cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nuvoton-cir.c (30458B)


      1/*
      2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
      3 *
      4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
      5 * Copyright (C) 2009 Nuvoton PS Team
      6 *
      7 * Special thanks to Nuvoton for providing hardware, spec sheets and
      8 * sample code upon which portions of this driver are based. Indirect
      9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
     10 * modeled after.
     11 *
     12 * This program is free software; you can redistribute it and/or
     13 * modify it under the terms of the GNU General Public License as
     14 * published by the Free Software Foundation; either version 2 of the
     15 * License, or (at your option) any later version.
     16 *
     17 * This program is distributed in the hope that it will be useful, but
     18 * WITHOUT ANY WARRANTY; without even the implied warranty of
     19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     20 * General Public License for more details.
     21 */
     22
     23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     24
     25#include <linux/kernel.h>
     26#include <linux/module.h>
     27#include <linux/pnp.h>
     28#include <linux/io.h>
     29#include <linux/interrupt.h>
     30#include <linux/sched.h>
     31#include <linux/slab.h>
     32#include <media/rc-core.h>
     33#include <linux/pci_ids.h>
     34
     35#include "nuvoton-cir.h"
     36
     37static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
     38
     39static const struct nvt_chip nvt_chips[] = {
     40	{ "w83667hg", NVT_W83667HG },
     41	{ "NCT6775F", NVT_6775F },
     42	{ "NCT6776F", NVT_6776F },
     43	{ "NCT6779D", NVT_6779D },
     44};
     45
     46static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
     47{
     48	return nvt->rdev->dev.parent;
     49}
     50
     51static inline bool is_w83667hg(struct nvt_dev *nvt)
     52{
     53	return nvt->chip_ver == NVT_W83667HG;
     54}
     55
     56/* write val to config reg */
     57static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
     58{
     59	outb(reg, nvt->cr_efir);
     60	outb(val, nvt->cr_efdr);
     61}
     62
     63/* read val from config reg */
     64static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
     65{
     66	outb(reg, nvt->cr_efir);
     67	return inb(nvt->cr_efdr);
     68}
     69
     70/* update config register bit without changing other bits */
     71static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
     72{
     73	u8 tmp = nvt_cr_read(nvt, reg) | val;
     74	nvt_cr_write(nvt, tmp, reg);
     75}
     76
     77/* enter extended function mode */
     78static inline int nvt_efm_enable(struct nvt_dev *nvt)
     79{
     80	if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
     81		return -EBUSY;
     82
     83	/* Enabling Extended Function Mode explicitly requires writing 2x */
     84	outb(EFER_EFM_ENABLE, nvt->cr_efir);
     85	outb(EFER_EFM_ENABLE, nvt->cr_efir);
     86
     87	return 0;
     88}
     89
     90/* exit extended function mode */
     91static inline void nvt_efm_disable(struct nvt_dev *nvt)
     92{
     93	outb(EFER_EFM_DISABLE, nvt->cr_efir);
     94
     95	release_region(nvt->cr_efir, 2);
     96}
     97
     98/*
     99 * When you want to address a specific logical device, write its logical
    100 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
    101 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
    102 */
    103static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
    104{
    105	nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
    106}
    107
    108/* select and enable logical device with setting EFM mode*/
    109static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
    110{
    111	nvt_efm_enable(nvt);
    112	nvt_select_logical_dev(nvt, ldev);
    113	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
    114	nvt_efm_disable(nvt);
    115}
    116
    117/* select and disable logical device with setting EFM mode*/
    118static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
    119{
    120	nvt_efm_enable(nvt);
    121	nvt_select_logical_dev(nvt, ldev);
    122	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
    123	nvt_efm_disable(nvt);
    124}
    125
    126/* write val to cir config register */
    127static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
    128{
    129	outb(val, nvt->cir_addr + offset);
    130}
    131
    132/* read val from cir config register */
    133static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
    134{
    135	return inb(nvt->cir_addr + offset);
    136}
    137
    138/* write val to cir wake register */
    139static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
    140					  u8 val, u8 offset)
    141{
    142	outb(val, nvt->cir_wake_addr + offset);
    143}
    144
    145/* read val from cir wake config register */
    146static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
    147{
    148	return inb(nvt->cir_wake_addr + offset);
    149}
    150
    151/* don't override io address if one is set already */
    152static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
    153{
    154	unsigned long old_addr;
    155
    156	old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
    157	old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
    158
    159	if (old_addr)
    160		*ioaddr = old_addr;
    161	else {
    162		nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
    163		nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
    164	}
    165}
    166
    167static void nvt_write_wakeup_codes(struct rc_dev *dev,
    168				   const u8 *wbuf, int count)
    169{
    170	u8 tolerance, config;
    171	struct nvt_dev *nvt = dev->priv;
    172	unsigned long flags;
    173	int i;
    174
    175	/* hardcode the tolerance to 10% */
    176	tolerance = DIV_ROUND_UP(count, 10);
    177
    178	spin_lock_irqsave(&nvt->lock, flags);
    179
    180	nvt_clear_cir_wake_fifo(nvt);
    181	nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
    182	nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
    183
    184	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
    185
    186	/* enable writes to wake fifo */
    187	nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
    188			       CIR_WAKE_IRCON);
    189
    190	if (count)
    191		pr_info("Wake samples (%d) =", count);
    192	else
    193		pr_info("Wake sample fifo cleared");
    194
    195	for (i = 0; i < count; i++)
    196		nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
    197
    198	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
    199
    200	spin_unlock_irqrestore(&nvt->lock, flags);
    201}
    202
    203static ssize_t wakeup_data_show(struct device *dev,
    204				struct device_attribute *attr,
    205				char *buf)
    206{
    207	struct rc_dev *rc_dev = to_rc_dev(dev);
    208	struct nvt_dev *nvt = rc_dev->priv;
    209	int fifo_len, duration;
    210	unsigned long flags;
    211	ssize_t buf_len = 0;
    212	int i;
    213
    214	spin_lock_irqsave(&nvt->lock, flags);
    215
    216	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
    217	fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
    218
    219	/* go to first element to be read */
    220	while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
    221		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
    222
    223	for (i = 0; i < fifo_len; i++) {
    224		duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
    225		duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
    226		buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len,
    227				    "%d ", duration);
    228	}
    229	buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
    230
    231	spin_unlock_irqrestore(&nvt->lock, flags);
    232
    233	return buf_len;
    234}
    235
    236static ssize_t wakeup_data_store(struct device *dev,
    237				 struct device_attribute *attr,
    238				 const char *buf, size_t len)
    239{
    240	struct rc_dev *rc_dev = to_rc_dev(dev);
    241	u8 wake_buf[WAKEUP_MAX_SIZE];
    242	char **argv;
    243	int i, count;
    244	unsigned int val;
    245	ssize_t ret;
    246
    247	argv = argv_split(GFP_KERNEL, buf, &count);
    248	if (!argv)
    249		return -ENOMEM;
    250	if (!count || count > WAKEUP_MAX_SIZE) {
    251		ret = -EINVAL;
    252		goto out;
    253	}
    254
    255	for (i = 0; i < count; i++) {
    256		ret = kstrtouint(argv[i], 10, &val);
    257		if (ret)
    258			goto out;
    259		val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
    260		if (!val || val > 0x7f) {
    261			ret = -EINVAL;
    262			goto out;
    263		}
    264		wake_buf[i] = val;
    265		/* sequence must start with a pulse */
    266		if (i % 2 == 0)
    267			wake_buf[i] |= BUF_PULSE_BIT;
    268	}
    269
    270	nvt_write_wakeup_codes(rc_dev, wake_buf, count);
    271
    272	ret = len;
    273out:
    274	argv_free(argv);
    275	return ret;
    276}
    277static DEVICE_ATTR_RW(wakeup_data);
    278
    279/* dump current cir register contents */
    280static void cir_dump_regs(struct nvt_dev *nvt)
    281{
    282	nvt_efm_enable(nvt);
    283	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
    284
    285	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
    286	pr_info(" * CR CIR ACTIVE :   0x%x\n",
    287		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
    288	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
    289		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
    290		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
    291	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
    292		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
    293
    294	nvt_efm_disable(nvt);
    295
    296	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
    297	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
    298	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
    299	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
    300	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
    301	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
    302	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
    303	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
    304	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
    305	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
    306	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
    307	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
    308	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
    309	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
    310	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
    311	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
    312	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
    313}
    314
    315/* dump current cir wake register contents */
    316static void cir_wake_dump_regs(struct nvt_dev *nvt)
    317{
    318	u8 i, fifo_len;
    319
    320	nvt_efm_enable(nvt);
    321	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
    322
    323	pr_info("%s: Dump CIR WAKE logical device registers:\n",
    324		NVT_DRIVER_NAME);
    325	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
    326		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
    327	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
    328		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
    329		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
    330	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
    331		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
    332
    333	nvt_efm_disable(nvt);
    334
    335	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
    336	pr_info(" * IRCON:          0x%x\n",
    337		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
    338	pr_info(" * IRSTS:          0x%x\n",
    339		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
    340	pr_info(" * IREN:           0x%x\n",
    341		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
    342	pr_info(" * FIFO CMP DEEP:  0x%x\n",
    343		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
    344	pr_info(" * FIFO CMP TOL:   0x%x\n",
    345		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
    346	pr_info(" * FIFO COUNT:     0x%x\n",
    347		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
    348	pr_info(" * SLCH:           0x%x\n",
    349		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
    350	pr_info(" * SLCL:           0x%x\n",
    351		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
    352	pr_info(" * FIFOCON:        0x%x\n",
    353		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
    354	pr_info(" * SRXFSTS:        0x%x\n",
    355		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
    356	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
    357		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
    358	pr_info(" * WR FIFO DATA:   0x%x\n",
    359		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
    360	pr_info(" * RD FIFO ONLY:   0x%x\n",
    361		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
    362	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
    363		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
    364	pr_info(" * FIFO IGNORE:    0x%x\n",
    365		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
    366	pr_info(" * IRFSM:          0x%x\n",
    367		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
    368
    369	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
    370	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
    371	pr_info("* Contents =");
    372	for (i = 0; i < fifo_len; i++)
    373		pr_cont(" %02x",
    374			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
    375	pr_cont("\n");
    376}
    377
    378static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
    379{
    380	int i;
    381
    382	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
    383		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
    384			nvt->chip_ver = nvt_chips[i].chip_ver;
    385			return nvt_chips[i].name;
    386		}
    387
    388	return NULL;
    389}
    390
    391
    392/* detect hardware features */
    393static int nvt_hw_detect(struct nvt_dev *nvt)
    394{
    395	struct device *dev = nvt_get_dev(nvt);
    396	const char *chip_name;
    397	int chip_id;
    398
    399	nvt_efm_enable(nvt);
    400
    401	/* Check if we're wired for the alternate EFER setup */
    402	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
    403	if (nvt->chip_major == 0xff) {
    404		nvt_efm_disable(nvt);
    405		nvt->cr_efir = CR_EFIR2;
    406		nvt->cr_efdr = CR_EFDR2;
    407		nvt_efm_enable(nvt);
    408		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
    409	}
    410	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
    411
    412	nvt_efm_disable(nvt);
    413
    414	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
    415	if (chip_id == NVT_INVALID) {
    416		dev_err(dev, "No device found on either EFM port\n");
    417		return -ENODEV;
    418	}
    419
    420	chip_name = nvt_find_chip(nvt, chip_id);
    421
    422	/* warn, but still let the driver load, if we don't know this chip */
    423	if (!chip_name)
    424		dev_warn(dev,
    425			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
    426			 nvt->chip_major, nvt->chip_minor);
    427	else
    428		dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
    429			 chip_name, nvt->chip_major, nvt->chip_minor);
    430
    431	return 0;
    432}
    433
    434static void nvt_cir_ldev_init(struct nvt_dev *nvt)
    435{
    436	u8 val, psreg, psmask, psval;
    437
    438	if (is_w83667hg(nvt)) {
    439		psreg = CR_MULTIFUNC_PIN_SEL;
    440		psmask = MULTIFUNC_PIN_SEL_MASK;
    441		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
    442	} else {
    443		psreg = CR_OUTPUT_PIN_SEL;
    444		psmask = OUTPUT_PIN_SEL_MASK;
    445		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
    446	}
    447
    448	/* output pin selection: enable CIR, with WB sensor enabled */
    449	val = nvt_cr_read(nvt, psreg);
    450	val &= psmask;
    451	val |= psval;
    452	nvt_cr_write(nvt, val, psreg);
    453
    454	/* Select CIR logical device */
    455	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
    456
    457	nvt_set_ioaddr(nvt, &nvt->cir_addr);
    458
    459	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
    460
    461	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
    462		nvt->cir_addr, nvt->cir_irq);
    463}
    464
    465static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
    466{
    467	/* Select ACPI logical device and anable it */
    468	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
    469	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
    470
    471	/* Enable CIR Wake via PSOUT# (Pin60) */
    472	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
    473
    474	/* enable pme interrupt of cir wakeup event */
    475	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
    476
    477	/* Select CIR Wake logical device */
    478	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
    479
    480	nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
    481
    482	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
    483		nvt->cir_wake_addr);
    484}
    485
    486/* clear out the hardware's cir rx fifo */
    487static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
    488{
    489	u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
    490	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
    491}
    492
    493/* clear out the hardware's cir wake rx fifo */
    494static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
    495{
    496	u8 val, config;
    497
    498	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
    499
    500	/* clearing wake fifo works in learning mode only */
    501	nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
    502			       CIR_WAKE_IRCON);
    503
    504	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
    505	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
    506			       CIR_WAKE_FIFOCON);
    507
    508	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
    509}
    510
    511/* clear out the hardware's cir tx fifo */
    512static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
    513{
    514	u8 val;
    515
    516	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
    517	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
    518}
    519
    520/* enable RX Trigger Level Reach and Packet End interrupts */
    521static void nvt_set_cir_iren(struct nvt_dev *nvt)
    522{
    523	u8 iren;
    524
    525	iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
    526	nvt_cir_reg_write(nvt, iren, CIR_IREN);
    527}
    528
    529static void nvt_cir_regs_init(struct nvt_dev *nvt)
    530{
    531	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
    532
    533	/* set sample limit count (PE interrupt raised when reached) */
    534	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
    535	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
    536
    537	/* set fifo irq trigger levels */
    538	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
    539			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
    540
    541	/* clear hardware rx and tx fifos */
    542	nvt_clear_cir_fifo(nvt);
    543	nvt_clear_tx_fifo(nvt);
    544
    545	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
    546}
    547
    548static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
    549{
    550	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
    551
    552	/*
    553	 * Disable RX, set specific carrier on = low, off = high,
    554	 * and sample period (currently 50us)
    555	 */
    556	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
    557			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
    558			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
    559			       CIR_WAKE_IRCON);
    560
    561	/* clear any and all stray interrupts */
    562	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
    563}
    564
    565static void nvt_enable_wake(struct nvt_dev *nvt)
    566{
    567	unsigned long flags;
    568
    569	nvt_efm_enable(nvt);
    570
    571	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
    572	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
    573	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
    574
    575	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
    576	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
    577
    578	nvt_efm_disable(nvt);
    579
    580	spin_lock_irqsave(&nvt->lock, flags);
    581
    582	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
    583			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
    584			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
    585			       CIR_WAKE_IRCON);
    586	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
    587	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
    588
    589	spin_unlock_irqrestore(&nvt->lock, flags);
    590}
    591
    592#if 0 /* Currently unused */
    593/* rx carrier detect only works in learning mode, must be called w/lock */
    594static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
    595{
    596	u32 count, carrier, duration = 0;
    597	int i;
    598
    599	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
    600		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
    601
    602	for (i = 0; i < nvt->pkts; i++) {
    603		if (nvt->buf[i] & BUF_PULSE_BIT)
    604			duration += nvt->buf[i] & BUF_LEN_MASK;
    605	}
    606
    607	duration *= SAMPLE_PERIOD;
    608
    609	if (!count || !duration) {
    610		dev_notice(nvt_get_dev(nvt),
    611			   "Unable to determine carrier! (c:%u, d:%u)",
    612			   count, duration);
    613		return 0;
    614	}
    615
    616	carrier = MS_TO_NS(count) / duration;
    617
    618	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
    619		nvt_dbg("WTF? Carrier frequency out of range!");
    620
    621	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
    622		carrier, count, duration);
    623
    624	return carrier;
    625}
    626#endif
    627
    628static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
    629					struct rc_scancode_filter *sc_filter)
    630{
    631	u8 buf_val;
    632	int i, ret, count;
    633	unsigned int val;
    634	struct ir_raw_event *raw;
    635	u8 wake_buf[WAKEUP_MAX_SIZE];
    636	bool complete;
    637
    638	/* Require mask to be set */
    639	if (!sc_filter->mask)
    640		return 0;
    641
    642	raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
    643	if (!raw)
    644		return -ENOMEM;
    645
    646	ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
    647				     raw, WAKEUP_MAX_SIZE);
    648	complete = (ret != -ENOBUFS);
    649	if (!complete)
    650		ret = WAKEUP_MAX_SIZE;
    651	else if (ret < 0)
    652		goto out_raw;
    653
    654	/* Inspect the ir samples */
    655	for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
    656		val = raw[i].duration / SAMPLE_PERIOD;
    657
    658		/* Split too large values into several smaller ones */
    659		while (val > 0 && count < WAKEUP_MAX_SIZE) {
    660			/* Skip last value for better comparison tolerance */
    661			if (complete && i == ret - 1 && val < BUF_LEN_MASK)
    662				break;
    663
    664			/* Clamp values to BUF_LEN_MASK at most */
    665			buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
    666
    667			wake_buf[count] = buf_val;
    668			val -= buf_val;
    669			if ((raw[i]).pulse)
    670				wake_buf[count] |= BUF_PULSE_BIT;
    671			count++;
    672		}
    673	}
    674
    675	nvt_write_wakeup_codes(dev, wake_buf, count);
    676	ret = 0;
    677out_raw:
    678	kfree(raw);
    679
    680	return ret;
    681}
    682
    683/* dump contents of the last rx buffer we got from the hw rx fifo */
    684static void nvt_dump_rx_buf(struct nvt_dev *nvt)
    685{
    686	int i;
    687
    688	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
    689	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
    690		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
    691	printk(KERN_CONT "\n");
    692}
    693
    694/*
    695 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
    696 * trigger decode when appropriate.
    697 *
    698 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
    699 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
    700 * (default 50us) intervals for that pulse/space. A discrete signal is
    701 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
    702 * to signal more IR coming (repeats) or end of IR, respectively. We store
    703 * sample data in the raw event kfifo until we see 0x7<something> (except f)
    704 * or 0x80, at which time, we trigger a decode operation.
    705 */
    706static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
    707{
    708	struct ir_raw_event rawir = {};
    709	u8 sample;
    710	int i;
    711
    712	nvt_dbg_verbose("%s firing", __func__);
    713
    714	if (debug)
    715		nvt_dump_rx_buf(nvt);
    716
    717	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
    718
    719	for (i = 0; i < nvt->pkts; i++) {
    720		sample = nvt->buf[i];
    721
    722		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
    723		rawir.duration = (sample & BUF_LEN_MASK) * SAMPLE_PERIOD;
    724
    725		nvt_dbg("Storing %s with duration %d",
    726			rawir.pulse ? "pulse" : "space", rawir.duration);
    727
    728		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
    729	}
    730
    731	nvt->pkts = 0;
    732
    733	nvt_dbg("Calling ir_raw_event_handle\n");
    734	ir_raw_event_handle(nvt->rdev);
    735
    736	nvt_dbg_verbose("%s done", __func__);
    737}
    738
    739static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
    740{
    741	dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
    742
    743	nvt->pkts = 0;
    744	nvt_clear_cir_fifo(nvt);
    745	ir_raw_event_overflow(nvt->rdev);
    746}
    747
    748/* copy data from hardware rx fifo into driver buffer */
    749static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
    750{
    751	u8 fifocount;
    752	int i;
    753
    754	/* Get count of how many bytes to read from RX FIFO */
    755	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
    756
    757	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
    758
    759	/* Read fifocount bytes from CIR Sample RX FIFO register */
    760	for (i = 0; i < fifocount; i++)
    761		nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
    762
    763	nvt->pkts = fifocount;
    764	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
    765
    766	nvt_process_rx_ir_data(nvt);
    767}
    768
    769static void nvt_cir_log_irqs(u8 status, u8 iren)
    770{
    771	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
    772		status, iren,
    773		status & CIR_IRSTS_RDR	? " RDR"	: "",
    774		status & CIR_IRSTS_RTR	? " RTR"	: "",
    775		status & CIR_IRSTS_PE	? " PE"		: "",
    776		status & CIR_IRSTS_RFO	? " RFO"	: "",
    777		status & CIR_IRSTS_TE	? " TE"		: "",
    778		status & CIR_IRSTS_TTR	? " TTR"	: "",
    779		status & CIR_IRSTS_TFU	? " TFU"	: "",
    780		status & CIR_IRSTS_GH	? " GH"		: "",
    781		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
    782			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
    783			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
    784}
    785
    786/* interrupt service routine for incoming and outgoing CIR data */
    787static irqreturn_t nvt_cir_isr(int irq, void *data)
    788{
    789	struct nvt_dev *nvt = data;
    790	u8 status, iren;
    791
    792	nvt_dbg_verbose("%s firing", __func__);
    793
    794	spin_lock(&nvt->lock);
    795
    796	/*
    797	 * Get IR Status register contents. Write 1 to ack/clear
    798	 *
    799	 * bit: reg name      - description
    800	 *   7: CIR_IRSTS_RDR - RX Data Ready
    801	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
    802	 *   5: CIR_IRSTS_PE  - Packet End
    803	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
    804	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
    805	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
    806	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
    807	 *   0: CIR_IRSTS_GH  - Min Length Detected
    808	 */
    809	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
    810	iren = nvt_cir_reg_read(nvt, CIR_IREN);
    811
    812	/* At least NCT6779D creates a spurious interrupt when the
    813	 * logical device is being disabled.
    814	 */
    815	if (status == 0xff && iren == 0xff) {
    816		spin_unlock(&nvt->lock);
    817		nvt_dbg_verbose("Spurious interrupt detected");
    818		return IRQ_HANDLED;
    819	}
    820
    821	/* IRQ may be shared with CIR WAKE, therefore check for each
    822	 * status bit whether the related interrupt source is enabled
    823	 */
    824	if (!(status & iren)) {
    825		spin_unlock(&nvt->lock);
    826		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
    827		return IRQ_NONE;
    828	}
    829
    830	/* ack/clear all irq flags we've got */
    831	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
    832	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
    833
    834	nvt_cir_log_irqs(status, iren);
    835
    836	if (status & CIR_IRSTS_RFO)
    837		nvt_handle_rx_fifo_overrun(nvt);
    838	else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE))
    839		nvt_get_rx_ir_data(nvt);
    840
    841	spin_unlock(&nvt->lock);
    842
    843	nvt_dbg_verbose("%s done", __func__);
    844	return IRQ_HANDLED;
    845}
    846
    847static void nvt_enable_cir(struct nvt_dev *nvt)
    848{
    849	unsigned long flags;
    850
    851	/* enable the CIR logical device */
    852	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
    853
    854	spin_lock_irqsave(&nvt->lock, flags);
    855
    856	/*
    857	 * Enable TX and RX, specify carrier on = low, off = high, and set
    858	 * sample period (currently 50us)
    859	 */
    860	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
    861			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
    862			  CIR_IRCON);
    863
    864	/* clear all pending interrupts */
    865	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
    866
    867	/* enable interrupts */
    868	nvt_set_cir_iren(nvt);
    869
    870	spin_unlock_irqrestore(&nvt->lock, flags);
    871}
    872
    873static void nvt_disable_cir(struct nvt_dev *nvt)
    874{
    875	unsigned long flags;
    876
    877	spin_lock_irqsave(&nvt->lock, flags);
    878
    879	/* disable CIR interrupts */
    880	nvt_cir_reg_write(nvt, 0, CIR_IREN);
    881
    882	/* clear any and all pending interrupts */
    883	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
    884
    885	/* clear all function enable flags */
    886	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
    887
    888	/* clear hardware rx and tx fifos */
    889	nvt_clear_cir_fifo(nvt);
    890	nvt_clear_tx_fifo(nvt);
    891
    892	spin_unlock_irqrestore(&nvt->lock, flags);
    893
    894	/* disable the CIR logical device */
    895	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
    896}
    897
    898static int nvt_open(struct rc_dev *dev)
    899{
    900	struct nvt_dev *nvt = dev->priv;
    901
    902	nvt_enable_cir(nvt);
    903
    904	return 0;
    905}
    906
    907static void nvt_close(struct rc_dev *dev)
    908{
    909	struct nvt_dev *nvt = dev->priv;
    910
    911	nvt_disable_cir(nvt);
    912}
    913
    914/* Allocate memory, probe hardware, and initialize everything */
    915static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
    916{
    917	struct nvt_dev *nvt;
    918	struct rc_dev *rdev;
    919	int ret;
    920
    921	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
    922	if (!nvt)
    923		return -ENOMEM;
    924
    925	/* input device for IR remote */
    926	nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
    927	if (!nvt->rdev)
    928		return -ENOMEM;
    929	rdev = nvt->rdev;
    930
    931	/* activate pnp device */
    932	ret = pnp_activate_dev(pdev);
    933	if (ret) {
    934		dev_err(&pdev->dev, "Could not activate PNP device!\n");
    935		return ret;
    936	}
    937
    938	/* validate pnp resources */
    939	if (!pnp_port_valid(pdev, 0) ||
    940	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
    941		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
    942		return -EINVAL;
    943	}
    944
    945	if (!pnp_irq_valid(pdev, 0)) {
    946		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
    947		return -EINVAL;
    948	}
    949
    950	if (!pnp_port_valid(pdev, 1) ||
    951	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
    952		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
    953		return -EINVAL;
    954	}
    955
    956	nvt->cir_addr = pnp_port_start(pdev, 0);
    957	nvt->cir_irq  = pnp_irq(pdev, 0);
    958
    959	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
    960
    961	nvt->cr_efir = CR_EFIR;
    962	nvt->cr_efdr = CR_EFDR;
    963
    964	spin_lock_init(&nvt->lock);
    965
    966	pnp_set_drvdata(pdev, nvt);
    967
    968	ret = nvt_hw_detect(nvt);
    969	if (ret)
    970		return ret;
    971
    972	/* Initialize CIR & CIR Wake Logical Devices */
    973	nvt_efm_enable(nvt);
    974	nvt_cir_ldev_init(nvt);
    975	nvt_cir_wake_ldev_init(nvt);
    976	nvt_efm_disable(nvt);
    977
    978	/*
    979	 * Initialize CIR & CIR Wake Config Registers
    980	 * and enable logical devices
    981	 */
    982	nvt_cir_regs_init(nvt);
    983	nvt_cir_wake_regs_init(nvt);
    984
    985	/* Set up the rc device */
    986	rdev->priv = nvt;
    987	rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
    988	rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER;
    989	rdev->encode_wakeup = true;
    990	rdev->open = nvt_open;
    991	rdev->close = nvt_close;
    992	rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
    993	rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
    994	rdev->input_phys = "nuvoton/cir0";
    995	rdev->input_id.bustype = BUS_HOST;
    996	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
    997	rdev->input_id.product = nvt->chip_major;
    998	rdev->input_id.version = nvt->chip_minor;
    999	rdev->driver_name = NVT_DRIVER_NAME;
   1000	rdev->map_name = RC_MAP_RC6_MCE;
   1001	rdev->timeout = MS_TO_US(100);
   1002	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
   1003	rdev->rx_resolution = CIR_SAMPLE_PERIOD;
   1004#if 0
   1005	rdev->min_timeout = XYZ;
   1006	rdev->max_timeout = XYZ;
   1007#endif
   1008	ret = devm_rc_register_device(&pdev->dev, rdev);
   1009	if (ret)
   1010		return ret;
   1011
   1012	/* now claim resources */
   1013	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
   1014			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
   1015		return -EBUSY;
   1016
   1017	ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
   1018			       IRQF_SHARED, NVT_DRIVER_NAME, nvt);
   1019	if (ret)
   1020		return ret;
   1021
   1022	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
   1023			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
   1024		return -EBUSY;
   1025
   1026	ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
   1027	if (ret)
   1028		return ret;
   1029
   1030	device_init_wakeup(&pdev->dev, true);
   1031
   1032	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
   1033	if (debug) {
   1034		cir_dump_regs(nvt);
   1035		cir_wake_dump_regs(nvt);
   1036	}
   1037
   1038	return 0;
   1039}
   1040
   1041static void nvt_remove(struct pnp_dev *pdev)
   1042{
   1043	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
   1044
   1045	device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
   1046
   1047	nvt_disable_cir(nvt);
   1048
   1049	/* enable CIR Wake (for IR power-on) */
   1050	nvt_enable_wake(nvt);
   1051}
   1052
   1053static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
   1054{
   1055	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
   1056
   1057	nvt_dbg("%s called", __func__);
   1058
   1059	mutex_lock(&nvt->rdev->lock);
   1060	if (nvt->rdev->users)
   1061		nvt_disable_cir(nvt);
   1062	mutex_unlock(&nvt->rdev->lock);
   1063
   1064	/* make sure wake is enabled */
   1065	nvt_enable_wake(nvt);
   1066
   1067	return 0;
   1068}
   1069
   1070static int nvt_resume(struct pnp_dev *pdev)
   1071{
   1072	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
   1073
   1074	nvt_dbg("%s called", __func__);
   1075
   1076	nvt_cir_regs_init(nvt);
   1077	nvt_cir_wake_regs_init(nvt);
   1078
   1079	mutex_lock(&nvt->rdev->lock);
   1080	if (nvt->rdev->users)
   1081		nvt_enable_cir(nvt);
   1082	mutex_unlock(&nvt->rdev->lock);
   1083
   1084	return 0;
   1085}
   1086
   1087static void nvt_shutdown(struct pnp_dev *pdev)
   1088{
   1089	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
   1090
   1091	nvt_enable_wake(nvt);
   1092}
   1093
   1094static const struct pnp_device_id nvt_ids[] = {
   1095	{ "WEC0530", 0 },   /* CIR */
   1096	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
   1097	{ "", 0 },
   1098};
   1099
   1100static struct pnp_driver nvt_driver = {
   1101	.name		= NVT_DRIVER_NAME,
   1102	.id_table	= nvt_ids,
   1103	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
   1104	.probe		= nvt_probe,
   1105	.remove		= nvt_remove,
   1106	.suspend	= nvt_suspend,
   1107	.resume		= nvt_resume,
   1108	.shutdown	= nvt_shutdown,
   1109};
   1110
   1111module_param(debug, int, S_IRUGO | S_IWUSR);
   1112MODULE_PARM_DESC(debug, "Enable debugging output");
   1113
   1114MODULE_DEVICE_TABLE(pnp, nvt_ids);
   1115MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
   1116
   1117MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
   1118MODULE_LICENSE("GPL");
   1119
   1120module_pnp_driver(nvt_driver);