cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fmdrv_common.c (45371B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  FM Driver for Connectivity chip of Texas Instruments.
      4 *
      5 *  This sub-module of FM driver is common for FM RX and TX
      6 *  functionality. This module is responsible for:
      7 *  1) Forming group of Channel-8 commands to perform particular
      8 *     functionality (eg., frequency set require more than
      9 *     one Channel-8 command to be sent to the chip).
     10 *  2) Sending each Channel-8 command to the chip and reading
     11 *     response back over Shared Transport.
     12 *  3) Managing TX and RX Queues and Tasklets.
     13 *  4) Handling FM Interrupt packet and taking appropriate action.
     14 *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
     15 *     firmware files based on mode selection)
     16 *
     17 *  Copyright (C) 2011 Texas Instruments
     18 *  Author: Raja Mani <raja_mani@ti.com>
     19 *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
     20 */
     21
     22#include <linux/delay.h>
     23#include <linux/firmware.h>
     24#include <linux/module.h>
     25#include <linux/nospec.h>
     26#include <linux/jiffies.h>
     27
     28#include "fmdrv.h"
     29#include "fmdrv_v4l2.h"
     30#include "fmdrv_common.h"
     31#include <linux/ti_wilink_st.h>
     32#include "fmdrv_rx.h"
     33#include "fmdrv_tx.h"
     34
     35/* Region info */
     36static struct region_info region_configs[] = {
     37	/* Europe/US */
     38	{
     39	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
     40	 .bot_freq = 87500,	/* 87.5 MHz */
     41	 .top_freq = 108000,	/* 108 MHz */
     42	 .fm_band = 0,
     43	 },
     44	/* Japan */
     45	{
     46	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
     47	 .bot_freq = 76000,	/* 76 MHz */
     48	 .top_freq = 90000,	/* 90 MHz */
     49	 .fm_band = 1,
     50	 },
     51};
     52
     53/* Band selection */
     54static u8 default_radio_region;	/* Europe/US */
     55module_param(default_radio_region, byte, 0);
     56MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
     57
     58/* RDS buffer blocks */
     59static u32 default_rds_buf = 300;
     60module_param(default_rds_buf, uint, 0444);
     61MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
     62
     63/* Radio Nr */
     64static u32 radio_nr = -1;
     65module_param(radio_nr, int, 0444);
     66MODULE_PARM_DESC(radio_nr, "Radio Nr");
     67
     68/* FM irq handlers forward declaration */
     69static void fm_irq_send_flag_getcmd(struct fmdev *);
     70static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
     71static void fm_irq_handle_hw_malfunction(struct fmdev *);
     72static void fm_irq_handle_rds_start(struct fmdev *);
     73static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
     74static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
     75static void fm_irq_handle_rds_finish(struct fmdev *);
     76static void fm_irq_handle_tune_op_ended(struct fmdev *);
     77static void fm_irq_handle_power_enb(struct fmdev *);
     78static void fm_irq_handle_low_rssi_start(struct fmdev *);
     79static void fm_irq_afjump_set_pi(struct fmdev *);
     80static void fm_irq_handle_set_pi_resp(struct fmdev *);
     81static void fm_irq_afjump_set_pimask(struct fmdev *);
     82static void fm_irq_handle_set_pimask_resp(struct fmdev *);
     83static void fm_irq_afjump_setfreq(struct fmdev *);
     84static void fm_irq_handle_setfreq_resp(struct fmdev *);
     85static void fm_irq_afjump_enableint(struct fmdev *);
     86static void fm_irq_afjump_enableint_resp(struct fmdev *);
     87static void fm_irq_start_afjump(struct fmdev *);
     88static void fm_irq_handle_start_afjump_resp(struct fmdev *);
     89static void fm_irq_afjump_rd_freq(struct fmdev *);
     90static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
     91static void fm_irq_handle_low_rssi_finish(struct fmdev *);
     92static void fm_irq_send_intmsk_cmd(struct fmdev *);
     93static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
     94
     95/*
     96 * When FM common module receives interrupt packet, following handlers
     97 * will be executed one after another to service the interrupt(s)
     98 */
     99enum fmc_irq_handler_index {
    100	FM_SEND_FLAG_GETCMD_IDX,
    101	FM_HANDLE_FLAG_GETCMD_RESP_IDX,
    102
    103	/* HW malfunction irq handler */
    104	FM_HW_MAL_FUNC_IDX,
    105
    106	/* RDS threshold reached irq handler */
    107	FM_RDS_START_IDX,
    108	FM_RDS_SEND_RDS_GETCMD_IDX,
    109	FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
    110	FM_RDS_FINISH_IDX,
    111
    112	/* Tune operation ended irq handler */
    113	FM_HW_TUNE_OP_ENDED_IDX,
    114
    115	/* TX power enable irq handler */
    116	FM_HW_POWER_ENB_IDX,
    117
    118	/* Low RSSI irq handler */
    119	FM_LOW_RSSI_START_IDX,
    120	FM_AF_JUMP_SETPI_IDX,
    121	FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
    122	FM_AF_JUMP_SETPI_MASK_IDX,
    123	FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
    124	FM_AF_JUMP_SET_AF_FREQ_IDX,
    125	FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
    126	FM_AF_JUMP_ENABLE_INT_IDX,
    127	FM_AF_JUMP_ENABLE_INT_RESP_IDX,
    128	FM_AF_JUMP_START_AFJUMP_IDX,
    129	FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
    130	FM_AF_JUMP_RD_FREQ_IDX,
    131	FM_AF_JUMP_RD_FREQ_RESP_IDX,
    132	FM_LOW_RSSI_FINISH_IDX,
    133
    134	/* Interrupt process post action */
    135	FM_SEND_INTMSK_CMD_IDX,
    136	FM_HANDLE_INTMSK_CMD_RESP_IDX,
    137};
    138
    139/* FM interrupt handler table */
    140static int_handler_prototype int_handler_table[] = {
    141	fm_irq_send_flag_getcmd,
    142	fm_irq_handle_flag_getcmd_resp,
    143	fm_irq_handle_hw_malfunction,
    144	fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
    145	fm_irq_send_rdsdata_getcmd,
    146	fm_irq_handle_rdsdata_getcmd_resp,
    147	fm_irq_handle_rds_finish,
    148	fm_irq_handle_tune_op_ended,
    149	fm_irq_handle_power_enb, /* TX power enable irq handler */
    150	fm_irq_handle_low_rssi_start,
    151	fm_irq_afjump_set_pi,
    152	fm_irq_handle_set_pi_resp,
    153	fm_irq_afjump_set_pimask,
    154	fm_irq_handle_set_pimask_resp,
    155	fm_irq_afjump_setfreq,
    156	fm_irq_handle_setfreq_resp,
    157	fm_irq_afjump_enableint,
    158	fm_irq_afjump_enableint_resp,
    159	fm_irq_start_afjump,
    160	fm_irq_handle_start_afjump_resp,
    161	fm_irq_afjump_rd_freq,
    162	fm_irq_afjump_rd_freq_resp,
    163	fm_irq_handle_low_rssi_finish,
    164	fm_irq_send_intmsk_cmd, /* Interrupt process post action */
    165	fm_irq_handle_intmsk_cmd_resp
    166};
    167
    168static long (*g_st_write) (struct sk_buff *skb);
    169static struct completion wait_for_fmdrv_reg_comp;
    170
    171static inline void fm_irq_call(struct fmdev *fmdev)
    172{
    173	fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
    174}
    175
    176/* Continue next function in interrupt handler table */
    177static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
    178{
    179	fmdev->irq_info.stage = stage;
    180	fm_irq_call(fmdev);
    181}
    182
    183static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
    184{
    185	fmdev->irq_info.stage = stage;
    186	mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
    187}
    188
    189#ifdef FM_DUMP_TXRX_PKT
    190 /* To dump outgoing FM Channel-8 packets */
    191inline void dump_tx_skb_data(struct sk_buff *skb)
    192{
    193	int len, len_org;
    194	u8 index;
    195	struct fm_cmd_msg_hdr *cmd_hdr;
    196
    197	cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
    198	printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
    199	       fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
    200	       cmd_hdr->len, cmd_hdr->op,
    201	       cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
    202
    203	len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
    204	if (len_org > 0) {
    205		printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
    206		len = min(len_org, 14);
    207		for (index = 0; index < len; index++)
    208			printk(KERN_CONT "%x ",
    209			       skb->data[FM_CMD_MSG_HDR_SIZE + index]);
    210		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
    211	}
    212	printk(KERN_CONT "\n");
    213}
    214
    215 /* To dump incoming FM Channel-8 packets */
    216inline void dump_rx_skb_data(struct sk_buff *skb)
    217{
    218	int len, len_org;
    219	u8 index;
    220	struct fm_event_msg_hdr *evt_hdr;
    221
    222	evt_hdr = (struct fm_event_msg_hdr *)skb->data;
    223	printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
    224	       evt_hdr->hdr, evt_hdr->len,
    225	       evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
    226	       (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
    227
    228	len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
    229	if (len_org > 0) {
    230		printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
    231		len = min(len_org, 14);
    232		for (index = 0; index < len; index++)
    233			printk(KERN_CONT "%x ",
    234			       skb->data[FM_EVT_MSG_HDR_SIZE + index]);
    235		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
    236	}
    237	printk(KERN_CONT "\n");
    238}
    239#endif
    240
    241void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
    242{
    243	fmdev->rx.region = region_configs[region_to_set];
    244}
    245
    246/*
    247 * FM common sub-module will schedule this tasklet whenever it receives
    248 * FM packet from ST driver.
    249 */
    250static void recv_tasklet(struct tasklet_struct *t)
    251{
    252	struct fmdev *fmdev;
    253	struct fm_irq *irq_info;
    254	struct fm_event_msg_hdr *evt_hdr;
    255	struct sk_buff *skb;
    256	u8 num_fm_hci_cmds;
    257	unsigned long flags;
    258
    259	fmdev = from_tasklet(fmdev, t, tx_task);
    260	irq_info = &fmdev->irq_info;
    261	/* Process all packets in the RX queue */
    262	while ((skb = skb_dequeue(&fmdev->rx_q))) {
    263		if (skb->len < sizeof(struct fm_event_msg_hdr)) {
    264			fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
    265			      skb,
    266			      skb->len, sizeof(struct fm_event_msg_hdr));
    267			kfree_skb(skb);
    268			continue;
    269		}
    270
    271		evt_hdr = (void *)skb->data;
    272		num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
    273
    274		/* FM interrupt packet? */
    275		if (evt_hdr->op == FM_INTERRUPT) {
    276			/* FM interrupt handler started already? */
    277			if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
    278				set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
    279				if (irq_info->stage != 0) {
    280					fmerr("Inval stage resetting to zero\n");
    281					irq_info->stage = 0;
    282				}
    283
    284				/*
    285				 * Execute first function in interrupt handler
    286				 * table.
    287				 */
    288				irq_info->handlers[irq_info->stage](fmdev);
    289			} else {
    290				set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
    291			}
    292			kfree_skb(skb);
    293		}
    294		/* Anyone waiting for this with completion handler? */
    295		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
    296
    297			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
    298			fmdev->resp_skb = skb;
    299			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
    300			complete(fmdev->resp_comp);
    301
    302			fmdev->resp_comp = NULL;
    303			atomic_set(&fmdev->tx_cnt, 1);
    304		}
    305		/* Is this for interrupt handler? */
    306		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
    307			if (fmdev->resp_skb != NULL)
    308				fmerr("Response SKB ptr not NULL\n");
    309
    310			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
    311			fmdev->resp_skb = skb;
    312			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
    313
    314			/* Execute interrupt handler where state index points */
    315			irq_info->handlers[irq_info->stage](fmdev);
    316
    317			kfree_skb(skb);
    318			atomic_set(&fmdev->tx_cnt, 1);
    319		} else {
    320			fmerr("Nobody claimed SKB(%p),purging\n", skb);
    321		}
    322
    323		/*
    324		 * Check flow control field. If Num_FM_HCI_Commands field is
    325		 * not zero, schedule FM TX tasklet.
    326		 */
    327		if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
    328			if (!skb_queue_empty(&fmdev->tx_q))
    329				tasklet_schedule(&fmdev->tx_task);
    330	}
    331}
    332
    333/* FM send tasklet: is scheduled when FM packet has to be sent to chip */
    334static void send_tasklet(struct tasklet_struct *t)
    335{
    336	struct fmdev *fmdev;
    337	struct sk_buff *skb;
    338	int len;
    339
    340	fmdev = from_tasklet(fmdev, t, tx_task);
    341
    342	if (!atomic_read(&fmdev->tx_cnt))
    343		return;
    344
    345	/* Check, is there any timeout happened to last transmitted packet */
    346	if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
    347		fmerr("TX timeout occurred\n");
    348		atomic_set(&fmdev->tx_cnt, 1);
    349	}
    350
    351	/* Send queued FM TX packets */
    352	skb = skb_dequeue(&fmdev->tx_q);
    353	if (!skb)
    354		return;
    355
    356	atomic_dec(&fmdev->tx_cnt);
    357	fmdev->pre_op = fm_cb(skb)->fm_op;
    358
    359	if (fmdev->resp_comp != NULL)
    360		fmerr("Response completion handler is not NULL\n");
    361
    362	fmdev->resp_comp = fm_cb(skb)->completion;
    363
    364	/* Write FM packet to ST driver */
    365	len = g_st_write(skb);
    366	if (len < 0) {
    367		kfree_skb(skb);
    368		fmdev->resp_comp = NULL;
    369		fmerr("TX tasklet failed to send skb(%p)\n", skb);
    370		atomic_set(&fmdev->tx_cnt, 1);
    371	} else {
    372		fmdev->last_tx_jiffies = jiffies;
    373	}
    374}
    375
    376/*
    377 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
    378 * transmission
    379 */
    380static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type,	void *payload,
    381		int payload_len, struct completion *wait_completion)
    382{
    383	struct sk_buff *skb;
    384	struct fm_cmd_msg_hdr *hdr;
    385	int size;
    386
    387	if (fm_op >= FM_INTERRUPT) {
    388		fmerr("Invalid fm opcode - %d\n", fm_op);
    389		return -EINVAL;
    390	}
    391	if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
    392		fmerr("Payload data is NULL during fw download\n");
    393		return -EINVAL;
    394	}
    395	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
    396		size =
    397		    FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
    398	else
    399		size = payload_len;
    400
    401	skb = alloc_skb(size, GFP_ATOMIC);
    402	if (!skb) {
    403		fmerr("No memory to create new SKB\n");
    404		return -ENOMEM;
    405	}
    406	/*
    407	 * Don't fill FM header info for the commands which come from
    408	 * FM firmware file.
    409	 */
    410	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
    411			test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
    412		/* Fill command header info */
    413		hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
    414		hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;	/* 0x08 */
    415
    416		/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
    417		hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
    418
    419		/* FM opcode */
    420		hdr->op = fm_op;
    421
    422		/* read/write type */
    423		hdr->rd_wr = type;
    424		hdr->dlen = payload_len;
    425		fm_cb(skb)->fm_op = fm_op;
    426
    427		/*
    428		 * If firmware download has finished and the command is
    429		 * not a read command then payload is != NULL - a write
    430		 * command with u16 payload - convert to be16
    431		 */
    432		if (payload != NULL)
    433			*(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
    434
    435	} else if (payload != NULL) {
    436		fm_cb(skb)->fm_op = *((u8 *)payload + 2);
    437	}
    438	if (payload != NULL)
    439		skb_put_data(skb, payload, payload_len);
    440
    441	fm_cb(skb)->completion = wait_completion;
    442	skb_queue_tail(&fmdev->tx_q, skb);
    443	tasklet_schedule(&fmdev->tx_task);
    444
    445	return 0;
    446}
    447
    448/* Sends FM Channel-8 command to the chip and waits for the response */
    449int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
    450		unsigned int payload_len, void *response, int *response_len)
    451{
    452	struct sk_buff *skb;
    453	struct fm_event_msg_hdr *evt_hdr;
    454	unsigned long flags;
    455	int ret;
    456
    457	init_completion(&fmdev->maintask_comp);
    458	ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
    459			    &fmdev->maintask_comp);
    460	if (ret)
    461		return ret;
    462
    463	if (!wait_for_completion_timeout(&fmdev->maintask_comp,
    464					 FM_DRV_TX_TIMEOUT)) {
    465		fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
    466			   jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
    467		return -ETIMEDOUT;
    468	}
    469	if (!fmdev->resp_skb) {
    470		fmerr("Response SKB is missing\n");
    471		return -EFAULT;
    472	}
    473	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
    474	skb = fmdev->resp_skb;
    475	fmdev->resp_skb = NULL;
    476	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
    477
    478	evt_hdr = (void *)skb->data;
    479	if (evt_hdr->status != 0) {
    480		fmerr("Received event pkt status(%d) is not zero\n",
    481			   evt_hdr->status);
    482		kfree_skb(skb);
    483		return -EIO;
    484	}
    485	/* Send response data to caller */
    486	if (response != NULL && response_len != NULL && evt_hdr->dlen &&
    487	    evt_hdr->dlen <= payload_len) {
    488		/* Skip header info and copy only response data */
    489		skb_pull(skb, sizeof(struct fm_event_msg_hdr));
    490		memcpy(response, skb->data, evt_hdr->dlen);
    491		*response_len = evt_hdr->dlen;
    492	} else if (response_len != NULL && evt_hdr->dlen == 0) {
    493		*response_len = 0;
    494	}
    495	kfree_skb(skb);
    496
    497	return 0;
    498}
    499
    500/* --- Helper functions used in FM interrupt handlers ---*/
    501static inline int check_cmdresp_status(struct fmdev *fmdev,
    502		struct sk_buff **skb)
    503{
    504	struct fm_event_msg_hdr *fm_evt_hdr;
    505	unsigned long flags;
    506
    507	del_timer(&fmdev->irq_info.timer);
    508
    509	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
    510	*skb = fmdev->resp_skb;
    511	fmdev->resp_skb = NULL;
    512	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
    513
    514	fm_evt_hdr = (void *)(*skb)->data;
    515	if (fm_evt_hdr->status != 0) {
    516		fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
    517				fm_evt_hdr->op);
    518
    519		mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
    520		return -1;
    521	}
    522
    523	return 0;
    524}
    525
    526static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
    527{
    528	struct sk_buff *skb;
    529
    530	if (!check_cmdresp_status(fmdev, &skb))
    531		fm_irq_call_stage(fmdev, stage);
    532}
    533
    534/*
    535 * Interrupt process timeout handler.
    536 * One of the irq handler did not get proper response from the chip. So take
    537 * recovery action here. FM interrupts are disabled in the beginning of
    538 * interrupt process. Therefore reset stage index to re-enable default
    539 * interrupts. So that next interrupt will be processed as usual.
    540 */
    541static void int_timeout_handler(struct timer_list *t)
    542{
    543	struct fmdev *fmdev;
    544	struct fm_irq *fmirq;
    545
    546	fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
    547	fmdev = from_timer(fmdev, t, irq_info.timer);
    548	fmirq = &fmdev->irq_info;
    549	fmirq->retry++;
    550
    551	if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
    552		/* Stop recovery action (interrupt reenable process) and
    553		 * reset stage index & retry count values */
    554		fmirq->stage = 0;
    555		fmirq->retry = 0;
    556		fmerr("Recovery action failed duringirq processing, max retry reached\n");
    557		return;
    558	}
    559	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
    560}
    561
    562/* --------- FM interrupt handlers ------------*/
    563static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
    564{
    565	u16 flag;
    566
    567	/* Send FLAG_GET command , to know the source of interrupt */
    568	if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
    569		fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
    570}
    571
    572static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
    573{
    574	struct sk_buff *skb;
    575	struct fm_event_msg_hdr *fm_evt_hdr;
    576
    577	if (check_cmdresp_status(fmdev, &skb))
    578		return;
    579
    580	fm_evt_hdr = (void *)skb->data;
    581	if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
    582		return;
    583
    584	/* Skip header info and copy only response data */
    585	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
    586	memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
    587
    588	fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
    589	fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
    590
    591	/* Continue next function in interrupt handler table */
    592	fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
    593}
    594
    595static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
    596{
    597	if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
    598		fmerr("irq: HW MAL int received - do nothing\n");
    599
    600	/* Continue next function in interrupt handler table */
    601	fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
    602}
    603
    604static void fm_irq_handle_rds_start(struct fmdev *fmdev)
    605{
    606	if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
    607		fmdbg("irq: rds threshold reached\n");
    608		fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
    609	} else {
    610		/* Continue next function in interrupt handler table */
    611		fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
    612	}
    613
    614	fm_irq_call(fmdev);
    615}
    616
    617static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
    618{
    619	/* Send the command to read RDS data from the chip */
    620	if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
    621			    (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
    622		fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
    623}
    624
    625/* Keeps track of current RX channel AF (Alternate Frequency) */
    626static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
    627{
    628	struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
    629	u8 reg_idx = fmdev->rx.region.fm_band;
    630	u8 index;
    631	u32 freq;
    632
    633	/* First AF indicates the number of AF follows. Reset the list */
    634	if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
    635		fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
    636		fmdev->rx.stat_info.afcache_size = 0;
    637		fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
    638		return;
    639	}
    640
    641	if (af < FM_RDS_MIN_AF)
    642		return;
    643	if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
    644		return;
    645	if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
    646		return;
    647
    648	freq = fmdev->rx.region.bot_freq + (af * 100);
    649	if (freq == fmdev->rx.freq) {
    650		fmdbg("Current freq(%d) is matching with received AF(%d)\n",
    651				fmdev->rx.freq, freq);
    652		return;
    653	}
    654	/* Do check in AF cache */
    655	for (index = 0; index < stat_info->afcache_size; index++) {
    656		if (stat_info->af_cache[index] == freq)
    657			break;
    658	}
    659	/* Reached the limit of the list - ignore the next AF */
    660	if (index == stat_info->af_list_max) {
    661		fmdbg("AF cache is full\n");
    662		return;
    663	}
    664	/*
    665	 * If we reached the end of the list then this AF is not
    666	 * in the list - add it.
    667	 */
    668	if (index == stat_info->afcache_size) {
    669		fmdbg("Storing AF %d to cache index %d\n", freq, index);
    670		stat_info->af_cache[index] = freq;
    671		stat_info->afcache_size++;
    672	}
    673}
    674
    675/*
    676 * Converts RDS buffer data from big endian format
    677 * to little endian format.
    678 */
    679static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
    680		struct fm_rdsdata_format *rds_format)
    681{
    682	u8 index = 0;
    683	u8 *rds_buff;
    684
    685	/*
    686	 * Since in Orca the 2 RDS Data bytes are in little endian and
    687	 * in Dolphin they are in big endian, the parsing of the RDS data
    688	 * is chip dependent
    689	 */
    690	if (fmdev->asci_id != 0x6350) {
    691		rds_buff = &rds_format->data.groupdatabuff.buff[0];
    692		while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
    693			swap(rds_buff[index], rds_buff[index + 1]);
    694			index += 2;
    695		}
    696	}
    697}
    698
    699static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
    700{
    701	struct sk_buff *skb;
    702	struct fm_rdsdata_format rds_fmt;
    703	struct fm_rds *rds = &fmdev->rx.rds;
    704	unsigned long group_idx, flags;
    705	u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
    706	u8 type, blk_idx, idx;
    707	u16 cur_picode;
    708	u32 rds_len;
    709
    710	if (check_cmdresp_status(fmdev, &skb))
    711		return;
    712
    713	/* Skip header info */
    714	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
    715	rds_data = skb->data;
    716	rds_len = skb->len;
    717
    718	/* Parse the RDS data */
    719	while (rds_len >= FM_RDS_BLK_SIZE) {
    720		meta_data = rds_data[2];
    721		/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
    722		type = (meta_data & 0x07);
    723
    724		/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
    725		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
    726		fmdbg("Block index:%d(%s)\n", blk_idx,
    727			   (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
    728
    729		if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
    730			break;
    731
    732		if (blk_idx > FM_RDS_BLK_IDX_D) {
    733			fmdbg("Block sequence mismatch\n");
    734			rds->last_blk_idx = -1;
    735			break;
    736		}
    737
    738		/* Skip checkword (control) byte and copy only data byte */
    739		idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
    740					 FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
    741
    742		memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
    743		       FM_RDS_BLK_SIZE - 1);
    744
    745		rds->last_blk_idx = blk_idx;
    746
    747		/* If completed a whole group then handle it */
    748		if (blk_idx == FM_RDS_BLK_IDX_D) {
    749			fmdbg("Good block received\n");
    750			fm_rdsparse_swapbytes(fmdev, &rds_fmt);
    751
    752			/*
    753			 * Extract PI code and store in local cache.
    754			 * We need this during AF switch processing.
    755			 */
    756			cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
    757			if (fmdev->rx.stat_info.picode != cur_picode)
    758				fmdev->rx.stat_info.picode = cur_picode;
    759
    760			fmdbg("picode:%d\n", cur_picode);
    761
    762			group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
    763			fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
    764					(group_idx % 2) ? "B" : "A");
    765
    766			group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
    767			if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
    768				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
    769				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
    770			}
    771		}
    772		rds_len -= FM_RDS_BLK_SIZE;
    773		rds_data += FM_RDS_BLK_SIZE;
    774	}
    775
    776	/* Copy raw rds data to internal rds buffer */
    777	rds_data = skb->data;
    778	rds_len = skb->len;
    779
    780	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
    781	while (rds_len > 0) {
    782		/*
    783		 * Fill RDS buffer as per V4L2 specification.
    784		 * Store control byte
    785		 */
    786		type = (rds_data[2] & 0x07);
    787		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
    788		tmpbuf[2] = blk_idx;	/* Offset name */
    789		tmpbuf[2] |= blk_idx << 3;	/* Received offset */
    790
    791		/* Store data byte */
    792		tmpbuf[0] = rds_data[0];
    793		tmpbuf[1] = rds_data[1];
    794
    795		memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
    796		rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
    797
    798		/* Check for overflow & start over */
    799		if (rds->wr_idx == rds->rd_idx) {
    800			fmdbg("RDS buffer overflow\n");
    801			rds->wr_idx = 0;
    802			rds->rd_idx = 0;
    803			break;
    804		}
    805		rds_len -= FM_RDS_BLK_SIZE;
    806		rds_data += FM_RDS_BLK_SIZE;
    807	}
    808	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
    809
    810	/* Wakeup read queue */
    811	if (rds->wr_idx != rds->rd_idx)
    812		wake_up_interruptible(&rds->read_queue);
    813
    814	fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
    815}
    816
    817static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
    818{
    819	fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
    820}
    821
    822static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
    823{
    824	if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
    825	    irq_info.mask) {
    826		fmdbg("irq: tune ended/bandlimit reached\n");
    827		if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
    828			fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
    829		} else {
    830			complete(&fmdev->maintask_comp);
    831			fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
    832		}
    833	} else
    834		fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
    835
    836	fm_irq_call(fmdev);
    837}
    838
    839static void fm_irq_handle_power_enb(struct fmdev *fmdev)
    840{
    841	if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
    842		fmdbg("irq: Power Enabled/Disabled\n");
    843		complete(&fmdev->maintask_comp);
    844	}
    845
    846	fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
    847}
    848
    849static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
    850{
    851	if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
    852	    (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
    853	    (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
    854	    (fmdev->rx.stat_info.afcache_size != 0)) {
    855		fmdbg("irq: rssi level has fallen below threshold level\n");
    856
    857		/* Disable further low RSSI interrupts */
    858		fmdev->irq_info.mask &= ~FM_LEV_EVENT;
    859
    860		fmdev->rx.afjump_idx = 0;
    861		fmdev->rx.freq_before_jump = fmdev->rx.freq;
    862		fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
    863	} else {
    864		/* Continue next function in interrupt handler table */
    865		fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
    866	}
    867
    868	fm_irq_call(fmdev);
    869}
    870
    871static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
    872{
    873	u16 payload;
    874
    875	/* Set PI code - must be updated if the AF list is not empty */
    876	payload = fmdev->rx.stat_info.picode;
    877	if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
    878		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
    879}
    880
    881static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
    882{
    883	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
    884}
    885
    886/*
    887 * Set PI mask.
    888 * 0xFFFF = Enable PI code matching
    889 * 0x0000 = Disable PI code matching
    890 */
    891static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
    892{
    893	u16 payload;
    894
    895	payload = 0x0000;
    896	if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
    897		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
    898}
    899
    900static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
    901{
    902	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
    903}
    904
    905static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
    906{
    907	u16 frq_index;
    908	u16 payload;
    909
    910	fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
    911	frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
    912	     fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
    913
    914	payload = frq_index;
    915	if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
    916		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
    917}
    918
    919static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
    920{
    921	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
    922}
    923
    924static void fm_irq_afjump_enableint(struct fmdev *fmdev)
    925{
    926	u16 payload;
    927
    928	/* Enable FR (tuning operation ended) interrupt */
    929	payload = FM_FR_EVENT;
    930	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
    931		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
    932}
    933
    934static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
    935{
    936	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
    937}
    938
    939static void fm_irq_start_afjump(struct fmdev *fmdev)
    940{
    941	u16 payload;
    942
    943	payload = FM_TUNER_AF_JUMP_MODE;
    944	if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
    945			sizeof(payload), NULL))
    946		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
    947}
    948
    949static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
    950{
    951	struct sk_buff *skb;
    952
    953	if (check_cmdresp_status(fmdev, &skb))
    954		return;
    955
    956	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
    957	set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
    958	clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
    959}
    960
    961static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
    962{
    963	u16 payload;
    964
    965	if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
    966		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
    967}
    968
    969static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
    970{
    971	struct sk_buff *skb;
    972	u16 read_freq;
    973	u32 curr_freq, jumped_freq;
    974
    975	if (check_cmdresp_status(fmdev, &skb))
    976		return;
    977
    978	/* Skip header info and copy only response data */
    979	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
    980	memcpy(&read_freq, skb->data, sizeof(read_freq));
    981	read_freq = be16_to_cpu((__force __be16)read_freq);
    982	curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
    983
    984	jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
    985
    986	/* If the frequency was changed the jump succeeded */
    987	if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
    988		fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
    989		fmdev->rx.freq = curr_freq;
    990		fm_rx_reset_rds_cache(fmdev);
    991
    992		/* AF feature is on, enable low level RSSI interrupt */
    993		if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
    994			fmdev->irq_info.mask |= FM_LEV_EVENT;
    995
    996		fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
    997	} else {		/* jump to the next freq in the AF list */
    998		fmdev->rx.afjump_idx++;
    999
   1000		/* If we reached the end of the list - stop searching */
   1001		if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
   1002			fmdbg("AF switch processing failed\n");
   1003			fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
   1004		} else {	/* AF List is not over - try next one */
   1005
   1006			fmdbg("Trying next freq in AF cache\n");
   1007			fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
   1008		}
   1009	}
   1010	fm_irq_call(fmdev);
   1011}
   1012
   1013static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
   1014{
   1015	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
   1016}
   1017
   1018static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
   1019{
   1020	u16 payload;
   1021
   1022	/* Re-enable FM interrupts */
   1023	payload = fmdev->irq_info.mask;
   1024
   1025	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
   1026			sizeof(payload), NULL))
   1027		fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
   1028}
   1029
   1030static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
   1031{
   1032	struct sk_buff *skb;
   1033
   1034	if (check_cmdresp_status(fmdev, &skb))
   1035		return;
   1036	/*
   1037	 * This is last function in interrupt table to be executed.
   1038	 * So, reset stage index to 0.
   1039	 */
   1040	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
   1041
   1042	/* Start processing any pending interrupt */
   1043	if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
   1044		fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
   1045	else
   1046		clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
   1047}
   1048
   1049/* Returns availability of RDS data in internal buffer */
   1050int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
   1051				struct poll_table_struct *pts)
   1052{
   1053	poll_wait(file, &fmdev->rx.rds.read_queue, pts);
   1054	if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
   1055		return 0;
   1056
   1057	return -EAGAIN;
   1058}
   1059
   1060/* Copies RDS data from internal buffer to user buffer */
   1061int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
   1062		u8 __user *buf, size_t count)
   1063{
   1064	u32 block_count;
   1065	u8 tmpbuf[FM_RDS_BLK_SIZE];
   1066	unsigned long flags;
   1067	int ret;
   1068
   1069	if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
   1070		if (file->f_flags & O_NONBLOCK)
   1071			return -EWOULDBLOCK;
   1072
   1073		ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
   1074				(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
   1075		if (ret)
   1076			return -EINTR;
   1077	}
   1078
   1079	/* Calculate block count from byte count */
   1080	count /= FM_RDS_BLK_SIZE;
   1081	block_count = 0;
   1082	ret = 0;
   1083
   1084	while (block_count < count) {
   1085		spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
   1086
   1087		if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
   1088			spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
   1089			break;
   1090		}
   1091		memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
   1092					FM_RDS_BLK_SIZE);
   1093		fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
   1094		if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
   1095			fmdev->rx.rds.rd_idx = 0;
   1096
   1097		spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
   1098
   1099		if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
   1100			break;
   1101
   1102		block_count++;
   1103		buf += FM_RDS_BLK_SIZE;
   1104		ret += FM_RDS_BLK_SIZE;
   1105	}
   1106	return ret;
   1107}
   1108
   1109int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
   1110{
   1111	switch (fmdev->curr_fmmode) {
   1112	case FM_MODE_RX:
   1113		return fm_rx_set_freq(fmdev, freq_to_set);
   1114
   1115	case FM_MODE_TX:
   1116		return fm_tx_set_freq(fmdev, freq_to_set);
   1117
   1118	default:
   1119		return -EINVAL;
   1120	}
   1121}
   1122
   1123int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
   1124{
   1125	if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
   1126		fmerr("RX frequency is not set\n");
   1127		return -EPERM;
   1128	}
   1129	if (cur_tuned_frq == NULL) {
   1130		fmerr("Invalid memory\n");
   1131		return -ENOMEM;
   1132	}
   1133
   1134	switch (fmdev->curr_fmmode) {
   1135	case FM_MODE_RX:
   1136		*cur_tuned_frq = fmdev->rx.freq;
   1137		return 0;
   1138
   1139	case FM_MODE_TX:
   1140		*cur_tuned_frq = 0;	/* TODO : Change this later */
   1141		return 0;
   1142
   1143	default:
   1144		return -EINVAL;
   1145	}
   1146
   1147}
   1148
   1149int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
   1150{
   1151	switch (fmdev->curr_fmmode) {
   1152	case FM_MODE_RX:
   1153		return fm_rx_set_region(fmdev, region_to_set);
   1154
   1155	case FM_MODE_TX:
   1156		return fm_tx_set_region(fmdev, region_to_set);
   1157
   1158	default:
   1159		return -EINVAL;
   1160	}
   1161}
   1162
   1163int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
   1164{
   1165	switch (fmdev->curr_fmmode) {
   1166	case FM_MODE_RX:
   1167		return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
   1168
   1169	case FM_MODE_TX:
   1170		return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
   1171
   1172	default:
   1173		return -EINVAL;
   1174	}
   1175}
   1176
   1177int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
   1178{
   1179	switch (fmdev->curr_fmmode) {
   1180	case FM_MODE_RX:
   1181		return fm_rx_set_stereo_mono(fmdev, mode);
   1182
   1183	case FM_MODE_TX:
   1184		return fm_tx_set_stereo_mono(fmdev, mode);
   1185
   1186	default:
   1187		return -EINVAL;
   1188	}
   1189}
   1190
   1191int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
   1192{
   1193	switch (fmdev->curr_fmmode) {
   1194	case FM_MODE_RX:
   1195		return fm_rx_set_rds_mode(fmdev, rds_en_dis);
   1196
   1197	case FM_MODE_TX:
   1198		return fm_tx_set_rds_mode(fmdev, rds_en_dis);
   1199
   1200	default:
   1201		return -EINVAL;
   1202	}
   1203}
   1204
   1205/* Sends power off command to the chip */
   1206static int fm_power_down(struct fmdev *fmdev)
   1207{
   1208	u16 payload;
   1209	int ret;
   1210
   1211	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
   1212		fmerr("FM core is not ready\n");
   1213		return -EPERM;
   1214	}
   1215	if (fmdev->curr_fmmode == FM_MODE_OFF) {
   1216		fmdbg("FM chip is already in OFF state\n");
   1217		return 0;
   1218	}
   1219
   1220	payload = 0x0;
   1221	ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
   1222		sizeof(payload), NULL, NULL);
   1223	if (ret < 0)
   1224		return ret;
   1225
   1226	return fmc_release(fmdev);
   1227}
   1228
   1229/* Reads init command from FM firmware file and loads to the chip */
   1230static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
   1231{
   1232	const struct firmware *fw_entry;
   1233	struct bts_header *fw_header;
   1234	struct bts_action *action;
   1235	struct bts_action_delay *delay;
   1236	u8 *fw_data;
   1237	int ret, fw_len, cmd_cnt;
   1238
   1239	cmd_cnt = 0;
   1240	set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
   1241
   1242	ret = request_firmware(&fw_entry, fw_name,
   1243				&fmdev->radio_dev->dev);
   1244	if (ret < 0) {
   1245		fmerr("Unable to read firmware(%s) content\n", fw_name);
   1246		return ret;
   1247	}
   1248	fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
   1249
   1250	fw_data = (void *)fw_entry->data;
   1251	fw_len = fw_entry->size;
   1252
   1253	fw_header = (struct bts_header *)fw_data;
   1254	if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
   1255		fmerr("%s not a legal TI firmware file\n", fw_name);
   1256		ret = -EINVAL;
   1257		goto rel_fw;
   1258	}
   1259	fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
   1260
   1261	/* Skip file header info , we already verified it */
   1262	fw_data += sizeof(struct bts_header);
   1263	fw_len -= sizeof(struct bts_header);
   1264
   1265	while (fw_data && fw_len > 0) {
   1266		action = (struct bts_action *)fw_data;
   1267
   1268		switch (action->type) {
   1269		case ACTION_SEND_COMMAND:	/* Send */
   1270			ret = fmc_send_cmd(fmdev, 0, 0, action->data,
   1271					   action->size, NULL, NULL);
   1272			if (ret)
   1273				goto rel_fw;
   1274
   1275			cmd_cnt++;
   1276			break;
   1277
   1278		case ACTION_DELAY:	/* Delay */
   1279			delay = (struct bts_action_delay *)action->data;
   1280			mdelay(delay->msec);
   1281			break;
   1282		}
   1283
   1284		fw_data += (sizeof(struct bts_action) + (action->size));
   1285		fw_len -= (sizeof(struct bts_action) + (action->size));
   1286	}
   1287	fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
   1288rel_fw:
   1289	release_firmware(fw_entry);
   1290	clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
   1291
   1292	return ret;
   1293}
   1294
   1295/* Loads default RX configuration to the chip */
   1296static int load_default_rx_configuration(struct fmdev *fmdev)
   1297{
   1298	int ret;
   1299
   1300	ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
   1301	if (ret < 0)
   1302		return ret;
   1303
   1304	return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
   1305}
   1306
   1307/* Does FM power on sequence */
   1308static int fm_power_up(struct fmdev *fmdev, u8 mode)
   1309{
   1310	u16 payload;
   1311	__be16 asic_id = 0, asic_ver = 0;
   1312	int resp_len, ret;
   1313	u8 fw_name[50];
   1314
   1315	if (mode >= FM_MODE_ENTRY_MAX) {
   1316		fmerr("Invalid firmware download option\n");
   1317		return -EINVAL;
   1318	}
   1319
   1320	/*
   1321	 * Initialize FM common module. FM GPIO toggling is
   1322	 * taken care in Shared Transport driver.
   1323	 */
   1324	ret = fmc_prepare(fmdev);
   1325	if (ret < 0) {
   1326		fmerr("Unable to prepare FM Common\n");
   1327		return ret;
   1328	}
   1329
   1330	payload = FM_ENABLE;
   1331	if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
   1332			sizeof(payload), NULL, NULL))
   1333		goto rel;
   1334
   1335	/* Allow the chip to settle down in Channel-8 mode */
   1336	msleep(20);
   1337
   1338	if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
   1339			sizeof(asic_id), &asic_id, &resp_len))
   1340		goto rel;
   1341
   1342	if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
   1343			sizeof(asic_ver), &asic_ver, &resp_len))
   1344		goto rel;
   1345
   1346	fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
   1347		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
   1348
   1349	sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
   1350		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
   1351
   1352	ret = fm_download_firmware(fmdev, fw_name);
   1353	if (ret < 0) {
   1354		fmdbg("Failed to download firmware file %s\n", fw_name);
   1355		goto rel;
   1356	}
   1357	sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
   1358			FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
   1359			be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
   1360
   1361	ret = fm_download_firmware(fmdev, fw_name);
   1362	if (ret < 0) {
   1363		fmdbg("Failed to download firmware file %s\n", fw_name);
   1364		goto rel;
   1365	} else
   1366		return ret;
   1367rel:
   1368	return fmc_release(fmdev);
   1369}
   1370
   1371/* Set FM Modes(TX, RX, OFF) */
   1372int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
   1373{
   1374	int ret = 0;
   1375
   1376	if (fm_mode >= FM_MODE_ENTRY_MAX) {
   1377		fmerr("Invalid FM mode\n");
   1378		return -EINVAL;
   1379	}
   1380	if (fmdev->curr_fmmode == fm_mode) {
   1381		fmdbg("Already fm is in mode(%d)\n", fm_mode);
   1382		return ret;
   1383	}
   1384
   1385	switch (fm_mode) {
   1386	case FM_MODE_OFF:	/* OFF Mode */
   1387		ret = fm_power_down(fmdev);
   1388		if (ret < 0) {
   1389			fmerr("Failed to set OFF mode\n");
   1390			return ret;
   1391		}
   1392		break;
   1393
   1394	case FM_MODE_TX:	/* TX Mode */
   1395	case FM_MODE_RX:	/* RX Mode */
   1396		/* Power down before switching to TX or RX mode */
   1397		if (fmdev->curr_fmmode != FM_MODE_OFF) {
   1398			ret = fm_power_down(fmdev);
   1399			if (ret < 0) {
   1400				fmerr("Failed to set OFF mode\n");
   1401				return ret;
   1402			}
   1403			msleep(30);
   1404		}
   1405		ret = fm_power_up(fmdev, fm_mode);
   1406		if (ret < 0) {
   1407			fmerr("Failed to load firmware\n");
   1408			return ret;
   1409		}
   1410	}
   1411	fmdev->curr_fmmode = fm_mode;
   1412
   1413	/* Set default configuration */
   1414	if (fmdev->curr_fmmode == FM_MODE_RX) {
   1415		fmdbg("Loading default rx configuration..\n");
   1416		ret = load_default_rx_configuration(fmdev);
   1417		if (ret < 0)
   1418			fmerr("Failed to load default values\n");
   1419	}
   1420
   1421	return ret;
   1422}
   1423
   1424/* Returns current FM mode (TX, RX, OFF) */
   1425int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
   1426{
   1427	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
   1428		fmerr("FM core is not ready\n");
   1429		return -EPERM;
   1430	}
   1431	if (fmmode == NULL) {
   1432		fmerr("Invalid memory\n");
   1433		return -ENOMEM;
   1434	}
   1435
   1436	*fmmode = fmdev->curr_fmmode;
   1437	return 0;
   1438}
   1439
   1440/* Called by ST layer when FM packet is available */
   1441static long fm_st_receive(void *arg, struct sk_buff *skb)
   1442{
   1443	struct fmdev *fmdev;
   1444
   1445	fmdev = (struct fmdev *)arg;
   1446
   1447	if (skb == NULL) {
   1448		fmerr("Invalid SKB received from ST\n");
   1449		return -EFAULT;
   1450	}
   1451
   1452	if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
   1453		fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
   1454		return -EINVAL;
   1455	}
   1456
   1457	memcpy(skb_push(skb, 1), &skb->cb[0], 1);
   1458	skb_queue_tail(&fmdev->rx_q, skb);
   1459	tasklet_schedule(&fmdev->rx_task);
   1460
   1461	return 0;
   1462}
   1463
   1464/*
   1465 * Called by ST layer to indicate protocol registration completion
   1466 * status.
   1467 */
   1468static void fm_st_reg_comp_cb(void *arg, int data)
   1469{
   1470	struct fmdev *fmdev;
   1471
   1472	fmdev = (struct fmdev *)arg;
   1473	fmdev->streg_cbdata = data;
   1474	complete(&wait_for_fmdrv_reg_comp);
   1475}
   1476
   1477/*
   1478 * This function will be called from FM V4L2 open function.
   1479 * Register with ST driver and initialize driver data.
   1480 */
   1481int fmc_prepare(struct fmdev *fmdev)
   1482{
   1483	static struct st_proto_s fm_st_proto;
   1484	int ret;
   1485
   1486	if (test_bit(FM_CORE_READY, &fmdev->flag)) {
   1487		fmdbg("FM Core is already up\n");
   1488		return 0;
   1489	}
   1490
   1491	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
   1492	fm_st_proto.recv = fm_st_receive;
   1493	fm_st_proto.match_packet = NULL;
   1494	fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
   1495	fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
   1496	fm_st_proto.priv_data = fmdev;
   1497	fm_st_proto.chnl_id = 0x08;
   1498	fm_st_proto.max_frame_size = 0xff;
   1499	fm_st_proto.hdr_len = 1;
   1500	fm_st_proto.offset_len_in_hdr = 0;
   1501	fm_st_proto.len_size = 1;
   1502	fm_st_proto.reserve = 1;
   1503
   1504	ret = st_register(&fm_st_proto);
   1505	if (ret == -EINPROGRESS) {
   1506		init_completion(&wait_for_fmdrv_reg_comp);
   1507		fmdev->streg_cbdata = -EINPROGRESS;
   1508		fmdbg("%s waiting for ST reg completion signal\n", __func__);
   1509
   1510		if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
   1511						 FM_ST_REG_TIMEOUT)) {
   1512			fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
   1513					jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
   1514			return -ETIMEDOUT;
   1515		}
   1516		if (fmdev->streg_cbdata != 0) {
   1517			fmerr("ST reg comp CB called with error status %d\n",
   1518			      fmdev->streg_cbdata);
   1519			return -EAGAIN;
   1520		}
   1521
   1522		ret = 0;
   1523	} else if (ret < 0) {
   1524		fmerr("st_register failed %d\n", ret);
   1525		return -EAGAIN;
   1526	}
   1527
   1528	if (fm_st_proto.write != NULL) {
   1529		g_st_write = fm_st_proto.write;
   1530	} else {
   1531		fmerr("Failed to get ST write func pointer\n");
   1532		ret = st_unregister(&fm_st_proto);
   1533		if (ret < 0)
   1534			fmerr("st_unregister failed %d\n", ret);
   1535		return -EAGAIN;
   1536	}
   1537
   1538	spin_lock_init(&fmdev->rds_buff_lock);
   1539	spin_lock_init(&fmdev->resp_skb_lock);
   1540
   1541	/* Initialize TX queue and TX tasklet */
   1542	skb_queue_head_init(&fmdev->tx_q);
   1543	tasklet_setup(&fmdev->tx_task, send_tasklet);
   1544
   1545	/* Initialize RX Queue and RX tasklet */
   1546	skb_queue_head_init(&fmdev->rx_q);
   1547	tasklet_setup(&fmdev->rx_task, recv_tasklet);
   1548
   1549	fmdev->irq_info.stage = 0;
   1550	atomic_set(&fmdev->tx_cnt, 1);
   1551	fmdev->resp_comp = NULL;
   1552
   1553	timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
   1554	/*TODO: add FM_STIC_EVENT later */
   1555	fmdev->irq_info.mask = FM_MAL_EVENT;
   1556
   1557	/* Region info */
   1558	fmdev->rx.region = region_configs[default_radio_region];
   1559
   1560	fmdev->rx.mute_mode = FM_MUTE_OFF;
   1561	fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
   1562	fmdev->rx.rds.flag = FM_RDS_DISABLE;
   1563	fmdev->rx.freq = FM_UNDEFINED_FREQ;
   1564	fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
   1565	fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
   1566	fmdev->irq_info.retry = 0;
   1567
   1568	fm_rx_reset_rds_cache(fmdev);
   1569	init_waitqueue_head(&fmdev->rx.rds.read_queue);
   1570
   1571	fm_rx_reset_station_info(fmdev);
   1572	set_bit(FM_CORE_READY, &fmdev->flag);
   1573
   1574	return ret;
   1575}
   1576
   1577/*
   1578 * This function will be called from FM V4L2 release function.
   1579 * Unregister from ST driver.
   1580 */
   1581int fmc_release(struct fmdev *fmdev)
   1582{
   1583	static struct st_proto_s fm_st_proto;
   1584	int ret;
   1585
   1586	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
   1587		fmdbg("FM Core is already down\n");
   1588		return 0;
   1589	}
   1590	/* Service pending read */
   1591	wake_up_interruptible(&fmdev->rx.rds.read_queue);
   1592
   1593	tasklet_kill(&fmdev->tx_task);
   1594	tasklet_kill(&fmdev->rx_task);
   1595
   1596	skb_queue_purge(&fmdev->tx_q);
   1597	skb_queue_purge(&fmdev->rx_q);
   1598
   1599	fmdev->resp_comp = NULL;
   1600	fmdev->rx.freq = 0;
   1601
   1602	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
   1603	fm_st_proto.chnl_id = 0x08;
   1604
   1605	ret = st_unregister(&fm_st_proto);
   1606
   1607	if (ret < 0)
   1608		fmerr("Failed to de-register FM from ST %d\n", ret);
   1609	else
   1610		fmdbg("Successfully unregistered from ST\n");
   1611
   1612	clear_bit(FM_CORE_READY, &fmdev->flag);
   1613	return ret;
   1614}
   1615
   1616/*
   1617 * Module init function. Ask FM V4L module to register video device.
   1618 * Allocate memory for FM driver context and RX RDS buffer.
   1619 */
   1620static int __init fm_drv_init(void)
   1621{
   1622	struct fmdev *fmdev = NULL;
   1623	int ret = -ENOMEM;
   1624
   1625	fmdbg("FM driver version %s\n", FM_DRV_VERSION);
   1626
   1627	fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
   1628	if (NULL == fmdev) {
   1629		fmerr("Can't allocate operation structure memory\n");
   1630		return ret;
   1631	}
   1632	fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
   1633	fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
   1634	if (NULL == fmdev->rx.rds.buff) {
   1635		fmerr("Can't allocate rds ring buffer\n");
   1636		goto rel_dev;
   1637	}
   1638
   1639	ret = fm_v4l2_init_video_device(fmdev, radio_nr);
   1640	if (ret < 0)
   1641		goto rel_rdsbuf;
   1642
   1643	fmdev->irq_info.handlers = int_handler_table;
   1644	fmdev->curr_fmmode = FM_MODE_OFF;
   1645	fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
   1646	fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
   1647	return ret;
   1648
   1649rel_rdsbuf:
   1650	kfree(fmdev->rx.rds.buff);
   1651rel_dev:
   1652	kfree(fmdev);
   1653
   1654	return ret;
   1655}
   1656
   1657/* Module exit function. Ask FM V4L module to unregister video device */
   1658static void __exit fm_drv_exit(void)
   1659{
   1660	struct fmdev *fmdev = NULL;
   1661
   1662	fmdev = fm_v4l2_deinit_video_device();
   1663	if (fmdev != NULL) {
   1664		kfree(fmdev->rx.rds.buff);
   1665		kfree(fmdev);
   1666	}
   1667}
   1668
   1669module_init(fm_drv_init);
   1670module_exit(fm_drv_exit);
   1671
   1672/* ------------- Module Info ------------- */
   1673MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
   1674MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
   1675MODULE_VERSION(FM_DRV_VERSION);
   1676MODULE_LICENSE("GPL");