_ccdc:
   1943	omap3isp_ccp2_cleanup(isp);
   1944error_ccp2:
   1945	omap3isp_csi2_cleanup(isp);
   1946error_csi2:
   1947	omap3isp_csiphy_cleanup(isp);
   1948
   1949	return ret;
   1950}
   1951
   1952static void isp_detach_iommu(struct isp_device *isp)
   1953{
   1954#ifdef CONFIG_ARM_DMA_USE_IOMMU
   1955	arm_iommu_detach_device(isp->dev);
   1956	arm_iommu_release_mapping(isp->mapping);
   1957	isp->mapping = NULL;
   1958#endif
   1959}
   1960
   1961static int isp_attach_iommu(struct isp_device *isp)
   1962{
   1963#ifdef CONFIG_ARM_DMA_USE_IOMMU
   1964	struct dma_iommu_mapping *mapping;
   1965	int ret;
   1966
   1967	/*
   1968	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
   1969	 * VAs. This will allocate a corresponding IOMMU domain.
   1970	 */
   1971	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
   1972	if (IS_ERR(mapping)) {
   1973		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
   1974		return PTR_ERR(mapping);
   1975	}
   1976
   1977	isp->mapping = mapping;
   1978
   1979	/* Attach the ARM VA mapping to the device. */
   1980	ret = arm_iommu_attach_device(isp->dev, mapping);
   1981	if (ret < 0) {
   1982		dev_err(isp->dev, "failed to attach device to VA mapping\n");
   1983		goto error;
   1984	}
   1985
   1986	return 0;
   1987
   1988error:
   1989	arm_iommu_release_mapping(isp->mapping);
   1990	isp->mapping = NULL;
   1991	return ret;
   1992#else
   1993	return -ENODEV;
   1994#endif
   1995}
   1996
   1997/*
   1998 * isp_remove - Remove ISP platform device
   1999 * @pdev: Pointer to ISP platform device
   2000 *
   2001 * Always returns 0.
   2002 */
   2003static int isp_remove(struct platform_device *pdev)
   2004{
   2005	struct isp_device *isp = platform_get_drvdata(pdev);
   2006
   2007	v4l2_async_nf_unregister(&isp->notifier);
   2008	isp_unregister_entities(isp);
   2009	isp_cleanup_modules(isp);
   2010	isp_xclk_cleanup(isp);
   2011
   2012	__omap3isp_get(isp, false);
   2013	isp_detach_iommu(isp);
   2014	__omap3isp_put(isp, false);
   2015
   2016	media_entity_enum_cleanup(&isp->crashed);
   2017	v4l2_async_nf_cleanup(&isp->notifier);
   2018
   2019	kfree(isp);
   2020
   2021	return 0;
   2022}
   2023
   2024enum isp_of_phy {
   2025	ISP_OF_PHY_PARALLEL = 0,
   2026	ISP_OF_PHY_CSIPHY1,
   2027	ISP_OF_PHY_CSIPHY2,
   2028};
   2029
   2030static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
   2031{
   2032	struct isp_device *isp = container_of(async, struct isp_device,
   2033					      notifier);
   2034	struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
   2035	struct v4l2_subdev *sd;
   2036	int ret;
   2037
   2038	mutex_lock(&isp->media_dev.graph_mutex);
   2039
   2040	ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
   2041	if (ret) {
   2042		mutex_unlock(&isp->media_dev.graph_mutex);
   2043		return ret;
   2044	}
   2045
   2046	list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
   2047		if (sd->notifier != &isp->notifier)
   2048			continue;
   2049
   2050		ret = isp_link_entity(isp, &sd->entity,
   2051				      v4l2_subdev_to_bus_cfg(sd)->interface);
   2052		if (ret < 0) {
   2053			mutex_unlock(&isp->media_dev.graph_mutex);
   2054			return ret;
   2055		}
   2056	}
   2057
   2058	mutex_unlock(&isp->media_dev.graph_mutex);
   2059
   2060	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
   2061	if (ret < 0)
   2062		return ret;
   2063
   2064	return media_device_register(&isp->media_dev);
   2065}
   2066
   2067static void isp_parse_of_parallel_endpoint(struct device *dev,
   2068					   struct v4l2_fwnode_endpoint *vep,
   2069					   struct isp_bus_cfg *buscfg)
   2070{
   2071	buscfg->interface = ISP_INTERFACE_PARALLEL;
   2072	buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift;
   2073	buscfg->bus.parallel.clk_pol =
   2074		!!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING);
   2075	buscfg->bus.parallel.hs_pol =
   2076		!!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
   2077	buscfg->bus.parallel.vs_pol =
   2078		!!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
   2079	buscfg->bus.parallel.fld_pol =
   2080		!!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
   2081	buscfg->bus.parallel.data_pol =
   2082		!!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
   2083	buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
   2084}
   2085
   2086static void isp_parse_of_csi2_endpoint(struct device *dev,
   2087				       struct v4l2_fwnode_endpoint *vep,
   2088				       struct isp_bus_cfg *buscfg)
   2089{
   2090	unsigned int i;
   2091
   2092	buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane;
   2093	buscfg->bus.csi2.lanecfg.clk.pol =
   2094		vep->bus.mipi_csi2.lane_polarities[0];
   2095	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
   2096		buscfg->bus.csi2.lanecfg.clk.pol,
   2097		buscfg->bus.csi2.lanecfg.clk.pos);
   2098
   2099	buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes;
   2100
   2101	for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
   2102		buscfg->bus.csi2.lanecfg.data[i].pos =
   2103			vep->bus.mipi_csi2.data_lanes[i];
   2104		buscfg->bus.csi2.lanecfg.data[i].pol =
   2105			vep->bus.mipi_csi2.lane_polarities[i + 1];
   2106		dev_dbg(dev,
   2107			"data lane %u polarity %u, pos %u\n", i,
   2108			buscfg->bus.csi2.lanecfg.data[i].pol,
   2109			buscfg->bus.csi2.lanecfg.data[i].pos);
   2110	}
   2111	/*
   2112	 * FIXME: now we assume the CRC is always there. Implement a way to
   2113	 * obtain this information from the sensor. Frame descriptors, perhaps?
   2114	 */
   2115	buscfg->bus.csi2.crc = 1;
   2116}
   2117
   2118static void isp_parse_of_csi1_endpoint(struct device *dev,
   2119				       struct v4l2_fwnode_endpoint *vep,
   2120				       struct isp_bus_cfg *buscfg)
   2121{
   2122	buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane;
   2123	buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0];
   2124	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
   2125		buscfg->bus.ccp2.lanecfg.clk.pol,
   2126	buscfg->bus.ccp2.lanecfg.clk.pos);
   2127
   2128	buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane;
   2129	buscfg->bus.ccp2.lanecfg.data[0].pol =
   2130		vep->bus.mipi_csi1.lane_polarity[1];
   2131
   2132	dev_dbg(dev, "data lane polarity %u, pos %u\n",
   2133		buscfg->bus.ccp2.lanecfg.data[0].pol,
   2134		buscfg->bus.ccp2.lanecfg.data[0].pos);
   2135
   2136	buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv;
   2137	buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
   2138	buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2;
   2139	buscfg->bus.ccp2.vp_clk_pol = 1;
   2140
   2141	buscfg->bus.ccp2.crc = 1;
   2142}
   2143
   2144static struct {
   2145	u32 phy;
   2146	u32 csi2_if;
   2147	u32 csi1_if;
   2148} isp_bus_interfaces[2] = {
   2149	{ ISP_OF_PHY_CSIPHY1,
   2150	  ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 },
   2151	{ ISP_OF_PHY_CSIPHY2,
   2152	  ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 },
   2153};
   2154
   2155static int isp_parse_of_endpoints(struct isp_device *isp)
   2156{
   2157	struct fwnode_handle *ep;
   2158	struct isp_async_subdev *isd = NULL;
   2159	unsigned int i;
   2160
   2161	ep = fwnode_graph_get_endpoint_by_id(
   2162		dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0,
   2163		FWNODE_GRAPH_ENDPOINT_NEXT);
   2164
   2165	if (ep) {
   2166		struct v4l2_fwnode_endpoint vep = {
   2167			.bus_type = V4L2_MBUS_PARALLEL
   2168		};
   2169		int ret;
   2170
   2171		dev_dbg(isp->dev, "parsing parallel interface\n");
   2172
   2173		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
   2174
   2175		if (!ret) {
   2176			isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier,
   2177							      ep, struct
   2178							      isp_async_subdev);
   2179			if (!IS_ERR(isd))
   2180				isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus);
   2181		}
   2182
   2183		fwnode_handle_put(ep);
   2184	}
   2185
   2186	for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) {
   2187		struct v4l2_fwnode_endpoint vep = {
   2188			.bus_type = V4L2_MBUS_CSI2_DPHY
   2189		};
   2190		int ret;
   2191
   2192		ep = fwnode_graph_get_endpoint_by_id(
   2193			dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0,
   2194			FWNODE_GRAPH_ENDPOINT_NEXT);
   2195
   2196		if (!ep)
   2197			continue;
   2198
   2199		dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i,
   2200			to_of_node(ep));
   2201
   2202		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
   2203		if (ret == -ENXIO) {
   2204			vep = (struct v4l2_fwnode_endpoint)
   2205				{ .bus_type = V4L2_MBUS_CSI1 };
   2206			ret = v4l2_fwnode_endpoint_parse(ep, &vep);
   2207
   2208			if (ret == -ENXIO) {
   2209				vep = (struct v4l2_fwnode_endpoint)
   2210					{ .bus_type = V4L2_MBUS_CCP2 };
   2211				ret = v4l2_fwnode_endpoint_parse(ep, &vep);
   2212			}
   2213		}
   2214
   2215		if (!ret) {
   2216			isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier,
   2217							      ep,
   2218							      struct
   2219							      isp_async_subdev);
   2220
   2221			if (!IS_ERR(isd)) {
   2222				switch (vep.bus_type) {
   2223				case V4L2_MBUS_CSI2_DPHY:
   2224					isd->bus.interface =
   2225						isp_bus_interfaces[i].csi2_if;
   2226					isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus);
   2227					break;
   2228				case V4L2_MBUS_CSI1:
   2229				case V4L2_MBUS_CCP2:
   2230					isd->bus.interface =
   2231						isp_bus_interfaces[i].csi1_if;
   2232					isp_parse_of_csi1_endpoint(isp->dev, &vep,
   2233								   &isd->bus);
   2234					break;
   2235				default:
   2236					break;
   2237				}
   2238			}
   2239		}
   2240
   2241		fwnode_handle_put(ep);
   2242	}
   2243
   2244	return 0;
   2245}
   2246
   2247static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
   2248	.complete = isp_subdev_notifier_complete,
   2249};
   2250
   2251/*
   2252 * isp_probe - Probe ISP platform device
   2253 * @pdev: Pointer to ISP platform device
   2254 *
   2255 * Returns 0 if successful,
   2256 *   -ENOMEM if no memory available,
   2257 *   -ENODEV if no platform device resources found
   2258 *     or no space for remapping registers,
   2259 *   -EINVAL if couldn't install ISR,
   2260 *   or clk_get return error value.
   2261 */
   2262static int isp_probe(struct platform_device *pdev)
   2263{
   2264	struct isp_device *isp;
   2265	struct resource *mem;
   2266	int ret;
   2267	int i, m;
   2268
   2269	isp = kzalloc(sizeof(*isp), GFP_KERNEL);
   2270	if (!isp) {
   2271		dev_err(&pdev->dev, "could not allocate memory\n");
   2272		return -ENOMEM;
   2273	}
   2274
   2275	ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
   2276				       "ti,phy-type", &isp->phy_type);
   2277	if (ret)
   2278		goto error_release_isp;
   2279
   2280	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
   2281						      "syscon");
   2282	if (IS_ERR(isp->syscon)) {
   2283		ret = PTR_ERR(isp->syscon);
   2284		goto error_release_isp;
   2285	}
   2286
   2287	ret = of_property_read_u32_index(pdev->dev.of_node,
   2288					 "syscon", 1, &isp->syscon_offset);
   2289	if (ret)
   2290		goto error_release_isp;
   2291
   2292	isp->autoidle = autoidle;
   2293
   2294	mutex_init(&isp->isp_mutex);
   2295	spin_lock_init(&isp->stat_lock);
   2296	v4l2_async_nf_init(&isp->notifier);
   2297	isp->dev = &pdev->dev;
   2298
   2299	ret = isp_parse_of_endpoints(isp);
   2300	if (ret < 0)
   2301		goto error;
   2302
   2303	isp->ref_count = 0;
   2304
   2305	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
   2306	if (ret)
   2307		goto error;
   2308
   2309	platform_set_drvdata(pdev, isp);
   2310
   2311	/* Regulators */
   2312	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
   2313	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
   2314
   2315	/* Clocks
   2316	 *
   2317	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
   2318	 * manually to read the revision before calling __omap3isp_get().
   2319	 *
   2320	 * Start by mapping the ISP MMIO area, which is in two pieces.
   2321	 * The ISP IOMMU is in between. Map both now, and fill in the
   2322	 * ISP revision specific portions a little later in the
   2323	 * function.
   2324	 */
   2325	for (i = 0; i < 2; i++) {
   2326		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
   2327
   2328		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
   2329		isp->mmio_base[map_idx] =
   2330			devm_ioremap_resource(isp->dev, mem);
   2331		if (IS_ERR(isp->mmio_base[map_idx])) {
   2332			ret = PTR_ERR(isp->mmio_base[map_idx]);
   2333			goto error;
   2334		}
   2335	}
   2336
   2337	ret = isp_get_clocks(isp);
   2338	if (ret < 0)
   2339		goto error;
   2340
   2341	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
   2342	if (ret < 0)
   2343		goto error;
   2344
   2345	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
   2346	dev_info(isp->dev, "Revision %d.%d found\n",
   2347		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
   2348
   2349	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
   2350
   2351	if (__omap3isp_get(isp, false) == NULL) {
   2352		ret = -ENODEV;
   2353		goto error;
   2354	}
   2355
   2356	ret = isp_reset(isp);
   2357	if (ret < 0)
   2358		goto error_isp;
   2359
   2360	ret = isp_xclk_init(isp);
   2361	if (ret < 0)
   2362		goto error_isp;
   2363
   2364	/* Memory resources */
   2365	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
   2366		if (isp->revision == isp_res_maps[m].isp_rev)
   2367			break;
   2368
   2369	if (m == ARRAY_SIZE(isp_res_maps)) {
   2370		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
   2371			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
   2372		ret = -ENODEV;
   2373		goto error_isp;
   2374	}
   2375
   2376	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
   2377		isp->mmio_base[i] =
   2378			isp->mmio_base[0] + isp_res_maps[m].offset[i];
   2379
   2380	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
   2381		isp->mmio_base[i] =
   2382			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
   2383			+ isp_res_maps[m].offset[i];
   2384
   2385	isp->mmio_hist_base_phys =
   2386		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
   2387
   2388	/* IOMMU */
   2389	ret = isp_attach_iommu(isp);
   2390	if (ret < 0) {
   2391		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
   2392		goto error_isp;
   2393	}
   2394
   2395	/* Interrupt */
   2396	ret = platform_get_irq(pdev, 0);
   2397	if (ret <= 0) {
   2398		ret = -ENODEV;
   2399		goto error_iommu;
   2400	}
   2401	isp->irq_num = ret;
   2402
   2403	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
   2404			     "OMAP3 ISP", isp)) {
   2405		dev_err(isp->dev, "Unable to request IRQ\n");
   2406		ret = -EINVAL;
   2407		goto error_iommu;
   2408	}
   2409
   2410	/* Entities */
   2411	ret = isp_initialize_modules(isp);
   2412	if (ret < 0)
   2413		goto error_iommu;
   2414
   2415	ret = isp_register_entities(isp);
   2416	if (ret < 0)
   2417		goto error_modules;
   2418
   2419	ret = isp_create_links(isp);
   2420	if (ret < 0)
   2421		goto error_register_entities;
   2422
   2423	isp->notifier.ops = &isp_subdev_notifier_ops;
   2424
   2425	ret = v4l2_async_nf_register(&isp->v4l2_dev, &isp->notifier);
   2426	if (ret)
   2427		goto error_register_entities;
   2428
   2429	isp_core_init(isp, 1);
   2430	omap3isp_put(isp);
   2431
   2432	return 0;
   2433
   2434error_register_entities:
   2435	isp_unregister_entities(isp);
   2436error_modules:
   2437	isp_cleanup_modules(isp);
   2438error_iommu:
   2439	isp_detach_iommu(isp);
   2440error_isp:
   2441	isp_xclk_cleanup(isp);
   2442	__omap3isp_put(isp, false);
   2443error:
   2444	v4l2_async_nf_cleanup(&isp->notifier);
   2445	mutex_destroy(&isp->isp_mutex);
   2446error_release_isp:
   2447	kfree(isp);
   2448
   2449	return ret;
   2450}
   2451
   2452static const struct dev_pm_ops omap3isp_pm_ops = {
   2453	.prepare = isp_pm_prepare,
   2454	.suspend = isp_pm_suspend,
   2455	.resume = isp_pm_resume,
   2456	.complete = isp_pm_complete,
   2457};
   2458
   2459static const struct platform_device_id omap3isp_id_table[] = {
   2460	{ "omap3isp", 0 },
   2461	{ },
   2462};
   2463MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
   2464
   2465static const struct of_device_id omap3isp_of_table[] = {
   2466	{ .compatible = "ti,omap3-isp" },
   2467	{ },
   2468};
   2469MODULE_DEVICE_TABLE(of, omap3isp_of_table);
   2470
   2471static struct platform_driver omap3isp_driver = {
   2472	.probe = isp_probe,
   2473	.remove = isp_remove,
   2474	.id_table = omap3isp_id_table,
   2475	.driver = {
   2476		.name = "omap3isp",
   2477		.pm	= &omap3isp_pm_ops,
   2478		.of_match_table = omap3isp_of_table,
   2479	},
   2480};
   2481
   2482module_platform_driver(omap3isp_driver);
   2483
   2484MODULE_AUTHOR("Nokia Corporation");
   2485MODULE_DESCRIPTION("TI OMAP3 ISP driver");
   2486MODULE_LICENSE("GPL");
   2487MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);