cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vpe.c (69235B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
      4 *
      5 * Copyright (c) 2013 Texas Instruments Inc.
      6 * David Griego, <dagriego@biglakesoftware.com>
      7 * Dale Farnsworth, <dale@farnsworth.org>
      8 * Archit Taneja, <archit@ti.com>
      9 *
     10 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
     11 * Pawel Osciak, <pawel@osciak.com>
     12 * Marek Szyprowski, <m.szyprowski@samsung.com>
     13 *
     14 * Based on the virtual v4l2-mem2mem example device
     15 */
     16
     17#include <linux/delay.h>
     18#include <linux/dma-mapping.h>
     19#include <linux/err.h>
     20#include <linux/fs.h>
     21#include <linux/interrupt.h>
     22#include <linux/io.h>
     23#include <linux/ioctl.h>
     24#include <linux/module.h>
     25#include <linux/of.h>
     26#include <linux/platform_device.h>
     27#include <linux/pm_runtime.h>
     28#include <linux/sched.h>
     29#include <linux/slab.h>
     30#include <linux/videodev2.h>
     31#include <linux/log2.h>
     32#include <linux/sizes.h>
     33
     34#include <media/v4l2-common.h>
     35#include <media/v4l2-ctrls.h>
     36#include <media/v4l2-device.h>
     37#include <media/v4l2-event.h>
     38#include <media/v4l2-ioctl.h>
     39#include <media/v4l2-mem2mem.h>
     40#include <media/videobuf2-v4l2.h>
     41#include <media/videobuf2-dma-contig.h>
     42
     43#include "vpdma.h"
     44#include "vpdma_priv.h"
     45#include "vpe_regs.h"
     46#include "sc.h"
     47#include "csc.h"
     48
     49#define VPE_MODULE_NAME "vpe"
     50
     51/* minimum and maximum frame sizes */
     52#define MIN_W		32
     53#define MIN_H		32
     54#define MAX_W		2048
     55#define MAX_H		2048
     56
     57/* required alignments */
     58#define S_ALIGN		0	/* multiple of 1 */
     59#define H_ALIGN		1	/* multiple of 2 */
     60
     61/* flags that indicate a format can be used for capture/output */
     62#define VPE_FMT_TYPE_CAPTURE	(1 << 0)
     63#define VPE_FMT_TYPE_OUTPUT	(1 << 1)
     64
     65/* used as plane indices */
     66#define VPE_MAX_PLANES	2
     67#define VPE_LUMA	0
     68#define VPE_CHROMA	1
     69
     70/* per m2m context info */
     71#define VPE_MAX_SRC_BUFS	3	/* need 3 src fields to de-interlace */
     72
     73#define VPE_DEF_BUFS_PER_JOB	1	/* default one buffer per batch job */
     74
     75/*
     76 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
     77 * 3 output descriptors, and 10 control descriptors
     78 */
     79#define VPE_DESC_LIST_SIZE	(10 * VPDMA_DTD_DESC_SIZE +	\
     80					13 * VPDMA_CFD_CTD_DESC_SIZE)
     81
     82#define vpe_dbg(vpedev, fmt, arg...)	\
     83		dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
     84#define vpe_err(vpedev, fmt, arg...)	\
     85		dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
     86
     87struct vpe_us_coeffs {
     88	unsigned short	anchor_fid0_c0;
     89	unsigned short	anchor_fid0_c1;
     90	unsigned short	anchor_fid0_c2;
     91	unsigned short	anchor_fid0_c3;
     92	unsigned short	interp_fid0_c0;
     93	unsigned short	interp_fid0_c1;
     94	unsigned short	interp_fid0_c2;
     95	unsigned short	interp_fid0_c3;
     96	unsigned short	anchor_fid1_c0;
     97	unsigned short	anchor_fid1_c1;
     98	unsigned short	anchor_fid1_c2;
     99	unsigned short	anchor_fid1_c3;
    100	unsigned short	interp_fid1_c0;
    101	unsigned short	interp_fid1_c1;
    102	unsigned short	interp_fid1_c2;
    103	unsigned short	interp_fid1_c3;
    104};
    105
    106/*
    107 * Default upsampler coefficients
    108 */
    109static const struct vpe_us_coeffs us_coeffs[] = {
    110	{
    111		/* Coefficients for progressive input */
    112		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
    113		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
    114	},
    115	{
    116		/* Coefficients for Top Field Interlaced input */
    117		0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
    118		/* Coefficients for Bottom Field Interlaced input */
    119		0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
    120	},
    121};
    122
    123/*
    124 * the following registers are for configuring some of the parameters of the
    125 * motion and edge detection blocks inside DEI, these generally remain the same,
    126 * these could be passed later via userspace if some one needs to tweak these.
    127 */
    128struct vpe_dei_regs {
    129	unsigned long mdt_spacial_freq_thr_reg;		/* VPE_DEI_REG2 */
    130	unsigned long edi_config_reg;			/* VPE_DEI_REG3 */
    131	unsigned long edi_lut_reg0;			/* VPE_DEI_REG4 */
    132	unsigned long edi_lut_reg1;			/* VPE_DEI_REG5 */
    133	unsigned long edi_lut_reg2;			/* VPE_DEI_REG6 */
    134	unsigned long edi_lut_reg3;			/* VPE_DEI_REG7 */
    135};
    136
    137/*
    138 * default expert DEI register values, unlikely to be modified.
    139 */
    140static const struct vpe_dei_regs dei_regs = {
    141	.mdt_spacial_freq_thr_reg = 0x020C0804u,
    142	.edi_config_reg = 0x0118100Cu,
    143	.edi_lut_reg0 = 0x08040200u,
    144	.edi_lut_reg1 = 0x1010100Cu,
    145	.edi_lut_reg2 = 0x10101010u,
    146	.edi_lut_reg3 = 0x10101010u,
    147};
    148
    149/*
    150 * The port_data structure contains per-port data.
    151 */
    152struct vpe_port_data {
    153	enum vpdma_channel channel;	/* VPDMA channel */
    154	u8	vb_index;		/* input frame f, f-1, f-2 index */
    155	u8	vb_part;		/* plane index for co-panar formats */
    156};
    157
    158/*
    159 * Define indices into the port_data tables
    160 */
    161#define VPE_PORT_LUMA1_IN	0
    162#define VPE_PORT_CHROMA1_IN	1
    163#define VPE_PORT_LUMA2_IN	2
    164#define VPE_PORT_CHROMA2_IN	3
    165#define VPE_PORT_LUMA3_IN	4
    166#define VPE_PORT_CHROMA3_IN	5
    167#define VPE_PORT_MV_IN		6
    168#define VPE_PORT_MV_OUT		7
    169#define VPE_PORT_LUMA_OUT	8
    170#define VPE_PORT_CHROMA_OUT	9
    171#define VPE_PORT_RGB_OUT	10
    172
    173static const struct vpe_port_data port_data[11] = {
    174	[VPE_PORT_LUMA1_IN] = {
    175		.channel	= VPE_CHAN_LUMA1_IN,
    176		.vb_index	= 0,
    177		.vb_part	= VPE_LUMA,
    178	},
    179	[VPE_PORT_CHROMA1_IN] = {
    180		.channel	= VPE_CHAN_CHROMA1_IN,
    181		.vb_index	= 0,
    182		.vb_part	= VPE_CHROMA,
    183	},
    184	[VPE_PORT_LUMA2_IN] = {
    185		.channel	= VPE_CHAN_LUMA2_IN,
    186		.vb_index	= 1,
    187		.vb_part	= VPE_LUMA,
    188	},
    189	[VPE_PORT_CHROMA2_IN] = {
    190		.channel	= VPE_CHAN_CHROMA2_IN,
    191		.vb_index	= 1,
    192		.vb_part	= VPE_CHROMA,
    193	},
    194	[VPE_PORT_LUMA3_IN] = {
    195		.channel	= VPE_CHAN_LUMA3_IN,
    196		.vb_index	= 2,
    197		.vb_part	= VPE_LUMA,
    198	},
    199	[VPE_PORT_CHROMA3_IN] = {
    200		.channel	= VPE_CHAN_CHROMA3_IN,
    201		.vb_index	= 2,
    202		.vb_part	= VPE_CHROMA,
    203	},
    204	[VPE_PORT_MV_IN] = {
    205		.channel	= VPE_CHAN_MV_IN,
    206	},
    207	[VPE_PORT_MV_OUT] = {
    208		.channel	= VPE_CHAN_MV_OUT,
    209	},
    210	[VPE_PORT_LUMA_OUT] = {
    211		.channel	= VPE_CHAN_LUMA_OUT,
    212		.vb_part	= VPE_LUMA,
    213	},
    214	[VPE_PORT_CHROMA_OUT] = {
    215		.channel	= VPE_CHAN_CHROMA_OUT,
    216		.vb_part	= VPE_CHROMA,
    217	},
    218	[VPE_PORT_RGB_OUT] = {
    219		.channel	= VPE_CHAN_RGB_OUT,
    220		.vb_part	= VPE_LUMA,
    221	},
    222};
    223
    224
    225/* driver info for each of the supported video formats */
    226struct vpe_fmt {
    227	u32	fourcc;			/* standard format identifier */
    228	u8	types;			/* CAPTURE and/or OUTPUT */
    229	u8	coplanar;		/* set for unpacked Luma and Chroma */
    230	/* vpdma format info for each plane */
    231	struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
    232};
    233
    234static struct vpe_fmt vpe_formats[] = {
    235	{
    236		.fourcc		= V4L2_PIX_FMT_NV16,
    237		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
    238		.coplanar	= 1,
    239		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
    240				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
    241				  },
    242	},
    243	{
    244		.fourcc		= V4L2_PIX_FMT_NV12,
    245		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
    246		.coplanar	= 1,
    247		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
    248				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
    249				  },
    250	},
    251	{
    252		.fourcc		= V4L2_PIX_FMT_NV21,
    253		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
    254		.coplanar	= 1,
    255		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
    256				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_CB420],
    257				  },
    258	},
    259	{
    260		.fourcc		= V4L2_PIX_FMT_YUYV,
    261		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
    262		.coplanar	= 0,
    263		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422],
    264				  },
    265	},
    266	{
    267		.fourcc		= V4L2_PIX_FMT_UYVY,
    268		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
    269		.coplanar	= 0,
    270		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422],
    271				  },
    272	},
    273	{
    274		.fourcc		= V4L2_PIX_FMT_RGB24,
    275		.types		= VPE_FMT_TYPE_CAPTURE,
    276		.coplanar	= 0,
    277		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
    278				  },
    279	},
    280	{
    281		.fourcc		= V4L2_PIX_FMT_RGB32,
    282		.types		= VPE_FMT_TYPE_CAPTURE,
    283		.coplanar	= 0,
    284		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
    285				  },
    286	},
    287	{
    288		.fourcc		= V4L2_PIX_FMT_BGR24,
    289		.types		= VPE_FMT_TYPE_CAPTURE,
    290		.coplanar	= 0,
    291		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
    292				  },
    293	},
    294	{
    295		.fourcc		= V4L2_PIX_FMT_BGR32,
    296		.types		= VPE_FMT_TYPE_CAPTURE,
    297		.coplanar	= 0,
    298		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
    299				  },
    300	},
    301	{
    302		.fourcc		= V4L2_PIX_FMT_RGB565,
    303		.types		= VPE_FMT_TYPE_CAPTURE,
    304		.coplanar	= 0,
    305		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565],
    306				  },
    307	},
    308	{
    309		.fourcc		= V4L2_PIX_FMT_RGB555,
    310		.types		= VPE_FMT_TYPE_CAPTURE,
    311		.coplanar	= 0,
    312		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551],
    313				  },
    314	},
    315};
    316
    317/*
    318 * per-queue, driver-specific private data.
    319 * there is one source queue and one destination queue for each m2m context.
    320 */
    321struct vpe_q_data {
    322	/* current v4l2 format info */
    323	struct v4l2_format	format;
    324	unsigned int		flags;
    325	struct v4l2_rect	c_rect;				/* crop/compose rectangle */
    326	struct vpe_fmt		*fmt;				/* format info */
    327};
    328
    329/* vpe_q_data flag bits */
    330#define	Q_DATA_FRAME_1D			BIT(0)
    331#define	Q_DATA_MODE_TILED		BIT(1)
    332#define	Q_DATA_INTERLACED_ALTERNATE	BIT(2)
    333#define	Q_DATA_INTERLACED_SEQ_TB	BIT(3)
    334#define	Q_DATA_INTERLACED_SEQ_BT	BIT(4)
    335
    336#define Q_IS_SEQ_XX		(Q_DATA_INTERLACED_SEQ_TB | \
    337				Q_DATA_INTERLACED_SEQ_BT)
    338
    339#define Q_IS_INTERLACED		(Q_DATA_INTERLACED_ALTERNATE | \
    340				Q_DATA_INTERLACED_SEQ_TB | \
    341				Q_DATA_INTERLACED_SEQ_BT)
    342
    343enum {
    344	Q_DATA_SRC = 0,
    345	Q_DATA_DST = 1,
    346};
    347
    348/* find our format description corresponding to the passed v4l2_format */
    349static struct vpe_fmt *__find_format(u32 fourcc)
    350{
    351	struct vpe_fmt *fmt;
    352	unsigned int k;
    353
    354	for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
    355		fmt = &vpe_formats[k];
    356		if (fmt->fourcc == fourcc)
    357			return fmt;
    358	}
    359
    360	return NULL;
    361}
    362
    363static struct vpe_fmt *find_format(struct v4l2_format *f)
    364{
    365	return __find_format(f->fmt.pix.pixelformat);
    366}
    367
    368/*
    369 * there is one vpe_dev structure in the driver, it is shared by
    370 * all instances.
    371 */
    372struct vpe_dev {
    373	struct v4l2_device	v4l2_dev;
    374	struct video_device	vfd;
    375	struct v4l2_m2m_dev	*m2m_dev;
    376
    377	atomic_t		num_instances;	/* count of driver instances */
    378	dma_addr_t		loaded_mmrs;	/* shadow mmrs in device */
    379	struct mutex		dev_mutex;
    380	spinlock_t		lock;
    381
    382	int			irq;
    383	void __iomem		*base;
    384	struct resource		*res;
    385
    386	struct vpdma_data	vpdma_data;
    387	struct vpdma_data	*vpdma;		/* vpdma data handle */
    388	struct sc_data		*sc;		/* scaler data handle */
    389	struct csc_data		*csc;		/* csc data handle */
    390};
    391
    392/*
    393 * There is one vpe_ctx structure for each m2m context.
    394 */
    395struct vpe_ctx {
    396	struct v4l2_fh		fh;
    397	struct vpe_dev		*dev;
    398	struct v4l2_ctrl_handler hdl;
    399
    400	unsigned int		field;			/* current field */
    401	unsigned int		sequence;		/* current frame/field seq */
    402	unsigned int		aborting;		/* abort after next irq */
    403
    404	unsigned int		bufs_per_job;		/* input buffers per batch */
    405	unsigned int		bufs_completed;		/* bufs done in this batch */
    406
    407	struct vpe_q_data	q_data[2];		/* src & dst queue data */
    408	struct vb2_v4l2_buffer	*src_vbs[VPE_MAX_SRC_BUFS];
    409	struct vb2_v4l2_buffer	*dst_vb;
    410
    411	dma_addr_t		mv_buf_dma[2];		/* dma addrs of motion vector in/out bufs */
    412	void			*mv_buf[2];		/* virtual addrs of motion vector bufs */
    413	size_t			mv_buf_size;		/* current motion vector buffer size */
    414	struct vpdma_buf	mmr_adb;		/* shadow reg addr/data block */
    415	struct vpdma_buf	sc_coeff_h;		/* h coeff buffer */
    416	struct vpdma_buf	sc_coeff_v;		/* v coeff buffer */
    417	struct vpdma_desc_list	desc_list;		/* DMA descriptor list */
    418
    419	bool			deinterlacing;		/* using de-interlacer */
    420	bool			load_mmrs;		/* have new shadow reg values */
    421
    422	unsigned int		src_mv_buf_selector;
    423};
    424
    425
    426/*
    427 * M2M devices get 2 queues.
    428 * Return the queue given the type.
    429 */
    430static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
    431				     enum v4l2_buf_type type)
    432{
    433	switch (type) {
    434	case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
    435	case V4L2_BUF_TYPE_VIDEO_OUTPUT:
    436		return &ctx->q_data[Q_DATA_SRC];
    437	case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
    438	case V4L2_BUF_TYPE_VIDEO_CAPTURE:
    439		return &ctx->q_data[Q_DATA_DST];
    440	default:
    441		return NULL;
    442	}
    443	return NULL;
    444}
    445
    446static u32 read_reg(struct vpe_dev *dev, int offset)
    447{
    448	return ioread32(dev->base + offset);
    449}
    450
    451static void write_reg(struct vpe_dev *dev, int offset, u32 value)
    452{
    453	iowrite32(value, dev->base + offset);
    454}
    455
    456/* register field read/write helpers */
    457static int get_field(u32 value, u32 mask, int shift)
    458{
    459	return (value & (mask << shift)) >> shift;
    460}
    461
    462static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
    463{
    464	return get_field(read_reg(dev, offset), mask, shift);
    465}
    466
    467static void write_field(u32 *valp, u32 field, u32 mask, int shift)
    468{
    469	u32 val = *valp;
    470
    471	val &= ~(mask << shift);
    472	val |= (field & mask) << shift;
    473	*valp = val;
    474}
    475
    476static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
    477		u32 mask, int shift)
    478{
    479	u32 val = read_reg(dev, offset);
    480
    481	write_field(&val, field, mask, shift);
    482
    483	write_reg(dev, offset, val);
    484}
    485
    486/*
    487 * DMA address/data block for the shadow registers
    488 */
    489struct vpe_mmr_adb {
    490	struct vpdma_adb_hdr	out_fmt_hdr;
    491	u32			out_fmt_reg[1];
    492	u32			out_fmt_pad[3];
    493	struct vpdma_adb_hdr	us1_hdr;
    494	u32			us1_regs[8];
    495	struct vpdma_adb_hdr	us2_hdr;
    496	u32			us2_regs[8];
    497	struct vpdma_adb_hdr	us3_hdr;
    498	u32			us3_regs[8];
    499	struct vpdma_adb_hdr	dei_hdr;
    500	u32			dei_regs[8];
    501	struct vpdma_adb_hdr	sc_hdr0;
    502	u32			sc_regs0[7];
    503	u32			sc_pad0[1];
    504	struct vpdma_adb_hdr	sc_hdr8;
    505	u32			sc_regs8[6];
    506	u32			sc_pad8[2];
    507	struct vpdma_adb_hdr	sc_hdr17;
    508	u32			sc_regs17[9];
    509	u32			sc_pad17[3];
    510	struct vpdma_adb_hdr	csc_hdr;
    511	u32			csc_regs[6];
    512	u32			csc_pad[2];
    513};
    514
    515#define GET_OFFSET_TOP(ctx, obj, reg)	\
    516	((obj)->res->start - ctx->dev->res->start + reg)
    517
    518#define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a)	\
    519	VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
    520/*
    521 * Set the headers for all of the address/data block structures.
    522 */
    523static void init_adb_hdrs(struct vpe_ctx *ctx)
    524{
    525	VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
    526	VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
    527	VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
    528	VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
    529	VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
    530	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
    531		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
    532	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
    533		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
    534	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
    535		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
    536	VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
    537		GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
    538};
    539
    540/*
    541 * Allocate or re-allocate the motion vector DMA buffers
    542 * There are two buffers, one for input and one for output.
    543 * However, the roles are reversed after each field is processed.
    544 * In other words, after each field is processed, the previous
    545 * output (dst) MV buffer becomes the new input (src) MV buffer.
    546 */
    547static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
    548{
    549	struct device *dev = ctx->dev->v4l2_dev.dev;
    550
    551	if (ctx->mv_buf_size == size)
    552		return 0;
    553
    554	if (ctx->mv_buf[0])
    555		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
    556			ctx->mv_buf_dma[0]);
    557
    558	if (ctx->mv_buf[1])
    559		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
    560			ctx->mv_buf_dma[1]);
    561
    562	if (size == 0)
    563		return 0;
    564
    565	ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
    566				GFP_KERNEL);
    567	if (!ctx->mv_buf[0]) {
    568		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
    569		return -ENOMEM;
    570	}
    571
    572	ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
    573				GFP_KERNEL);
    574	if (!ctx->mv_buf[1]) {
    575		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
    576		dma_free_coherent(dev, size, ctx->mv_buf[0],
    577			ctx->mv_buf_dma[0]);
    578
    579		return -ENOMEM;
    580	}
    581
    582	ctx->mv_buf_size = size;
    583	ctx->src_mv_buf_selector = 0;
    584
    585	return 0;
    586}
    587
    588static void free_mv_buffers(struct vpe_ctx *ctx)
    589{
    590	realloc_mv_buffers(ctx, 0);
    591}
    592
    593/*
    594 * While de-interlacing, we keep the two most recent input buffers
    595 * around.  This function frees those two buffers when we have
    596 * finished processing the current stream.
    597 */
    598static void free_vbs(struct vpe_ctx *ctx)
    599{
    600	struct vpe_dev *dev = ctx->dev;
    601	unsigned long flags;
    602
    603	if (ctx->src_vbs[2] == NULL)
    604		return;
    605
    606	spin_lock_irqsave(&dev->lock, flags);
    607	if (ctx->src_vbs[2]) {
    608		v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
    609		if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
    610			v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
    611		ctx->src_vbs[2] = NULL;
    612		ctx->src_vbs[1] = NULL;
    613	}
    614	spin_unlock_irqrestore(&dev->lock, flags);
    615}
    616
    617/*
    618 * Enable or disable the VPE clocks
    619 */
    620static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
    621{
    622	u32 val = 0;
    623
    624	if (on)
    625		val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
    626	write_reg(dev, VPE_CLK_ENABLE, val);
    627}
    628
    629static void vpe_top_reset(struct vpe_dev *dev)
    630{
    631
    632	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
    633		VPE_DATA_PATH_CLK_RESET_SHIFT);
    634
    635	usleep_range(100, 150);
    636
    637	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
    638		VPE_DATA_PATH_CLK_RESET_SHIFT);
    639}
    640
    641static void vpe_top_vpdma_reset(struct vpe_dev *dev)
    642{
    643	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
    644		VPE_VPDMA_CLK_RESET_SHIFT);
    645
    646	usleep_range(100, 150);
    647
    648	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
    649		VPE_VPDMA_CLK_RESET_SHIFT);
    650}
    651
    652/*
    653 * Load the correct of upsampler coefficients into the shadow MMRs
    654 */
    655static void set_us_coefficients(struct vpe_ctx *ctx)
    656{
    657	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
    658	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
    659	u32 *us1_reg = &mmr_adb->us1_regs[0];
    660	u32 *us2_reg = &mmr_adb->us2_regs[0];
    661	u32 *us3_reg = &mmr_adb->us3_regs[0];
    662	const unsigned short *cp, *end_cp;
    663
    664	cp = &us_coeffs[0].anchor_fid0_c0;
    665
    666	if (s_q_data->flags & Q_IS_INTERLACED)		/* interlaced */
    667		cp += sizeof(us_coeffs[0]) / sizeof(*cp);
    668
    669	end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
    670
    671	while (cp < end_cp) {
    672		write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
    673		write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
    674		*us2_reg++ = *us1_reg;
    675		*us3_reg++ = *us1_reg++;
    676	}
    677	ctx->load_mmrs = true;
    678}
    679
    680/*
    681 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
    682 */
    683static void set_cfg_modes(struct vpe_ctx *ctx)
    684{
    685	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
    686	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
    687	u32 *us1_reg0 = &mmr_adb->us1_regs[0];
    688	u32 *us2_reg0 = &mmr_adb->us2_regs[0];
    689	u32 *us3_reg0 = &mmr_adb->us3_regs[0];
    690	int cfg_mode = 1;
    691
    692	/*
    693	 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
    694	 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
    695	 */
    696
    697	if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
    698	    fmt->fourcc == V4L2_PIX_FMT_NV21)
    699		cfg_mode = 0;
    700
    701	write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
    702	write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
    703	write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
    704
    705	ctx->load_mmrs = true;
    706}
    707
    708static void set_line_modes(struct vpe_ctx *ctx)
    709{
    710	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
    711	int line_mode = 1;
    712
    713	if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
    714	    fmt->fourcc == V4L2_PIX_FMT_NV21)
    715		line_mode = 0;		/* double lines to line buffer */
    716
    717	/* regs for now */
    718	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
    719	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
    720	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
    721
    722	/* frame start for input luma */
    723	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
    724		VPE_CHAN_LUMA1_IN);
    725	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
    726		VPE_CHAN_LUMA2_IN);
    727	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
    728		VPE_CHAN_LUMA3_IN);
    729
    730	/* frame start for input chroma */
    731	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
    732		VPE_CHAN_CHROMA1_IN);
    733	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
    734		VPE_CHAN_CHROMA2_IN);
    735	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
    736		VPE_CHAN_CHROMA3_IN);
    737
    738	/* frame start for MV in client */
    739	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
    740		VPE_CHAN_MV_IN);
    741}
    742
    743/*
    744 * Set the shadow registers that are modified when the source
    745 * format changes.
    746 */
    747static void set_src_registers(struct vpe_ctx *ctx)
    748{
    749	set_us_coefficients(ctx);
    750}
    751
    752/*
    753 * Set the shadow registers that are modified when the destination
    754 * format changes.
    755 */
    756static void set_dst_registers(struct vpe_ctx *ctx)
    757{
    758	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
    759	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
    760	const struct v4l2_format_info *finfo;
    761	u32 val = 0;
    762
    763	finfo = v4l2_format_info(fmt->fourcc);
    764	if (v4l2_is_format_rgb(finfo)) {
    765		val |= VPE_RGB_OUT_SELECT;
    766		vpdma_set_bg_color(ctx->dev->vpdma,
    767			(struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff);
    768	} else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
    769		val |= VPE_COLOR_SEPARATE_422;
    770
    771	/*
    772	 * the source of CHR_DS and CSC is always the scaler, irrespective of
    773	 * whether it's used or not
    774	 */
    775	val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
    776
    777	if (fmt->fourcc != V4L2_PIX_FMT_NV12 &&
    778	    fmt->fourcc != V4L2_PIX_FMT_NV21)
    779		val |= VPE_DS_BYPASS;
    780
    781	mmr_adb->out_fmt_reg[0] = val;
    782
    783	ctx->load_mmrs = true;
    784}
    785
    786/*
    787 * Set the de-interlacer shadow register values
    788 */
    789static void set_dei_regs(struct vpe_ctx *ctx)
    790{
    791	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
    792	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
    793	unsigned int src_h = s_q_data->c_rect.height;
    794	unsigned int src_w = s_q_data->c_rect.width;
    795	u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
    796	bool deinterlace = true;
    797	u32 val = 0;
    798
    799	/*
    800	 * according to TRM, we should set DEI in progressive bypass mode when
    801	 * the input content is progressive, however, DEI is bypassed correctly
    802	 * for both progressive and interlace content in interlace bypass mode.
    803	 * It has been recommended not to use progressive bypass mode.
    804	 */
    805	if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
    806		deinterlace = false;
    807		val = VPE_DEI_INTERLACE_BYPASS;
    808	}
    809
    810	src_h = deinterlace ? src_h * 2 : src_h;
    811
    812	val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
    813		(src_w << VPE_DEI_WIDTH_SHIFT) |
    814		VPE_DEI_FIELD_FLUSH;
    815
    816	*dei_mmr0 = val;
    817
    818	ctx->load_mmrs = true;
    819}
    820
    821static void set_dei_shadow_registers(struct vpe_ctx *ctx)
    822{
    823	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
    824	u32 *dei_mmr = &mmr_adb->dei_regs[0];
    825	const struct vpe_dei_regs *cur = &dei_regs;
    826
    827	dei_mmr[2]  = cur->mdt_spacial_freq_thr_reg;
    828	dei_mmr[3]  = cur->edi_config_reg;
    829	dei_mmr[4]  = cur->edi_lut_reg0;
    830	dei_mmr[5]  = cur->edi_lut_reg1;
    831	dei_mmr[6]  = cur->edi_lut_reg2;
    832	dei_mmr[7]  = cur->edi_lut_reg3;
    833
    834	ctx->load_mmrs = true;
    835}
    836
    837static void config_edi_input_mode(struct vpe_ctx *ctx, int mode)
    838{
    839	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
    840	u32 *edi_config_reg = &mmr_adb->dei_regs[3];
    841
    842	if (mode & 0x2)
    843		write_field(edi_config_reg, 1, 1, 2);	/* EDI_ENABLE_3D */
    844
    845	if (mode & 0x3)
    846		write_field(edi_config_reg, 1, 1, 3);	/* EDI_CHROMA_3D  */
    847
    848	write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK,
    849		VPE_EDI_INP_MODE_SHIFT);
    850
    851	ctx->load_mmrs = true;
    852}
    853
    854/*
    855 * Set the shadow registers whose values are modified when either the
    856 * source or destination format is changed.
    857 */
    858static int set_srcdst_params(struct vpe_ctx *ctx)
    859{
    860	struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
    861	struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
    862	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
    863	unsigned int src_w = s_q_data->c_rect.width;
    864	unsigned int src_h = s_q_data->c_rect.height;
    865	unsigned int dst_w = d_q_data->c_rect.width;
    866	unsigned int dst_h = d_q_data->c_rect.height;
    867	struct v4l2_pix_format_mplane *spix;
    868	size_t mv_buf_size;
    869	int ret;
    870
    871	ctx->sequence = 0;
    872	ctx->field = V4L2_FIELD_TOP;
    873	spix = &s_q_data->format.fmt.pix_mp;
    874
    875	if ((s_q_data->flags & Q_IS_INTERLACED) &&
    876			!(d_q_data->flags & Q_IS_INTERLACED)) {
    877		int bytes_per_line;
    878		const struct vpdma_data_format *mv =
    879			&vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
    880
    881		/*
    882		 * we make sure that the source image has a 16 byte aligned
    883		 * stride, we need to do the same for the motion vector buffer
    884		 * by aligning it's stride to the next 16 byte boundary. this
    885		 * extra space will not be used by the de-interlacer, but will
    886		 * ensure that vpdma operates correctly
    887		 */
    888		bytes_per_line = ALIGN((spix->width * mv->depth) >> 3,
    889				       VPDMA_STRIDE_ALIGN);
    890		mv_buf_size = bytes_per_line * spix->height;
    891
    892		ctx->deinterlacing = true;
    893		src_h <<= 1;
    894	} else {
    895		ctx->deinterlacing = false;
    896		mv_buf_size = 0;
    897	}
    898
    899	free_vbs(ctx);
    900	ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL;
    901
    902	ret = realloc_mv_buffers(ctx, mv_buf_size);
    903	if (ret)
    904		return ret;
    905
    906	set_cfg_modes(ctx);
    907	set_dei_regs(ctx);
    908
    909	csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
    910		      &s_q_data->format, &d_q_data->format);
    911
    912	sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
    913	sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
    914
    915	sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
    916		&mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
    917		src_w, src_h, dst_w, dst_h);
    918
    919	return 0;
    920}
    921
    922/*
    923 * mem2mem callbacks
    924 */
    925
    926/*
    927 * job_ready() - check whether an instance is ready to be scheduled to run
    928 */
    929static int job_ready(void *priv)
    930{
    931	struct vpe_ctx *ctx = priv;
    932
    933	/*
    934	 * This check is needed as this might be called directly from driver
    935	 * When called by m2m framework, this will always satisfy, but when
    936	 * called from vpe_irq, this might fail. (src stream with zero buffers)
    937	 */
    938	if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 ||
    939		v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0)
    940		return 0;
    941
    942	return 1;
    943}
    944
    945static void job_abort(void *priv)
    946{
    947	struct vpe_ctx *ctx = priv;
    948
    949	/* Will cancel the transaction in the next interrupt handler */
    950	ctx->aborting = 1;
    951}
    952
    953static void vpe_dump_regs(struct vpe_dev *dev)
    954{
    955#define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
    956
    957	vpe_dbg(dev, "VPE Registers:\n");
    958
    959	DUMPREG(PID);
    960	DUMPREG(SYSCONFIG);
    961	DUMPREG(INT0_STATUS0_RAW);
    962	DUMPREG(INT0_STATUS0);
    963	DUMPREG(INT0_ENABLE0);
    964	DUMPREG(INT0_STATUS1_RAW);
    965	DUMPREG(INT0_STATUS1);
    966	DUMPREG(INT0_ENABLE1);
    967	DUMPREG(CLK_ENABLE);
    968	DUMPREG(CLK_RESET);
    969	DUMPREG(CLK_FORMAT_SELECT);
    970	DUMPREG(CLK_RANGE_MAP);
    971	DUMPREG(US1_R0);
    972	DUMPREG(US1_R1);
    973	DUMPREG(US1_R2);
    974	DUMPREG(US1_R3);
    975	DUMPREG(US1_R4);
    976	DUMPREG(US1_R5);
    977	DUMPREG(US1_R6);
    978	DUMPREG(US1_R7);
    979	DUMPREG(US2_R0);
    980	DUMPREG(US2_R1);
    981	DUMPREG(US2_R2);
    982	DUMPREG(US2_R3);
    983	DUMPREG(US2_R4);
    984	DUMPREG(US2_R5);
    985	DUMPREG(US2_R6);
    986	DUMPREG(US2_R7);
    987	DUMPREG(US3_R0);
    988	DUMPREG(US3_R1);
    989	DUMPREG(US3_R2);
    990	DUMPREG(US3_R3);
    991	DUMPREG(US3_R4);
    992	DUMPREG(US3_R5);
    993	DUMPREG(US3_R6);
    994	DUMPREG(US3_R7);
    995	DUMPREG(DEI_FRAME_SIZE);
    996	DUMPREG(MDT_BYPASS);
    997	DUMPREG(MDT_SF_THRESHOLD);
    998	DUMPREG(EDI_CONFIG);
    999	DUMPREG(DEI_EDI_LUT_R0);
   1000	DUMPREG(DEI_EDI_LUT_R1);
   1001	DUMPREG(DEI_EDI_LUT_R2);
   1002	DUMPREG(DEI_EDI_LUT_R3);
   1003	DUMPREG(DEI_FMD_WINDOW_R0);
   1004	DUMPREG(DEI_FMD_WINDOW_R1);
   1005	DUMPREG(DEI_FMD_CONTROL_R0);
   1006	DUMPREG(DEI_FMD_CONTROL_R1);
   1007	DUMPREG(DEI_FMD_STATUS_R0);
   1008	DUMPREG(DEI_FMD_STATUS_R1);
   1009	DUMPREG(DEI_FMD_STATUS_R2);
   1010#undef DUMPREG
   1011
   1012	sc_dump_regs(dev->sc);
   1013	csc_dump_regs(dev->csc);
   1014}
   1015
   1016static void add_out_dtd(struct vpe_ctx *ctx, int port)
   1017{
   1018	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
   1019	const struct vpe_port_data *p_data = &port_data[port];
   1020	struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
   1021	struct vpe_fmt *fmt = q_data->fmt;
   1022	const struct vpdma_data_format *vpdma_fmt;
   1023	int mv_buf_selector = !ctx->src_mv_buf_selector;
   1024	struct v4l2_pix_format_mplane *pix;
   1025	dma_addr_t dma_addr;
   1026	u32 flags = 0;
   1027	u32 offset = 0;
   1028	u32 stride;
   1029
   1030	if (port == VPE_PORT_MV_OUT) {
   1031		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
   1032		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
   1033		q_data = &ctx->q_data[Q_DATA_SRC];
   1034		pix = &q_data->format.fmt.pix_mp;
   1035		stride = ALIGN((pix->width * vpdma_fmt->depth) >> 3,
   1036			       VPDMA_STRIDE_ALIGN);
   1037	} else {
   1038		/* to incorporate interleaved formats */
   1039		int plane = fmt->coplanar ? p_data->vb_part : 0;
   1040
   1041		pix = &q_data->format.fmt.pix_mp;
   1042		vpdma_fmt = fmt->vpdma_fmt[plane];
   1043		/*
   1044		 * If we are using a single plane buffer and
   1045		 * we need to set a separate vpdma chroma channel.
   1046		 */
   1047		if (pix->num_planes == 1 && plane) {
   1048			dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
   1049			/* Compute required offset */
   1050			offset = pix->plane_fmt[0].bytesperline * pix->height;
   1051		} else {
   1052			dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
   1053			/* Use address as is, no offset */
   1054			offset = 0;
   1055		}
   1056		if (!dma_addr) {
   1057			vpe_err(ctx->dev,
   1058				"acquiring output buffer(%d) dma_addr failed\n",
   1059				port);
   1060			return;
   1061		}
   1062		/* Apply the offset */
   1063		dma_addr += offset;
   1064		stride = pix->plane_fmt[VPE_LUMA].bytesperline;
   1065	}
   1066
   1067	if (q_data->flags & Q_DATA_FRAME_1D)
   1068		flags |= VPDMA_DATA_FRAME_1D;
   1069	if (q_data->flags & Q_DATA_MODE_TILED)
   1070		flags |= VPDMA_DATA_MODE_TILED;
   1071
   1072	vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1,
   1073			   MAX_W, MAX_H);
   1074
   1075	vpdma_add_out_dtd(&ctx->desc_list, pix->width,
   1076			  stride, &q_data->c_rect,
   1077			  vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1,
   1078			  MAX_OUT_HEIGHT_REG1, p_data->channel, flags);
   1079}
   1080
   1081static void add_in_dtd(struct vpe_ctx *ctx, int port)
   1082{
   1083	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
   1084	const struct vpe_port_data *p_data = &port_data[port];
   1085	struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
   1086	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
   1087	struct vpe_fmt *fmt = q_data->fmt;
   1088	struct v4l2_pix_format_mplane *pix;
   1089	const struct vpdma_data_format *vpdma_fmt;
   1090	int mv_buf_selector = ctx->src_mv_buf_selector;
   1091	int field = vbuf->field == V4L2_FIELD_BOTTOM;
   1092	int frame_width, frame_height;
   1093	dma_addr_t dma_addr;
   1094	u32 flags = 0;
   1095	u32 offset = 0;
   1096	u32 stride;
   1097
   1098	pix = &q_data->format.fmt.pix_mp;
   1099	if (port == VPE_PORT_MV_IN) {
   1100		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
   1101		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
   1102		stride = ALIGN((pix->width * vpdma_fmt->depth) >> 3,
   1103			       VPDMA_STRIDE_ALIGN);
   1104	} else {
   1105		/* to incorporate interleaved formats */
   1106		int plane = fmt->coplanar ? p_data->vb_part : 0;
   1107
   1108		vpdma_fmt = fmt->vpdma_fmt[plane];
   1109		/*
   1110		 * If we are using a single plane buffer and
   1111		 * we need to set a separate vpdma chroma channel.
   1112		 */
   1113		if (pix->num_planes == 1 && plane) {
   1114			dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
   1115			/* Compute required offset */
   1116			offset = pix->plane_fmt[0].bytesperline * pix->height;
   1117		} else {
   1118			dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
   1119			/* Use address as is, no offset */
   1120			offset = 0;
   1121		}
   1122		if (!dma_addr) {
   1123			vpe_err(ctx->dev,
   1124				"acquiring output buffer(%d) dma_addr failed\n",
   1125				port);
   1126			return;
   1127		}
   1128		/* Apply the offset */
   1129		dma_addr += offset;
   1130		stride = pix->plane_fmt[VPE_LUMA].bytesperline;
   1131
   1132		/*
   1133		 * field used in VPDMA desc  = 0 (top) / 1 (bottom)
   1134		 * Use top or bottom field from same vb alternately
   1135		 * For each de-interlacing operation, f,f-1,f-2 should be one
   1136		 * of TBT or BTB
   1137		 */
   1138		if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB ||
   1139		    q_data->flags & Q_DATA_INTERLACED_SEQ_BT) {
   1140			/* Select initial value based on format */
   1141			if (q_data->flags & Q_DATA_INTERLACED_SEQ_BT)
   1142				field = 1;
   1143			else
   1144				field = 0;
   1145
   1146			/* Toggle for each vb_index and each operation */
   1147			field = (field + p_data->vb_index + ctx->sequence) % 2;
   1148
   1149			if (field) {
   1150				int height = pix->height / 2;
   1151				int bpp;
   1152
   1153				if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
   1154				    fmt->fourcc == V4L2_PIX_FMT_NV21)
   1155					bpp = 1;
   1156				else
   1157					bpp = vpdma_fmt->depth >> 3;
   1158
   1159				if (plane)
   1160					height /= 2;
   1161
   1162				dma_addr += pix->width * height * bpp;
   1163			}
   1164		}
   1165	}
   1166
   1167	if (q_data->flags & Q_DATA_FRAME_1D)
   1168		flags |= VPDMA_DATA_FRAME_1D;
   1169	if (q_data->flags & Q_DATA_MODE_TILED)
   1170		flags |= VPDMA_DATA_MODE_TILED;
   1171
   1172	frame_width = q_data->c_rect.width;
   1173	frame_height = q_data->c_rect.height;
   1174
   1175	if (p_data->vb_part && (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
   1176				fmt->fourcc == V4L2_PIX_FMT_NV21))
   1177		frame_height /= 2;
   1178
   1179	vpdma_add_in_dtd(&ctx->desc_list, pix->width, stride,
   1180			 &q_data->c_rect, vpdma_fmt, dma_addr,
   1181			 p_data->channel, field, flags, frame_width,
   1182			 frame_height, 0, 0);
   1183}
   1184
   1185/*
   1186 * Enable the expected IRQ sources
   1187 */
   1188static void enable_irqs(struct vpe_ctx *ctx)
   1189{
   1190	write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
   1191	write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
   1192				VPE_DS1_UV_ERROR_INT);
   1193
   1194	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true);
   1195}
   1196
   1197static void disable_irqs(struct vpe_ctx *ctx)
   1198{
   1199	write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
   1200	write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
   1201
   1202	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false);
   1203}
   1204
   1205/* device_run() - prepares and starts the device
   1206 *
   1207 * This function is only called when both the source and destination
   1208 * buffers are in place.
   1209 */
   1210static void device_run(void *priv)
   1211{
   1212	struct vpe_ctx *ctx = priv;
   1213	struct sc_data *sc = ctx->dev->sc;
   1214	struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
   1215	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
   1216	const struct v4l2_format_info *d_finfo;
   1217
   1218	d_finfo = v4l2_format_info(d_q_data->fmt->fourcc);
   1219
   1220	if (ctx->deinterlacing && s_q_data->flags & Q_IS_SEQ_XX &&
   1221	    ctx->sequence % 2 == 0) {
   1222		/* When using SEQ_XX type buffers, each buffer has two fields
   1223		 * each buffer has two fields (top & bottom)
   1224		 * Removing one buffer is actually getting two fields
   1225		 * Alternate between two operations:-
   1226		 * Even : consume one field but DO NOT REMOVE from queue
   1227		 * Odd : consume other field and REMOVE from queue
   1228		 */
   1229		ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
   1230		WARN_ON(ctx->src_vbs[0] == NULL);
   1231	} else {
   1232		ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
   1233		WARN_ON(ctx->src_vbs[0] == NULL);
   1234	}
   1235
   1236	ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
   1237	WARN_ON(ctx->dst_vb == NULL);
   1238
   1239	if (ctx->deinterlacing) {
   1240
   1241		if (ctx->src_vbs[2] == NULL) {
   1242			ctx->src_vbs[2] = ctx->src_vbs[0];
   1243			WARN_ON(ctx->src_vbs[2] == NULL);
   1244			ctx->src_vbs[1] = ctx->src_vbs[0];
   1245			WARN_ON(ctx->src_vbs[1] == NULL);
   1246		}
   1247
   1248		/*
   1249		 * we have output the first 2 frames through line average, we
   1250		 * now switch to EDI de-interlacer
   1251		 */
   1252		if (ctx->sequence == 2)
   1253			config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */
   1254	}
   1255
   1256	/* config descriptors */
   1257	if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
   1258		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
   1259		vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
   1260
   1261		set_line_modes(ctx);
   1262
   1263		ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
   1264		ctx->load_mmrs = false;
   1265	}
   1266
   1267	if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
   1268			sc->load_coeff_h) {
   1269		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
   1270		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
   1271			&ctx->sc_coeff_h, 0);
   1272
   1273		sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
   1274		sc->load_coeff_h = false;
   1275	}
   1276
   1277	if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
   1278			sc->load_coeff_v) {
   1279		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
   1280		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
   1281			&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
   1282
   1283		sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
   1284		sc->load_coeff_v = false;
   1285	}
   1286
   1287	/* output data descriptors */
   1288	if (ctx->deinterlacing)
   1289		add_out_dtd(ctx, VPE_PORT_MV_OUT);
   1290
   1291	if (v4l2_is_format_rgb(d_finfo)) {
   1292		add_out_dtd(ctx, VPE_PORT_RGB_OUT);
   1293	} else {
   1294		add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
   1295		if (d_q_data->fmt->coplanar)
   1296			add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
   1297	}
   1298
   1299	/* input data descriptors */
   1300	if (ctx->deinterlacing) {
   1301		add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
   1302		add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
   1303
   1304		add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
   1305		add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
   1306	}
   1307
   1308	add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
   1309	add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
   1310
   1311	if (ctx->deinterlacing)
   1312		add_in_dtd(ctx, VPE_PORT_MV_IN);
   1313
   1314	/* sync on channel control descriptors for input ports */
   1315	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
   1316	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
   1317
   1318	if (ctx->deinterlacing) {
   1319		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
   1320			VPE_CHAN_LUMA2_IN);
   1321		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
   1322			VPE_CHAN_CHROMA2_IN);
   1323
   1324		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
   1325			VPE_CHAN_LUMA3_IN);
   1326		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
   1327			VPE_CHAN_CHROMA3_IN);
   1328
   1329		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
   1330	}
   1331
   1332	/* sync on channel control descriptors for output ports */
   1333	if (v4l2_is_format_rgb(d_finfo)) {
   1334		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
   1335			VPE_CHAN_RGB_OUT);
   1336	} else {
   1337		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
   1338			VPE_CHAN_LUMA_OUT);
   1339		if (d_q_data->fmt->coplanar)
   1340			vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
   1341				VPE_CHAN_CHROMA_OUT);
   1342	}
   1343
   1344	if (ctx->deinterlacing)
   1345		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
   1346
   1347	enable_irqs(ctx);
   1348
   1349	vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
   1350	vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0);
   1351}
   1352
   1353static void dei_error(struct vpe_ctx *ctx)
   1354{
   1355	dev_warn(ctx->dev->v4l2_dev.dev,
   1356		"received DEI error interrupt\n");
   1357}
   1358
   1359static void ds1_uv_error(struct vpe_ctx *ctx)
   1360{
   1361	dev_warn(ctx->dev->v4l2_dev.dev,
   1362		"received downsampler error interrupt\n");
   1363}
   1364
   1365static irqreturn_t vpe_irq(int irq_vpe, void *data)
   1366{
   1367	struct vpe_dev *dev = (struct vpe_dev *)data;
   1368	struct vpe_ctx *ctx;
   1369	struct vpe_q_data *d_q_data;
   1370	struct vb2_v4l2_buffer *s_vb, *d_vb;
   1371	unsigned long flags;
   1372	u32 irqst0, irqst1;
   1373	bool list_complete = false;
   1374
   1375	irqst0 = read_reg(dev, VPE_INT0_STATUS0);
   1376	if (irqst0) {
   1377		write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
   1378		vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
   1379	}
   1380
   1381	irqst1 = read_reg(dev, VPE_INT0_STATUS1);
   1382	if (irqst1) {
   1383		write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
   1384		vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
   1385	}
   1386
   1387	ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
   1388	if (!ctx) {
   1389		vpe_err(dev, "instance released before end of transaction\n");
   1390		goto handled;
   1391	}
   1392
   1393	if (irqst1) {
   1394		if (irqst1 & VPE_DEI_ERROR_INT) {
   1395			irqst1 &= ~VPE_DEI_ERROR_INT;
   1396			dei_error(ctx);
   1397		}
   1398		if (irqst1 & VPE_DS1_UV_ERROR_INT) {
   1399			irqst1 &= ~VPE_DS1_UV_ERROR_INT;
   1400			ds1_uv_error(ctx);
   1401		}
   1402	}
   1403
   1404	if (irqst0) {
   1405		if (irqst0 & VPE_INT0_LIST0_COMPLETE)
   1406			vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0);
   1407
   1408		irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
   1409		list_complete = true;
   1410	}
   1411
   1412	if (irqst0 | irqst1) {
   1413		dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
   1414			irqst0, irqst1);
   1415	}
   1416
   1417	/*
   1418	 * Setup next operation only when list complete IRQ occurs
   1419	 * otherwise, skip the following code
   1420	 */
   1421	if (!list_complete)
   1422		goto handled;
   1423
   1424	disable_irqs(ctx);
   1425
   1426	vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
   1427	vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
   1428	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
   1429	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
   1430
   1431	vpdma_reset_desc_list(&ctx->desc_list);
   1432
   1433	 /* the previous dst mv buffer becomes the next src mv buffer */
   1434	ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
   1435
   1436	s_vb = ctx->src_vbs[0];
   1437	d_vb = ctx->dst_vb;
   1438
   1439	d_vb->flags = s_vb->flags;
   1440	d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp;
   1441
   1442	if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
   1443		d_vb->timecode = s_vb->timecode;
   1444
   1445	d_vb->sequence = ctx->sequence;
   1446	s_vb->sequence = ctx->sequence;
   1447
   1448	d_q_data = &ctx->q_data[Q_DATA_DST];
   1449	if (d_q_data->flags & Q_IS_INTERLACED) {
   1450		d_vb->field = ctx->field;
   1451		if (ctx->field == V4L2_FIELD_BOTTOM) {
   1452			ctx->sequence++;
   1453			ctx->field = V4L2_FIELD_TOP;
   1454		} else {
   1455			WARN_ON(ctx->field != V4L2_FIELD_TOP);
   1456			ctx->field = V4L2_FIELD_BOTTOM;
   1457		}
   1458	} else {
   1459		d_vb->field = V4L2_FIELD_NONE;
   1460		ctx->sequence++;
   1461	}
   1462
   1463	if (ctx->deinterlacing) {
   1464		/*
   1465		 * Allow source buffer to be dequeued only if it won't be used
   1466		 * in the next iteration. All vbs are initialized to first
   1467		 * buffer and we are shifting buffers every iteration, for the
   1468		 * first two iterations, no buffer will be dequeued.
   1469		 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
   1470		 * field when deinterlacing is enabled
   1471		 */
   1472		if (ctx->src_vbs[2] != ctx->src_vbs[1])
   1473			s_vb = ctx->src_vbs[2];
   1474		else
   1475			s_vb = NULL;
   1476	}
   1477
   1478	spin_lock_irqsave(&dev->lock, flags);
   1479
   1480	if (s_vb)
   1481		v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
   1482
   1483	v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
   1484
   1485	spin_unlock_irqrestore(&dev->lock, flags);
   1486
   1487	if (ctx->deinterlacing) {
   1488		ctx->src_vbs[2] = ctx->src_vbs[1];
   1489		ctx->src_vbs[1] = ctx->src_vbs[0];
   1490	}
   1491
   1492	/*
   1493	 * Since the vb2_buf_done has already been called fir therse
   1494	 * buffer we can now NULL them out so that we won't try
   1495	 * to clean out stray pointer later on.
   1496	*/
   1497	ctx->src_vbs[0] = NULL;
   1498	ctx->dst_vb = NULL;
   1499
   1500	if (ctx->aborting)
   1501		goto finished;
   1502
   1503	ctx->bufs_completed++;
   1504	if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) {
   1505		device_run(ctx);
   1506		goto handled;
   1507	}
   1508
   1509finished:
   1510	vpe_dbg(ctx->dev, "finishing transaction\n");
   1511	ctx->bufs_completed = 0;
   1512	v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
   1513handled:
   1514	return IRQ_HANDLED;
   1515}
   1516
   1517/*
   1518 * video ioctls
   1519 */
   1520static int vpe_querycap(struct file *file, void *priv,
   1521			struct v4l2_capability *cap)
   1522{
   1523	strscpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver));
   1524	strscpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card));
   1525	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
   1526		VPE_MODULE_NAME);
   1527	return 0;
   1528}
   1529
   1530static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
   1531{
   1532	int i, index;
   1533	struct vpe_fmt *fmt = NULL;
   1534
   1535	index = 0;
   1536	for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
   1537		if (vpe_formats[i].types & type) {
   1538			if (index == f->index) {
   1539				fmt = &vpe_formats[i];
   1540				break;
   1541			}
   1542			index++;
   1543		}
   1544	}
   1545
   1546	if (!fmt)
   1547		return -EINVAL;
   1548
   1549	f->pixelformat = fmt->fourcc;
   1550	return 0;
   1551}
   1552
   1553static int vpe_enum_fmt(struct file *file, void *priv,
   1554				struct v4l2_fmtdesc *f)
   1555{
   1556	if (V4L2_TYPE_IS_OUTPUT(f->type))
   1557		return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
   1558
   1559	return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
   1560}
   1561
   1562static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
   1563{
   1564	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
   1565	struct vpe_ctx *ctx = file->private_data;
   1566	struct vb2_queue *vq;
   1567	struct vpe_q_data *q_data;
   1568
   1569	vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
   1570	if (!vq)
   1571		return -EINVAL;
   1572
   1573	q_data = get_q_data(ctx, f->type);
   1574	if (!q_data)
   1575		return -EINVAL;
   1576
   1577	*f = q_data->format;
   1578
   1579	if (V4L2_TYPE_IS_CAPTURE(f->type)) {
   1580		struct vpe_q_data *s_q_data;
   1581		struct v4l2_pix_format_mplane *spix;
   1582
   1583		/* get colorimetry from the source queue */
   1584		s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
   1585		spix = &s_q_data->format.fmt.pix_mp;
   1586
   1587		pix->colorspace = spix->colorspace;
   1588		pix->xfer_func = spix->xfer_func;
   1589		pix->ycbcr_enc = spix->ycbcr_enc;
   1590		pix->quantization = spix->quantization;
   1591	}
   1592
   1593	return 0;
   1594}
   1595
   1596static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
   1597		       struct vpe_fmt *fmt, int type)
   1598{
   1599	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
   1600	struct v4l2_plane_pix_format *plane_fmt;
   1601	unsigned int w_align;
   1602	int i, depth, depth_bytes, height;
   1603	unsigned int stride = 0;
   1604	const struct v4l2_format_info *finfo;
   1605
   1606	if (!fmt || !(fmt->types & type)) {
   1607		vpe_dbg(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
   1608			pix->pixelformat);
   1609		fmt = __find_format(V4L2_PIX_FMT_YUYV);
   1610	}
   1611
   1612	if (pix->field != V4L2_FIELD_NONE &&
   1613	    pix->field != V4L2_FIELD_ALTERNATE &&
   1614	    pix->field != V4L2_FIELD_SEQ_TB &&
   1615	    pix->field != V4L2_FIELD_SEQ_BT)
   1616		pix->field = V4L2_FIELD_NONE;
   1617
   1618	depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
   1619
   1620	/*
   1621	 * the line stride should 16 byte aligned for VPDMA to work, based on
   1622	 * the bytes per pixel, figure out how much the width should be aligned
   1623	 * to make sure line stride is 16 byte aligned
   1624	 */
   1625	depth_bytes = depth >> 3;
   1626
   1627	if (depth_bytes == 3) {
   1628		/*
   1629		 * if bpp is 3(as in some RGB formats), the pixel width doesn't
   1630		 * really help in ensuring line stride is 16 byte aligned
   1631		 */
   1632		w_align = 4;
   1633	} else {
   1634		/*
   1635		 * for the remainder bpp(4, 2 and 1), the pixel width alignment
   1636		 * can ensure a line stride alignment of 16 bytes. For example,
   1637		 * if bpp is 2, then the line stride can be 16 byte aligned if
   1638		 * the width is 8 byte aligned
   1639		 */
   1640
   1641		/*
   1642		 * HACK: using order_base_2() here causes lots of asm output
   1643		 * errors with smatch, on i386:
   1644		 * ./arch/x86/include/asm/bitops.h:457:22:
   1645		 *		 warning: asm output is not an lvalue
   1646		 * Perhaps some gcc optimization is doing the wrong thing
   1647		 * there.
   1648		 * Let's get rid of them by doing the calculus on two steps
   1649		 */
   1650		w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes);
   1651		w_align = ilog2(w_align);
   1652	}
   1653
   1654	v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
   1655			      &pix->height, MIN_H, MAX_H, H_ALIGN,
   1656			      S_ALIGN);
   1657
   1658	if (!pix->num_planes || pix->num_planes > 2)
   1659		pix->num_planes = fmt->coplanar ? 2 : 1;
   1660	else if (pix->num_planes > 1 && !fmt->coplanar)
   1661		pix->num_planes = 1;
   1662
   1663	pix->pixelformat = fmt->fourcc;
   1664	finfo = v4l2_format_info(fmt->fourcc);
   1665
   1666	/*
   1667	 * For the actual image parameters, we need to consider the field
   1668	 * height of the image for SEQ_XX buffers.
   1669	 */
   1670	if (pix->field == V4L2_FIELD_SEQ_TB || pix->field == V4L2_FIELD_SEQ_BT)
   1671		height = pix->height / 2;
   1672	else
   1673		height = pix->height;
   1674
   1675	if (!pix->colorspace) {
   1676		if (v4l2_is_format_rgb(finfo)) {
   1677			pix->colorspace = V4L2_COLORSPACE_SRGB;
   1678		} else {
   1679			if (height > 1280)	/* HD */
   1680				pix->colorspace = V4L2_COLORSPACE_REC709;
   1681			else			/* SD */
   1682				pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
   1683		}
   1684	}
   1685
   1686	for (i = 0; i < pix->num_planes; i++) {
   1687		plane_fmt = &pix->plane_fmt[i];
   1688		depth = fmt->vpdma_fmt[i]->depth;
   1689
   1690		stride = (pix->width * fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
   1691		if (stride > plane_fmt->bytesperline)
   1692			plane_fmt->bytesperline = stride;
   1693
   1694		plane_fmt->bytesperline = clamp_t(u32, plane_fmt->bytesperline,
   1695						  stride,
   1696						  VPDMA_MAX_STRIDE);
   1697
   1698		plane_fmt->bytesperline = ALIGN(plane_fmt->bytesperline,
   1699						VPDMA_STRIDE_ALIGN);
   1700
   1701		if (i == VPE_LUMA) {
   1702			plane_fmt->sizeimage = pix->height *
   1703					       plane_fmt->bytesperline;
   1704
   1705			if (pix->num_planes == 1 && fmt->coplanar)
   1706				plane_fmt->sizeimage += pix->height *
   1707					plane_fmt->bytesperline *
   1708					fmt->vpdma_fmt[VPE_CHROMA]->depth >> 3;
   1709
   1710		} else { /* i == VIP_CHROMA */
   1711			plane_fmt->sizeimage = (pix->height *
   1712					       plane_fmt->bytesperline *
   1713					       depth) >> 3;
   1714		}
   1715	}
   1716
   1717	return 0;
   1718}
   1719
   1720static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
   1721{
   1722	struct vpe_ctx *ctx = file->private_data;
   1723	struct vpe_fmt *fmt = find_format(f);
   1724
   1725	if (V4L2_TYPE_IS_OUTPUT(f->type))
   1726		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
   1727	else
   1728		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
   1729}
   1730
   1731static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
   1732{
   1733	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
   1734	struct v4l2_pix_format_mplane *qpix;
   1735	struct vpe_q_data *q_data;
   1736	struct vb2_queue *vq;
   1737
   1738	vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
   1739	if (!vq)
   1740		return -EINVAL;
   1741
   1742	if (vb2_is_busy(vq)) {
   1743		vpe_err(ctx->dev, "queue busy\n");
   1744		return -EBUSY;
   1745	}
   1746
   1747	q_data = get_q_data(ctx, f->type);
   1748	if (!q_data)
   1749		return -EINVAL;
   1750
   1751	qpix = &q_data->format.fmt.pix_mp;
   1752	q_data->fmt		= find_format(f);
   1753	q_data->format = *f;
   1754
   1755	q_data->c_rect.left	= 0;
   1756	q_data->c_rect.top	= 0;
   1757	q_data->c_rect.width	= pix->width;
   1758	q_data->c_rect.height	= pix->height;
   1759
   1760	if (qpix->field == V4L2_FIELD_ALTERNATE)
   1761		q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
   1762	else if (qpix->field == V4L2_FIELD_SEQ_TB)
   1763		q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
   1764	else if (qpix->field == V4L2_FIELD_SEQ_BT)
   1765		q_data->flags |= Q_DATA_INTERLACED_SEQ_BT;
   1766	else
   1767		q_data->flags &= ~Q_IS_INTERLACED;
   1768
   1769	/* the crop height is halved for the case of SEQ_XX buffers */
   1770	if (q_data->flags & Q_IS_SEQ_XX)
   1771		q_data->c_rect.height /= 2;
   1772
   1773	vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
   1774		f->type, pix->width, pix->height, pix->pixelformat,
   1775		pix->plane_fmt[0].bytesperline);
   1776	if (pix->num_planes == 2)
   1777		vpe_dbg(ctx->dev, " bpl_uv %d\n",
   1778			pix->plane_fmt[1].bytesperline);
   1779
   1780	return 0;
   1781}
   1782
   1783static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
   1784{
   1785	int ret;
   1786	struct vpe_ctx *ctx = file->private_data;
   1787
   1788	ret = vpe_try_fmt(file, priv, f);
   1789	if (ret)
   1790		return ret;
   1791
   1792	ret = __vpe_s_fmt(ctx, f);
   1793	if (ret)
   1794		return ret;
   1795
   1796	if (V4L2_TYPE_IS_OUTPUT(f->type))
   1797		set_src_registers(ctx);
   1798	else
   1799		set_dst_registers(ctx);
   1800
   1801	return set_srcdst_params(ctx);
   1802}
   1803
   1804static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
   1805{
   1806	struct vpe_q_data *q_data;
   1807	struct v4l2_pix_format_mplane *pix;
   1808	int height;
   1809
   1810	if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
   1811	    (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
   1812		return -EINVAL;
   1813
   1814	q_data = get_q_data(ctx, s->type);
   1815	if (!q_data)
   1816		return -EINVAL;
   1817
   1818	pix = &q_data->format.fmt.pix_mp;
   1819
   1820	switch (s->target) {
   1821	case V4L2_SEL_TGT_COMPOSE:
   1822		/*
   1823		 * COMPOSE target is only valid for capture buffer type, return
   1824		 * error for output buffer type
   1825		 */
   1826		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
   1827			return -EINVAL;
   1828		break;
   1829	case V4L2_SEL_TGT_CROP:
   1830		/*
   1831		 * CROP target is only valid for output buffer type, return
   1832		 * error for capture buffer type
   1833		 */
   1834		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
   1835			return -EINVAL;
   1836		break;
   1837	/*
   1838	 * bound and default crop/compose targets are invalid targets to
   1839	 * try/set
   1840	 */
   1841	default:
   1842		return -EINVAL;
   1843	}
   1844
   1845	/*
   1846	 * For SEQ_XX buffers, crop height should be less than the height of
   1847	 * the field height, not the buffer height
   1848	 */
   1849	if (q_data->flags & Q_IS_SEQ_XX)
   1850		height = pix->height / 2;
   1851	else
   1852		height = pix->height;
   1853
   1854	if (s->r.top < 0 || s->r.left < 0) {
   1855		vpe_err(ctx->dev, "negative values for top and left\n");
   1856		s->r.top = s->r.left = 0;
   1857	}
   1858
   1859	v4l_bound_align_image(&s->r.width, MIN_W, pix->width, 1,
   1860		&s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
   1861
   1862	/* adjust left/top if cropping rectangle is out of bounds */
   1863	if (s->r.left + s->r.width > pix->width)
   1864		s->r.left = pix->width - s->r.width;
   1865	if (s->r.top + s->r.height > pix->height)
   1866		s->r.top = pix->height - s->r.height;
   1867
   1868	return 0;
   1869}
   1870
   1871static int vpe_g_selection(struct file *file, void *fh,
   1872		struct v4l2_selection *s)
   1873{
   1874	struct vpe_ctx *ctx = file->private_data;
   1875	struct vpe_q_data *q_data;
   1876	struct v4l2_pix_format_mplane *pix;
   1877	bool use_c_rect = false;
   1878
   1879	if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
   1880	    (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
   1881		return -EINVAL;
   1882
   1883	q_data = get_q_data(ctx, s->type);
   1884	if (!q_data)
   1885		return -EINVAL;
   1886
   1887	pix = &q_data->format.fmt.pix_mp;
   1888
   1889	switch (s->target) {
   1890	case V4L2_SEL_TGT_COMPOSE_DEFAULT:
   1891	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
   1892		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
   1893			return -EINVAL;
   1894		break;
   1895	case V4L2_SEL_TGT_CROP_BOUNDS:
   1896	case V4L2_SEL_TGT_CROP_DEFAULT:
   1897		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
   1898			return -EINVAL;
   1899		break;
   1900	case V4L2_SEL_TGT_COMPOSE:
   1901		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
   1902			return -EINVAL;
   1903		use_c_rect = true;
   1904		break;
   1905	case V4L2_SEL_TGT_CROP:
   1906		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
   1907			return -EINVAL;
   1908		use_c_rect = true;
   1909		break;
   1910	default:
   1911		return -EINVAL;
   1912	}
   1913
   1914	if (use_c_rect) {
   1915		/*
   1916		 * for CROP/COMPOSE target type, return c_rect params from the
   1917		 * respective buffer type
   1918		 */
   1919		s->r = q_data->c_rect;
   1920	} else {
   1921		/*
   1922		 * for DEFAULT/BOUNDS target type, return width and height from
   1923		 * S_FMT of the respective buffer type
   1924		 */
   1925		s->r.left = 0;
   1926		s->r.top = 0;
   1927		s->r.width = pix->width;
   1928		s->r.height = pix->height;
   1929	}
   1930
   1931	return 0;
   1932}
   1933
   1934
   1935static int vpe_s_selection(struct file *file, void *fh,
   1936		struct v4l2_selection *s)
   1937{
   1938	struct vpe_ctx *ctx = file->private_data;
   1939	struct vpe_q_data *q_data;
   1940	struct v4l2_selection sel = *s;
   1941	int ret;
   1942
   1943	ret = __vpe_try_selection(ctx, &sel);
   1944	if (ret)
   1945		return ret;
   1946
   1947	q_data = get_q_data(ctx, sel.type);
   1948	if (!q_data)
   1949		return -EINVAL;
   1950
   1951	if ((q_data->c_rect.left == sel.r.left) &&
   1952			(q_data->c_rect.top == sel.r.top) &&
   1953			(q_data->c_rect.width == sel.r.width) &&
   1954			(q_data->c_rect.height == sel.r.height)) {
   1955		vpe_dbg(ctx->dev,
   1956			"requested crop/compose values are already set\n");
   1957		return 0;
   1958	}
   1959
   1960	q_data->c_rect = sel.r;
   1961
   1962	return set_srcdst_params(ctx);
   1963}
   1964
   1965/*
   1966 * defines number of buffers/frames a context can process with VPE before
   1967 * switching to a different context. default value is 1 buffer per context
   1968 */
   1969#define V4L2_CID_VPE_BUFS_PER_JOB		(V4L2_CID_USER_TI_VPE_BASE + 0)
   1970
   1971static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
   1972{
   1973	struct vpe_ctx *ctx =
   1974		container_of(ctrl->handler, struct vpe_ctx, hdl);
   1975
   1976	switch (ctrl->id) {
   1977	case V4L2_CID_VPE_BUFS_PER_JOB:
   1978		ctx->bufs_per_job = ctrl->val;
   1979		break;
   1980
   1981	default:
   1982		vpe_err(ctx->dev, "Invalid control\n");
   1983		return -EINVAL;
   1984	}
   1985
   1986	return 0;
   1987}
   1988
   1989static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
   1990	.s_ctrl = vpe_s_ctrl,
   1991};
   1992
   1993static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
   1994	.vidioc_querycap		= vpe_querycap,
   1995
   1996	.vidioc_enum_fmt_vid_cap	= vpe_enum_fmt,
   1997	.vidioc_g_fmt_vid_cap_mplane	= vpe_g_fmt,
   1998	.vidioc_try_fmt_vid_cap_mplane	= vpe_try_fmt,
   1999	.vidioc_s_fmt_vid_cap_mplane	= vpe_s_fmt,
   2000
   2001	.vidioc_enum_fmt_vid_out	= vpe_enum_fmt,
   2002	.vidioc_g_fmt_vid_out_mplane	= vpe_g_fmt,
   2003	.vidioc_try_fmt_vid_out_mplane	= vpe_try_fmt,
   2004	.vidioc_s_fmt_vid_out_mplane	= vpe_s_fmt,
   2005
   2006	.vidioc_g_selection		= vpe_g_selection,
   2007	.vidioc_s_selection		= vpe_s_selection,
   2008
   2009	.vidioc_reqbufs			= v4l2_m2m_ioctl_reqbufs,
   2010	.vidioc_querybuf		= v4l2_m2m_ioctl_querybuf,
   2011	.vidioc_qbuf			= v4l2_m2m_ioctl_qbuf,
   2012	.vidioc_dqbuf			= v4l2_m2m_ioctl_dqbuf,
   2013	.vidioc_expbuf			= v4l2_m2m_ioctl_expbuf,
   2014	.vidioc_streamon		= v4l2_m2m_ioctl_streamon,
   2015	.vidioc_streamoff		= v4l2_m2m_ioctl_streamoff,
   2016
   2017	.vidioc_subscribe_event		= v4l2_ctrl_subscribe_event,
   2018	.vidioc_unsubscribe_event	= v4l2_event_unsubscribe,
   2019};
   2020
   2021/*
   2022 * Queue operations
   2023 */
   2024static int vpe_queue_setup(struct vb2_queue *vq,
   2025			   unsigned int *nbuffers, unsigned int *nplanes,
   2026			   unsigned int sizes[], struct device *alloc_devs[])
   2027{
   2028	int i;
   2029	struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
   2030	struct vpe_q_data *q_data;
   2031	struct v4l2_pix_format_mplane *pix;
   2032
   2033	q_data = get_q_data(ctx, vq->type);
   2034	if (!q_data)
   2035		return -EINVAL;
   2036
   2037	pix = &q_data->format.fmt.pix_mp;
   2038	*nplanes = pix->num_planes;
   2039
   2040	for (i = 0; i < *nplanes; i++)
   2041		sizes[i] = pix->plane_fmt[i].sizeimage;
   2042
   2043	vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
   2044		sizes[VPE_LUMA]);
   2045	if (*nplanes == 2)
   2046		vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
   2047
   2048	return 0;
   2049}
   2050
   2051static int vpe_buf_prepare(struct vb2_buffer *vb)
   2052{
   2053	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
   2054	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
   2055	struct vpe_q_data *q_data;
   2056	struct v4l2_pix_format_mplane *pix;
   2057	int i;
   2058
   2059	vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
   2060
   2061	q_data = get_q_data(ctx, vb->vb2_queue->type);
   2062	if (!q_data)
   2063		return -EINVAL;
   2064
   2065	pix = &q_data->format.fmt.pix_mp;
   2066
   2067	if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
   2068		if (!(q_data->flags & Q_IS_INTERLACED)) {
   2069			vbuf->field = V4L2_FIELD_NONE;
   2070		} else {
   2071			if (vbuf->field != V4L2_FIELD_TOP &&
   2072			    vbuf->field != V4L2_FIELD_BOTTOM &&
   2073			    vbuf->field != V4L2_FIELD_SEQ_TB &&
   2074			    vbuf->field != V4L2_FIELD_SEQ_BT)
   2075				return -EINVAL;
   2076		}
   2077	}
   2078
   2079	for (i = 0; i < pix->num_planes; i++) {
   2080		if (vb2_plane_size(vb, i) < pix->plane_fmt[i].sizeimage) {
   2081			vpe_err(ctx->dev,
   2082				"data will not fit into plane (%lu < %lu)\n",
   2083				vb2_plane_size(vb, i),
   2084				(long)pix->plane_fmt[i].sizeimage);
   2085			return -EINVAL;
   2086		}
   2087	}
   2088
   2089	for (i = 0; i < pix->num_planes; i++)
   2090		vb2_set_plane_payload(vb, i, pix->plane_fmt[i].sizeimage);
   2091
   2092	return 0;
   2093}
   2094
   2095static void vpe_buf_queue(struct vb2_buffer *vb)
   2096{
   2097	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
   2098	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
   2099
   2100	v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
   2101}
   2102
   2103static int check_srcdst_sizes(struct vpe_ctx *ctx)
   2104{
   2105	struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
   2106	struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
   2107	unsigned int src_w = s_q_data->c_rect.width;
   2108	unsigned int src_h = s_q_data->c_rect.height;
   2109	unsigned int dst_w = d_q_data->c_rect.width;
   2110	unsigned int dst_h = d_q_data->c_rect.height;
   2111
   2112	if (src_w == dst_w && src_h == dst_h)
   2113		return 0;
   2114
   2115	if (src_h <= SC_MAX_PIXEL_HEIGHT &&
   2116	    src_w <= SC_MAX_PIXEL_WIDTH &&
   2117	    dst_h <= SC_MAX_PIXEL_HEIGHT &&
   2118	    dst_w <= SC_MAX_PIXEL_WIDTH)
   2119		return 0;
   2120
   2121	return -1;
   2122}
   2123
   2124static void vpe_return_all_buffers(struct vpe_ctx *ctx,  struct vb2_queue *q,
   2125				   enum vb2_buffer_state state)
   2126{
   2127	struct vb2_v4l2_buffer *vb;
   2128	unsigned long flags;
   2129
   2130	for (;;) {
   2131		if (V4L2_TYPE_IS_OUTPUT(q->type))
   2132			vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
   2133		else
   2134			vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
   2135		if (!vb)
   2136			break;
   2137		spin_lock_irqsave(&ctx->dev->lock, flags);
   2138		v4l2_m2m_buf_done(vb, state);
   2139		spin_unlock_irqrestore(&ctx->dev->lock, flags);
   2140	}
   2141
   2142	/*
   2143	 * Cleanup the in-transit vb2 buffers that have been
   2144	 * removed from their respective queue already but for
   2145	 * which procecessing has not been completed yet.
   2146	 */
   2147	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
   2148		spin_lock_irqsave(&ctx->dev->lock, flags);
   2149
   2150		if (ctx->src_vbs[2])
   2151			v4l2_m2m_buf_done(ctx->src_vbs[2], state);
   2152
   2153		if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
   2154			v4l2_m2m_buf_done(ctx->src_vbs[1], state);
   2155
   2156		if (ctx->src_vbs[0] &&
   2157		    (ctx->src_vbs[0] != ctx->src_vbs[1]) &&
   2158		    (ctx->src_vbs[0] != ctx->src_vbs[2]))
   2159			v4l2_m2m_buf_done(ctx->src_vbs[0], state);
   2160
   2161		ctx->src_vbs[2] = NULL;
   2162		ctx->src_vbs[1] = NULL;
   2163		ctx->src_vbs[0] = NULL;
   2164
   2165		spin_unlock_irqrestore(&ctx->dev->lock, flags);
   2166	} else {
   2167		if (ctx->dst_vb) {
   2168			spin_lock_irqsave(&ctx->dev->lock, flags);
   2169
   2170			v4l2_m2m_buf_done(ctx->dst_vb, state);
   2171			ctx->dst_vb = NULL;
   2172			spin_unlock_irqrestore(&ctx->dev->lock, flags);
   2173		}
   2174	}
   2175}
   2176
   2177static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
   2178{
   2179	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
   2180
   2181	/* Check any of the size exceed maximum scaling sizes */
   2182	if (check_srcdst_sizes(ctx)) {
   2183		vpe_err(ctx->dev,
   2184			"Conversion setup failed, check source and destination parameters\n"
   2185			);
   2186		vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED);
   2187		return -EINVAL;
   2188	}
   2189
   2190	if (ctx->deinterlacing)
   2191		config_edi_input_mode(ctx, 0x0);
   2192
   2193	if (ctx->sequence != 0)
   2194		set_srcdst_params(ctx);
   2195
   2196	return 0;
   2197}
   2198
   2199static void vpe_stop_streaming(struct vb2_queue *q)
   2200{
   2201	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
   2202
   2203	vpe_dump_regs(ctx->dev);
   2204	vpdma_dump_regs(ctx->dev->vpdma);
   2205
   2206	vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR);
   2207}
   2208
   2209static const struct vb2_ops vpe_qops = {
   2210	.queue_setup	 = vpe_queue_setup,
   2211	.buf_prepare	 = vpe_buf_prepare,
   2212	.buf_queue	 = vpe_buf_queue,
   2213	.wait_prepare	 = vb2_ops_wait_prepare,
   2214	.wait_finish	 = vb2_ops_wait_finish,
   2215	.start_streaming = vpe_start_streaming,
   2216	.stop_streaming  = vpe_stop_streaming,
   2217};
   2218
   2219static int queue_init(void *priv, struct vb2_queue *src_vq,
   2220		      struct vb2_queue *dst_vq)
   2221{
   2222	struct vpe_ctx *ctx = priv;
   2223	struct vpe_dev *dev = ctx->dev;
   2224	int ret;
   2225
   2226	memset(src_vq, 0, sizeof(*src_vq));
   2227	src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
   2228	src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
   2229	src_vq->drv_priv = ctx;
   2230	src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
   2231	src_vq->ops = &vpe_qops;
   2232	src_vq->mem_ops = &vb2_dma_contig_memops;
   2233	src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
   2234	src_vq->lock = &dev->dev_mutex;
   2235	src_vq->dev = dev->v4l2_dev.dev;
   2236
   2237	ret = vb2_queue_init(src_vq);
   2238	if (ret)
   2239		return ret;
   2240
   2241	memset(dst_vq, 0, sizeof(*dst_vq));
   2242	dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
   2243	dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
   2244	dst_vq->drv_priv = ctx;
   2245	dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
   2246	dst_vq->ops = &vpe_qops;
   2247	dst_vq->mem_ops = &vb2_dma_contig_memops;
   2248	dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
   2249	dst_vq->lock = &dev->dev_mutex;
   2250	dst_vq->dev = dev->v4l2_dev.dev;
   2251
   2252	return vb2_queue_init(dst_vq);
   2253}
   2254
   2255static const struct v4l2_ctrl_config vpe_bufs_per_job = {
   2256	.ops = &vpe_ctrl_ops,
   2257	.id = V4L2_CID_VPE_BUFS_PER_JOB,
   2258	.name = "Buffers Per Transaction",
   2259	.type = V4L2_CTRL_TYPE_INTEGER,
   2260	.def = VPE_DEF_BUFS_PER_JOB,
   2261	.min = 1,
   2262	.max = VIDEO_MAX_FRAME,
   2263	.step = 1,
   2264};
   2265
   2266/*
   2267 * File operations
   2268 */
   2269static int vpe_open(struct file *file)
   2270{
   2271	struct vpe_dev *dev = video_drvdata(file);
   2272	struct vpe_q_data *s_q_data;
   2273	struct v4l2_ctrl_handler *hdl;
   2274	struct vpe_ctx *ctx;
   2275	struct v4l2_pix_format_mplane *pix;
   2276	int ret;
   2277
   2278	vpe_dbg(dev, "vpe_open\n");
   2279
   2280	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
   2281	if (!ctx)
   2282		return -ENOMEM;
   2283
   2284	ctx->dev = dev;
   2285
   2286	if (mutex_lock_interruptible(&dev->dev_mutex)) {
   2287		ret = -ERESTARTSYS;
   2288		goto free_ctx;
   2289	}
   2290
   2291	ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
   2292			VPDMA_LIST_TYPE_NORMAL);
   2293	if (ret != 0)
   2294		goto unlock;
   2295
   2296	ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
   2297	if (ret != 0)
   2298		goto free_desc_list;
   2299
   2300	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
   2301	if (ret != 0)
   2302		goto free_mmr_adb;
   2303
   2304	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
   2305	if (ret != 0)
   2306		goto free_sc_h;
   2307
   2308	init_adb_hdrs(ctx);
   2309
   2310	v4l2_fh_init(&ctx->fh, video_devdata(file));
   2311	file->private_data = ctx;
   2312
   2313	hdl = &ctx->hdl;
   2314	v4l2_ctrl_handler_init(hdl, 1);
   2315	v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
   2316	if (hdl->error) {
   2317		ret = hdl->error;
   2318		goto exit_fh;
   2319	}
   2320	ctx->fh.ctrl_handler = hdl;
   2321	v4l2_ctrl_handler_setup(hdl);
   2322
   2323	s_q_data = &ctx->q_data[Q_DATA_SRC];
   2324	pix = &s_q_data->format.fmt.pix_mp;
   2325	s_q_data->fmt = __find_format(V4L2_PIX_FMT_YUYV);
   2326	pix->pixelformat = s_q_data->fmt->fourcc;
   2327	s_q_data->format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
   2328	pix->width = 1920;
   2329	pix->height = 1080;
   2330	pix->num_planes = 1;
   2331	pix->plane_fmt[VPE_LUMA].bytesperline = (pix->width *
   2332			s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
   2333	pix->plane_fmt[VPE_LUMA].sizeimage =
   2334			pix->plane_fmt[VPE_LUMA].bytesperline *
   2335			pix->height;
   2336	pix->colorspace = V4L2_COLORSPACE_REC709;
   2337	pix->xfer_func = V4L2_XFER_FUNC_DEFAULT;
   2338	pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
   2339	pix->quantization = V4L2_QUANTIZATION_DEFAULT;
   2340	pix->field = V4L2_FIELD_NONE;
   2341	s_q_data->c_rect.left = 0;
   2342	s_q_data->c_rect.top = 0;
   2343	s_q_data->c_rect.width = pix->width;
   2344	s_q_data->c_rect.height = pix->height;
   2345	s_q_data->flags = 0;
   2346
   2347	ctx->q_data[Q_DATA_DST] = *s_q_data;
   2348	ctx->q_data[Q_DATA_DST].format.type =
   2349			V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
   2350
   2351	set_dei_shadow_registers(ctx);
   2352	set_src_registers(ctx);
   2353	set_dst_registers(ctx);
   2354	ret = set_srcdst_params(ctx);
   2355	if (ret)
   2356		goto exit_fh;
   2357
   2358	ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
   2359
   2360	if (IS_ERR(ctx->fh.m2m_ctx)) {
   2361		ret = PTR_ERR(ctx->fh.m2m_ctx);
   2362		goto exit_fh;
   2363	}
   2364
   2365	v4l2_fh_add(&ctx->fh);
   2366
   2367	/*
   2368	 * for now, just report the creation of the first instance, we can later
   2369	 * optimize the driver to enable or disable clocks when the first
   2370	 * instance is created or the last instance released
   2371	 */
   2372	if (atomic_inc_return(&dev->num_instances) == 1)
   2373		vpe_dbg(dev, "first instance created\n");
   2374
   2375	ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
   2376
   2377	ctx->load_mmrs = true;
   2378
   2379	vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
   2380		ctx, ctx->fh.m2m_ctx);
   2381
   2382	mutex_unlock(&dev->dev_mutex);
   2383
   2384	return 0;
   2385exit_fh:
   2386	v4l2_ctrl_handler_free(hdl);
   2387	v4l2_fh_exit(&ctx->fh);
   2388	vpdma_free_desc_buf(&ctx->sc_coeff_v);
   2389free_sc_h:
   2390	vpdma_free_desc_buf(&ctx->sc_coeff_h);
   2391free_mmr_adb:
   2392	vpdma_free_desc_buf(&ctx->mmr_adb);
   2393free_desc_list:
   2394	vpdma_free_desc_list(&ctx->desc_list);
   2395unlock:
   2396	mutex_unlock(&dev->dev_mutex);
   2397free_ctx:
   2398	kfree(ctx);
   2399	return ret;
   2400}
   2401
   2402static int vpe_release(struct file *file)
   2403{
   2404	struct vpe_dev *dev = video_drvdata(file);
   2405	struct vpe_ctx *ctx = file->private_data;
   2406
   2407	vpe_dbg(dev, "releasing instance %p\n", ctx);
   2408
   2409	mutex_lock(&dev->dev_mutex);
   2410	free_mv_buffers(ctx);
   2411
   2412	vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
   2413	vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
   2414	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
   2415	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
   2416
   2417	vpdma_free_desc_list(&ctx->desc_list);
   2418	vpdma_free_desc_buf(&ctx->mmr_adb);
   2419
   2420	vpdma_free_desc_buf(&ctx->sc_coeff_v);
   2421	vpdma_free_desc_buf(&ctx->sc_coeff_h);
   2422
   2423	v4l2_fh_del(&ctx->fh);
   2424	v4l2_fh_exit(&ctx->fh);
   2425	v4l2_ctrl_handler_free(&ctx->hdl);
   2426	v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
   2427
   2428	kfree(ctx);
   2429
   2430	/*
   2431	 * for now, just report the release of the last instance, we can later
   2432	 * optimize the driver to enable or disable clocks when the first
   2433	 * instance is created or the last instance released
   2434	 */
   2435	if (atomic_dec_return(&dev->num_instances) == 0)
   2436		vpe_dbg(dev, "last instance released\n");
   2437
   2438	mutex_unlock(&dev->dev_mutex);
   2439
   2440	return 0;
   2441}
   2442
   2443static const struct v4l2_file_operations vpe_fops = {
   2444	.owner		= THIS_MODULE,
   2445	.open		= vpe_open,
   2446	.release	= vpe_release,
   2447	.poll		= v4l2_m2m_fop_poll,
   2448	.unlocked_ioctl	= video_ioctl2,
   2449	.mmap		= v4l2_m2m_fop_mmap,
   2450};
   2451
   2452static const struct video_device vpe_videodev = {
   2453	.name		= VPE_MODULE_NAME,
   2454	.fops		= &vpe_fops,
   2455	.ioctl_ops	= &vpe_ioctl_ops,
   2456	.minor		= -1,
   2457	.release	= video_device_release_empty,
   2458	.vfl_dir	= VFL_DIR_M2M,
   2459	.device_caps	= V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
   2460};
   2461
   2462static const struct v4l2_m2m_ops m2m_ops = {
   2463	.device_run	= device_run,
   2464	.job_ready	= job_ready,
   2465	.job_abort	= job_abort,
   2466};
   2467
   2468static int vpe_runtime_get(struct platform_device *pdev)
   2469{
   2470	int r;
   2471
   2472	dev_dbg(&pdev->dev, "vpe_runtime_get\n");
   2473
   2474	r = pm_runtime_resume_and_get(&pdev->dev);
   2475	WARN_ON(r < 0);
   2476	return r;
   2477}
   2478
   2479static void vpe_runtime_put(struct platform_device *pdev)
   2480{
   2481
   2482	int r;
   2483
   2484	dev_dbg(&pdev->dev, "vpe_runtime_put\n");
   2485
   2486	r = pm_runtime_put_sync(&pdev->dev);
   2487	WARN_ON(r < 0 && r != -ENOSYS);
   2488}
   2489
   2490static void vpe_fw_cb(struct platform_device *pdev)
   2491{
   2492	struct vpe_dev *dev = platform_get_drvdata(pdev);
   2493	struct video_device *vfd;
   2494	int ret;
   2495
   2496	vfd = &dev->vfd;
   2497	*vfd = vpe_videodev;
   2498	vfd->lock = &dev->dev_mutex;
   2499	vfd->v4l2_dev = &dev->v4l2_dev;
   2500
   2501	ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0);
   2502	if (ret) {
   2503		vpe_err(dev, "Failed to register video device\n");
   2504
   2505		vpe_set_clock_enable(dev, 0);
   2506		vpe_runtime_put(pdev);
   2507		pm_runtime_disable(&pdev->dev);
   2508		v4l2_m2m_release(dev->m2m_dev);
   2509		v4l2_device_unregister(&dev->v4l2_dev);
   2510
   2511		return;
   2512	}
   2513
   2514	video_set_drvdata(vfd, dev);
   2515	dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
   2516		vfd->num);
   2517}
   2518
   2519static int vpe_probe(struct platform_device *pdev)
   2520{
   2521	struct vpe_dev *dev;
   2522	int ret, irq, func;
   2523
   2524	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
   2525	if (ret) {
   2526		dev_err(&pdev->dev,
   2527			"32-bit consistent DMA enable failed\n");
   2528		return ret;
   2529	}
   2530
   2531	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
   2532	if (!dev)
   2533		return -ENOMEM;
   2534
   2535	spin_lock_init(&dev->lock);
   2536
   2537	ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
   2538	if (ret)
   2539		return ret;
   2540
   2541	atomic_set(&dev->num_instances, 0);
   2542	mutex_init(&dev->dev_mutex);
   2543
   2544	dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
   2545						"vpe_top");
   2546	if (!dev->res) {
   2547		dev_err(&pdev->dev, "missing 'vpe_top' resources data\n");
   2548		return -ENODEV;
   2549	}
   2550
   2551	/*
   2552	 * HACK: we get resource info from device tree in the form of a list of
   2553	 * VPE sub blocks, the driver currently uses only the base of vpe_top
   2554	 * for register access, the driver should be changed later to access
   2555	 * registers based on the sub block base addresses
   2556	 */
   2557	dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
   2558	if (!dev->base) {
   2559		ret = -ENOMEM;
   2560		goto v4l2_dev_unreg;
   2561	}
   2562
   2563	irq = platform_get_irq(pdev, 0);
   2564	ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
   2565			dev);
   2566	if (ret)
   2567		goto v4l2_dev_unreg;
   2568
   2569	platform_set_drvdata(pdev, dev);
   2570
   2571	dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
   2572	if (IS_ERR(dev->m2m_dev)) {
   2573		vpe_err(dev, "Failed to init mem2mem device\n");
   2574		ret = PTR_ERR(dev->m2m_dev);
   2575		goto v4l2_dev_unreg;
   2576	}
   2577
   2578	pm_runtime_enable(&pdev->dev);
   2579
   2580	ret = vpe_runtime_get(pdev);
   2581	if (ret < 0)
   2582		goto rel_m2m;
   2583
   2584	/* Perform clk enable followed by reset */
   2585	vpe_set_clock_enable(dev, 1);
   2586
   2587	vpe_top_reset(dev);
   2588
   2589	func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
   2590		VPE_PID_FUNC_SHIFT);
   2591	vpe_dbg(dev, "VPE PID function %x\n", func);
   2592
   2593	vpe_top_vpdma_reset(dev);
   2594
   2595	dev->sc = sc_create(pdev, "sc");
   2596	if (IS_ERR(dev->sc)) {
   2597		ret = PTR_ERR(dev->sc);
   2598		goto runtime_put;
   2599	}
   2600
   2601	dev->csc = csc_create(pdev, "csc");
   2602	if (IS_ERR(dev->csc)) {
   2603		ret = PTR_ERR(dev->csc);
   2604		goto runtime_put;
   2605	}
   2606
   2607	dev->vpdma = &dev->vpdma_data;
   2608	ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb);
   2609	if (ret)
   2610		goto runtime_put;
   2611
   2612	return 0;
   2613
   2614runtime_put:
   2615	vpe_runtime_put(pdev);
   2616rel_m2m:
   2617	pm_runtime_disable(&pdev->dev);
   2618	v4l2_m2m_release(dev->m2m_dev);
   2619v4l2_dev_unreg:
   2620	v4l2_device_unregister(&dev->v4l2_dev);
   2621
   2622	return ret;
   2623}
   2624
   2625static int vpe_remove(struct platform_device *pdev)
   2626{
   2627	struct vpe_dev *dev = platform_get_drvdata(pdev);
   2628
   2629	v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
   2630
   2631	v4l2_m2m_release(dev->m2m_dev);
   2632	video_unregister_device(&dev->vfd);
   2633	v4l2_device_unregister(&dev->v4l2_dev);
   2634
   2635	vpe_set_clock_enable(dev, 0);
   2636	vpe_runtime_put(pdev);
   2637	pm_runtime_disable(&pdev->dev);
   2638
   2639	return 0;
   2640}
   2641
   2642#if defined(CONFIG_OF)
   2643static const struct of_device_id vpe_of_match[] = {
   2644	{
   2645		.compatible = "ti,dra7-vpe",
   2646	},
   2647	{},
   2648};
   2649MODULE_DEVICE_TABLE(of, vpe_of_match);
   2650#endif
   2651
   2652static struct platform_driver vpe_pdrv = {
   2653	.probe		= vpe_probe,
   2654	.remove		= vpe_remove,
   2655	.driver		= {
   2656		.name	= VPE_MODULE_NAME,
   2657		.of_match_table = of_match_ptr(vpe_of_match),
   2658	},
   2659};
   2660
   2661module_platform_driver(vpe_pdrv);
   2662
   2663MODULE_DESCRIPTION("TI VPE driver");
   2664MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
   2665MODULE_LICENSE("GPL");